I/We* have read this thesis and from my/our* opinion this thesis is sufficient in aspects of scope and quality for awarding Bachelor of Mechanical Engineering (Design & Innovation)

Signature	:	
Supervisor Name	:	Mr. Ahmad Rivai
Date	:	

Signature	:	
Supervisor II Name	:	Mdm. Ernie Binti Mat Tokit
Date	:	

AERODYNAMIC PERFORMANCE OF AIRCRAFT PROPELLER

MOHD MUHYIDDIN BIN MUSTAFA

This report is presented in partial fulfillment of the requirements for the Bachelor of Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2010

C Universiti Teknikal Malaysia Melaka

I hereby declare that this report entitled "Aerodynamics Performance of Aircraft Propeller" is the result of my own research except as cited in the references.

Signature	:	
Author's Name	:	Mohd Muhyiddin Bin Mustafa
Date	:	

This thesis is dedicated to my parents, Siti Fatimah Binti Salleh and Mustafa Bin Ibrahim, my brothers, sisters, Noor Masnira Binti Muhammed Salleh and other family members who provide a loving, caring, encouraging, and supportive atmosphere. These are characteristic that contribute to the environment that is always needed to achieve the goals a heads.

ACKNOWLEDGEMENTS

Alhamdulillah and Thank to Allah S.W.T. with all gracious and merciful for giving me strength and ability to accomplish this project research successfully. I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I am deeply indebted to my supervisor Mr. Ahmad Bin Rivai whose help, stimulating suggestions, encouragement and guidance helped me in all the time of research for and writing of this thesis.

I owe my deepest gratitude to Mr. Yehia Abdel Monem Ahmed Eldrainy, Department of Mechanical Power Engineering, Faculty of Engineering, Alexandria University (Egypt), PHD Student and Research Assistant in Gas Turbine Combustion, Department of Aeronautical Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, UTM (Malaysia). His support at all time encourage me in finishing this project.

I acknowledge the Assoc. Prof. Ir. Dr. Shuhaimi Mansor, Head of Aeronautics Laboratory, Assoc. Prof Dr. Tholudin Hj. Mat Lazim and Mr. Abdul Basid Abd. Rahman, Laboratory Engineer, Aeronautical Engineering Laboratory, Universiti Teknologi Malaysia for their kind guidance and technical support for this project.

I also would like to thanks to Mr. Shafizal Bin Mat, Head of Design & Innovation Department, Faculty of Mechanical Engineering as well as to all lectures of Faculty of Mechanical Engineering for all their assistances.

Finally, I would like to thanks to all my colleagues. I want to thank them for all their help, support, interest and valuable hints in completing this thesis. Especially, I would like to give my special thanks to my family whose patient love enabled me to complete this work.

ABSTRACT

The objectives of the thesis are to determine the aerodynamics performance and aerodynamic load distribution of an aircraft propeller especially Lift and Drag forces. The propeller force provides thrust which is the force created aerodynamically to push the aircraft through the air. Thus, it is important to define the aerodynamics performance of the propeller. This project is carried out by two different approaches which are the Analytical approach and Computational Fluid Dynamic (CFD) simulation using Fluent 6.3 software. Analytical Method using Propeller Blade analysis is one of the most effective methodologies available for determining the Aerodynamic Performance especially Lift and Drag force of a propeller. While the Computational Fluid Dynamic simulation using Fluent CFD software is used to simulate and capturing the aerodynamics performance of the propeller. Through both methodologies, the aerodynamic performance of the propeller was analyzed and compared. Results obtained were tabulated and the corresponding graphs were plotted. Both methods suggest that the Lift and Drag force increase with the increasing of relative velocity. There are several factors that contribute to error between the Analytical method and CFD Simulation. In conclusion, the propeller has less efficiency since the ratio of lift to drag is smaller than recommended ratio which is more than 13 for optimal performance of the propeller.

ABSTRAK

Objektif tesis ini adalah untuk mengenalpasti prestasi aerodinamik dan agihan beban aerodinamik sebuah kipas pesawat terutama daya angkat dan daya seretan. Daya kipas menghasilkan daya tujahan yang terhasil secara aerodinamik untuk menolak pesawat melalui udara. Oleh itu, adalah penting untuk mengenalpasti prestasi aerodinamik sesebuah kipas. Projek ini dilaksanakan dengan menggunakan dua kaedah iaitu kaedah Analitik dan Kaedah Dinamik Bendalir (CFD) menggunakan perisian Fluent 6.3. Kaedah Analitik menggunakan Analisis Bilah Kipas merupakan pengkaedahan yang paling efektif bersesuaian untuk mengenalpasti prestasi aerodinamik terutama daya angkat dan daya seretan. Manakala simulasi Kaedah Dinamik Bendalir menggunakan perisian Fluent CFD digunakan untuk mensimulasi dan mendapatkan prestasi aerodinamik sebuah kipas. Melalui kedua-dua kaedah ini, prestasi aerodinamik kipas dianalisa dan dibandingkan. Keputusan yang diperolehi dijadualkan dan graf yang berkaitan dilukis. Kedua-dua kaedah ini mencadangkan daya angkat dan daya seretan meningkat apabila halaju relatif meningkat. Terdapat beberapa faktor yang menyumbang kepada perbezaan antara kaedah analisis dan Simulasi CFD. Sebagai kesimpulan, Kecekapan Kipas pesawat adalah kurang kerana nisbah Daya Angkat kepada Daya Seretan lebih kecil dari nisbah yang disarankan iaitu lebih dari 13 untuk prestasi optimum Kipas pesawat.

CONTENTS

CHAPTER	SUB	JECT	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	CON	ITENTS	vii
	LIST	COF TABLES	xii
	LIST	COF FIGURES	xiv
	LIST	COF FORMULATIONS	xvi
	LIST	COF ABBREVIATIONS	xvii
	LIST	TOF SYMBOLS	xviii
CHAPTER I	INTI	RODUCTION	
	1.1	Project Background	1
	1.2	Problem Statement	2
	1.3	Objectives	2
	1.4	Scope of project	3
	1.5	Summary	3
CHAPTER II	LITI	ERATURE REVIEW	
	2.1	Introduction	4
	2.2	Introduction to Propeller	5
		2.2.1 Historical Development of	
		Propeller Theory	5

CHAPTER	SUBJECT
---------	---------

PAGE	

	2.2.2	Airfoil Geometry Parameters	6
	2.2.3	Propeller Airfoil Design	8
	2.2.4	Airfoil Terms	8
2.3	NACA	A Airfoil Series	11
2.4	Conce	ept of Aerodynamics	13
	2.4.1	Aerodynamic Forces and	
		Moments	14
	2.4.1.1	1 Definition of Lift	15
	2.4.1.2	2 Definition of Drag	16
	2.4.2	Resultant Aerodynamic Forces	
		on Propeller	16
	2.4.3	Definition of Stall	18
2.5	Aerod	ynamic Characteristic of Propeller	
	(Prop	eller Blade Analysis)	19
	2.5.1	Downwash Angle, ε_b	20
	2.5.2	Section Thrust and	
		Circumferential Force	20
	2.5.3	Total Relative Airspeed	21
	2.5.4	Axial and Circumferential	
		Component of Induced Velocity	21
	2.5.5	Section Lift and Drag	22
	2.5.6	Lift Across Span	23
	2.5.7	Propeller Airfoil Requirement	24
2.6	Prope	ller Analysis Method	24
2.7	Comp	utational Fluid Dynamic	26
	2.7.1	Development of Computational	
		Fluid Dynamic	26
	2.7.2	CFD Simulation	
		Software(Fluent)	28
	2.7.3	CFD Process	28
	2.7.4	CFD Simulation Procedures	30
	2.7.5	Defining a Boundary Condition	34

CHAPTER	SUBJECT			PAGE
CHAPTER III	МЕТ	HODO	LOGY	
	3.1	Introd	luction	35
	3.2	Projec	et Overview	35
	3.3	Metho	odology	36
		3.3.1	Propeller Model Xoar 32 x 20	
			(Pusher)	36
	3.4	Analy	tical Methods	37
		3.4.1	NACA 2412 Airfoil	37
		3.4.2	Results	40
	3.5	CFD S	Simulation	49
		3.5.1	Fluent CFD Simulation	
			Methodology	49
		3.5.2	Creating Model and Domain	50
		3.5.3	Solution Procedure Flow	51
		3.5.4	Spalart Allmaras Turbulence	
			Model	52
		3.5.5	Flow Domain	53
		3.5.6	Meshing and Size Function	53
		3.5.7	Boundary Condition	54
	3.6	Valid	ation	55
		3.6.1	Experimental Data	55
		3.6.2	NACA0012 Geometry	55
		3.6.3	Validation Model	58
		3.6.4	CFD Result	59
		3.6.5	Comparison of Simulation and	
			Experiment Data	60

CHAPTER IV RESULTS

4.1	Computational Fluid Dynamic					
	Simula	ation (Model and Domain)	61			
	4.1.1	Grid Settings	62			
	4.1.2	General Simulation Parameter	63			

CHAPTER	SUB	JECT		PAGE
	4.2	Comp	utational Fluid Dynamic	
		Simula	ation Results	64
		4.2.1	Total Force and Coefficient	64
			4.2.1.1 Simulation 1	64
			4.2.1.2 Simulation 2	65
			4.2.1.3 Simulation 3	65
			4.2.1.4 Simulation 4	66
			4.2.1.5 Simulation 5	66
			4.2.1.6 Simulation 6	67
		4.2.2	Pressure Contours	67
		4.2.3	Velocity Magnitude and Vector	70
		4.2.4	Behaviors of Velocity Vector at	
			Different Propeller Section and	
			Relative Airspeed	72
		4.2.5	Behaviors of Total Pressure at	
			Different Propeller Section and	
			Relative Airspeed	74
CHAPTER V	ANA	ALYSIS	AND DISCUSSION	
	5.1	Propel	ller Aerodynamic Performance	78
		5.1.1	Lift and Drag Forces	78
		5.1.2	Lift and Drag Coefficient	79
		5.1.3	Lift/Drag Ratio	80
	5.2	Aerod	ynamic Load Distribution on	
		Propel	ller	81
		5.2.1	Pressure Distribution on the	
			Blades	81
		5.2.2	Lift Distribution on the Blade	81
	5.3	Comp	arison of Analytical and	
		Simula	ation Result	82

CHAPTER	SUBJECT			
CHAPTER VI	CON	CLUSION AND		
	RECOMMENDATION			
	6.1	Conclusion	83	
	6.2	Recommendation	84	
	REF	ERENCES	86	

BIBLIOGRAPHY	88
APPENDICES	

xi

LIST OF TABLES

NO.	TITLE	PAGE
2.1	NACA Airfoils Series	12
3.1	Xoar 32 x 20 Geometry	36
3.2	2-D Panel Method Solution Test Parameters	38
3.3	Coefficient of Lift and Drag	39
3.4	Variation of Section Lift Force, \tilde{L} to Relative Airspeed, V_{∞}	41
3.5	Variation of Section Drag Force, \widetilde{D} to Relative Airspeed, V_{∞}	41
3.6	Theoretical Result for Lift force across the propeller span for	
	10m/s relative airspeed at eleven sections	42
3.7	Theoretical Result for Lift force across the propeller span for	
	20m/s relative airspeed at eleven sections	43
3.8	Theoretical Result for Lift force across the propeller span for	
	30m/s relative airspeed at eleven sections	44
3.9	Theoretical Result for Lift force across the propeller span for	
	40m/s relative airspeed at eleven sections	45
3.10	Theoretical Result for Lift force across the propeller span for	
	50m/s relative airspeed at eleven sections	46
3.11	Theoretical Result for Lift force across the propeller span for	
	60m/s relative airspeed at eleven sections	47
3.12	Result of Theoretical calculation for Lift Force across Span at	
	Different Relative Airspeed	49
3.13	Experimental Data of Lift and Drag Coefficient	55
3.14	Detail Coordinate of the NACA0012 Geometry	57
3.15	Fluent Simulation Result	59
3.16	Comparison between Experiment and Simulation Data	60

NO.	TITLE	PAGE		
4.1	General Simulation Parameters - Models			
4.2	General Simulation Parameters – Zones			
4.3	General Simulation Parameters – Air Properties			
4.4	Inlet Parameter for Simulation 1			
4.5	Result for Simulation 1	64		
4.6	Inlet Parameter for Simulation 2			
4.7	Result for Simulation 2	65		
4.8	Inlet Parameter for Simulation 3	65		
4.9	Result for Simulation 3	65		
4.10	Inlet Parameter for Simulation 4	66		
4.11	Result for Simulation 4	66		
4.12	Inlet Parameter for Simulation 5	66		
4.13	Result for Simulation 5	66		
4.14	Inlet Parameter for Simulation 6	67		
4.15	Result for Simulation 6	67		
4.16	Variation of Total Pressure at Different Relative Airspeed	69		
4.17	Variation of Velocity Magnitude at Different Relative Airspeed	70		
4.18	Behaviors of Velocity Vector at different Section and Airspeed	72		
4.19	Behaviors of Total Pressure at different Section and Airspeed	74		
51	Ratio of $C_{\rm L}/C_{\rm D}$ at Different Relative Airspeed	80		
5.2	Percentage of Error between Analytical and CFD Simulation	82		
5.2	refeelinge of Error between Analytical and Cr D Simulation	02		

xiii

LIST OF FIGURES

NO.	TITLE	PAGE	
2.1	Propeller Construction	7	
2.2	Propeller Lay-Out	8	
2.3	General Propeller Terms	9	
2.4	Propeller Blade Angle		
2.5	Static Pressure Distribution		
2.6	Shear Stress Distribution		
2.7	Resultant aerodynamic force and the components into which it splits		
2.8	Stall Conditions 1		
2.9	Section force and velocities acting on a rotating propeller blade	19	
2.10	Elliptical Lift Distribution	23	
3.1	Xoar 32 x 20 Propeller	36	
3.2	NACA Airfoil Section Generator	37	
3.3	2-D Panel Method Solution Software	39	
3.4	Graph for Lift force across the propeller span for 10m/s relative airspee	d 42	
3.5	Graph for Lift force across the propeller span for 20m/s relative airspee	d 43	
3.6	Graph for Lift force across the propeller span for 30m/s relative airspee	d 44	
3.7	Graph for Lift force across the propeller span for 40m/s relative airspee	d 45	
3.8	Graph for Lift force across the propeller span for 50m/s relative airspee	d 46	
3.9	Graph for Lift force across the propeller span for 60m/s relative airspee	d 47	
3.10	Ellipse Nomenclature	48	
3.11	CFD Simulation Flow Chart	50	
3.12	Solution Procedure Flow	51	
3.13	NACA 0012 Airfoil	58	
3.14	Meshing of the Model Domain	59	

NO.	TITLE	PAGE
3.15	Velocity Vector for SIM 2	60
4.1	Simulation Flow Domain	62
4.2	Propeller Wall	62
4.3	Propeller in Flow Domain	63
4.4	Example: Contours of Total Pressure for Simulation 1	67
4.5	Example: Contours of Total Pressure for Simulation 1 (Blade Back)	68
4.6	Example: Contours of Total Pressure for Simulation 1 (Blade Face)	68
4.7	Graph of Total Pressure Acting on Propeller	
	at Different Relative Airspeed	69
4.8	Example: Velocity Vector for Simulation 1	70
4.9	Graph of Velocity Magnitude Acting at Propeller Wall	
	at Different Relative Airspeed	71
5.1	Graph of Lift and Drag Force versus Relative Airspeed	78
5.2	Graph of Lift and Drag Coefficient versus Relative Airspeed	79

LIST OF FORMULATIONS

NO.	TITLE	PAGE	
(1)	Lift, Normal, and Axial Force Equation	17	
(2)	Drag, Normal, and Axial Force Equation	17	
(3)	Total Downwash Angle	20	
(4)	Section Thrust	20	
(5)	Circumferential Force		
(6a)	Total Relative Airspeed	21	
(6b)	Total Relative Airspeed	21	
(7)	Induced Velocity	21	
(8)	Axial Component of Induced Velocity	22	
(9)	Circumferential Component of Induced Velocity	22	
(10)	Downwash Angle	22	
(11)	Advance Angle	22	
(12)	Induced Angle	22	
(13)	Section lift at radius, r	22	
(14)	Local Section Drag at radius, r	23	
(15)	Lift across Span	23	
(16)	Reynolds Number	38	
(17)	Local Section Lift	40	
(18)	Local Section Drag	40	
(19)	Lift force Using the Elliptical Lift Distribution Approach	41	
(20a)	Ellipse area	48	
(20b)	Ellipse area	48	
(20c)	Modified Ellipse area	48	
(21a)	Formula for the NACA 00XX Shape	55	
(21b)	Modified Formula for the NACA 00XX Shape	56	

LIST OF ABBREVIATIONS

А	-	Axial Force
CAD	-	Computer-aided Design
CAE		Computer-aided Engineering
CATIA	-	Computer Aided Three-Dimensional Interactive Application
CFD	-	Computational Fluid Dynamic
CMM	-	Coordinate Measuring Machine
CTRM	-	Composites Technology Research Malaysia
D	-	Drag Force
GUI	-	Graphical User Interface
k	-	Number of Blade
L	-	Lift Force
М	-	Moment
Ν	-	Normal Force
NACA	-	National Advisory Committee for Aeronautics
r	-	Radial Distance
R	-	Resultant Aerodynamic Force/Freestream Velocity
RANS	-	Reynolds-averaged Navier-Stokes Equations
TUAV	-	Tactical Unmanned Aerial Vehicle
SIM	-	Simulation
EXP	-	Experiment

LIST OF SYMBOLS

α	-	Angle of Attack
β	-	Aerodynamic Pitch Angle
ε _b	-	Total Downwash Angle
6 200	-	Propeller's Forward Motion
V_{b}	-	Total Relative Airspeed
\mathbf{V}_{∞}	-	Relative Air Velocity
ω	-	Angular Velocity
c _b	-	Local Section Chord Length
C _d	-	Drag coefficient
Cl	-	Lift coefficient
Re	-	Reynolds Number
ρ	-	Density
μ	-	Viscosity
L _{max}	-	Maximum Lift Force

CHAPTER I

INTRODUCTION

1.1 **Project Background**

An Aircraft Propeller is one of the most common important parts in the aircraft. It is an airfoil section designed to generate an aerodynamic force. The propeller force provides thrust to push the aircraft through the air. Thrust is the component of the aerodynamic force that is parallel to the axis of rotation. A propeller achieves a specified level of thrust by giving a relatively small acceleration to a relatively large mass of air.

Maximizing thrust while minimizing the torque necessary to turn a propeller has becomes one of the most important aspects of good propeller design. The torque required to turn the propeller multiplied with the angular velocity is called the brake power. It is the power that must be supplied by the engine. The thrust developed by the propeller multiplied by the airspeed of the aircraft is called the propulsive power. This is the useful power that is provided to propel the aircraft forward against the airframe drag. The ratio of the propulsive power to the brake power for a propeller is called the propulsive efficiency which is one of important measure of propeller performance. The thrust developed by the propeller when the aircraft is not moving is called the static thrust. This thrust is important for a propeller to produces high static thrust in order to accelerate the aircraft during takeoff. In order to analyze the aerodynamic performance of the propeller, Computational Fluid Dynamic (CFD) software is used to simulate the fluid flow over a body to solve and analyze the aerodynamic properties of a body. While, analytical approach will be used to compare the result gather from CFD simulation.

1.2 Problem Statement

Aircraft propeller evaluation in terms of aerodynamic performance is a critical aspect in designing an aircraft propeller. Propeller used to generate thrust that pushes the aircraft through the air. Thus, it is important to determine the aerodynamic performance and the aerodynamic load distribution over the propeller body. Since the airframe of an aircraft is induced by the drag on the air, the propeller needs to provide enough thrust to overcome the drag. There are several tools and method that can be used to analyze the aerodynamic performance of an aircraft propeller such as the Computational Fluid Dynamic simulation.

1.3 Objectives

The objectives of this thesis are:

- a) To determine aerodynamic performance of an aircraft propeller especially Lift and Drag forces using analytical and CFD approaches.
- b) To determine aerodynamic load distribution of an aircraft propeller.

1.4 Scope of Project

The scope of the project is focused on the aerodynamic performance of aircraft propeller. Research is made to understand the aircraft propeller in general. Computational Fluid Dynamics (CFD) software is used to analyze and simulate the propeller in terms of aerodynamic performance and aerodynamic load distribution. The result of manual calculation and CFD software is compared.

1.5 Summary

This chapter is introducing the project background and the objective of the project. In addition, the problem statement and scope of study also being clarify in order to limit the range of this project conduct.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This literature review explores the dominant themes includes study and research of published materials like journals, thesis, case study, technical document, and online library. Generally, the purpose of a review is to analyze critical segment of a published body of knowledge through summary, classification and comparison of prior research studies, reviews of literature, and theoretical articles.

This chapter describes topics that related to propeller aerodynamics such as propeller theory, propeller geometry and parameters, aerodynamics forces and Computational Fluid Dynamic. Emphasize is more on aerodynamics force on the propeller blade and also the computational fluid dynamic approach and simulation.

Propeller is focused more on the definition of that phase, the historical development of propeller, the parameter governing propeller design, and the available propeller airfoil. Moreover, the Aerodynamic force will describe about the forces acting on the propeller and its analytical approach.

2.2 Introduction to Propeller

The airplane propeller consists of two or more blades and a central hub to which the blades are attached. Each blade of an airplane propeller is essentially a rotating wing. As a result of their construction, the propeller blades are like airfoils and produce forces that create the thrust to pull, or push, the airplane through the air.

The power needed is supplied by the engine to rotate the propeller blades. The engine rotates the airfoils of the blades through the air at high speeds, and the propeller transforms the rotary power of the engine into forward thrust. As the air flows past the propeller, the pressure on one side of propeller is less than that on the other. As in a wing, this produces a reaction force in the direction of the lesser pressure. Propeller is mounted in a vertical plane, the area of lower pressure is in front of the propeller. Thus the thrust force is created in a forward direction.

Drag force that oppose the forward motion of an aircraft will be created as it moving through the air. Consequently, if an aircraft fly, there must be a force applied to it that is equal to the drag force, but acting in opposite direction. This force is called as the "thrust."

2.2.1 Historical Development of Propeller Theory

Development of a rational propeller theory begins with the work of Rankine and Froude with their interest in moving propulsion, but the fundamental principle is the same for water and air. They developed the fundamental momentum relation governing a propulsive device in fluid medium. (Wald Q. R, 2006)

Dvzewiercki (1892) develop the theory of propeller action where blade element were considered as individual lifting surface moving through medium on a helical path. In this