

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF AUTOMATED COUNTING MACHINE FOR INDUSTRIAL APPLICATION

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours.

by

MUHAMMAD FARIS B MD YUSUF

FACULTY OF MANUFACTURING ENGINEERING 2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM

JUDUL:

Design and Development of Automated Counting Machine For Industrial Application

SESI PENGAJIAN: Semester 2 (2008/2009)

Saya <u>Muhammad Faris B Md Yusuf</u> mengaku membenarkan laporan <u>PSM</u> / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan <u>PSM</u> / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan $(\sqrt{})$

] SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

| TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

(TANDATANGAN PENULIS) Alamat Tetap: 69, Jalan Halaman 4, Taman Halaman, 68000 Ampang, Selangor Darul Ehsan.

Tarikh: 10 April 2009

(TANDATANG

Cop Rasmi: LOKMAN BIN ABDULLAH Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Tarikh: 12 MEI 2009.

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempah tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref): 12 Mei 2009

Pustakawan Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) Taman Tasik Utama, Hang Tuah Jaya, Ayer Keroh, 75450, Melaka

Saudara,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD - LAPORAN PSM SARJANA MUDA KEJURUTERAAN PEMBUATAN (ROBOTIK DAN AUTOMASI): Muhammad Faris B Md Yusuf. TAJUK: Design and Development of Automated Counting Machine For Industrial Application.

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk "Design and Development of Automated Counting Machine For Industrial Application" mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

"BERKHIDMAT UNTUK NEGARA KERANA ALLAH"

Yang benar,

LOKMAN BÍN ÁBDULLAH Pensyarah, Fakulti Kejuruteraan Pembuatan

DECLARATION

I hereby, declared this report entitled "Design and Development of Automated Counting Machine for Industrial Application" is the results of own my research except as cited in references.

Signature:

Author's Name: MUHAMMAD PARIS MD YUSUF

Date: 10 APRIL 2009

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The member of supervisor committee is as follow:

(Signature of Supervisor)

Jukman

(Official Stamp of Supervisor)

LOKMAN BIN ABDULLAH Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

ABSTRACT

This project describes and reviews various sensor technologies, particularly through beam sensor and retro reflective sensor, which is applicable to counting an object in industrial applications. Aspects of review include technical requirement, design and fabrication, and instrumentation procedures for the sensors. A comparative between two sensors on the relative merit and selection criteria is carried out through an analysis of advantage and disadvantage on real applications of sensors in counting method. Hence, a details drawing for each part components were prepared and will be check to fabricate and develop. Electrical component to control a machine were determined with its function. Some of analysis will be taken as consideration to achieve a target objective of project such as time productivity counting and type of product been used.

ABSTRAK

Projek ini dijalankan untuk membincangkan dan mengulas tentang kepelbagaian teknologi sensor khususnya sensor sinar penembus dan sensor pemantulan sinar, dimana ia boleh digunakan dalam membilang objek didalam aplikasi industri. Aspek yang dibincangkan adalah termasuk rekaan dan fabrikasi pembangunan mesin serta prosedur yang diperlukan semasa pemasangan sensor dan keperluan teknikal sensor tersebut. Perbandingan di antara dengan kelebihan setiap sensor dan kriteria yang diperlukan semasa membuat pemilihan sensor dibuat berpandukan kelebihan dan kekurangan dalam aplikasi sebenar penggunaan sensor dalam kaedah membilang objek. Justeru itu, gambarajah terperinci di lakukan seblum proses membangunkan di jalankan. Beberapa analisis dijalankan terhadap projek membangunkan mesin kira ini untuk mencapai objektif projek dari segi masa yang di ambil terhadap productivity dan jenis-jenis bahan yang sesuai digunakan untuk applikasi dalam projek ini.

DEDICATION

Special Dedicated to My Beloved Family

Md Yusuf Mahmud Jawizah Mamat Yusrizan Md Yusuf Nor Fathilah Md Yusuf Khairul Azli Md Yusuf Al-Yani Md Yusuf Nur Ashikin Md Yusuf Ahmad Mokhzani Md Yusuf

> And All my Friends

ACKNOWLEDGEMENT

I wish to thank my supervisor, Mr. Lokman Abdullah for his valuable advice, constructive criticisms, stimulating discussions and valuable suggestions during the preparation of this project report. I would like to express my thanks to all colleagues who are always ready to give their helping hands. Last but not least, no words can be used to express my deepest gratitude to my parent and family for their encouragement and love, which are forever indebted.

TABLE OF CONTENT

Abstract	i					
Abstrak	ii					
Dedicat	iii					
Acknow	iv					
Table of	V					
List of 7	Tables	ix				
List of I	Figures	х				
1. INTE	RODUCTION	1				
1.1	Background Study	1				
1.2	Problem Statement	2				
1.3	Objective of Project	3				
1.4	Scope of Project	3				
2. LITH	CRATURE REVIEW	4				
2.1	Historical Development of Counting Machine					
	For Industrial Application	4				
2.1.1	What is counting?	4				
2.1.2	Historical counting device	4				
2.1.3	Historical counting machine	5				
2.1.3.1	Cremer Company	5				
2.1.3.2	Cremer's Method	6				
2.2	Feeder Mechanism in Counting Machine	7				
2.2.1	Type of Feeder Mechanism	7				
2.3	Counter Detector in Counting Machine	11				
2.3.1	Photoelectric Sensor	11				
2.3.2	Principle of Photoelectric Sensor	12				
2.3.3	Detection Object by Using Photoelectric Sensor	15				
2.4	17					
2.4.1 Method of Sorting and Counting Cans						

2.4.2	Discrete Tablet Counting Machine	18
2.4.3	Counting Method in a Leaves Counting Machine	19
2.4.4	Apparatus and Method for Counting Fruits and Other Object	22
2.5	Counting by using Programmable Logic Circuit	21
3. MET	HODOLOGY	22
3.1	Description Project Procedure	24
3.2	Counting Method Process	25
3.2.1	Description of Counting Method Process	26
3.3	Application Automated Counter by OMRON Industrial Automation	27
3.3.1	Step for Counting Procedure	28
3.3.2	Description of the Timing Chart	29
3.4	Design Detail of Photoelectric Sensor	30
3.4.1	Technique Used in Photoelectric Sensor	31
3.4.1.1	Through Beam Sensor	31
3.4.1.2	Sensing Method of through Beam Sensor	31
3.4.2	Retro Reflective Sensor	32
3.4.2.1	Retro Reflective Sensor Method	32
3.4.2.2	Retro-reflective Sensors with Polarization Filter	33
3.4.2.3	Limited-reflective Sensors	33
3.4.3	Advantages and Disadvantage Type Sensor	34
3.4.3.1	Through Beam Sensor	34
3.4.3.2	Retro Reflective Sensor	35
3.4.4	Comparison between Through Beam Sensor and	
	Retro Reflective Sensor	35
3.5	Reason Choosing Through Beam Sensor for Counting	36

4. DESIGN AND DEVELOPMENT PLANNING COUNTING

DEVI	CE	39
4.1	Design Procedure	39
4.2	Working Process Counting Device	40
4.3	Simulation of Working Process	41
4.4	Process Sequence of Simulation	42
4.5	An Electrical of Hardwiring Process	43
4.6	Development Counting Device Planning	44
4.6.1	Description Development Procedure.	45

5. DESIGN AND DEVELOPMENT OF AUTOMATED COUNTING MACHINE

46

5.1	Design of Automated Counting Machine Component by Using	
	Solid Work	46
5.1.1	Design a Component of Automated Counting Machine	46
5.1.2	Step of Designing of Automated Counting Machine	47
5.2	Automated Counting Machine Circuit	52
5.2.1	Component Electrical of Automated Counting System	52
5.3	Development Process of Automated Counting Machine System	55
5.3.1	Developing conveyor	56
5.3.1.1	Part of conveyor	56
5.3.2	Control panel	57
5.3.2.1	Step developing control panel	58
5.3.3	Laser beam	59
5.3.4	Sensor Receiver	59
6. RES	ULT	60
6.1	Result of Development Automated Counting Machine System	60
6.2	Automated Counting Machine Testing	61
6.2.1	Manually Counting Testing	61
6.2.2	Automatically Counting Testing	64

6.2.2.1Description of Automatic Counting Testing66

7. DIS	69						
7.1	1 Discussion of Automated Counting Machine						
7.2	Analysis of Counting Machine	72					
7.3	Limitation of Counting Machine	78					
8. CC	ONCLUSION	79					
8.1	Summary of Project	79					
8.2	Conclusion	80					
8.3	Recommendations	80					
REFI	ERENCES	81					

APPENDICIES

A-Design Counting Machine

LIST OF TABLES

1.1	Gantt Chart of PSM	3
3.1	Advantages and Disadvantages of Through Beam Sensors	34
3.2	Advantages and Disadvantages Retro Reflective of Sensors	34
3.3	Comparison between Sensors	35
7.1	Comparison between Manually and Automatically Counting Operation	69
7.2	Counting Time for One Object for Variable	
	Width Size of Object	74
7.3	Sample with Different Width Size Object	75
7.4	Time Taken to Count with Different Width	75
7.5	Time Cycle for Five Objects	75
7.6	Object Sensed by Sensor Detector	76

LIST OF FIGURES

A Roman Abacus	5
First Counting Machine	6
Cremer's Counting Principle	6
Tumbling Barrel Hopper	7
Bladed Wheel Hopper and Tumbling Barrel Hopper for Feeding of	
Durable Cylindrical Parts	7
Rotating Drum for Orientating Plastic Bottles	8
Rotary Centerboard Hopper	9
Feeding of bottle caps in correct orientation.	9
Creating a single file of washer in a vibratory.	10
Orientating Headed Screws or Rivets at the Top Discharge	
Potion of Vibratory Bowl	10
Through-beam Sensor	11
Retro-reflective Sensors	11
Diffuse-reflective Sensors	12
Mode Reflectivity Table	13
Diffused Mode with Mechanical Background Suppression.	13
Diffused Mode with Electronic Background Suppression.	14
Variation the Bottle Moves Through The Light Beam.	17
Summary of Project Procedure	23
Count Method on Counting Machine	26
Counter Automated in Production Line	27
The Input, Control and Output Signal Sequence in a Boxing Process	27
Input Signal	28
Control Count	28
Output Control Count	29
Preset Counter	30
	A Roman Abacus First Counting Machine Cremer's Counting Principle Tumbling Barrel Hopper Bladed Wheel Hopper and Tumbling Barrel Hopper for Feeding of Durable Cylindrical Parts Rotating Drum for Orientating Plastic Bottles Rotary Centerboard Hopper Feeding of bottle caps in correct orientation. Creating a single file of washer in a vibratory. Orientating Headed Screws or Rivets at the Top Discharge Potion of Vibratory Bowl Through-beam Sensor Retro-reflective Sensors Diffuse-reflective Sensors Diffuse-reflectivity Table Diffused Mode with Mechanical Background Suppression. Variation the Bottle Moves Through The Light Beam. Summary of Project Procedure Count Method on Counting Machine Counter Automated in Production Line The Input, Control and Output Signal Sequence in a Boxing Process Input Signal Control Count Preset Counter

3.9	Photoelectric Counter	31
3.10	Sensing Method Through Beam Sensor	32
3.11	Retro Reflective Sensor	32
3.12	Retro-reflective Sensors with Polarization Filter	33
3.13	Sensing Method Reflective Sensors	34
3.14	Structure of a Typical Counter	37
3.15	The Effective Beam of Opposed-Mode Sensors	37
4.1	Step in Design Procedure	39
4.2	Flow Chart Working Process	40
4.3	Electrical Circuit by Using Automation Studio	41
4.4	Hardwiring Process	43
4.5	Development Procedure	44
5 1	Drogogo designing outomoted counting machine	47
5.1	Shaft's Conveyor	47
5.2		47
5.3	Conveyor Body	48
5.4	Stand Conveyor	48
5.5	Belt Conveyor	48
5.6	Assembly Component of Conveyor	49
5.7	Box	49
5.8	Digital Counter	49
5.9	Push Button	50
5.10	Indicator light	50
5.11	Control Panel.	50
5.12	Laser Beam	51
5.13	Sensor Receiver	51
5.14	Base	51
5.15	Automated Counting Machine	52
5.16	Schematic Motor Conveyor	54
5.17	Laser Beam Schematic Diagram	54

5.18	Sensor Receiver Circuit	55
5.19	Shaft	57
5.20	Electrical motor	57
5.21	Bearing	57
5.22	Front View Conveyor	57
5.23	Side View Conveyor	57
5.24	Internal View of Control Panel Box	58
5.25	Connector on Control Panel Box	58
5.26	Internal Laser Beam	59
5.27	Laser Beam Position on Conveyor	59
5.28	Sensor Receiver	59
5.29	Sensor Receiver Position	59
6.1	Automated Counting Machine	60
6.2	Flow process manual counting testing	62
6.3	Press push button on orange indicator	63
6.4	Digital counter display	63
6.5	Push button on red indicator	63
6.6	Flow Process of Automatic Counting Testing	65
6.7	Switch Power	67
6.8	The "Dark ON" Operation	67
6.9	Sensor Cannot Receive a Light Beam	68
6.10	Orange Indicator Blinking	68
6.11	Count Up	68
6.12	Count on Preset Value	68
6.13	Red Light	68
7.1	Object Position before Count	70
7.2	Light Beam Blocked	71
7.3	Object through a Light Beam	71
7.4	Position Sensor Detector on Conveyor	72

Angle of Light Beam to Sensor Receiver	73
Width Size of Object.	73
Graph Time Taken for One Object	74
Graph Time Versus with Width Object	75
Time Cycle for Five Objects	76
	Angle of Light Beam to Sensor Receiver Width Size of Object. Graph Time Taken for One Object Graph Time Versus with Width Object Time Cycle for Five Objects

CHAPTER 1 INTRODUCTION

1.1 Background Study

Development of counting machine in industrial application has been chosen to fulfill PO and PEO in course Manufacturing Robotic and Automation. Nowadays, there's much manufacturing of machine in engineering field. The method and results of measuring the accuracy of a particle sizing and counting machine are described and compared with the results obtained when sizing with a microscope. Machine counting appears to be quicker and more consistent and accurate than counting by eye (Courshee, R. J. 1954).

A counting machine consists of feeding system in electrical and electronic component. For an example is vibratory bowl where it's the oldest method and still most common approach to the automated feeding (orienting) of industrial parts. Part feeders, which singulate and orient parts prior to packing and insertion are critical components of an automated assembly line. The oldest and still most common approach to automated feeding is the vibratory bowl feeder which consists of a bowl filled with parts surrounded by a helical metal track. An application of vibratory bowls are suitable for feeding components for subsequent operations on special machines in cosmetic, electrical, mechanical, pharmaceutical, optical, bearing and many other industries. The components can be plastic caps, spouts, capsules and electrical connectors, bearings as well as heavy parts such as anchor bolts, bearing races and metal sockets.

Sensing methods based on electrical capacitance, magnetic and eddy-current effects are extremely sensitive and fasting acting and are suitable in close proximity to the sensor. The capacitive probe senses dielectric other than air, such as glass and plastic parts. The magnetic pickup by induction responds to the motion of iron and nickel. The eddy-current sensor, by energy absorption detected nonmagnetic conductors. All are suitable for counting machine operations.

1.2 Problem Statement

The development of the counter sensor technologies makes the choice of sensor in market higher. It sometime makes the engineer difficult to make the decision making in other to choose the best sensor that suitable for the counting part. Sometimes wrong decision will make the thing even worse. So that, this research is developed to identify the technology itself, technical requirement, and instrumentation and make the engineer or other bodies that involves can compare the differential between many types of sensor and make them can used it in correct condition.

Error-proofing is an industry term that relates to the implementation of mechanisms to prevent product defects. Also known as Poka Yoke from the Japanese 'poke' (inadvertent errors) and 'yoke' (to avoid), error-proofing is a common-sense concept developed and popularized in that country. Based on the philosophy, even the smallest number of defects is unacceptable. Poka Yoke maintains that the best way to eliminate defects is to prevent them from happening in the first place. Awareness involves the acknowledgement of breakdowns in the manufacturing/assembly process and employing training, audio-visual aids and general assistance for personnel to combat those issues. Detection introduces manual or automated inspection techniques to filter out defects. Prevention which includes process improvements or automation to ensure no errors are (or can be) made. The primary issues are limited range and sensitivity to sensors. There need to increase the sensing range, reduce cost, and expand capabilities led to the development of photoelectric sensors optimized for detecting clear objects. Initially, ultrasonic sensors were more dependable and accurate at identifying targets, but over the last few year improvements in photoelectric sensors have made them the primary choice for sensing clear objects (better edge detection, increased resolution, indifference to size, shape, or temperature of target).

1.3 Objective of Project

Objectives that have to be achieved at the end of this project are design and development of an automated counting machine.

1.4 Scope of Project

The scope should be identified and planned to achieve the objectives of the project successfully on the time. Scope of this project is concentrate on how a counting device works for count an object or particle. Hence, analyses on automated counting machine such as test and accuracy of counting device to count an object.

CHAPTER /WEEK	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CHAPTER 1: INTRODUCTION														
CHAPTER 2: LITERITURE REVIEW														
CHAPTER 3: METHODOLOGY														
CHAPTER 4: DESIGN AND														
DEVELOPMENT PLANNING														
CHAPTER 5 : DESIGN AND														
DEVELOPMENT PROGRESS														
CHAPTER 6 : RESULT														
CHAPTER 7: DISCUSSION														
CHAPTER 8 : CONCLUSION PSM														

 Table 1.1: Gantt chart of PSM.

CHAPTER 2 LITERATURE REVIEW

2.1 Historical Development of Counting Machine For Industrial Application

2.1.1 What is counting?

From Wikipedia Encyclopedia, count is a mathematical process for an object where it as be set aside with desired of number objects to repeatedly action to adding or subtracting. Hence, counting also can be involved more than one for example; counting by a two (2, 4, 6, 8...). From the archeological, they have found that a counting has been used last 500,000 year.

2.1.2 Historical Counting Device

On 500 B.C to 1300A.C, Babylon culture is the one who made up a first counting device called Abacus. The Abacus is used to calculate an arithmetic process and it's also act as a calculating tool on that time. After hundreds year, a counting board have been develop by Roman where it's called the hand of abacus. Year per year, a counting machine device have been continuous develop until an era of computer been arrived on 1950's.

Figure 2.1: A Roman Abacus (Illustrated from Wikipedia Encyclopedia).

2.1.3 Historical counting machine

2.1.3.1 Cremer Company

On 1949, Cremer Company has built up a counting machine in packaging and counting line logistics. This company preferred supplier for counting machine and packaging solution on pharmacy, confectionery, bakery and frozen foods, packed snack food, hardware, medical supplies, flower bulbs, etc. A customer of this company in this world wide used counting and packaging machine are Nestle, Cadbury, Frito Lay, Kraft Foods, Glaxo, General Mills, Masterfoods, ConAgra, Chupa Chups, De la Rosa, Sabritas, Philips, Bayer, Wyeth Ayerst, Pfizer and Boehringer, Eli Lillyand and Dr. Oetker.

In 1982, Cremer introduced the first linear tablet and capsule counting machine. Ever since, the CF model has been renowned worldwide for its 100% accuracy, high capacity, simple cleaning and operation, high reliability and durability. The Cremer CF counting machine is a high-speed tablet and capsule counting machine for pharmaceutical and pharma industries - medicines, vitamins, food supplements, health products etc.

Figure 2.2: First counting machine (Illustrated from Cremer Company).

2.1.3.2 Cremer's Method

A line principle is used on all counting machine in Cremer Vibratory plates to separation of products before falling through detector channel. Cremer's method on count products is products are cascaded down through a Memory flap see Figure 2.3. Hence, the correct quantity is discharged into a bucket elevator or packaging machine.

Figure 2.3: Cremer's counting principle (Illustrated from Cremer Company).