'We declare that we had read this thesis and at our opinion this thesis was brilliant from the aspect of scope and quality for the purpose to be awarded Bachelor of Mechanical Engineering (Design and Innovation)'

Signature	·
Name of Coordinator I	:
Date	·

Signature	·
Name of Coordinator II	:
Date	·

THE DESIGN AND OPTIMIZATION OF STRUCTURE BODY OF THREE WHEELED MOBILITY DEVICE FOR PEOPLE WITH LOWER LIMB DISABILITY

MOHD FAREEZ BIN AHMAD

This report is submitted in accordance with requirement for the Bachelor Degree of Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2010

"I hereby declared that this thesis titled

'the design and optimization of structure body of three wheeled mobility device for lower limb disability people' is the result of my own effort except as cited in references".

Signature :	
Name of Author :	
Date :	

ii

What lies behind us and what lies before us are tiny matters compared to what lies within us. Huge thanks to my mom, dad, brothers and beloved one whom lie within me while completing this undergraduate project.

MOHD FAREEZ AHMAD MALACCA 2010

iii

ACKNOWLEDGEMENTS

The authors would like to acknowledge the contributions of many people to this report. I would like to thank my colleagues at Universiti Teknikal Malaysia Melaka, for their help and encouragement: Mr. Syahibudil Ikhwan Bin Hj. Abdul Kudus, the project supervisor for giving me chance to undergo the final year project under his guidance, and as student supervisor, for his inspiration to begin the final report of PSM in the first place. His suggestions were invaluable and his eagerness to find and report errors was inspiring.

I owe a debt of gratitude to my friends, who helped with the solution of the critical thinking for generating the idea of the report developed. I am also grateful to my classmates for their encouragement and understanding during completing this report.

In particular, I want to thanks my family who giving support at various times on the PSM project. This report would never have been completed without support of my family. I welcome feedback and idea for the solution that has been produced.

ABSTRACT

Projek Sarjana Muda is a compulsory project taken by final year student in the mechanical engineering field. The project touches on the design and optimization of structure body three wheeled mobility device for people with lower limb disability. It is an optimization to the design of current model of mobility device in the market place. By following the design process iteration, this project also considers the clinical guideline that shall be taking into the design specification of the mobility device. So that, a robust and convenient 3 wheeled mobility device could be produce for the people with lower limb impairment. The method used in preparing this project include the preparing of project mission statement, project outline, research, data analysis, product design specification (PDS), functional model analysis, concepts generation, metrics evaluation, concept selection, detail design, fabrication and software procurement, implementation and modification. Analysis on the body structural is done by using the CAE software and engineering theoretical calculation.

ABSTRAK

Projek sarjana muda adalah subjek wajib bagi pelajar akhir tahun dalam bidang kejuruteraan mekanikal. Projek ini menyentuh tentang rekabentuk dan optimisasi terhadap rekabentuk struktur tubuh peranti bergerak yang terdapat di pasaran sekarang. Dengan mengikuti dan melalui proses rekabentuk, projek ini juga mempertimbangkan garis panduan klinikal yang harus diambil kira dalam spesifikasi rekabentuk peranti bergerak ini. Oleh yang demikian, peranti bergerak 3 roda yang kukuh dan selesa mampu dihasilkan untuk golongan yang mengalami gangguan kurang upaya bahagian bawah badan. Kaedah yang digunakan dalam mempersiapkan projek ini termasuklah menyediakan pernyataan misi projek, garis rujukan projek, penyelidikan, analisis data, spesifikasi rekabentuk produk (PDS), analisis kefungsian model, penghasilan konsep, penilaian metrik, pemilihan konsep, rekabentuk yang terperinci, serta pelaksanaan dan pengubahsuaian. Analisis terhadap struktur tubuh peranti dilakukan menggunakan perisian CAE dan pengiraan teori kejuruteraan.

CONTENT

CHAPTER TITLE

Ι

Π

PAGE NO

CON	IFESSION	ii
DEC	LARATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
CON	ITENT	vii
LIST	FOF TABLE	Х
LIST	COF FIGURE	xi
LIST	F OF SYMBOL	xiv
LIST	COF APPENDIX	XV
INTI	RODUCTION	1
1.1	Project Background	1
1.2	Problem Statement / Definition	3
1.3	Objectives	3
1.4	Scope of Studies	4
1.5	Thesis Outline	5
LITI	ERATURE REVIEW	6
2.1	Introduction of Wheeled mobility device (WMD)	6
	2.1.1 Manual Wheelchairs	8
	2.1.2 Scooters	9
	2.1.3 Power Wheelchairs	10
2.2	Definition of Disability	13
	2.2.1 Types of Disabilities	13

CHAPTER TITLE

	2.2.2	Mobility and Physical Impairments	14
	2.2.3	Lower Limb Disability	14
		2.2.3.1 Lower-Limb Deficiencies	14
		2.2.3.2 Common Causes Of Limb	
		Amputations In Children	15
		2.2.3.3 Types of Pediatric Limb	
		Amputations	16
2.3	Clinic	al Guideline	17
	2.3.1	Clinical Indication	17
		2.3.1.1 General criteria applicable to	
		all devices	18
		2.3.1.2 Manual wheelchairs	19
		2.3.1.3 Motorized mobility assistive devices	19
	23.1.	4Options/accessories for	
		manual and power/motorized devices	20
	2.3.2	Standards And Anthropometry For	
		Wheeled Mobility	23
		2.3.2.1 Wheeled Mobility Device	
		Dimensions	23
		2.3.2.2 Clear Floor Area	25
		2.3.2.3 Percentage of Users Accommodated	26
		2.3.2.4 Reach Ranges	27
		2.3.2.5 Knee and Toe Clearances	28
		2.3.2.6 Maneuvering Clearances	30
2.4	Worki	ing Engineering Principle	36
	2.4.1	Yield Strength	36
	2.4.2	Bending	37
	2.4.3	Shear strength	37
	2.4.4	Tensile strength	39

CHAPTER TITLE

PAGE NO

III	MET	HODOL	OGY	40
	3.1	Introdu	iction	40
	3.2	Project	Outline	40
	3.3	Researc	ch	42
	3.4	Identif	ying Customer Need	43
		3.4.1.	Customer Statements and	
			Interpreted Needs	44
	3.5	Produc	t Design Specification (PDS)	45
		3.5.1	User Requirements	48
		3.5.2	Design Requirements	48
		3.5.3	Production Characteristics	50
		3.5.4	Miscellaneous	51
		3.5.3	Constraints	51
	3.6	Morphe	ology Chart	52
	3.7	Concep	ots design	54
		3.7.1	Engineering Design Concept Generation	55
			3.7.1.1 Conceptual design 1	56
			3.7.1.2 Conceptual design 2	57
			3.7.1.2 Conceptual design 3	58
			3.7.1.4 Conceptual design 4	59
		3.7.2	Concept Selection	60
IV	DET	AIL DES	SIGN AND STRUCTURE MODELING	64
	4.1	3 Dime	ensional CAD Rough Design	64
	4.2	3 Dime	ensional CAD Rough Design Analysis	65
		4.2.1	Critical Parts Identification	65
	4.3	Config	uration design	66
	4.4	Design	Optimization	67
		4.4.1	Optimized Part Design	72
		4.4.2	Assemble View	76
	4.5	Engine	ering Bill of Material	77
	4.6	Produc	t Structural Tree	80

CHAPTER TITLE

PAGE NO

V	ANA	LYSIS AND RESULT	81
	5.1	Finite Element Analysis	81
	5.2	Stress And Strain on the Structural Analysis	82
		5.2.1 Part 1: Main Frame	82
		5.2.2 Part 2: Sub Assembly of Seat Platform	84
		5.2.3 Part 3: Individual Suspension	86
		5.2.4 Part 4: Mounting Plate	87
		5.2.5 Part 5: Caster Wheel	88
		5.2.5.1 Load Distribution on Wheel	88
		5.2.5.2 Part 5: Sub Assembly of Caster	
		Wheel	89
		5.2.6 Part 6: Battery Tray	93
	5.3	Result Summary	95
	5.4	Reflection on Data Calculation	96
	5.5	Material Properties	97
VI	DISC	CUSSION AND RECOMMENDATION	100
	6.1	Problem Faced	100
		6.1.1 Relevant Factor Safety	100
		6.1.2 Dynamic Stability	102
	6.2	Product Final Design	105
		6.2.1 Final Design Rendering	108
	6.3	Recommendation	109
VII	CON	ICLUSION	110
	7.1	Conclusion	110

REFERENCES 112

LIST OF TABLE

NO.	TITLE	PAGE NO
2.1	Advantaged and disadvantages of the drive	
	wheel position (Source: Minkel, J.L., 2005)	10
2.2	Advantaged and disadvantages of three type	
	Of mobility device (Source: Minkel, J.L., 2005)	12
2.3	Medical necessary criteria. (Source:	
	American Medical Association, 2005)	20
2.4	Standard size and variables on wheeled	
	mobility device (Source: Steinfeld E. et al,	
	2005)	24
2.5	Clear floor area from 4 countries (Source:	
	Steinfeld E. et al, 2005)	25
2.6	Reach ranges from 4 countries (Source:	
	Steinfeld E. et al, 2005)	28
2.7	Knee clearances from 4 countries (Source:	
	Steinfeld E. et al, 2005)	29
2.8	Toe clearance from 4 countries (Source:	
	Steinfeld E. et al, 2005)	29
2.9-2.10	Standard maneuvering clearance from 4	
	Countries (Source: Steinfeld E. et al, 2005)	30
2.11	The recommend value of dimensions (Source:	
	Steinfeld E. et al, 2005)	35
2.12	Materials properties relative to the ultimate	
	tensile strength (Source: Wikipedia, 20 th	
	September 2009)	38

NO.	TITLE	PAGE NO
2.13	Properties of anneal state elements (Source:	
	A.M. Howatson, P.G. Lund and J.D. Todd,	
	"Engineering Tables and Data" p41)	39
3.1	Customer statements and interpreted needs	44
3.2	Functional model analysis	52
3.3	Matrix evaluation method	62
4.1	List of Optimized Design	72
4.2	Assembly View of 3 Wheeled Mobility Device	76
4.3	Engineering Bill Of Material	77
5.1	Comparison of Analytical and Theoretical Analysis	95
6.1	Application of Factor Of Safety	101
6.2	Advantage and Disadvantage of Rear Wheel Drive	103
6.3	Matrix Evaluation for Concept 4 and Final Concept	107

xii

LIST OF FIGURE

NO.	TITLE	PAGE NO
1.1	The surrant design of structure hody of the	
1.1	The current design of structure body of the	
	three wheeled mobility device for lower limb	2
	disability device	2
2.1	Components that assemble on the mobility	
	device (Source: INDEPENDENCE [™] iBOT [™]	
	3000 Mobility System, 2002)	7
2.2	Illustration shows the types of amputation on	
	human anatomy (Source: internet reference,	
	2009)	16
2.3	Human scale with the standard size of mobility	
	device (Source: Steinfeld E. et al, 2005)	24
2.4	Clear floor area from 4 countries (Source:	
	Steinfeld E. et al, 2005)	25
2.5	Forward and Lateral Reach (Source: Steinfeld	
	E. et al, 2005)	27
2.6	Knee clearances from 4 countries (Source:	
	Steinfeld E. et al, 2005)	29
2.7	Toe clearance from 4 countries (Source:	
	Steinfeld E. et al, 2005)	29
2.8-2.9	Standard maneuvering clearance from 4	
	countries (Source: Steinfeld E. et al, 2005)	30
2.10	Examples of High Seats (Source: Steinfeld	
	E. et al, 2005)	32

NO.	TITLE	PAGE NO
2.11	Examples of Very Large and Small Clear	
	Floor Area Widths (Source: Steinfeld E.	
	et al, 2005)	32
2.12	Examples of Very Long Clear Floor Area	
	Lengths (Source: Steinfeld E. et al, 2005)	33
2.13	Examples of People with Very Limited	
	Reaching Ability (Source: Steinfeld E. et al,	
	2005)	33
2.14	Examples of People with High Lap Heights	
	(Source: Steinfeld E. et al, 2005)	33
2.15	Examples of People Requiring Deep Knee	
	Clearances (Source: Steinfeld E. et al, 2005)	34
2.16	Examples of People Who Need Deep Toe	
	Clearances (Source: Steinfeld E. et al, 2005)	34
3.1	Flow chart of project outline	55
3.2	The process of generating the design.	56
3.3	Conceptual design 1	57
3.4	Conceptual design 2	58
3.5	Conceptual design 3	59
3.6	Conceptual design 4	60
3.7	House of Quality for 3 Wheeled Mobility Device	61
4.1	Orthographic View of 3 Wheel Mobility Device	65
4.2	Identical Critical Part	66
4.3	Full Body Structure Sketch	68
4.4	Drive Motor and Belt Assembly Sketch	68
4.5	Gear Motor Part Sketch	69
4.6	Caster Wheel Part and Assembly Sketch	69
4.7	Battery Tray and Main Frame Structure Sketch	70
4.8	Body Structure of New Concept Design Sketch	70
4.9	Full Body Assembly with Cover Frame Sketch	71
4.10	Suspension and Seat Support Platform Assembly Sket	ch 71
4.11	The Product Structural Tree	80

XV

5.1	Free Body Diagram of Main Frame	82
5.2	Von Mises Stress Result for Main Frame	82
5.3	Axial Load on Seat Platform	84
5.4	Von Mises Stress Result for Seat Platform	85
5.5	Free Body Diagram of Suspension	86
5.6	Von Mises Stress Result for Suspension	86
5.7	Free Body Diagram of Mounting Plate	87
5.8:	Von Mises Stress Result for Mounting Plate	88
5.9	Wheel Position of the 3WMD	88
5.10	Von mises stress result for caster wheel sub-assembly	90
5.11	Free Body Diagram of Battery Tray	92
5.12	Von Mises Stress Result for Battery Tray	92
5.13	Free Body Diagram of Battery Tray 2	93
5.14	Material Properties Alloy Steel	97
5.15	Material Properties Cast Alloy Steel	98
5.16	Material Properties AISI 304	98
5.17	Material Properties Chrome Stainless Steel	99
5.18	Material Properties AISI 1020	99
6.1	The Position of Drive Wheel Relative to the Center	
	of Gravity (Source: http://www.clevislauzon.qc.ca, 2010)	102
6.2	The Position of the Center Of Gravity for the Mobility	
	Device (Source: http://www.clevislauzon.qc.ca, 2010)	103
6.3	The Position of Center Of Mass of the 3WMD from	
	Side View	104
6.4	The Position of Center Of Mass of the 3WMD from	
	Isometric View	104
6.5	Isometric View of the 3WMD	108
6.6	Side View of the 3WMD	108
6.7	Isometric View (Uncovered) of the 3WMD	109

LIST OF SYMBOL

Т	=	thrust
σ	=	the bending stress
М	=	the moment about the neutral axis
у	=	the perpendicular distance to the neutral axis
I_x	=	the area moment of inertia about the neutral axis x
b	=	the width of the section being analyzed
h	=	the depth of the section being analyzed
σ_1	=	major principal stress
σ_2	=	minor principal stress
UTS	=	Ultimate Tensile Strength,
USS	=	Ultimate Shear Strength,
SYS	=	Shear Yield Stress,
TYS	=	Tensile Yield Stress
R	=	radius
А	=	cross section area
Р	=	pressure applied
F	=	force applied

LIST OF APPENDIX

NO. TITLE PAGE NO

А	Carry Out PSM Flow Chart	114
В	Process Design Flow Chart	115
С	PSM I Gantt Chart	116
D	PSM II Gantt chart	117
Е	CAD Drafting	118

CHAPTER I

INTRODUCTION

1.1 Project Background

A mobility device is a mechanism such as a wheelchair, a transfer chair (also called a convertible or stretcher chair), a sling lift, a sit-to-stand lift, a hobcart, or calipers, designed to aid individuals with mobility impairments. They can be either manually operated, or powered.

A wheelchair is a wheeled mobility device in which the user sits. The device is propelled either manually (by turning the wheels by the hand) or via various automated systems. Wheelchairs are used by people for whom walking is difficult or impossible due to illness (physiological or physical), injury, or disability. People with both sitting and walking disability often need to use a wheel bench.

Basic standard manual wheelchair incorporates a seat and back, two small front (caster) wheels and two large wheels, one on each side, and a foot rest.

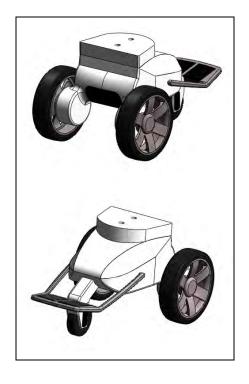


Figure 1.1: The current design of structure body of the three wheeled mobility device for with lower limb disability

Wheelchairs are often variations on this basic design, but there are many types of wheelchairs, and they are often highly customized for the individual user's needs. The seat size (width and depth), seat-to-floor height, seat angle (also called seat dump or squeeze) relative to the horizontal plane, footrests/leg rests, front caster outriggers, adjustable backrests, controls, and many other features can be customized on, or added to, many basic models, while some users, often those with specialized needs, may have wheelchairs custom-built.

Transport wheelchairs are usually light, folding chairs with four small wheels designed to be pushed by a caregiver to provide mobility for patients outside the home or more common medical settings.

1.2 Problem Statement / Definition

The structure body of the three wheeled mobility device need to design relating to the compartment inside the body including the operating automated systems and energy source to aid the individuals with mobility impairment.

- a. An aesthetic design need to be developed which is stable with the three wheels and has a robust design to withstand the total weight of the individual with the lower limb disabilities. The plug in compartment for the energy source must be easy to access and easy to reinstall by the user. It uses the propeller device to control the movement of the mobility device drive by the automated systems of motor. The structure includes the one small front (caster) wheels and two large wheels, one on each side, and a foot rest.
- b. This product development project is a derivative of existing current product platform.

1.3 Objectives

The objectives that needed to be achieved in this project are:

- a. To develop a conceptual body structure of existing 3 wheeled mobility device (WMD) design concept
- b. Optimize the body design by performing simulation analysis
- c. Producing detail design of the body structure.

In order to achieve objectives above, a prototype for structure body of the three wheeled mobility device is fabricated to prove that it is working. Some equations derived from literature review are used to determine and analyse the engineering calculation for this product. Product refinement and implementation are done repeatedly in order to solve the problems faced and improve the product. The optimization for the mobility device will be done by several analyses by using the CAD/CAE software that available in market to archive the objectives stated above. Since this project involves the current design of mobility device, every single issue occurred on the conceptual design are determined early and redesign by follow the product development flow process.

1.4 Scope of Studies

A body structure of three wheeled mobility device for people with lower limb disability will be generated at the end of this thesis. Its design is based on the concept of electric seated mobility device and involves the mechanisms that ensure the stability, aesthetic value and functional mobility device.

Here are some scopes of study of the body structure of the three wheeled mobility device for lower limb disability people:

- a. To study on the body design and structure of wheeled mobility device (WMD)
- b. To produce ideas and develop conceptual structure body design of 3 WMD design concept that fulfill engineering design specification.
- c. Conduct critical design analysis using necessary tools to gain result.

1.5 Thesis Outline

This thesis contains all of seven chapters which is each section divided to several sub topic respectively. Chapter I introduced about the basic theory, problem encounter, also the main objectives and scopes of producing structure body design of 3 WMD design. In Chapter II of this thesis, the literature reviews and the characteristics for the existing mobility device is reviewed. Some derivation of equations that corresponding to the structure body analysis also stated in this chapter. Chapter III addresses the methodology that including design development process and data analysis from collected data and information for the implementation of this thesis until the design was verified. Continued on the Chapter IV is the configuration design for the 3D CAD detail design of the conceptual sketch. Next, on the Chapter V describes the result for finite element analysis and the analytical analysis done on the detail design. The summary and the discussion for the final design concept are briefly stated in the Chapter VI. The result of the analysis also will be discussed in this chapter. Last but not least, conclusions and recommendations for the whole project are presented in Chapter VII.

CHAPTER II

LITERATURE REVIEW

The reviews of the main ideas consist in this project is elaborated in this chapter. Every subtopic is discussed on the related background study of the mobility device itself. This chapter includes the explanation of type of mobility device existed and also type of lower limb disability. Engineering working principle also stated and the anthropometry guideline for the mobility device is included based on the research done by the Center for Inclusive Design and Environmental Access (IDEA) from the USA.

2.1 Introduction of Wheeled Mobility Device (WMD)

Firstly, it is better to give some review about the main ideas for this project about the general of wheeled mobility device. There is no common research or specified data that has been found relate to the mobility device with three wheeled mounted on the device. However, there are lots of electric scooters with controlling handle with 3 wheeled, but the design is more tend to bike scooter which is really different compare to the current conceptual design. Matching the style of chair to the activity and environmental characteristics is the next critical step (Minkel, J.L. 2005). Broadly speaking, there are three categories of products that are referred to as wheeled mobility devices: