LOW MAINTENANCE AQUARIUM: AUTOMATIC CONTROLLER SYSTEM FOR LIGHTING, OXYGEN AND FILTER SYSTEM

G.THINESH KUMAR A/L GANASAGARAN

This report is submitted in partial fulfillment of the requirement for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honors

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

October 2011

THE REAL AVEL	FAKULTI K	UNIVERSTI TEKNIKAL MALAYSIA MELAKA EJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Projek Sesi Pengajian	•	ntenance Aquarium: Automatic Controller System ng, Oxygen And Filter System. 1
Sarjana Muda ini d 1. Laporan adala 2. Perpustakaan d	lisimpan di Perpus h hakmilik Univer dibenarkan membu dibenarkan membu gi.	GANASAGARAN mengaku membenarkan Laporan Projek takaan dengan syarat-syarat kegunaan seperti berikut: siti Teknikal Malaysia Melaka. 1at salinan untuk tujuan pengajian sahaja. 1at salinan laporan ini sebagai bahan pertukaran antara institusi
	LIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	RHAD** PAK TERHAD	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
		Disahkan oleh:
(TAN Tarikh:	NDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA) Tarikh:

C Universiti Teknikal Malaysia Melaka=

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author	: G.THINESH KUMAR A/L GANASAGARAN
Date	:

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours."

Signature	:
Supervisor's Name	: Engr Zarina Binti Mohd Noh
Date	:

To my beloved father, mother, and all my siblings and friends.

ACKNOWLEDGEMENT

First and foremost, I would like to praise God for HIS blessing. He gave me physical and mental to carry on my final year project from the beginning up to completion. I would like to express gratitude and thanks to my supervisor, Engr. Zarina Binti Mohd Noh for her support and unfailing patience throughout the duration of the project. Her encouragement and guidance are truly appreciated. Otherwise, this project has not been possible. I have learnt a lot under her guidance, be it practically or theoretically. Other than that, I am also grateful to my all friends who help me and giving me opinion along implementation of this project. I would like to thanks my parent and my girlfriend on their moral support as I can count on them whenever I am upset or down. Finally, I would like to offer thanks and deepest gratitude from the bottom of my heart for all the support, encouragement and inspirations I obtained throughout the duration of this project. The help rendered to me priceless, be it from the smallest of its kind to the largest.

ABSTRACT

LOMAQ (Low Maintenance Aquarium) project is built for fish farming with less human interface. The project is based on a microcontroller circuit to control the circuit of equipment used on fish farming. The microcontroller (PIC) has a keypad to act as input made to set the timer to control the equipment. All equipment used is controlled by timer. Equipments controlled are light, water pump and food dispenser. There is a timer sensor to show the temperature of the environment and the data is shown on LCD screen. The system would supply the oxygen and food according to the need of the aquarium and cleans the aquarium periodically. The cutting edge of this system is that human can always give the input according to the needs. There would be input interface in the system where it could be altered according to the current needs. Where else the lighting would be pre set to operate in the given timing. The main idea is to make it as a selling product using PIC as the controller .The advantage of this project is that it's very versatile and very flexible. The system could be integrated with on the market appliance without regarding the brand, type or size. It's also flexible via its need of use. It can be used for large scale or small scale. The project would be done in small scale as a prototype. Main purpose of this project is reducing human interference in maintaining an aquarium. Besides that it would also help to cut cost of electricity usage.

ABSTRAK

Projek LOMAQ (Low Maintainance Aquarium) adalah untuk penternakan ikan dengan kurang pendedahan manusia iaitu separa automatic.Projek ini dicipta berasaskan mikropengawal untuk mengendalikan litar serta peralatan dalam penternakan ikan.Litar mikropengawal PIC mempunyai keypad sebagai input masa untuk mengedalikan peralatan.Kesemua peralatan yang gunakan dikawalkan menggunakan pemasa (timer).Peralatan yang dikawal adalah lampu neon,pam air/oksigen dan kotak pengagihan makanan.Selain itu,terdapat sensor suhu untuk menunjukkan suhu sekitar dan kesemua data akan dipaparkan pada skrin LCD. Bagi pengagihan makanan, sela diperlukan perlu disetkan masa yang menggunakan keypad yang telah disediakan.Apabila sudah disetkan,pengagihan makanan sudah menjadi aktif.Maka ia akan mula aktif dan menyalurkan makanan pada sela masa yang telah disetkan dalam tempoh minit. Had operasi pengeluaran makanan adalah 10 saat sahaja. Maksudnya motor didalam pengagih makanan akan berfungsi selama 10 saat sahaja dan makanan akan keluar dalam 10 saat sahaja. Bagi pembekal oksigen dan penapis oksigen, prosesnya juga sama. Sela masa yang diperlukan disetkan menggunakan keypad yang disediakan. Prosesnya akan aktif mengikut sela masa yang talah ditetapkan. Oksigen akan dibekalkan dan air juga akan mula ditapiskan. Sela masa yang ditetapkan adalah dalam minit.

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	TITLE	i
	DECLARATION	ii
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENTS	ix
	LIST OF FIGURES	xiii
	LIST OF TABLES	XV
	LIST OF ABBREVIATION	xvi
	LIST OF APPENDIX	xvii

1.0	Introduction			
	1.1	Introduction	1	
1.2 Problem Statements		Problem Statements	2	
	1.3 Objective		2	
	1.4	Scope	3	
	1.5	Expected outcome of the project	3	
	1.6	Methodology	4	
	1.7	Thesis outline	5	

2.0	Litera	ature Rev	view		6
	2.1	Introduction			6
	2.2	Types	of fish keeping systems		7
		2.2.1	Freshwater		7
		2.2.2	Saltwater		8
		2.2.3	Brackish water		8
	2.3	Aquar	ium Maintenance		9
		2.3.1	Water Conditions		9
		2.3.2	Nitrogen cycle		11
		2.3.3	The Process		12
		2.3.4	Maintaining the nitrogen cycle		12
	2.4	Biolog	gical Loading		14
		2.4.1	Calculating aquarium capacity		14
		2.4.2	Factors affecting capacity		15
	2.5	Water			16
		2.5.1	Hardness		17
		2.5.2	Acidity (pH)		18
		2.5.3	Carbon Dioxide (Co2)		18
		2.5.4	Temperature		19
		2.5.5	Salinity		20
		2.5.6	Water Quality		20
	2.6	Filters	3		22
		2.6.1	"Under Gravel" Filter		23
		2.6.2	"Under Backward Gravel" Filter		23
		2.6.3	Canister Filter		24
		2.6.4	Wet and Dry Filter Drops (trickle filters)		25
	2.7	Lighti	ng		26

	2.7.1	Light Needs	26
	2.7.2	Light factor	27
	2.7.3	Lux	27
	2.7.4	Measuring Light	28
2.8	Variou	s Problems in the Management of Aquarium	29
2.9	Introdu	action to microcontroller	30
	2.9.1	Microcontrollers versus Microprocessors	30
	2.9.2	PIC16F877	30
	2.9.3	Microcontroller Core Features	31
	2.9.4	Peripheral Features	32
	2.9.5	Memory Organization	32
	2.9.6	Program Memory Organization	32
	2.9.7	Data Memory Organization	33
	2.9.8	Special Function Registers	34
	2.9.9	Status Register	34
	2.9.10	PCL and PCLATH	34

Methodology			35
3.1	Micro	controller interface connection block diagram	35
	3.1.1	Hardware Connection	36
3.2	I/O Po	orts	37
	3.2.1	BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS	37
	3.2.2	BLOCK DIAGRAM OF RA4/T0CKI PIN	38
	3.2.3	BLOCK DIAGRAM OF RB3:RB0 PINS	38
	3.2.4	BLOCK DIAGRAM OF RB7:RB4 PINS	39
3.3	Data E	Eeprom and Flash Program Memory	39
	3.3.1	Reading the EEPROM Data Memory	40
	3.3.2	Writing to the EEPROM Data Memory	40
	3.13.2	 3.1 Micro 3.1.1 3.2 I/O Po 3.2.1 3.2.2 3.2.3 3.2.4 3.3 Data H 3.3.1 	 3.1 Microcontroller interface connection block diagram 3.1.1 Hardware Connection 3.2 I/O Ports 3.2.1 BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS 3.2.2 BLOCK DIAGRAM OF RA4/TOCKI PIN 3.2.3 BLOCK DIAGRAM OF RB3:RB0 PINS 3.2.4 BLOCK DIAGRAM OF RB7:RB4 PINS 3.3 Data Eeprom and Flash Program Memory 3.3.1 Reading the EEPROM Data Memory

3.4	Timer	0 Module	41
3.5	LCD		42
	3.5.1	Connecting LCD with Microcontroller	42
3.6	Softwa	are Implementation	43
	3.6.1	Overview	43
	3.6.2	MPLAB Software	43
	3.6.3	PICkit 2 v2.55 software with USB ICSP PIC Programmer	46
3.7	Progra	mming Development	48
	3.7.1	Initialization part	48
	3.7.2	Main programming part	51
	3.7.3	Subroutine part	52

4.0	Result		
	4.1	Circuit Diagram	53
	4.2	Circuit Layout	54
	4.3	Software Programs	55
		4.3.1 Program for the LCD	55
		4.3.2 Program for the Keypad	64
	4.4	Photos of project	67

Discussion	70
Conclusion	71
Recommendation	72
ERENCES	73
NDIXS	74
	Conclusion Recommendation ERENCES

LIST OF FIGURES

No	TITLE	PAGE
1.6	Flow chart of project implementation	5
2.3.2	The nitrogen cycle in an aquarium	11
2.5.2	General range pH	18
2.6	Filtration process	22
2.6.1	"Under Backward Gravel" Filter:	23
2.6.2	Under gravel filter with water flow is reversed	24
2.6.3	Scheme Canister Filter	25
2.6.4	Filter Drops Scheme (Filters Wet and Dry)	25
2.9.6	PIC16F877 Program memory map and stack	33
3.1	Microcontroller Interface	35
3.1.1	Hardware connection	36
3.2.1	Block diagram of RA3:RA0	37
3.2.2	Block diagram of RA4/TOCK1	38
3.2.3	Block diagram	38
3.2.4	Block diagram of RB7:RB4	39
3.5.1	Connecting LCD with Microcontroller	42
3.6.2	MPLAB window after done create a project	43
3.6.3	MPLAB window after add file.	44
3.6.4	MPLAB window after write	44

3.6.5	MPLAB window when programming	45
3.6.6	MPAB window when programming	45
3.6.7	PIC kit2 software window before and after successful download	46
3.6.8	USB ICSP PIC programmer	47
4.1	Circuit Diagram	53
4.2	Circuit Layout	54
4.4.1	Main board	67
4.4.2	Keypad and LCD	67
4.4.3	Entire circuit mounted	68
4.4.4	System fully operational	68
4.4.5	System fully fixed	69

xiv

LIST OF TABLES

No	TITLE	PAGE
2.5.1	Hardness Hose	17
2.5.3	CO2 (ppm)	18
2.5.4	General guidelines Heater selection	19
2.5.6	Normal Range of Water Quality	21
2.7.4	Table Lux Lighting	28

LIST OF ABREVATIATION

ADC	ANALOG TO DIGITAL CONVERTER
ALU	ARITHMETIC LOGIC UNIT
BCD	BINARY CODED DECIMAL
CCW	CONTER CLOCKWISE
СН	CLOCK HERTZ
СР	CODE PROTECTION
CW	CLOCKWISE
GND	GROUND
IC	INTEGRATED CIRCUIT
ICSP	IN CIRCUIT SERIAL POGRAMMING
ICSP INDF	IN CIRCUIT SERIAL POGRAMMING INDIRECT FILE
INDF	INDIRECT FILE
INDF LED	INDIRECT FILE LIGHT EMMITING DIODE
INDF LED PC	INDIRECT FILE LIGHT EMMITING DIODE PROGRAM COUNTER

LIST OF APPENDIX

NAME	TITLE	PAGE
А	PIC16F877	74
В	REGISTER FILE	79
С	SPECIAL FUNCTION REGISTER	81

1.0 INTRODUCTION

1.1 Introduction:

Basically the low maintenance aquarium is focused mainly for four tasks. It should take care of the oxygen supply, food supply, dirt filtering process and also the lightings.

The main idea is to make it as a selling product using PIC as the controller .The advantage of this project is that it's very versatile and very flexible. The system could be integrated with on the market appliance without regarding the brand, type or size. It's also flexible via its need of use. It can be used for large scale or small scale. The project would be done in small scale as a prototype. Main purpose of this project is reducing human interference in maintaining an aquarium. Besides that it would also help to cut cost of electricity usage.

The system would supply the oxygen and food according to the need of the aquarium and cleans the aquarium periodically. The cutting edge of this system is that human can always give the input according to the needs. There would be input interface in the system where it could be altered according to the current needs. Where else the lighting would be pre set to operate in the given timing.

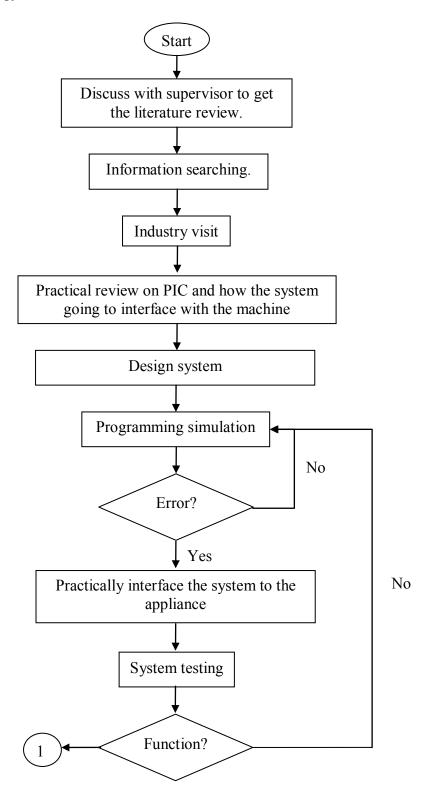
LOMAQ (Low Maintenance Aquarium) project is built for fish farming with less human interface. The project is based on a microprocessor circuit to control the circuit of equipment used on fish farming. The microprocessor (PIC) has a keypad to act as input made to set the timer to control the equipment. All equipment we used is controlled by timer. Equipments controlled are light, water pump and food dispenser. There is a timer sensor to show the temperature of the environment and the data is shown on LCD screen

1.2 Problem Statements:

Human is needed to maintain the aquarium where the maintenance could be neglected if human forget about it or busy with other chores. Besides that, the electricity cost would increase if the aquarium appliances keep on running without any usage. The aquarium environment won't be healthy if the dirt filter does not operate accordingly. Besides that, there's no system at the market that could integrate on the market appliance into a single system. An aquarium beauty only could be seen during the night, and if the lights are not active when is should be, it's a waste. And light source could keep the water temperature high during the cold season and gives good energy from the light ray to optimize the aquarium environment and healthiness.

1.3 Objective:

- To integrate the controller system with the appliance on the market thus creates a system that is very flexible and user friendly.
- To save time and cost by supplying the oxygen and filter system periodically, and humans have not to worry about it.
- To reduce human interference in maintaining a fish aquarium.
- To preset the lighting timing so it will be operating automatically.


1.4 Scope:

This project is to design a system to maintain an aquarium with minimum human interference. Currently the system is designed for 2 feet to 4 feet aquarium, where the output of system could be used to the maximum. Currently the system is for fresh water habitats such as goldfish, koi fish and any decorative fishes. Can be adapted to rare other fresh water habitats such as crabs, eel and much more.

1.5 Expected outcome of the project:

A system that is able to monitor and carry out the maintenance of an aquarium automatically with less human interference. Where human could key in the data or settings required through an interface. A system that is so flexible and user friendly where it's easy to use and able to change the configuration as user defines.

1.6 Methodology:

C Universiti Teknikal Malaysia Melaka

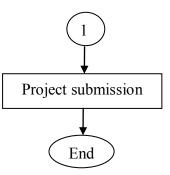


Figure 1.6: Flow chart of project implementation. This shows how the project implemented from the beginning stage till the project submission.

1.7 Thesis outline:

Chapter 1, explain about the introduction, problem statement, objective of the project, scope of the project and problem that must be solve while doing this project.

Chapter 2, explain more towards the literature review on types of fish keeping systems, aquarium maintenance, microcontroller and PIC16F877 in more detail.

Chapter 3 explanations are more towards methodology of the project. The explanation is about hardware connection, software implementation and programming development.

Chapters 4 explain about the results from the complete project. Explanations about circuit diagram, circuit layout and software programs.

Chapter 5, the last chapter explains about the discussion, conclusion and recommendation.

2.0 LITERATURE REVIEW

2.1 Introduction:

Fish keeping is a popular hobby concerned with keeping fish in a home aquarium or garden pond. There is also a fish keeping industry, as a branch of agriculture. Fish have been raised as food in pools and ponds for thousands of years. Brightly colored or tame specimens of fish in these pools have sometimes been valued as pets rather than food. Many other cultures kept fish for both functional and decorative purposes.

Ancient Sumerians were known to keep wild-caught fish in ponds, before preparing them for meals. Depictions of the sacred fish of Oxyrhynchus kept in captivity in rectangular temple pools have been found in ancient Egyptian art. Similarly, throughout Asia has experienced a long history of stocking rice paddies with freshwater fish suitable for eating, including various types of catfish and cyprinid. Selective breeding of carp into today's popular and completely domesticated koi and goldfish is believed to have begun over 2,000 years ago in Japan and China, respectively [2].

The Chinese brought goldfish indoors during the Song Dynasty to enjoy them in large ceramic vessels. In Medieval Europe, carp pools were a standard feature of estates and monasteries, providing an alternative to meat on feast days when meat could not be eaten for religious reasons. Marine fish have been similarly valued for centuries.

2.2 Types of fish keeping systems:

Fish keepers are often known as "aquarists", since many of them are not solely interested in keeping fish. The hobby can be broadly divided into three specific disciplines according to the type of fish: freshwater, brackish, and marine (also called saltwater) fish keeping.

2.2.1 Freshwater:

Freshwater fish keeping is by far the most popular branch of the hobby, with even small pet stores often selling a variety of freshwater fish, such as goldfish, guppies, and angelfish. While most freshwater aquaria are set up as community tanks containing a variety of peaceful species, single-species breeding aquaria are also popular. Live bearing fish such as mollies and guppies are among the species that are most easily raised in captivity, but aquarists also regularly breed numerous other species, including many types of cichlid, catfish, characin, and killifish.

Many fish keepers create freshwater aquacades where the focus is on aquatic plants as well as on the fish. These aquariums include the "Dutch Aquarium", in reference to the pioneering work carried out by European aquarists in designing these sorts of tanks. In recent years, one of the most active advocates of the heavily planted aquarium is the Japanese aquarist Takashi Amano.

Garden ponds are in some ways similar to freshwater aquaria, but are usually much larger and exposed to the ambient climatic conditions. In the tropics, tropical fish can be kept in garden ponds, but in the cooler regions temperate zone species such as goldfish, koi, and orfe are kept instead.