'I/We* admit that I/We* have read this report and in my/our* opinion this report is fulfilled the scope and quality for award condition of Bachelor of Mechanical Engineering (Thermal-Fluids)'

Signature	:
Supervisor 1's Name	:
Date	:

Signature	:
Supervisor 2's Name	:
Date	:

*Cut which irrelevant

RESEARCH STUDY ON THE NOISE LEVEL AT THE NGV ENGINE

AHMAD RAZIF BIN RABUDIN

This report is being proposed as a partial fulfillment in the requirement for bestowal of Degree in Bachelor of Mechanical Engineering (Thermal-Fluids)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2008

"I hereby, declare this report is the result of my own research except as cited in the references"

Signature	:
Writer Name	:
Date	:

For my beloved father and mother

ACKNOWLEDGEMENTS

First of all, thank to Allah S.W.T for His blessing and His Messenger Muhammad S.A.W for His bonds of love in order to allow me completing this research report for the Projek Sarjana Muda (PSM). I would like to address my deepest gratitude and special thanks to Puan Rafidah Bt. Hassan, as my supervisor for this project for her guidance and kindness for helping and assisting me to complete this task.

Besides that, I also want to dedicate my special thanks to Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka (UTeM) and the lab management staffs especially from the technicians for the cooperation and guidance throughout my project. I really appreciated all of their support and kindness.

Besides that, I would like to express my appreciation to my beloved family for the moral support and for staying firmly beside me through obstacles and also to all my truly beloved friends for the courage and strength that all of them gave to me during this project period. Thanks.

Last but not least, this appreciation is also specially for those who's involved directly or indirectly for helping this research project done successfully. Hopefully, this research project will be useful as a sources to others students and will provide a guidance in further studies of the NGV improvements system afterwards.

ABSTRACT

A Natural Gas Vehicle or NGV according to Wikipedia online dictionary (Internet reference, 02/08/2008) is an alternative fuel vehicle that uses compressed natural gas (CNG) or, less commonly, liquefied natural gas (LNG) as a clean alternative to other automobile fuels. NGVs are standard vehicles that have been modified to run on CNG and there are three types of NGV engines which are Dedicated, Bi-Fuel and Dual Fuel engines. As any other engines, the NGV engines are also producing some noise. In common use, the word noise means unwanted sound or noise pollution. Therefore, this report is mainly on the research to determine the noise level of NGV engines and compared the differences between both petrol and diesel engines. There are several engines which used the application of NGV which have been totally proved to save the fuel and money. Therefore, the main aim for this research is that to identify its sequences and merely focused it from the noise level area in the aspects of safety, durability and stability that might come from the usage of NGV. This research could be done by collecting the noise level data in experimental test using the noise level detector on several engines including NGV. Besides, the differences set of data will be studied, compared and analyzed to find out its sequences of safety, durability and stability so that the result that will be obtained afterwards might be useful in further studies of the NGV improvements system.

ABSTRAK

Natural Gas Vehicle (NGV) ataupun Gas Kenderaan Semula jadi adalah merupakan bahan alternatif minyak kenderaan yang menggunakan gas semula jadi (Compressed Natural Gas, CNG) ataupun kebiasaannya lebih dikenali sebagai gas asli cecair (Liquefied Natural Gas, LNG) sebagai alternatif lain kepada bahan api kenderaan automobil mengikut takrif daripada kamus dilaman web Wikipedia (Rujukan internet, 02/08/2008). NGV adalah kenderaan piawaian yang telah diubah suai untuk digerakkan ke atas CNG yang mempunyai tiga jenis enjin iaitu Dedicated, Bi-Fuel dan Dual Fuel. Seperti enjin-enjin yang lain, enjin NGV juga menghasilkan bunyi bising. Kebiasaannya, perkataan bunyi bising ini bermakna bunyi yang tidak diperlukan ataupun penghasilan pencemaran bunyi. Disebabkan itu, laporan kajian ini sebahagian besarnya adalah tertumpu kepada kajian untuk menentukan paras bunyi bising pada enjin NGV dengan membanding serta membezakan diantara kedua-dua enjin diesel dan petrol. Terdapat beberapa jenis enjin yang menggunakan aplikasi NGV yang mana terbukti dan diakui dalam menjimatkan kos bahan api dan wang. Oleh kerana itu, tujuan utama laporan ini adalah untuk mengenalpasti rangkaiannya dan hanya menumpukan terhadap bidang paras bunyi bising dari segi aspek keselamatan, ketahanlasakan dan kestabilan yang terhasil daripada penggunaan NGV. Kajian ini dapat dilakukan melalui pengumpulan data paras bunyi bising melalui ujian eksperimen dengan menggunakan alat meter paras bunyi bising terhadap beberapa enjin termasuklah NGV. Disamping itu, perbezaan data yang diperolehi akan dikaji, dibanding dan dianalisis untuk mengenalpasti rangkaian keselamatan, ketahanlasakan dan kestabilan supaya keputusan yang akan diperolehi kelak mungkin bermanfaat untuk digunakan bagi mendalami sistem penambahbaikan NGV dengan lebih lanjut lagi.

CONTENT

CHAPTER	ITE	Μ	PAGE
	CON	NFESSION	i
	DED	DICATION	iv
	ACK	KNOWLEDGEMENT	V
	ABS	TRACT	vi
	ABS	TRAK	vii
	CON	NTENT	viii
	LIST	Г OF TABLE	xiii
	LIST	Г OF FIGURE	xiv
	LIST	Г OF SYMBOL, UNIT AND	xvii
	NON	MENCLATURE	
	LIST	Γ ΟΓ ΑΡΡΕΝΟΙΧ	xix
CHAPTER 1	INT	RODUCTION	1
	1.1	Background	1
		1.1.1 Details of NGV	1
		1.1.2 Details of Noise	2
	1.2	Problem Statements	4
	1.3	Objectives	4
	1.4	Scope	4
	1.5	Flow Chart	5

CHAPTER 2	LIT	TERATU	RE REV	IEW	7
	2.1	Natura	l Gas Vehi	cles (NGV)	7
		2.1.1	NGV de	evelopment	8
		2.1.2	Chemic	al composition	9
		2.1.3	Energy	content	9
		2.1.4	Storage		9
		2.1.5	Transpo	rt	10
		2.1.6	Types o	f NGV engines	10
	2.2	Noise			12
		2.2.1	Noise le	evel	13
		2.2.2	Noise et	ffect	13
		2.2.3	Sources	of noise	13
		2.2.4	Signal n	oise	14
		2.2.5	Noise m	neasurement	15
		2.2.6	Standar	ds of noise measurement	15
		2.2.7	Stage of	Noise	16
		2.2.8	Noise D	Descriptors	16
			2.2.8.1	The n-Percent	17
				Exceeded Level, L _n	
			2.2.8.2	L ₁₀ , L ₅₀ and L ₉₀	18
			2.2.8.3	Equivalent Continuous	19
				Sound Pressure Level,	
				L_{eq}	
	2.3	Sound	Level Met	ers	20
		2.3.1	Standar	d of Sound Level Meters	20

2.3.2 Types of Sound Level Meters 21

PAGE

CHAPTER		ITEM			PAGE
		2.3.3	Exponen sound lev	tially averaging vel meter	22
		2.3.4	L _{AT} or L	eq: Equivalent	23
			continuo	us sound level	
		2.3.5	Short Lec	L	24
		2.3.6	Internatio	onal standards	25
		2.3.7	Applicat	ion of Sound Level	25
			Meters		
CHAPTER 3	ME	THODO	DLOGY		26
	3.1	Equipn	nents, appa	ratus and parameter	26
		3.1.1	Equipme	nts	27
		3.1.2	Apparatu	IS	28
			3.1.2.1	Push key Definition	29
				on Sound Level Meter	
			3.1.2.2	Setting for the Sound	31
				Level Meter	
		3.1.3	Paramete	er	32
	3.2	Experi	mental Proc	cedure	33
	3.3	Experin	mental Data	a Table	35
	A		OF DEGU	T T	25
CHAPTER 4	AN	ALYSIS	OF RESU	LI	51
	4.1	Sound	level test		37
	4.2	Formul	la of calcula	ation for Table	39
	4.3	Test Re	esult		39

4.3.1	Data Colle	ction on Noise Level Measurement	40
	for Proton	Iswara	
	4.3.1.1	Graph on Noise Level	41
		Measurement of NGV	
		for Proton Iswara	
	4.3.1.2	Graph on Noise Level	42
		Measurement of non-NGV	
		for Proton Iswara	
	4.3.1.3	Comparison on the Noise	43
		level for Proton Iswara	
	4.3.1.4	Percentage Difference for	44
		Proton Iswara	
4.3.2	Data Colle	ction on Noise Level Measurement	46
	for Proton	Wira	
	4.3.2.1	Graph on Noise Level	47
		Measurement of NGV for	
		Proton Wira	
	4.3.2.2	Graph on Noise Level	48
		Measurement of non-NGV for	
		Proton Wira	
	4.3.2.3	Comparison on the Noise level	49
		for Proton Wira	
	4.3.2.4	Percentage difference for	50
		Proton Wira	

CHAPTER 5	DISCU	JSSION	52
	5.1	Result Overview	52
	5.2	Result Discussion	53

	APPEN	DIX		63
	BIBLIO	GRAPHY		62
	REFER	ENCES		60
	6.2	Suggestior	18	59
	6.1	Conclusion	ns	58
CHAPTER 6	CONCL	LUSION ANI	D SUGGESTION	58
	5.3	Source of	error	56
		5.2.2	Petrol Engine Process	55
		5.2.1	NGV Engine Process	54

LIST OF TABLE

NUMBER	TITLE	PAGE
1.1	Several property between Natural Gas, Gasoline and Diesel (Source: Murphy, 1994).	8
3.1	Sample of Data Collection on Noise Level Measurement for Proton Iswara	35
3.2	Sample of Data Collection on Noise Level Measurement for Proton Wira	36
4.1	Data Collection on Noise Level Measurement for Proton Iswara	40
4.2	Data Collection on Noise Level Measurement for Proton Wira	46

LIST OF FIGURE

NUMBER	TITLE	PAGE
1.1	NM102 Noise Meter (Left) and Noise Meter with Optional Calibrator (Right) (Source: Internet reference/13.09.2008)	3
1.2	The flow chart for the entire PSM activities	6
2.1	Range of sound pressure level (Source: Internet references/16.09.2008).	16
2.2	Graph of the change of magnitude of a sound or noise over time (Source: Internet references/16.09.2008).	17
2.3	Graph illustrates the L_{10} , L_{50} and L_{90} . (Source: Internet references/16.09.2008)	18
2.4	Graph of sound pressure level against time (Source: Internet references/16.09.2008).	19
3.1	Standard specifications for Proton Iswara	27
3.2	Standard specifications for Proton Wira	28

3.3	The model of 2238 Mediator of Sound Level Meter	29
4.1	The model of Proton Iswara Aeroback 1.3L	38
4.2	The model of Proton Wira 1.6L	38
4.3	The engine part and the Sound Level Meter	38
4.4	Graph of Noise level (dB) against Speed (rpm) of NGV for Proton Iswara	41
4.5	Graph of Noise level (dB) against Speed (rpm) of non-NGV for Proton Iswara	42
4.6	Graph of Comparison on the Noise level for Proton Iswara	43
4.7	Graph of Percentage Difference of Noise level (%) against Speed (rpm) of NGV for Proton Iswara	44
4.8	Graph of Noise level (dB) against Speed (rpm) of NGV for Proton Wira	47
4.9	Graph of Noise level (dB) against Speed (rpm) of non-NGV for Proton Wira	48
4.10	Graph of Comparison on the Noise level for Proton Wira	49
4.11	Graph of Percentage Difference of Noise level (%) against Speed (rpm) of NGV for Proton Wira	50
5.1	The view for the NGV vehicle	54

5.2	Process for Petrol Engine	55
5.3	The view of the Petrol Engine	56

LIST OF SYMBOL, UNIT AND NOMENCLATURE

NGV	=	Natural Gas Vehicle
CNG	=	Compressed Natural Gas
LNG	=	Liquefied Natural Gas
°F	=	Degree Fahrenheit
BTU	=	British Thermal Unit
CH_4	=	Methane
C_2H_6	=	Ethane
C_3H_8	=	Propane
$C_{4}H_{10}$	=	Butane
H_2S	=	Hydrogen sulfide
MJ	=	Mega Joule
kWh	=	Kilo Watt hour
lbf/in²,	=	Pound feet per inches square
°C	=	Degree Celcius
dB	=	Desibel
dB(A)	=	Desibel (Ampere)
dBm	=	Desibel meter
L _n	=	n-percent exceeded level
L _{An}	=	n-percent exceeded level with A-weighting scale
L ₁₀	=	10-percent exceeded level
L ₅₀	=	50-percent exceeded level
L ₉₀	=	90-percent exceeded level
L _{eq}	=	Equivalent Continuous Sound Pressure Level
ms	=	Meter second

RMS	=	Root Mean Square
L _{AT}	=	Equivalent continuous sound level
rpm	=	Rotational per minute

LIST OF APPENDIX

NUMBER	TITLE	PAGE
А	Gantt Chart for PSM 1	63
В	Gantt Chart for PSM 2	64

INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 Background

The NGV and noise will be introduced as parts of the basic general information before this project proceed any further. The details of description between these two characteristics for this project are important as a guideline throughout the research that is being studied.

1.1.1 Details of NGV

NGV stands for Natural Gas for Vehicles. It is equivalent to natural gas supplied to power stations, industries, commercial establishment and households. NGV is an environmentally friendly fuel and has been proven to be lighter than air. It is specially developed to provide economic value to users without compromising on quality. There are several of advantages that offered by NGV especially for all vehicle owners which include:

- Substantial savings (50%) in fuel cost
- Lower operating cost
- Contributes to a cleaner environment
- Extended travel range

NGV is supported by the government with incentives and legislation to encourage vehicles owner to use NGV. NGV price is only 63.5 cent/litre equivalent of petrol, which make it cheaper than other fuels. NGV conversion kits are exempted from import duty and sales tax. Besides that, the reduction of road tax from existing levels also offers:

- Monogas vehicle (NGV only) 50% off.
- Bi-fuel vehicle (Petrol & NGV) 25% off.
- Dual-fuel vehicle (Diesel & NGV) 25% off.

All of these reasons are major factors for potential owners to consider when making their vehicle fuel choices. However, many owners may not be aware of the safety record of NGV vehicles. NGV vehicles safety record compares favorably to other traditional fuels or alternative fuels available today. This is due to the superior (and still improving) technology, higher safety standards and the physical properties of NGV itself which makes it as safe as or safer to use than petroleum-based fuels (*Internet reference*, 03/08/2008).

1.1.2 Details of Noise

Noise is any sound that is undesired or interferes with one's hearing of something (*Internet reference*, 03/08/2008). From the noise level of the NGV engine, we can determine the aspects of safety, durability and stability of certain engine vehicles. The equipment used to measure the noise level is the sound level meter. The Noise Meter or

sound level meter is designed to accurately measure the noise that we can hear, putting a real value to something that is so affected by perception (*Internet reference*, 04/08/2008).

The NM102 Noise Meter has been one of most popular noise measurement products in the following areas:

- Police Departments (vehicle noise, community noise)
- Factories and industrial complexes
- Housing associations
- Fire alarms and other alarm systems
- Sound system installation

Figure 1 below shows some example of the Noise Meter or Sound Level Meter. It shows the models from NM102 Noise Meter and Noise Meter with Optional Calibration manufactured by NoiseMeters Limited Company located at North Yorkshire, in United Kigdom.

Figure 1.1: NM102 Noise Meter (Left) and Noise Meter with Optional Calibrator (Right) (Source: *Internet reference*, 04/08/2008)

1.2 Problem Statements

This project is to determine and identify the sequences of the NGV and merely focus it from the noise level area in the aspects of safety, durability and stability that might come from the usage of NGV. Even though the NGV has been proven to save the money and fuel respectively, there are still few researches on the safety, durability and stability mainly on the sound or noise level which can necessarily resulting in the sound pollution and other side effects which can probably reduces the vehicle's performance.

1.3 Objectives

There are several objectives which are carried out while doing this research and needs to be fulfilled. The objectives are:

- To determine the noise levels of NGV engines and compare the differences with the petrol and diesel engines.
- To determine the aspect of safety, durability and stability that might come from the usage of NGV
- To familiarizes with the equipments that are being used to measure the noise level such as the noise level detector.
- To gain experiences in conducting and operating experiments such as follows sequence procedure, collecting data, analyzing results and making final conclusion.

1.4 Scope

While doing this research, there are some actions which are really necessary and not necessarily need to be followed as the scopes of this project. The main scopes include: