DEVELOPMENT OF CONCEPT DESIGN FOR AN IDEAL CITY BUS

WONG JIAR MEAN

This report is submitted in partial fulfilment of the requirements for the Degree of Bachelor of Mechanical Engineering (Design and innovation)

> Faculty of Mechanical Engineering University Technical Malaysia Melaka

> > MAY 2010

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby, declare this thesis is the result of my own research except at cited in the reference"

Signature	:
Author's Name	: WONG JIAR MEAN
Date	:

PENGAKUAN

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya"

Tandatangan	:
Nama Penulis	: WONG JIAR MEAN
Tarikh	:

Specially dedicated to my family and beloved companion

AKNOWLEDGEMENT

First and foremost, I wish to express my profound gratitude to Mr. Razali as the final year project supervisor who has gracefully offered his time, attention, experience and guidance throughout the completion of the investigation thus far. Besides, I would not forget to extend my heartfelt thanks to the university library for providing lots of sources which assistant to complete the report.

I would like to thank each and every individual who have either directly or indirectly helped me throughout the efforts of this report be it in the form of encouragement, advice or kind reminders. Finally kudos goes out to family and parents who endured this long process which gave me love and support all the way.

ABSTRACT

There are many types of bus available in all countries where the society is demanding more accessible city buses, which provide a safe and comfortable environment for passengers. This paper concentrates on the development of concept design for an ideal city bus packaging which considered the ergonomics and safety factor. All the necessary information is gathered by constructing the literature study. Background of related studies and legal requirement of city bus is reviewed, as well as the market surveys are done to attain customer input regarding ideal bus design. Consequently, the technical aspects regarding ergonomics and packaging to establish a three-dimensional data bus concept design complete with the bus packaging parameters is referring to the standard requirements of Standard Bus Procurement Guidelines, American Public Transit Association, Automotive Industry Standard, and Federal Transit Administration. Through all the input collected and analyzed, the expected results of an ideal three-dimensional concept design with detail dimensions and important parameters of each design aspects is developed. Then, the results obtained are adapted into the CATIA bus drawing to generate the best results of bus design. The drawing obtained is then evaluated and validated with the aid of manikin to achieve the most suitable city bus design parameters that fulfil the level of comfort that fits 95 percent of Asian anthropometry data. At the end of this paper, an ideal three-dimensional concept design 12 meter long single deck city bus incorporates with low floor design that captures the combination of the overall external dimension, floor height, doors, windows, walkway, stairs, handrail, passenger compartment, and operator compartment is developed. The concept design developed is able to ne modified into different shape of bus by referring to the important parameter results achieved in this paper.

ABSTRAK

Terdapat pelbagai jenis bas di seluruh dunia. Kebelakangan ini, masyarakat semakin cenderung kepada bas bandar yang dapat memudahkan penumpang bas dari segi peruntukan persekitaran bas yang yang selamat dan selesa. Kertas ini tertumpu pada pembangunan konsep rekabentuk pakej bas bandar yang ideal serta dianggap ergonomik dan selamat. Semua maklumat yang diperlukan dikumpulkan dengan mendirikan kajian. Latar belakang kajian, standard dan undang-undang bas bandar dilihat, serta kajian pasaran dilakukan untuk mendapatkan pendapat penumpang bas terhadap rekabentuk bus yang sesuai. Justeru, aspek-aspek teknikal mengenai konsep rekabentuk yang lengkap dengan parameter bas berdimensi tiga ini adalah merujuk pada keperluan "Standard Bus Procurement Guidelines", "American Public Transit Association", "Automotive Industry Standard", dan "Federal Transit Administration". Dengan adanya semua data yang telah dikumpul dan dianalisis, keputusan yang diharapkan daripada konsep rekabentuk tiga dimensi yang ideal ini dibangunkan dengan dimensi detail dan parameter yang penting dari setiap aspek rekabentuk. Kemudian, keputusan yang diperolehi diadaptasi menjadi lukisan bas dalam perisian CATIA untuk menghasilkan lakaran konsep rekabentuk bas bandar yang terbaik. Lukisan CATIA yang diperolehi kemudian dievaluasi dan diaktifkan dengan bantuan "manikin" untuk mencapai parameter rekabentuk bus yang memenuhi tahap yang menyesuaikan 95 peratus data antropometri Asia. Akhirnya, sebuah konsep bas bandar berdimensi tiga dengan 12 meter panjang yang dilengkapi dengan kombinasi dimensi luaran, ketinggian lantai bus, pintu, tingkap, tangga, gerabak penumpang dan gerabak pemandu bas dihasilkan. Dengan ini, rekabentuk konsep ini diyakini mampu diadaptasi ke dalam bentuk bas bandar yang berbeza dengan merujuk pada semua hasil-hasil parameter penting dalam kertas ini.

LIST OF CONTENTS

CHAPTER	ТОР	IC	PAGE		
	DEC	LARATION	ii		
	PEN	GAKUAN	iii		
	DED	ICATION	iv		
	AKN	OWLEDGEMENT	v		
	ABS	TRACT	vi		
	ABS	TRAK	vii		
	LIST	LIST OF CONTENTS			
	LIST	COF TABLES	xii - xiii		
	LIST	COF FIGRUES	xiv - xvi		
	LIST	COF ABBREVIATIONS	xvii		
	LIST	COF APPENDICES	xviii		
CHAPTER 1	INTI	1			
	1.1	Overview	1 - 2		
	1.2	Problem Statement	2 - 3		
	1.3	Scope	3 - 4		
	1.4	Objectives	4		
CHAPTER 2	LITI	ERATURE REVIEW	5		
	2.1	Definition of Bus	5 - 6		
	2.2	Bus History	6 - 7		
	2.3	Classification of Bus	7 - 9		
	2.4	City Bus	10		
	2.5	Transportation in Kuala Lumpur, Malaysia	11 - 12		

C Universiti Teknikal Malaysia Melaka

ix

	2.5.1	Pros and	d Cons of Transport	12 - 13
2.6	Bus D	evelopme	ent in Malaysia	13 – 15
2.7	Bus Sa	afety Lev	el	15
2.8	Engin	eering De	esign	16
	2.8.1	Enginee	ering Design Process	16 - 18
	2.8.2	Standar	ds and Regulations	19
	2.8.3	Bus Pac	kaging	19 - 20
	2.8.4	Ergonor	mic Design Analysis	20 - 22
	2.8.5	Anthrop	pometric Data	22 - 23
	2.8.6	Standar	d Requirements	24 - 25
		2.8.6.1	Physical Bus Dimension	26
		2.8.6.2	Operator Compartment	27 - 29
		2.8.6.3	Passenger Compartment	30 - 37
			/Walkway	
		2.8.6.4	Entrances/ Exits	38 - 40
		2.8.6.5	Others Features	40 - 41
	2.8.7	Langua	ge for Engineering Design	42 - 43
		-CAD		
	2.8.6.	l Ergon	omic Design Analysis	43 - 44

CHAPTER 3	RES	EARCH	I METHO	DDOLOGY	45
	3.1	Proces	Process Flow		
	3.2	Initial	Establish	ment of Work	46
	3.3	Litera	47		
		3.3.1	History/	Background	46
		3.3.2	Technic	al/ Technology	47
			3.3.2.1	Operator's Workplace	47 - 48
			3.3.2.2	Operator Compartment	48
			3.3.2.2	Low Floor Bus	49
		3.3.3	Legal R	equirements	49
	3.4	Desig	n Works		49

3.5

3.4.1	Standards	49
3.4.2	Ergonomic Requirements	49 - 50
3.4.3	Technical Data	51 - 52
3.4.4	Questionnaire Input	53
	3.4.4.1 Passenger	53 - 54
	3.4.4.2 Operator	54
3.4.5	Measurement of Bus Dimension	55
3.4.6	3D Concept Generation	55
Result	S	55
3.5.1	Establishment of Design	55
3.5.2	Concept Design Evaluation/	56

Validation3.5.3Final Design56

CHAPTER 4	DATA	A COLLECTION	57
	4.1	Background	57
	4.2	City Bus Passenger	57
		4.2.1 General Questions	57 - 59
		4.2.2 Likert Scale Question	59 - 61
	4.3	City Bus Operator	62
		4.3.1 General Questions	62
		4.3.2 Likert Scale Question	63
	4.4	Summary of Voice of customers (VOC)	64
		4.4.1 City Bus Passengers	64 - 65

CHAPTER 5	DES	DESIGN WORKS		
	5.1	City Bus Configurations	68	
	5.2	Design Concept	68 - 69	
		5.2.1 Overall City Bus Design	69 - 71	

4.4.2 City Bus Operators

PAGE

66 - 67

CHAPTER	TO	PIC	PAGE
		5.2.2 Passenger Compartment	71 - 73
		5.2.3 Operator Compartment	73 - 74
		5.2.4 Innovative Feature	75
CHAPTER 6	RES	ULTS	76
	6.1	Brief Explanations	76
	6.2	Initial 3D Drawing	77
		6.2.1 Bus Packaging	77 - 79
	6.3	Initial 3D Data With Manikin	79 - 80
		6.3.1 Passenger Compartment	80
		6.3.2 Driver Compartment	81
		6.3.3 Bus with Mannequins	81
	6.4	Improved Design	82
		6.4.1 External Bus Dimension	82
		6.4.2 Seat with Handrail	82 - 83
	6.5	Summarization of Final Data	83 - 85
CHAPTER 7	DISC	CUSSION	86
	7.1	Comparison Among Input Collected	86 - 89
	7.2	Explanation	90
	7.3	Pros and Cons of the Results	90 - 91
CHAPTER 8	CON	CLUSION AND RECOMMENDATIONS	92
	8.1	Conclusion	92 - 93
	8.2	Recommendations	93 - 94
	REF	ERENCES	95 - 97
		OGRAPHY	98 - 99

APPENDIX 100 - 129

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Bus History	6 - 7
2.2	Classification of Bus	7 – 9
2.3	Pros and Cons of Transport	12 – 13
2.4	Driver's Work Area	28
	(Adapted from AIS-052 Rev 1)	
2.5	Bus Driver Seat Measurements and Seat	29
	Adjustment Ranges	
	(Adapted from Chapter 102 Transport Industry	
	And Warehousing Ergonomics of Bus Driving of	
	Occupational Health and safety by M. S. Janne)	
2.6	Recommended Ranges for Body Segment Angles	30
	from Rebiffd	
	(Adapted from the Survey of Auto Seat Design	
	Recommendation, Matthew P.R, 1994)	
2.7	Summary of Fit Parameter related to sitter anthropometry	32
	(Adapted from the Survey of Auto Seat Design	
	Recommendation, Matthew P.R, 1994)	
2.8	Design Seating and Standee Passenger Capacities	33
	(Adapted from AIS-052 Rev. 1)	
2.9	Dimension of Seat Spacing	34
	(Adapted from AIS-052 Rev. 1)	
2.10	Seat Cushion width	35
	(Adapted from AIS-052 Rev. 1)	
2.11	Dimension of Gangway and passenger area	36
	(Adapted from AIS-052 Rev. 1)	

NO.	TITLE	PAGE
2.12	Steps Dimension	37
	(Adapted from AIS-052 Rev. 1)	
2.13	Minimum Dimension of Service door	39
	(Adapted from AIS-052 Rev. 1)	
2.14	Emergency/ Exit Door	40
	(Adapted from AIS-052 Rev. 1)	
3.1	General Requirement	50
3.2	Specifications of City Bus	51 - 52
3.3	Questionnaire for passenger	53 - 54
3.4	Questionnaire for bus operator	54
4.1	VOC Summary for City Bus Passengers	64 - 65
4.2	VOC Summary for City Bus Operators	66 - 67
5.1	Description of Overall Parameter	70
5.2	General Dimension of City Bus	71
5.3	Types of Stairs	72
5.4	Description of Passenger Compartment	73
5.5	Driver's Work Area Dimension	74
6.1	Initial Result	78 - 79
6.2	Result	83 - 85
7.1	Comparison of Bus Parameter	87 - 89

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Reeve's bullock team 1903	2
	(Source: City of Tea Tree Gully Local History Collection)	
2.1	Parisian Omnibus in the late nineteenth century	6
	(Source: http://bus38.free.fr/hist1854eng.html)	
2.2	Single-decker Bus	7
2.3	Double Decker Bus	8
2.4	Old minibus	8
2.5	City bus	8
2.6	Intercity bus	8
2.7	Articulated double-decker	8
2.8	KL hop-on-hop-off bus	9
2.9	Trolley bus	9
2.10	Low floor bus	9
2.11	Gyrobus in Nederland, 1985	9
2.12	Transportation and public bus in Malaysia	15
2.13	The Engineering Design Process	16
2.14	Ergonomics-the science of designing the job,	21
	equipment, and workplace	
	(Adapted from Wikipedia)	
2.15	Standing adult male - including 95% of population	23
	(Adapted from Handbook of Human Factors and	
	Ergonomics)	
2.16	Standing adult female – including 95% of population	23
	(Adapted from Handbook of Human Factors and	
	Ergonomics)	

C Universiti Teknikal Malaysia Melaka

NO.	TITLE	PAGE
2.17	Physical Dimension of bus	26
	(Adapted from SBPG, IPTA)	
2.18	Reference System for Dimensions	27
	(Adapted from AIS-052 Rev. 1)	
2.19	Driver's Compartment	28
	(Adapted from AIS-052 Rev. 1)	
2.20	Definition of posture angles in Rebiffd (1969)	30
	(Adapted from the Survey of Auto Seat Design For	
	Improved Comfort, Matthew P.R, 1994)	
2.21	Schematic Representation of Parameter Recommendation	32
	(Adapted from Survey of Auto Seat Design For Improved	
	Comfort, Matthew P.R, 1994)	
2.22	Seat Spacing Dimension	34
	(Adapted from AIS-052 Rev. 1 and IPTA)	
2.23	Seat Spacing of Scomi Coach	34
	(Adapted from Scomi Coach Sdn. Bhd.)	
2.24	Gangway	35
	(Adapted from AIS-052 Rev. 1)	
2.25	Steps dimension	37
	(Adapted from AIS-052 Rev. 1)	
2.26	Bus Door	39
	(Adapted from SBPG. IPTA)	
2.29	Low Floor Bus configuration	41
	(Adapted from Ahmedabad bus Rapid Transit)	
2.30	Screen Capture of CATIA EDA module	44
	(Source: Dassault Systems (2002))	
3.1	Process Flowchart	46
3.2	Components on driver's seat	48
	(Adapted from SBPG, APTA)	
4.1	Percentage of gender	58
4.2	Percentage of passengers' age	58
4.3	Percentage of passengers' marital status	58

NO.	TITLE	PAGE
4.4	Percentage of Academic	58
4.5	Percentage of respondents' height	58
4.6	Percentage of physical ability	58
4.7	Percentage of the purpose and frequency of bus usage	59
4.8	Likert Scale Questions	60
4.9	Seat Configurations	61
4.10	Analysis of General Question Responses	62
4.11	Likert Scale Questions	63
5.1	Three-Dimensional City Bus Concept Design	69
5.2	Front View and Back View	70
5.3	Side View of City Bus	71
5.4	Top View of City Bus	72
5,5	Handrail	73
5.6	Driver's Work Area	74
5.7	Top View of City Bus	75
5.8	Seats with Handrail	75
6.1	Different View of Bus	76
6.2	Front View and Back View of Bus	77
6.3	Side View of Bus	77
6.4	Top View of Bus	78
6.5	Standing adult	80
6.6	Dimension of Passenger Seat	80
6.7	Driver Seat Important Parameter	81
6.8	Driver's Visibility Zone	81
6.9	Bus Drawing with Mannequins	81
6.10	Front View and Back view of bus	82
6.11	Seats with Handrail	82
6.12	Drawing of Mannequin Holding Handrail	83
7.1	Three-Dimensional Bus Data in CATIA	86

xvi

LIST OF ABBREVIATIONS

ISO	=	International Standard Organization
IEC	=	International Engineering Consortium
UNECE	=	United Nation Economic Commission for Europe
SBPG	=	Standard Bus Procurement Guidelines
APTA	=	American Public Transit Association
AIS	=	Automotive Industry Standard
FTA	=	Federal Transit Administration
SAE	=	Society of Automotive Engineer
BIC	=	Bus Industry Confederation
NDX	=	Non-Deluxe
SDX	=	Semi Deluxe
DLX	=	Deluxe
ACX	=	Air-Conditioning Deluxe
CAD	=	Computer-Aided Design
EDA	=	Ergonomics Design and Analysis

xviii

LIST OF APPENDICES

NO. TITLE

PAGE

	Appendix	100
A	Gantt Chart and Flowchart for PSM 1 and 2	101 - 104
В	City Bus Design Survey Form	105 - 108
С	Bus Measurement Pictures	109 - 113
D	Technical Drawings	114 - 129

CHAPTER 1

INTRODUCTION

In this chapter, development of transportation including the transportation history, mode of transportation, function of transportation, and a brief introduction of the public bus transportation will be explained.

1.1 Overview

From the Review of Developments in Transport in Asia and the Pacific (2005), transportation can be defined as the movement of people and goods from one location to another. In the review, it is realized that the first transportation used as the first human transportation technology is walking. Early Paleolithic and Neolithic man walked through their world on their own legs. In the late Neolithic, animals began to be used. Thus, as shows in Figure 1.1, domestication of animals introduces a new way for human to allow heavier loads to be hauled, or to ride on the animals for higher speed and duration. However, they could only carry what could be loaded onto or tied to their animal's backs.

Figure 1.1: Reeve's bullock team 1903 (Source: City of Tea Tree Gully Local History Collection)

Nowadays, transport can be performed by varies of modes, such as humanpowered, animal powered, road, water, aviation, rail, cable, pipeline and space that are used as important modes of transportation. For all the cases in the developed world, public bus services are usually subject to some form of legal control in terms of vehicle safety standards and method of operation, and possibly the level of fares charged and routes operated. Its main public duty is to provide a public transport service for passengers to turn up and use, rather than fulfilling private contracts between the bus operator and user. With reference to the Review of Developments in Transport in Asia and the Pacific (2005), the level and reliability of bus services in countries around the world is often dependant on the quality of the local road network, levels of traffic congestion, and the prevalent population density.

Bus is a major mode of public transport in most countries of the world, especially in urban areas which lack of airline and train services. Bus transportation has long time been an economical and convenient mode of transportation. The buses found in countries around the world are different due to the differentiation of local market requirement where it depends on the quality of the local road network and the population density of a country. Normally, to fulfil the different requirement of customers demand, the types and features of buses have to be developed according to local tradition or market. For example, buses were fitted with air conditioning in Asia.

1.2 Problem Statement

Bus transport play an important role in Malaysia as there are many bus services available in Malaysia. The passengers of bus usually consists of those who do not have cars, including children, teenagers, adults, students, and elders. Therefore, they use public buses to go places around their house by city busses, and they also use intercity busses to go places far away from their house. Public transport is good because it is easy to use so anybody can go on it. However, there are still many problems occurred due to the design of Malaysia busses in the aspect of appearance, accessibility features, ergonomic, comfortability, functionality, and safety. Although viewed as essential, bus services and buses are generally looked down upon for a variety of reasons. Passenger amenities in buses, such as seats and standing space, are inadequate and uncomfortable; they are noisy and vibrate. The climate of large regions in Malaysia, as also elsewhere in the world, is characterized by high ambient temperatures as well as high humidity for many months in a year. This aspect coupled with high passenger occupancy, also termed packing density, results in poor comfort levels inside the bus as quantified by air temperature, humidity and velocity.

Thus, this project is targeted to provide ergonomic, safe to use, and have high functionality, efficient, effective, eco-and consumer-friendly city bus transportation. In conclusion, broadly designed buses should be sleek and ergonomically designed, should facilitate level boarding and alighting, have comfortable seating and suspension, advanced passenger information system, vehicle information and tracking systems, should be passenger and disabled friendly and have electronic fare collection, among other requirements.

1.3 Scope of the project

- 1. To do the literatures study on the background of buses.
- 2. To gain the customer input (voice of customer) regarding the design of the city bus.
- 3. To do literatures regarding the related regulations with city bus.
- To come out with a list of specifications to be considered during the design work of city bus.
- 5. To understand and digest the specifications regarding city bus in order to express them in the design work.
- 6. To think and come out with the innovative features that can be attached to the conceptual designs.
- 7. To evaluate and validate the concept design generated

3

1.4 Objectives

The main objectives of this project are: -

- 1. To consider all specifications and regulations related to the city bus design.
- 2. To develop the conceptual design breakdown configuration.
- 3. To develop conceptual design of an ideal city bus in the form of 3D data.
- 4. To study the interior and exterior design of current city bus.

CHAPTER 2

LITERATURE REVIEW

2.1 Definition of Bus

Buses used to be called as omnibuses, but people now simply call them "buses". The name of ,bus" is a shortened version of omnibus, which gives the meaning of carrying of a number of people in one vehicle. According to the article published by Park May Berhad (2001), bus is a large wheeled vehicle meant to carry many different persons along with the driver. It is larger than a car. Thus, it can be defined as a larger motor vehicle designed to carry passengers usually along a fixed route according to a timetable or schedule.

From the article of Park May Berhad (2001), bus transportation probably had its beginning in the days of the Romans. However, a horse-drawn urban omnibus was introduced in Paris in 1662 by Blaise Pascal and his associates, but it remained in operation for only a few years. The omnibus as shown in Figure 2.1 reappeared c.1812 in Bordeaux, France, and afterward in Paris (c.1827), London (1829), and New York City (1830). It often carried passengers both inside and on the roof.

Figure 2.1: Parisian Omnibus in the late nineteenth century (Source: http://bus38.free.fr/hist1854eng.html)

According to the article published by Park May Berhad (2001), buses were motorized early in the 20th century. In most country, motorbus transportation increased rapidly now. The construction of small buses is similar to heavy automobiles, while the construction of large buses is similar to that of heavy trucks. Some large cities now use articulated buses, which can seat more than 60 passengers; such buses are constructed in two parts and joined, or articulated, with an accordionstyle sleeve.

2.2 Bus History

Table below shows the sample of chronology with the reference to Ariffin, A. (2001), Global Oneness Foundation (2004), and Bus History Association (BHA). The summary of history of bus transportation from year 1662 until 1831 is tabulated in Table 2.1 below.

Year	Description
1662	- A horse-drawn urban omnibus was introduced in Paris in 1662 by Blaise
	Pascal and his associates, but it remained in operation for only a few
	year.
1826	- The omnibus reappeared in Bordeaux, France.
	- First public transport system for general use originated in Nantes,
	France.
	- Stanislas Baudry, a retired army officer who had built public baths using
	the surplus heat from his flour mill on the city's edge, set up a short route
	between the center of town and his baths.
	- When Baudry discovered that passengers were just as interested in
	getting off at intermediate points as in patronizing his baths, he changed
	the route's focus.
	- His omnibus featured wooden benches that ran down the sides of the
	vehicle; passengers entered from the rear.

Table 2.1: Bus History