VERIFICATION

"I verify that, I have read this report and from my opinion this thesis have fulfill the scope and quality requirement for Bachelor Mechanical Engineering (Structure and Material)"

Signature	:
Supervisor Name	: MR. RAZALI BIN MOHD TIHTH
Date	:

R66 BUS SUPERSTRUCTURE CONCEPT DESIGN DEVELOPMENT

LAW SOO HAR

This report is submitted as partial requirement for the completion of the Bachelor of Mechanical Engineering (Structure and Material) Degree Program

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **APRIL 2009**

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby, declare this thesis is result of my own research except as cited in the references"

Signature:Author Name: Law Soo HarDate:

DEDICATION

To My Beloved Family My Parent Yin Teng

ACKNOWLEDGEMENTS

Final year project is requisite to fulfill the Bachelor of mechanical engineering. This report was written in order to fulfill the requirement of Bachelor of mechanical engineering for Final Year Project. I was thankful to manage this report writing on time.

In order to finish my project and make it successful, I owe a debt of thanks to all those time, concern and efforts were given during the process of this project. Thus, my heartfelt gratitude is extended to my beloved advisor; Mr. Razali Bin Mohd Tihth who gives me advises and guides me in the project of "R66 Bus Superstructure Concept Design Development". He is always pushes me and giving many of criticism, and always checking the progress.

Thanks to all my coursemates because they are always gave me some opinion and comments on this project. Thanks also to my parents that understand my situation, giving extra money for go somewhere, doing research and print it as a report.

I would like to pray for you all with good health, and always happy.

ABSTRAK

Masa sekarang, bas merupakan bahagian integral dari sistem pengangkutan kebangsaan. Meskipun bas adalah salah satu sarana yang paling dalam angkutan umum, tapi penghuninya kecederaan dan kematian di bas crash akan terjadi. Tingkat kecederaan serius dan kematian ahli dalam kemalangan "rollover" lebih tinggi bila dibandingkan dengan semua jenis kemalangan. Dengan selalu meningkatkan kesedaran untuk keselamatan penumpang, lebih diinginkan untuk mengembangkan struktur bas hanya mempunyai kekuatan untuk memenuhi keselamatan penumpang. Oleh kerana itu, kekuatan "rollover" telah menjadi isu penting bagi pengeluar bas dan jurulatih. Parti kerja (UNECE) telah membiarkan PADU R66 peraturan yang berkaitan dengan perlindungan dan kekuatan bas struktur dalam kemalangan.

Objektif dari projek "Pembinaan reka concept Bas R66 Suprastruktur" adalah reka "data digital" untuk reka konsep bas chassis yang sesuai dengan R66 dan mengembangkan reka konsep struktur bas akhir yang sedang dipertimbangkan aplikasi yang optimum dalam hal berat badan, bahan, dan proses pembuatan. Projek ini dibahas perkembangan terhadap struktur bas dari teori impak analisis atapnya menghancurkan dan "rollover" di ADAMS-View. ADAMS-View perisian ini digunakan untuk mensimulasikan "rollover" bas. Tenaga pergerakkan, kelajuan, daya impak apabila impak di atas lantai dan sudut bas dengan lantai sebelum impak diukur dalam ADAMS-View dan kemudian digunakan sebagai masukan untuk analisis teori impak. Analisis kelengkungan struktur bas dengan menggunakan perisian MSC. Patran dan MSC. Nastran untuk membandingkan keputusan dengan keputusan daripada cara pengiraan teori impak. Menurut regulasi ECE-R66, seorang penumpang ruangan kelangsungan hidup ditakrifkan dalam model bas untuk memeriksa sama ada kerosakkan ke dalam ruangan kelangsungan hidup selama atau setelah "rollover". Hal ini memastikan bahawa struktur bas mempunyai cukup kekuatan untuk menghindari kerosakkan ke ruangan kelangsungan hidup.

ABSTRACT

Nowadays, buses are an integral part of the national transportation system. Although buses are one of the safest means of public transportation, but the occupant cause in injuries and fatalities in bus crashes still occurred. The rate of serious injuries and fatalities of occupants in rollover accidents is higher compared with all other types of accidents. With the ever-increasing awareness for the occupant's safety, it is much desired to develop the bus structure which has enough strength to meet the safety norms. Therefore, rollover strength has become an important issue for buses and coaches manufacturers. The working party of the United Nations Economic Commission for Europe (UNECE) had allowed the relevant regulation ECE R66 deals with occupant protection and strength of bus superstructure during accident which involved rollover.

The purpose of this project, "R66 Bus Superstructure Concept Design Development" is to design a digital data for bus chassis concept which comply with R66 regulation and develop the final bus structure concept which being considered the optimum application in term of weight, material, compliances, and manufacturing process. This project is discussed the development of bus structure from theoretical impact analysis of its roof crush in rollover analysis using ADAMS-View. ADAMS-View software was used to simulate the rollover of the bus. Bus kinetic energies, velocities, impact force of bus structure on the ground and its angle with the ground just before impact was measured in ADAMS-View. By using these inputs for the calculation structure deformation and energy absorb by bus structure using theoretical impact calculation is execute. On the other hand, bus structure deformation analysis by using MSC. Patran and MSC. Nastran is used for the comparison purpose to the gain from theoretical impact calculation method. According to the ECE-R66 regulation, a passenger's survival space is defined in the bus model to check whether, there is any intrusion into the survival space during or after the rollover. This is to ensure the bus structure has sufficient strength to avoid intrusions into the survival space.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	i
	DEDICATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRAK	iv
	ABSTRACT	V
	TABLE OF CONTENT	vi
	LIST OF TABLES	xxi
	LIST OF FIGURES	xiii
	LIST OF GRAPHS	xvii
	LIST OF SYMBOLS	xviii
	LIST OF APPENDICES	xix

CHAPTER 1	INT	RODUCTION	1
	1.1	Background	2
	1.2	Objectives	4
	1.3	Scope of Works	5
	1.4	Problem Statement	5
CHPTER 2	LIT	ERATURE REVIEW	7
	2.1	The Literatures on Any Things That	8
		Related To Bus	
		2.1.1 History of Bus	8
		2.1.2 Designs of Bus	9
		2.1.3 Type of Bus	9
		2.1.3.1 Single-deckers	10

vi

vii

	2.1.3.2 Double-deckers	10
	2.1.3.3 Articulated Buses	11
	2.1.3.4 Low-floor Buses	11
	2.1.3.5 Bi-articulated	12
	2.1.3.6 Open top	12
	2.1.3.7 Coaches	12
	2.1.3.8 Trolley Buses	13
	2.1.4 The Use of Bus	14
	2.1.4.1 Public Transport	14
	2.1.4.2 Schools	15
	2.1.4.3 Private Charter	15
	2.1.4.4 Promotion	16
	2.1.4.5 Not for Profit	16
	2.1.4.6 Specialist Users	17
	2.1.4.7 Tourism	17
	2.1.5 Bus Manufacturing	18
2.2	The Interrelation Regarding the Bus	18
	and the Structure	
2.3	The Type of Chassis and Structure	21
	Currently Available In the Bus	
	Industries	
2.4	The Regulation That Related To the	23
	Bus Structure	
	2.4.1 List of ECE Regulations	24
	2.4.1.1 General Lighting	24
	2.4.1.2 Headlamps	25
	2.4.1.3 Instrumentation / Controls	25
	2.4.1.4 Safety	26
	2.4.1.5 Environmental /	26
	Performance	
	2.4.2 The Regulations Used On Bus	27
	Structure	

viii

	2.5	The R66 Regulation and It's	28
		Important in Consideration during the	
		Bus Structure Design and Development	
	2.6	The Available Method of Testing	32
		Related To the R66 Regulation	
		2.6.1 Full-scale vehicle rollover test	33
		2.6.2 Bay Section Rollover Test	33
		2.6.3 Bay Section Pendulum Impact	34
		Test	
		2.6.4 Component Testing	34
	2.7	The Available Method of Simulation	36
		That Related To the R66 Regulations	
		2.7.1 Numerical Test Method	36
		2.7.1.1 Numerical Simulation	37
		Model for Vehicle	
		Structure	
		2.7.1.2 Numerical Simulation	39
		Model for Occupant	
		Behavior	
	2.8	The Fundamental of Computer-aided	40
		Engineering	
		2.8.1 CAE Fields and Phase	41
		2.8.2 CAE in Automotive Industries	42
		2.8.3 CAE Software	43
	2.9	Finite Element Method (FEM)	44
	2.10	Impact Analysis of a Falling Object	46
			40
CHAPTER 3		THODOLOGY	48
	3.1	Method Used To Test the Bus	49

Structure to Achieve R66 Bus Superstructure

PAGE

ix

		3.1.1 The Reason of Method Use and	51
		Software Chosen	
		3.1.1.1 ADAMS-View	51
		3.1.1.2 Theoretical Impact	51
		Impact Calculation	
		Method	
		3.1.1.3 Static Structural	52
		Simulation Method	
	3.2	Process Flow of Bus Structure	53
		Analysis and Simulation	
	3.3	Residual Space in Bus Model	56
	3.4	Material Properties of Bus Structure	56
	3.5	Bus Structure Deformation and Energy	57
		Absorb Calculation Solution by Using	
		Theoretical Impact Analysis Method	
	3.6	Scenarios Investigate	59
	3.7	Test Setup in ADAMS-View for	59
		ECE-R66 Rollover Test	
	3.8	The consideration of ADAMS	62
		Rollover Simulation	
	3.9	The Consideration of MSC. Patran and	63
		MSC. Nastran Bus Structure	
		Simulation	
CHAPTER 4		RUCTURAL ANALYSIS RESULTS	64
	4.1	Identification of Bus Structure	65
		Dimension, Material and Mass	
		Properties	_
	4.2	y	67
		Rollover Bus Simulated by	
		ADAMS-View	
		4.2.1 ADAMS-View Analysis Setup	67

4.3

4.4

Х

4.2.2 ADAMS-View Analysis Results	68
4.2.2.1 Rollover Simulation with	68
Bus Structure Only	
4.2.2.2 Rollover Simulation with	70
Bus Structure and	
Passengers' Weight	
4.2.2.3 Rollover Simulation with	72
Bus Structure, Passengers'	
Weight and Luggage	
Weight	
Calculation of Bus Structure	74
Deformation and Energy Absorb by	
Bus Structure by Using Theoretical	
Impact Calculation Method	
4.3.1 Rollover Simulation with Bus	74
Structure Only	
4.3.2 Rollover Simulation with Bus	76
Structure and Passengers' Weight	
4.3.3 Rollover Simulation with Bus	78
Structure, Passengers' Weight	
and Luggage Weight	
The Simulation of Bus Superstructure	80
by MSC. Patran and MSC. Nastran	
4.4.1 MSC. Patran and MSC. Nastran	80
Analysis Setup	
4.4.2 The Results of Bus Superstructure	81
Simulation by MSC. Patran and	
MSC. Nastran	
4.4.2.1 Rollover Simulation with	81
Bus Structure Only	
4.4.2.2 Rollover Simulation with	83
Bus Structure and	

PAGE

		Passengers' Weight 4.4.2.3 Rollover Simulation with Bus Structure, Passengers' Weight and Luggage	84
		Weight	
CHAPTER 5	RES	SULTS ANALYSIS AND	86
	DIS	CUSSION	
	5.1	The Summary and Discussion of	86
		Overall Results	
	5.2	The Comparison of Summary Results	90
		With Results from TEMSA	
CHAPTER 6	FIN	AL CONCEPT DESIGN	91
	6.1	The Overview Design of Bus Structure	92
		6.1.1 The Design of Rollover Bar	92
		6.1.2 The Design of Cross Section of	94
		Rollover Bar	
	6.2	The Material Properties of Bus	95
		Superstructure	
	6.3	The Mass Properties of Bus	96
		Superstructure	
CHAPTER 7	CO	NCLUSION	98
	7.1	Recommendations	99
	REI	FERENCES	101
	API	PENDIX 1	105
	API	PENDIX 2	107
	API	PENDIX 3	108
	API	PENDIX 4	112

LIST OF TABLES

NO.	TITLE	PAGE
1.1	Injury distribution in coach accidents, Spain	4
	1995 – 1999. (Source: Martinez, (2003))	
3.4.1	The details of material properties for carbon	57
	steel (ASTM A500) (Source: Wikipedia (2010))	
4.1.1	The important physical properties of the bus	66
	structure	
4.4.1.1	The value of impact force in difference	81
	investigation scenarios	
5.1.1	The summary of overall results	87
5.2.1	The comparison of summary results with results	90
	from TEMSA	
6.2.1	The details of material properties for high	96
	carbon steel (ASTM A500 Grade A) based on	
	chemical composition, tensile strength, and heat	
	treatment. (Source: Wikipedia (2010))	
6.3.1	The mass properties of carbon steel square	97
	hollow section with standard material	
	– ASTM A500 Grade A	
	(Source: Markas Hardware Corporation)	

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	The percentage of rollover accident compared	2
	with the others type of accidents.	
	(Source: NASS-CDS, (2001))	
1.2	Buses involved in crashes with fatalities by	3
	rollover occurrence, 1999 – 2003.	
	(Source: National Institute of Aviation Research	
	, (2005))	
2.1.3.2.1	Double-decker of Kowloon Motor Bus, Hong	10
	Kong. (Source: Wikipedia, (2008))	
2.1.3.3.1	Volvo B10M articulated bus in Adelaide, South	11
	Australia. (Source: Wikipedia, (2008))	
2.1.3.7.1	Coaches parked at Chicken Itza, Mexico.	13
	(Source: Wikipedia, (2008))	
2.1.4.1.1	A local transit bus in Canberra, Australia.	14
	(Source: Wikipedia, (2008))	
2.1.4.4.1	All-over advert bus for Landsbanki in Iceland.	16
	(Source: Wikipedia, (2008))	
.1.4.6.1	A New York police bus converted for use as a	17
	command post. (Source: Wikipedia, 2008))	
2.2.1	Chassis bus and space frame bus, deformation	20
	comparison. (Source: Technet-alliance, (1990))	
2.2.2	City bus sidewall assembly.	20
	(Source: Technet-alliance, (1990))	
2.3.1	An AEC Routemster, a pioneering 1950s bus	21
	design. (Source: Leyland Leopard, (2008))	
2.3.2	A 1986 van derived Ford Transit minibus	22

	bodied by Carlyle. (Source: Leyland Leopard, (2008))	
2.3.3	A Volvo B10M chassis, bodied worldwide as a	23
	single-decker bus, articulated bus, double-decker	
	bus and coach. (Source: Leyland Leopard, (2008))	
2.4.2.1	ECE R66 bus superstructure	28
	(Source: Daimler, (2004))	
.4.2.2	The optimized seat structures and obligatory	28
	integration of seatbelts.	
	(Source: Daimler, (2004))	
2.5.1	Definition of residual space.	30
	(Source: ECE Regulation No. 66, (2006))	
2.5.2	Residual space. (Source: Elitok, (2006))	30
2.5.3	Specification of the rollover test.	31
	(Source: ECE Regulation No. 66, (2006))	
2.5.4	The stages of rollover	32
	(Source: Hashemi, (2005))	
2.6.2.1	Bay section rollover test	33
	(Source: Hashemi, (2005))	
2.6.3.1	Pendulum impact on bay section	34
	(Source: Hashemi, (2005))	
2.6.4.1	Quasi-static component testing	35
	(Source: Hashemi, (2005))	
2.6.4.2	Dynamic component testing	35
	(Source: Hashemi, (2005))	
2.6.4.3	Typical quasi-static test set-ups	35
	(Source: Hashemi, (2005))	
2.6.4.4	Quasi-static data processing	36
	(Source: Hashemi, (2005))	
2.7.1.1	Pillar-structural behavior (Source: Anon)	37
2.7.1.1.1	Rollover model (Source: Anon)	38
2.7.1.1.2	Bay section rollover model (Source: Anon)	38
2.7.1.2.1	Rollover simulation (Source: Anon)	39
2.7.1.2.2	Rollover simulation (bay section)	40

(Source: Anon) 2.9.1 Typical Finite Element Method process flow 45 2.10.1 The diagram of impact analysis of a falling 46 Object (Source: LivePhysics (2010)) 3.1.1 Schematic flow of method software used 50 3.2.1 The flow chart of bus structure analysis and 55 simulation process 3.7.1 60 The geometry of tilting table (Source: ECE Regulation No. 66, (2006)) 3.7.2 ECE-R66 test setup in the ADAMS-View 61 (Source: Deshmukh, (2006)) 3.8.1 Rollover simulation in ADAMS View. 62 (Source: Deshmukh, (2006)) 4.1.1 The overall dimension of bus model (side view) 65 4.1.2 The overall dimension of bus model (front view) 65 4.2.1.1 ADAMS-View analysis setup 67 4.2.1.2 The bus structure just before impact on the 68 ground 4.4.1.1 The analysis setup of bus structure in the pre-80 process of simulation by MSC. Patran 4.4.2.1.1 The result of translational displacement and 82 deformation of bus structure (front view) 4.4.2.1.2 The result of translational displacement and 82 deformation of bus structure (isometric view) 4.4.2.2.1 The result of translational displacement and 83 deformation of bus structure with passengers' weight (front view) 4.4.2.2.2 84 The result of translational displacement and deformation of bus structure with passengers' weight (isometric view) 85 4.4.2.3.1 The result of translational displacement and deformation of bus structure with passengers' weight and luggage weight (front view)

4.4.2.3.2 The result of translational displacement and 85

	deformation of bus structure with passengers'	
	weight and luggage weight (isometric view)	
5.1.1	The deformed geometry of rollover bar	88
6.1.1	The design of ECE R66 bus superstructure	92
6.1.1.1	The arrangement distance of rollover bar of the	93
	Bus superstructure	
6.1.1.2	The dimensions of rollover bar	94
6.1.2.1	The dimension of the rollover bar cross section	95

LIST OF GRAPHS

NO.	TITLE	PAGE
4.2.2.1.1	The graph of bus structure velocity versus time	69
	(for rollover simulation with bus structure only)	
4.2.2.1.2	The graph of bus structure kinetic energy versus	69
	time (for rollover simulation with bus structure	
	only)	
4.2.2.1.3	The graph of bus structure impact force versus	70
	time (for rollover simulation with bus structure	
	only)	
4.2.2.2.1	The graph of bus structure velocity versus time	71
	(for rollover simulation with bus structure and	
	passengers' weight)	
4.2.2.2.2	The graph of bus structure kinetic energy versus	71
	time (for rollover simulation with bus structure	
	and passengers' weight)	
4.2.2.2.3	The graph of bus structure impact force versus	72
	time (for rollover simulation with bus structure	
	and passengers' weight)	
4.2.2.3.1	The graph of bus structure velocity versus time	73
	(for rollover simulation with bus structure,	
	passengers' weight and luggage weight)	
4.2.2.3.2	The graph of bus structure kinetic energy versus	73
	time (for rollover simulation with bus structure,	
	passengers' weight and luggage weight)	
4.2.2.3.3	The graph of bus structure impact force versus	74
	time (for rollover simulation with bus structure,	
	passengers' weight and luggage weight)	

LIST OF SYMBOLS

a	=	Acceleration of object
d	=	Crumpling distance or travel distance
F_{avg}	=	Impact force
8	=	Gravity force
h	=	Height
J	=	Joule
m	=	Mass of object
Ν	=	Newton
t	=	Time
S	=	Second
и	=	Initial velocity of object
ν	=	Final velocity of object
W	=	Work done

LIST OF APPENDICES

NO.

TITLE

110.		TAGE
1.1	The gantt chart of final year project 1	105
1.2	The gantt chart of final year project 2	106
2.1	The mass properties of carbon steel	107
	(ASTM A500) square hollow section	
2.2	Bus structure coordination	108
3.1	The drawing of bus structure (3D)	112
3.2	The drawing of bus structure (2D)	113
3.3	The drawing of rollover-bar or pillar (3D)	114
3.4	The drawing of rollover-bar or pillar (2D)	115
4.1	The dynamic and kinematic analysis results of	116
	bus structure simulated by ADAMS-View	
	(Rollover Simulation with Bus Structure Only)	
4.2	The dynamic and kinematic analysis results of	117
	bus structure simulated by ADAMS-View	
	(Rollover Simulation with Bus Structure and	
	Passengers' Weight)	
4.3	The dynamic and kinematic analysis results of	118
	bus structure simulated by ADAMS-View	
	(Rollover Simulation with Bus Structure,	
	Passengers' Weight and Luggage Weight)	
4.4	The result of translational displacement and	119
	deformation of bus structure (Rollover	
	Simulation with Bus Structure Only)	

PAGE

C Universiti Teknikal Malaysia Melaka

4.5	The result of translational displacement and	120
	deformation of bus structure (Rollover	
	Simulation with Bus Structure and Passengers'	
	Weight)	
4.6	The result of translational displacement and	121
	deformation of bus structure (Rollover	
	Simulation with Bus Structure, Passengers'	
	Weight and Luggage Weight)	
4.7	The summary of overall results	122

CHAPTER 1

INTRODUCTION

In this report, the discussion on study of "R66 Bus Superstructure Concept Design Development" will be called out.

In today's competitive environment, one of the most powerful business competencies is a fast product design and development process. Almost all of the industries are keen to leverage advancements in CAE (Computer Aided Engineering) to shorten development cycle time. It is very much required to meet the stringent government norms before delivering product to the market and it is one of the primary concerns for every manufacturer. With the increasing awareness for occupant's safety and crashworthiness in automotive industries, buses are also receiving more attention for occupant's safety. Mainly during rollover accident, it has been observed that the deforming body structure of bus seriously threatens the lives of passenger and driver. Therefore, the strength of bus structure has become main concern of bus and coach manufacturers.

In Europe, the working party of the United Nations Economic Commission for Europe (UNECE) had allowed the relevant regulation ECE R66 deals with occupant protection and strength of bus superstructure during rollover accident. According to ECE R66, the regulations calls for quasi-static rollover of the full scale vehicle with un-laden kerb mass.

1.5 Background

Nowadays, many automotive manufacturers are investing large capital in crashworthiness and automobile safety research. As a result, according to Traffic Safety Facts (2004), the fatality rate dropped to a new historic low of 1.44 fatalities per 100 million of vehicles traveling in 2004. Currently, automotive industries are more concentrating or focusing on vehicle rollover, as rollover accidents have only decreased a little more than a half percent in the last decade. It can be showed that vehicle rollover is one of the serious highway accidents. The risk of fatal injuries is more in a rollover accident than any other type of accident.

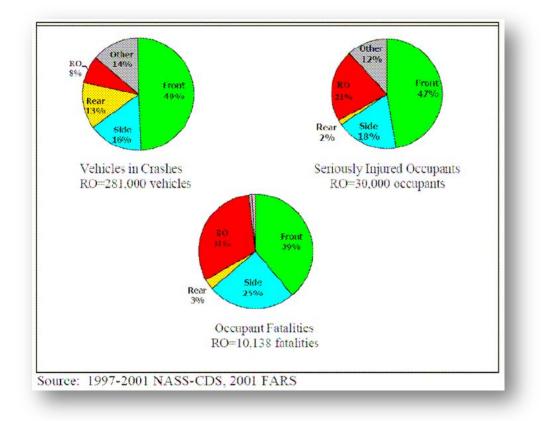


Figure 1.1: The percentage of rollover accident compared with the others type of accidents. (Source: NASS-CDS, (2001))

Figure 1.1 shows the data from the 1997-2001 National Automotive Sampling System (NASS) and Crashworthiness Data System (CDS).