'Saya/Kami* akui bahawa telah membaca karya ini dan pada pandangan saya/kami* karya ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Rekabentuk)'

Tandatangan	:
Nama Penyelia I	:
Tarikh	:

Tandatangan	:
Nama Penyelia II	:
Tarikh	:

C Universiti Teknikal Malaysia Melaka

DESIGN AND TESTING OF LIFTING OR HARVESTING MECHANISM FOR NATA DE COCO MANUFACTURING INDUSTRIES

TEOH CHUN KEAT

This report is submitted as partial requirement for the completion of the Bachelor of Mechanical Engineering (Design and Innovation) Degree Program

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > **APRIL 2010**

PENGAKUAN

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya"

Tandatangan:Nama Penulis: Teoh Chun KeatTarikh:

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby, declare this thesis is result of my own research except as cited in the references"

Signature	:
Author Name	: Teoh Chun Keat
Date	:

iii

DEDICATION

To My Beloved Family Parents Cavern Kevin Adeline

AKNOWLEDGEMENT

First and foremost, I wish to extend my heartfelt thanks to Mr. Mohd Nazim bin Abdul Rahman as the final year project supervisor who has gracefully offered his time, attention, experience and guidance throughout the completion of the investigation thus far.

I would also like to extend my thanks to the university library for providing lots of sources which assistant to complete the report.

I would like to thank each and every individual who have either directly or indirectly helped me throughout the efforts of this report be it in the form of encouragement, advice or kind reminders. Finally kudos goes out to family and parents who endured this long process which gave me love and support all the way.

ABSTRAK

Fokus PSM ini adalah reka bentuk mekanisme pengangkatan untuk mengganti tenaga manusia. Sebelum nata de coco tersebut boleh dimakan, ia akan melalui kaedah fermentasi, kaedah potong, kaedah penapisan dan akhirnya kaedah pemasakan. Kaedah penapisan adalah kaedah yang neutralkan pH 3.0 ke 6.0-7.0. Reka bentuk mesin ini akan diintegrasikan dengan tangki penapisan yang sedia ada. Konsep pengangkatan perlu merujuk kepada beban yang perlu diangkat, iaitu 500kg. Oleh yang demikian, penggunaan motor adalah perlu. Bagi mendapatkan hasil rekabentuk yang efektif, penjanaan rekaan konsepsi adalah penting. Pemilihan reka bentuk terbaik dilakukan berdasarkan ciri-ciri tertentu. Setelah itu, reka bentuk konfigurasi ditentukan bagi memastikan prestasi mesin dapat berfungsi seperti yang dijangkakan Pemilihan bahan, fungsi, mesin komponen dan mekanisme pengangkatan adalah penting untuk hasilkan mesin ini di peringkat paramatrix. Tambahan pula, semua lukisan kejuruteraan, analisis kekuatan dihasilkan pada peringkat ini. Reka bentuk penghalusan akan menentukan nama komponen dan komponen nombor untuk EBOM, dan juga jadual kos.

ABSTRACT

This project focuses on the lifting mechanism for nata de coco to take place manpower. Before the nata de coco is ready to eat, it will undergo fermentation process, scraping process, cutting process, leaching process and finally cooking process. Leaching process will neutralizing the pH about 3.0 to 6.0-7.0 and then cleans the nata de coco in water. By design this lifting machine, some Engineering Design Specification is given and must be integrate with the existing leaching tank. Lifting concept must base on that amount of load need to lift up, which is around 500kg. Therefore the motor is needed. Next, generate conceptual designs and choose the best from the design. Follow by determine the configuration design. Selection of material, feature, standard parts and mechanism to lift the load are importance to fabricate the machine in parametric stage. In addition, all CAD drawing, stress analysis and manual calculation will be done in this stage too. Detail design stage will identify the part name and part number for EBOM, and also for costing schedule.

LIST OF CONTENTS

CHAPTER	ТОР	PIC	PAGES
	PEN	GAKUAN	ii
	DEC	CLARATION	iii
	DED	DICATION	iv
	AKN	IOWLEDGEMENT	v
	ABS	TRAK	vi
	ABS	TRACT	vii
	LIST	Γ OF CONTENTS	viii
	LIST	Г OF TABLES	xii
	LIST	r of figrues	xiv
	LIST	F OF SYMBOL	xvii
	LIST	FOF ABBREVIATIONS	xviii
	LIST	Γ OF APPENDIX	XVX
CHAPTER I	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objectives	3
	1.4	Scope	3
CHAPTER II	LIT	ERATURE REVIEW	4
	2.1	About Nata De Coco	4
		2.1.1 General Manufacturing Process	5
		Of Nata De Coco	
	2.2	Pulley System	7
		2.2.1 Types of Pulley System	7

PAGE

		2.2.2 Uses of Pulley Systems	10
	2.3	Belt Drive System	10
		2.3.1 Types of Belt	12
		2.3.2 Velocity Proportion/ Ratio of	12
		Belt Drive	
	2.4	Motor	14
		2.4.1 Types of Motor	15
		2.4.2 DC Motors	16
		2.4.3 AC Motors	17
		2.4.4 Universal Motors	18
		2.4.5 Gear Motors	19
		2.4.6 Servo Motors	20
	2.5	Switch	21
		2.5.1 Type of Switch	21
	2.6	Bearing	24
		2.6.1 Bearing Friction	24
	2.7	Welding	25
		2.7.1 Welding Symbols	25
		2.7.2 Types of Weld	26
	2.8	Computer Aided Engineering (CAE)	29
		2.8.1 Finite Element Analysis	29
		(FEA)	
	2.9	Wheel	30
	2.10	Deflection of Beams	31
CHAPTER III	MET	HODOLOGY	32
	3.1	Methodology of the Project	32
CHAPTER IV	CON	CEPTUAL DESIGN	35
	4.1	Engineering Design Specification	35

CHAPTER

TOPIC

C Universiti Teknikal Malaysia Melaka

ТОР	IC	PAGE
4.2	Morphology Chart	38
4.3	Conceptual Designs Generated	41
4.4	Concept Selection Process	77
	4.4.1 Concept Scoring	77
	4.4.2 Evaluation Chart	78
CON	FIGURATION DESIGN	82
PAR	AMETRIC DESIGN	85
6.1	CAD Drawing Layout	85
6.2	COSMOS Works Analysis (Stress and	87
	Deflection Simulation)	
	6.2.1 Stress Analysis On Assemble Body	88
	Frame Structure with Side Impact	
	6.2.2 Deflection Analysis on Assemble	89
	Body Frame Structure with Side	
	Impact	
6.3	Manual Analysis	91
	6.3.1 Structural Analysis (Calculation)	92
	6.3.2 Stress Analysis (Calculation)	96
6.4	Materials Selection after Analysis	100
6.5	Wheels Selection after Analysis	101
6.6	Motor Selection	101
DET	AIL DESIGN	103
7.1	Numbering Part	103
7.2	Engineering Bill of Material (EBOM)	108
7.3	Product Costing	110
FAB	RICATION OF LIFTING MACHINE	112
8.1	Manufacturing Flow of Cluster	113
	 TOP 4.2 4.3 4.4 CON PAR 6.1 6.2 6.3 6.4 6.5 6.6 DET 7.1 7.2 7.3 FAB 8.1 	 TOPIC 4.2 Morphology Chart 4.3 Conceptual Designs Generated 4.4 Concept Selection Process 4.4.1 Concept Scoring 4.4.2 Evaluation Chart CONFIGURATION DESIGN PARAMETRIC DESIGN 6.1 CAD Drawing Layout 6.2 COSMOS Works Analysis (Stress and Deflection Simulation) 6.2.1 Stress Analysis On Assemble Body Frame Structure with Side Impact 6.2.2 Deflection Analysis on Assemble Body Frame Structure with Side Impact 6.2.1 Stress Analysis (Calculation) 6.2.2 Deflection Analysis (Calculation) 6.3.1 Structural Analysis (Calculation) 6.3.2 Stress Analysis (Calculation) 6.3.2 Stress Analysis (Calculation) 6.3.3 Manual Analysis 6.3 Materials Selection after Analysis 6.5 Wheels Selection after Analysis 6.6 Motor Selection DETALL DESIGN 7.1 Numbering Part 7.2 Engineering Bill of Material (EBOM) 7.3 Product Costing

CHAPTER	ΤΟΡΙΟ		PAGE
	8.2	Manufacturing Operation	114
	8.3	Lifting Machine Fabrication Procedures	115
	8.4	Problems Encounter	121
CHAPTER IX	CON	NCLUSION	122
	9.1	Recommendation / Suggestion	123
	REF	ERENCES	124
	BIB	LIOGRAPHY	127
	APP	ENDIX	130

LIST OF TABLES

NO.	TITLE	PAGES
2.1	Types of Belt	12
2.2	Types of Standard Switch	21
2.3	Basic Weld Symbols	26
4.1	Morphology Chart	38
4.2	Element Description for Concept 1	42
4.3	Element Description for Concept 2	45
4.4	Element Description for Concept 3	48
4.5	Element Description for Concept 4	51
4.6	Element Description for Concept 5	54
4.7	Element Description for Concept 6	57
4.8	Element Description for Concept 7	60
4.9	Element Description for Concept 8	63
4.10	Element Description for Concept 9	66
4.11	Element Description for Concept 10	69
4.12	Element Description for Concept 11	72
4.13	Element Description for Concept 12	75
4.14	Rating Description	78
4.15	Concept-Scoring Matrix (a)	79
4.16	Concept-Scoring Matrix (b)	80
6.1	Parts of lifting machine frame	86
6.2	Properties of Mild Steel I-beam	91
6.3	Wheels' Specs	91
6.4	Details of Germany Star Rolland wheels	101
6.5	Big Elephant Chain Hoist Properties (Model YN010LN)	102
7.1	Parts Numbering Guide Line	104

NO.	TITLE	PAGES
7.2	Clusters of Lifting Machine	105
7.3	EBOM of Lifting Machine	109
7.4	Cost Estimated for Lifting Machine	110

LIST OF FIGURES

NO.	TITLE	PAGES
2.1	Nata Da Casa	4
2.1	Nata De Coco	4
2.2	Prove Chart of Nata De Coco Manufacturing Process	0
2.5		/
2.4	Fixed of Class I Pulley System	8
2.5	Moveable or Class 2 Pulley System	8
2.6	Compound Pulley	9
2.7	Open Loop System	11
2.8	Turned Loop System	11
2.9	Crossed Loop System	11
2.10	Serpentine Loop System	11
2.11	Types of Motor	15
2.12	DC Motor	16
2.13	AC Motor	17
2.14	Universal Motor	18
2.15	Gear Motor	19
2.16	Servo Motor	20
2.17	Switches	21
2.18	Bearing	24
2.19	Welding Symbols	25
2.20	Fillet Welds	27
2.21	Circle Welds	27
2.22	Butt or Groove Welds	28
2.23	Special Groove Welds	28
2.24	Geometric Models in CAD and FEA System	30
2.25	Wheels	30

NO.	TITLE	PAGES
3.1	Methodology Chart	34
4.1	Tank and Bucket of Nata De Coco	37
4.2	Concept Design 1	41
4.3	Concept Design 2	44
4.4	Concept Design 3	47
4.5	Concept Design 4	50
4.6	Concept Design 5	53
4.7	Concept Design 6	56
4.8	Concept Design 7	59
4.9	Concept Design 8	62
4.10	Concept Design 9	65
4.11	Concept Design 10	68
4.12	Concept Design 11	71
4.13	Concept Design 12	74
5.1	A General Classification of Knowledge Involved in	82
	Configuration Design	
5.2	Configuration Design	83
6.1	Properties of Mild Steel	87
6.2	Stress Analysis On Assemble Body Frame Structure	88
6.3	Factor of Safety Obtained from Assembly Analysis	89
6.4	Deflection Analysis on Assemble Body Frame Structure	90
6.5	Force Exert on Lifting Machine Frame	92
6.6	Mild Steel I-beam	100
6.7	Germany Star Rolland 8 Inches Diameter Wheels	101
6.8	Big Elephant Chain Hoist (Model YN010LN)	102
7.1	Part Numbering Sample	104
8.1	General Process Flow of Fabrication Lifting Machine	113
8.2	Manufacturing Process Flow of Lifting Machine	114
8.3	Sketching	115
8.4	Cutting the I-beam into Desired Dimension of Length	115
8.5	Grinding Process	116

NO.	TITLE	PAGES
8.6	Sheet Metal after Cut	116
8.7	Drilling Process	116
8.8	Check the Screw Holes	117
8.9	Upper Extra Body Support	117
8.10	Lower Extra Body Support	117
8.11	Hook on Top Body Support	118
8.12	Body Support and Square Plate Welding Process	118
8.13	Bottom Body Support and Wheel Square Plate Welding	119
	Process	
8.14	Assembly of Upper Body Support on Top Body Support	119
	and Body Support	
8.15	Bottom Body Support and Lower Extra Body Support	119
	Welding Process	
8.16	Installation of Wheels on Body Frame	120
8.17	Welding on Hidden Parts	120
8.18	Nata De Coco Lifting Machine	121

LIST OF SYMBOLS

n	=	Velocity Proportion (No units)
r	=	Radius of Sheave, m
ω	=	Rotational Velocity, rad/s
d	=	Diameter of Sheave, m
Ν	=	Speed of Sheave, m/s
d1	=	Diameter of The Driver Pulley, m
d2	=	Diameter of The Driven Pulley or Follower, m
N1	=	Speed of The Driver Pulley, r.p.m.
N2	=	Speed of The Driven Pulley or Follower, r.p.m.
N2/N1	=	Velocity Ratio of Rotating Pulleys
t	=	Thickness of Belt, m
Е	=	Young Modulus
Μ	=	Bending Moment, Nm
θ	=	Slope Angle, °
Р	=	Load, N
F	=	Force, N
х	=	Length, m
σ	=	Bending Stress, Nm ⁻²
Ι	=	Moment of Inertia, m ⁴

LIST OF ABBREVIATIONS

PSM	= Projek Sarjana Muda
CAD	= Computer Aided Design
FEA	= Finite Element Analysis
CAE	= Computer Aided Engineering
SOP	= Standard Operating Procedures
EBOM	= Engineering Bill of Material
BOM	= Bill of Material
DC	= Direct Current
AC	= Alternating Current
CNC	= Computer Numerical Controlled
AWS	= American Welding Society
CFD	= Computational Fluid Dynamic
WI	= Work Instruction

LIST OF APPENDIX

NO.	TITLE	PAGES
А	MIG welding setting	130
В	Car engine hydraulic lifting machine with	130
	scale of load (Maximum lifting load 2 ton)	
С	Car engine hydraulic lifting machine at	131
	mechanic work shop	
D	Chain hoist motor	131
E	Automatic stop sensor of OMRON D4D-	132
	2121N	
F	Roller at guideline of lift	132
G	Welding symbols	133
Н	Tank with bucket of this project	133
Ι	Bearing opener	134
J	Circular saw (Maximum 80m/s 4365 RPM –	134
	350 x 3 x 2)	
Κ	Nata de coco lifting machine	135
L	Gantt chart for PSM I	136
М	Gantt chart for PSM II	137
Ν	Layout of top body support	138
0	Layout of bottom body support	139
Р	Layout of body support	140
Q	Layout of upper body extra support	141
R	Layout of lower body extra support	142
S	Layout of square plate	143
Т	Layout of wheel square plate	144
U	Layout of hook plate	145

NO.	TITLE	PAGES
V	Layout of assemble lifting machine frame	146
W	Mild steel i-beam material properties table	147

CHAPTER I

INTRODUCTION

This chapter discuss about the intro to the importance of this Final Year Project. There are some discussion included too, such as background, problem statement, objectives, and scopes of the project.

1.1 Background

Nata de coco is an indigenous dessert in Philippines. It is a popular dessert and a trendy dessert nowadays. Nata de coco is a chewy, translucent, jelly-like food product produced by the bacterial fermentation of coconut water. Nata de coco is regarded for its high dietary fiber, and it is zero fat and cholesterol content. The nutritional values of the coconut are varied according to the different stages of development.

The manufacture of nata de coco involves several steps. First, the ingredients like water, dissolving sugar and extracting coconut milk are prepared and mixed. Then filling the mixture into basin and fermenting nata de coco. After that, clean the nata de coco by scrapping the fungus until white layer is appeared. Then follow by cutting process and leaching the nata de coco by keeping immerse in water. Next, the nata de coco is lifted up from drain. Nata de coco is checked so that it is totally neutral before lift up, and then

cooked. The next step is to mix a sugar with flavor and fill in container before soaking of nata de coco in water for remove sugar water surplus. After setting aside overnight, the nata de coco is finally produced and ready for packing.

The process that involved in the production of nata de coco is leaching process. Leaching process in nata de coco can be defined in general as using water to leach contaminant from the nata de coco. Through this process, the bacteria will be removed and sterilized. In addition, nata de coco will be neutralized at pH of 7.0. After soaking process cleans nata de coco in water, harvesting process is done by using lifting method. By focusing on the lifting method of nata de coco, some procedures will need to discuss and work over.

1.2 Problem Statement

In the era of technology, machines play vital part to solve human's problem. Nowadays, there are many types of machines or even robots are used in the industry field. Machines can help to increase the production and also save human resources cost.

In certain industry, the entire lifting or harvesting process of nata de coco is still done conventionally. Manpower is needed to lift the nata de coco just after the process of leached and soaked cleans. This conventional method takes in excess of time and low efficiency.

To overcome these problems, some design requirements and conditions have to consider. The design requirement is ready with a tank and a bucket with dimension of $0.9m \ge 0.9m \ge 0.6m$. Lifting concept must base on that amount of load need to lift up, which is around 500kg. While designing the lifting mechanism, many conditions have to take note, such as the selection of motor, selection of lifting concept, selection of materials and etc. After selection of conception design, the actual parts of machine have

to fabricate and testing is done on that lifting machine. Any knowledge that have been study before which is suitable to design the lifting mechanism are encourage to apply too.

1.3 Objectives

The objective of this Final Year Project is to design, fabricate and testing the mechanism that able to lift a leached nata de coco in order to proceed the other process.

1.4 Scope

Few necessary elements must be considered to guarantee the objectives of the project achieved. The scopes for this project are as follows:

- i. The investigation base on literature study from many sources
- ii. Design few conceptual designs that fulfill the engineering design specification.
- iii. Conduct a simulation on stress analysis.
- iv. The lifting machine must be fabricated.