EXPERIMENTAL VALIDATION OF AFTERMARKET FUEL SAVING DEVICE (AIR BOOM)

SHAHRUL IZZAT BIN HAMID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I have read this thesis and from my opinion this thesis is sufficient in aspects of scope and quality for awarding Bachelor of Mechanical Engineering (Automotive)

Signature	:
Name of Supervisor	": MR. NOREFFENDY BIN TAMALDIN
Date	

EXPERIMENTAL VALIDATION OF AFTERMARKET FUEL SAVING DEVICE (AIR BOOM)

SHAHRUL IZZAT BIN HAMID

This report is presented in Partial fulfillment of the requirements for the award of

Degree of Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MAY 2010

"I admit that this rep	oort is on my own	work except for	r summary and	quotes	that I
	have stated the so	ource for each of	f them"		

Signature :

Name of Author : SHAHRUL IZZAT BIN HAMID

Date : 18 MAY 2010

Especially for beloved mom, dad and family

ACKNOWLEDGEMENT

The author desirous to express his most sincere gratitude towards his supervisor, Mr. Noreffendy Bin Tamaldin for the awe-inspiring support and encouragement, advices and suggestion during of this PSM (Projek Sarjana Muda).

The cooperation from the laboratory technician give more explanation about the procedure of experiment in laboratory is very appreciative. The gratifying also been extended to person and people that involved in completing and successfulness of this report whether indirectly or not.

Hope this report will become the guideline and reference for the other students in the future.

ABSTRACT

Air Boom is a new product aftermarket that based on nanotechnology and produced from a company from Germany. From the information obtained, Air Boom's functions are as a fuel saver and can improve the power of an engine. This Air Boom will be installing in the air filter or air box's of the car. When income air flows through it, the molecules of air will be separate into smaller size. These smaller molecules of air will then flow into the engine combustion chamber. This air will increase the burning power and the combustion in the engine will be more efficient and more complete. As a result, power and torque of the engine will be increase. For the long distance driving, it will save more fuel. For literature review study, Air Boom is a new product in the market. So, it is quite difficult to find detailed information about this product. The next step is to choose and make an experimental research for this product. It is carried out to study the effects of Air Boom usage whether both customer and supplier's claims are true. Therefore, Chassis dynamometer is chosen to make a test about this product in terms of torque, power and brake specific fuel consumption. The experiment is carried out on a car that does not use Air Boom and then it is repeated on same car with Air Boom installation. Then, the results of these experiments will be compared to the supplier's claims to validate the results desired.

ABSTRAK

Air Boom ialah satu produk baru yang berteraskan teknologi nano (nanotechnology) yang dihasilkan oleh syarikat dari Jerman. Mengikut maklumat yang diperolehi, Air Boom ini berfungsi sebagai penjimat bahan bakar dan dapat meningkatkan kuasa enjin kenderaan. Pelekat Air Boom ini akan di pasang di dalam kotak angin kenderaan. Apabila udara mengalir masuk melaluinya, molekul-molekul udara akan terpecah kepada saiz yang lebih kecil. Pecahan udara ini seterusnya akan memasuki ruang pembakaran di dalam enjin. Justeru, ia akan memantapkan kuasa pembakaran dan pembakaran dalam enjin akan lebih lengkap dan cekap. Hasilnya, kuasa dan daya kilas enjin akan bertambah. Untuk pemanduan jarak jauh, penggunaan bahan bakar juga akan berkurangan hasil daripada penggunaan Air Boom ini. Untuk kajian ilmiah, Air Boom dikenalpasti sebagai produk yang baru di pasaran. Jadi, maklumat berkenaannya adalah terhad. Langkah seterusnya ialah memilih dan membuat eksperimen yang bersesuaian terhadap Air Boom. Eksperimen ini adalah untuk mengetahui sama ada apa yang dicakapkan oleh penjual dan pelanggan alat ini benar atau tidak. Maka, ujian chasis dyno dipilih untuk menjalankan eksperimen terhadap produk ini untuk mendapatkan data berkaitan daya kilas, kuasa dan penggunaan bahan bakar khusus brej (bsfc). Ujian dijalankan terhadap kereta yang tidak mengunakan Air Boom dan diulang pada kereta yang sama yang dipasang Air Boom. Keputusan ujian ini akan dibandingkan.

TABLE OF CONTENTS

CHAPTER	TOPICS	PAGE
	ADMISSION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACK	v
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF GRAPHS	XV
	LIST OF SYMBOLS	xvii
	LIST OF APPENDICES	xviii

CHAPTER	TOP	PICS	PAGE
CHAPTER 1	INT	RODUCTION	1
	1.1	Project Background	1
	1.2	Problem Statement	2
	1.3	Objectives	2
	1.4	Scopes	3
	1.5	Archival Research	3
	1.6	Summary	4
CHAPTER 2	LIT	ERATURE REVIEW	5
	2.1	Introduction	5
	2.2	Aftermarket Fuel Saver Devices	6
		2.2.1 Voltage Stabilizer	6
		2.2.2 Magnetic Fuel Saver	8
	2.3	Air Boom	10
		2.3.1 Nanotechnology	11
		2.3.2 Negative ion	13
		2.3.3 Functions	15
		2.3.4 Supplier Claims	16
	2.4	Dynamometer	20
		2.4.1 Torque / Horsepower	21
		2.4.2 Dyno Results	21

CHAPTER	TOP	PICS	PAGE
CHAPTER 3	MET	THODOLOGY	22
	3.1	Introduction	22
	3.2	Methodology Project Flow	23
		3.2.1 Test 1 – Chassis Dyno Test	24
		3.2.2 Test 2 – Emission Test	25
		3.2.3 Test 3 – Real Test	26
	3.3	Installation	27
	3.4	Experimental Research	28
		3.4.1 Engine Specification	29
	3.5	Engine Testing Procedure	30
		3.5.1 Power and Torque	31
		3.5.2 Brake Specific Fuel	32
		Consumption (Bsfc)	
	3.6	Emissions	34
	3.7	Real Test	34
CHAPTER 4	RES	ULTS AND ANALYSIS	37
	4.1	Introduction	37
	4.2	Dyno Test (Chassis Dyno)	38
	4.3	Brake Specific Fuel Consumption	47
		(Bsfc)	.,

CHAPTER	TOP	ICS	PAGE
	4.4	Emission Test	47
	4.5	Real Test	48
CHAPTER 5	DISC	CUSSION	49
	5.1	Introduction	49
	5.2	Comparisons of Dyno Test	50
		Results.	
	5.3	Brake Specific Fuel	53
		Consumption (Bsfc).	
	5.4	Emission Test	55
		5.4.1 Comparison between The	57
		Result From Testing And	
		The Supplier Claim.	
	5.5	Real Test or Fuel Usage.	59
CHAPTER 6	CON	CLUSION AND RECOMMENDATION	60
	6.1	Introduction	60
	6.2	Conclusion	61
	6.3	Recommendation for Future	61
		Study	

CHAPTER	TOPICS	PAGE
	REFERENCES	63
	APPENDICES	65

LIST OF TABLES

NO.	TITLE	PAGE
1.1	Air Boom Tested On Toyota Vois, Proven Air Flow Increase	19
	10% from 2.25 to 2.48 Gm/S.	
2.1	Standard Engine Specification of Perodua Kancil EX660	29
2.2	Standard Engine Specification of Suzuki FXR150.	35
3.1	Comparison of the Maximum Torque and Horsepower Between	46
	The Results without Using Air Boom with Air Boom Installation	
3.2	The Results of the Emission Test.	47
3.3	The Result of Real Test	48
4.1	The Comparison of the Maximum Torque (Nm) And	50
	Horsepower (Hp) Between 2 Situations (Before Air Boom	
	Installation and After Air Boom Installation)	
4.2	The Lowest Value of Bsfc	54
4.3	The Result of Emission Test	56
4.4	The Average Result of Emission Test	56
4.5	The Comparison of the Result between Experimental Result	57
	And Result's Of Supplier Claims.	

58

NO.	HILE	PAGE	

The Different And Comparison of the Emission Test

4.6

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Voltage Stabilizer Type Plug In	7
1.2	Voltage Stabilizers -Type Battery Connector	8
1.3	The Sample of Magnetic Fuel Saver	9
1.4	Air Boom	10
1.5	Carbon-Based Nanomaterials Such As Buckyballs	12
	(Above Left) And Nanotubes (Above Right)	
1.6	The Sample of Negative Ion	14
1.7	Function of Air Boom	15
1.8	Blood Condition Has Been Improved After 15 Minutes	16
	Drinking Air Boom Energy Water	
1.9	Emission Test	17
2.1	Project Methodology	23
2.2	Project Methodology (Test 1)	24
2.3	Project Methodology (Test 2)	25
2.4	Project Methodology (Test 3)	26
2.5	The Place of Air Boom Installation	27

LIST OF GRAPHS

NO.	TITLE	PAGE
1.1	Dyno Test (Chassis Dyno) from Supplier.	18
2.1	Engine Torque and HP Vs RPM (Run 1 without Air Boom)	38
2.2	Engine Torque and HP Vs RPM (Run 2 without Air Boom)	39
2.3	Engine Torque and HP Vs RPM (Run 3 without Air Boom)	40
2.4	Engine Torque and HP Vs RPM (Average- Without Air Boom)	41
2.5	Engine Torque and HP Vs RPM (Run 1 with Air Boom)	42
2.6	Engine Torque and HP Vs RPM (Run 2 with Air Boom)	43
2.7	Engine Torque and HP Vs RPM (Run 3 with Air Boom)	44
2.8	Engine Torque and HP Vs RPM (Average- With Air Boom)	45
3.1	The Comparison of Torque Average between Before Air Boom	51
	Installation and After Air Boom Installation against Revolution	
	Per Minutes.	
3.2	The Comparison of Horsepower between Before Air Boom	52
	Installation and After Air Boom Installation Against	
	Revolution per Minutes.	

NO.	TITLE	PAGE

3.3 Brake Specific Fuel Consumption (Bsfc) Between Before54Air Boom Installation and After Air Boom InstallationAgainst Revolution per Minutes (Rpm).

LIST OF SYMBOLS

AFR = Air Fuel Ratio

M Air = Mass of Air

M Fuel = Mass of Fuel

M Air Flow = Mass Flow Rate of Fuel

N = Revolution per Minutes (Rpm)

N = Number of Cylinder

B = Bore (In Metre)

S = Stroke (In Metre)

Po = Density of Air (Standard Condition, Po =1.181 Kg/M3

 $\hat{W}b = Brake Power$

T = Torque in N-M

LIST OF APPENDICES

NO.	TITLE	PAGE
A	Testimonial from Website	65
В	Toby Test	69
C	Gantt chart For PSM 1	75
D	Gantt chart For PSM 2	76
Е	Raw Data from Experiment	77
F	Sample Calculations	102

CHAPTER 1

INTRODUCTION

1.1 Project Background

In this new century, the fuel issues became big problems to the user and people. It is also effects the automobiles development. As a result, there are many types of fuel saving device or product in the market to tackle the fuel issue especially in transportation. Some of them are being promoted to improve the engine performance. Air Boom is one of the fuel saving products. Based on the supplier claim, Air Boom is claimed as a special product because it gives better performance to the engine, as well as saving the fuel. It is also claimed as a health product. So, this project is to validate the performance of this product as claimed by manufacturer.

1.2 Problem Statement

There are many types of devices or products of aftermarket saving fuel and some of them are advertised to improved engine performance. There are some experiments to validate the effects of aftermarket fuel saver device-Air Boom, in relation with engine performance. The experimental was conducted using a chassis dynamometer to analyze engine performance with specifics parameter for engine power and torque.

1.3 Objectives

The objective of this project is to validate the effectiveness of the Air Boom product by experimental method using chassis dynamometer based on supplier and manufacturer's claims which states that this product is claimed to have impact on fuel saving usage in vehicles engine mechanisms and can improve the vehicle's power and torque.

1.4 Scopes

The scopes of this project are:

- Literature study of functional and working principles of Air Boom related to increase engine"s torque and power performance, reduce fuel emission and saving fuel.
- To identify and choose the suitable type of testing required for product validation.
- Set up procedure and perform the test.
- To identify and choose the suitable equation to analyze the results.
- To perform comparison analysis for validation.
- Compile the final report.
- Make some recommendation for the future study.

1.5 Archival Research

The source that been used in archival research for this project are from internet resources and the book resources. The information that gained from the internet resources is just website of supplier that sells the products and testimonials from the customers that had used the Air Boom. Besides, the journal about the function and knowledge about nanotechnologies can be used. While from the book resources, the information that achieved is about the working principle or ion negatives function and about dynamometer. There is no journal that state specifically about air boom because it is a new nanotechnology product. So, it is quite difficult to know more information about this product. But, from all information obtained, it is enough to make an investigation or validation about this product.

1.6 Summary

Chapter 1 of this report would be discussed about the problem statement, objectives and the scope about this project. In chapter 2, it covered the literature review about the fuel saving device or product aftermarket. The functional and literature review about Air Boom product also would be included in this chapter.

Then, chapter 3 of this report would be discussing about the method of testing of the product due to the supplier claim. Besides that, chapter 4 covered the raw result and the analysis result of the product"s testing.

After that, chapter 5 would be discussing the comparison of the analysis results between the test with and without the product. Lastly, chapter 6 discuss the conclusion and validation of the product based on the performed testing and recommendation for future study.