"We acknowledge have read this work. In our view, this work were adequate in terms of scope and quality for the award of a Bachelor of Mechanical Engineering (Automotive)"

Signature	:
Supervisor Name I	:
Date	·

Signature	:
Supervisor Name II	:
Date	•••••••••••••••••••••••••••••••••••••••

APPLICATION OF GYROSCOPE TECHNOLOGY IN HUMAN MOBILE TRANSPORTER

MOHD AIZUDDIN BIN YUSOF

This report is submitted in partial fulfillment of the conditions for the award Bachelor of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2010

C Universiti Teknikal Malaysia Melaka

"I admit that this report is the result of my own work except for a summary and each quote has been explained in the source"

Signature	:
Writer Name	:
Date	:

For beloved father and mother For beloved family For loved one

ACKNOWLEDGMENT

Greatest thanks to ALLAH Almighty for His blessings and giving me the ability to finish this project, which hopefully can contribute in further research.

I would like to express my gratitude and appreciation to my respectful lecturer supervisor, Mr. Mohd Nazim Bin Abdul Rahman for his supervision, invaluable advice and inspiring encouragement in guiding me in completing this research.

Further acknowledgements also to all lecturers and technicians at Faculty of Mechanical Engineering at UTeM for their support and help during the completion of this work. Especially Dr. Rozaidi Bin Ramlan and Mr. Faizul Akmar Bin Abdul Kadir for shared their knowledge about the Gyroscopes and MEMS technology.

Last but not least, I would like to express my gratitude and affection to my beloved parent, Yusof Bin Ismail and Zainah Binti Samod, family and friends for their unconditional support and smile during developing the original version of this style document.

Thanks.....

ABSTRACT

The criminal cases among the pedestrian increase rapidly in last two years especially in the crowd place. The criminal cases include the snatch thief, kidnapping and intimidation. Further more, the crime become more aggressive until causing the victims had seriously injured and there is certain case cause the victim death. Police department find the solution to decrease this criminal cases by make the patrolling around the pedestrian area using the Human Mobile Transporter (HMT). Due to that problem, the Police Department (PDRM) planned to make collaboration with UTeM to produce the first Human Mobile Transporter in Malaysia. HMT is a vehicle that equip with two wheels which powered by electric motor and controlled by Gyroscope to get it stability. The main objective of this project is to study the application of Gyroscope in Human Mobile Transporter. Under this project, there are two methods used to get the idea about Gyroscope application in Human Mobile Transporter which are literature study and experiment. Literature study is conducted by studied the main behavior of Gyroscope, MEMS technology and the general idea of HMT. There are several experiments conducted under this project which are moment inertia, angular momentum, and rigidity and precession gyroscope. The result from the literature review and experiments are used to design the basic concept of the Human Mobile Transporter. As a conclusion, the functions of the Gyroscope in Human Mobile Transporter not only to stabilize the vehicle but also act as a maneuver mechanism.

ABSTRAK

Kes jenayah dikalangan pejalan kaki meningkat dengan mendadak dalam tempoh dua tahun kebelakangan ini terutamanya di tempat tumpuan orang ramai. Antara kes-kes jenayah yang berlaku adalah seperti jenayah ragut, penculikan dan peras ugut. Sejak akhir-akhir ini, kegiatan jenayah dikalangan pejalan kaki semakin menjadi-jadi sehingga menyebabkan mangsa mengalami kecederaan yang serius termasuklah kematian. Polis Diraja Malaysia (PDRM) mendapati penyelesaian terbaik untuk mengurangkan kes-kes jenayah ini adalah dengan melakukan rondaan yang kerap di sekitar kawasan pejalan kaki dengan menggunakan kenderaan yang dikenali sebagai Human Mobile Transporter (HMT). Oleh yang demikian pihak Polis telah merangka kerjasama dengan UTeM untuk menghasilkan Human Mobile Transporter yang pertama di Malaysia. Human Mobile Transporter adalah kenderaan dua tayar yang dikuasakan oleh motor elektrik untuk bergerak dan menggunakan Gyroscope untuk mendapatkan kestabilan. Tujuan utama projek ini adalah untuk mempelajari aplikasi Gyroscope didalam Human Mobile Transporter. Dalam pelaksaan projek ini, ada dua kaedah yang digunakan untuk mendapatkan idea tentang aplikasi Gyroscope di dalam Human Mobile Transporter iaitu kajian ilmiah dan eksperimen. Kajian ilmiah dilakukan untuk mendapatkan beberapa konsep mengenai perilaku Gvroscope, teknologi MEMS dan gambaran umum mengenai Human Mobile Transporter. Beberapa eksperimen yang dijalankan dibawah tajuk ini adalah untuk mengkaji Moment Inertia, Momentum sudut, Rigidity and Precession Gyroscope. Hasil daripada kajian ilmiah dan eksperimen akan digunakan dalam merekabentuk konsep asas Human Mobile Transporter. Sebagai kesimpulan, fungsi Gyroscope didalam Human Mobile Transporter tidak hanya untuk menstabilkan kenderaan tetapi berfungsi sebagai mekanisme pergerakan.

LIST OF CONTENT

CHAPTER	TITLE	PAGES
	ACKNOWLEDGEMENT	I
	ABSTRACT	II
	ABSTRAK	III
	LIST OF CONTENT	IV
	LIST OF TABLE	IX
	LIST OF FIGURE	XI
	LIST OF SYMBOL	XVII
	LIST OF APPENDIX	XIX
CHAPTER 1	INTRODUCTION	1
	1.1 Background Study	1
	1.2 Problem Statement	2
	1.3 Objective	3
	1.4 Scope	3

CHAPTER TITLE

TITLE

PAGES

CHAPTER 2	LITERATURE STUDY	4
	2.1 Gyroscope Technology	4
	2.1.1 Gyroscope	4
	2.1.1.1 The Flywheel	5
	2.1.1.2 Gimbal	6
	2.1.2 Characteristic of Gyroscope	6
	2.1.2.1 Rigidity	7
	2.1.2.2 Precession	8
	2.1.3 History of Gyroscope	12
	2.1.4 Application of Gyroscope	13
	2.2 Segway's Human Mobile Transporter	16
	2.2.1 Solid State Angular Rate Sensor	16
	2.2.2 Method of Work	17
	2.2.3 Segway's Human Mobile Transporter	19
	Specification	
	2.3 MEMS Technology	21
	2.3.1 Overview of MEMS	21
	2.3.2 Gyroscope on Single Chip	22
	2.3.3 MEMS Actuators	25
	2.3.3.1 Electrostatic Actuation	25
	2.3.3.1.1 Parallel Plate Capacitor	26
	2.3.3.1.2 Interdigitated Comb Capacitor	32
	2.3.3.2 Electrostatic Actuators	32
	2.3.4 MEMS Sensing	35
	2.3.4.1 Capacitive Sensing	35
	2.4 Microgyroscope	40
	2.5 Coriolis Theory	43

CHAPTER	TITLE	PAG
CHAPTER 3	METHODOLOGY	45
	3.1 Literature Review	45
	3.2 Experiments	47
	3.3 Result	47
	3.4 Discussion	47
	3.5 Engineering Design Specification	47
	3.6 Design Concept	48
	3.7 Conclusion & Recommendation	48
	3.8 Full Report	48
CHAPTER 4	EXPERIMENTS	49
	4.1 Introduction	49
	4.2 Moment of Inertia and Magnitude of the	49
	Gyroscopic Couple of Gyroscope	
	4.2.1 Theory	50
	4.2.2 Equipment	51
	4.2.3 Procedures	53
	4.3 Precession and Rigidity	55

55

55

55

VI

4.3.1 Theory

4.3.2 Equipment

4.3.3 Procedure

VII

CHAPTER 5	RESULT	59
	5.1 Moment of Inertia of the Used Rotor	59
	5.1.1 Example Calculation for periodic time.	60
	5.1.2 Example calculation for moment of inertia	60
	5.1.3 Summary	60
	5.2 Magnitude of the Angular Momentum	60
	5.2.1 Example Calculation	61
	5.2.2 Summary	61
	5.3 Experiment Rigidity and Precession	63
	5.3.1 Summary	64
	DISCUSSION	(5
CHAPTER 6	DISCUSSION	65
	6.1 Experiment Moment of Inertia	65
	6.2 Experiment Angular Momentum	66
	6.3 Experiment Precession and Rigidity	70
CHAPTER 7	DESIGN CONCEPT	71
	7.1 Engineering Design Specification	71
	7.2 Human Mobile Transporter Behavior While	73
	Moving Forward	
	7.3 Human Mobile Transporter Behavior During	75
	Cornering	
	7.4 Human Mobile Transporter Behavior While	75
	Stopping	
	7.5 Position of the Equipment in Human Mobile	78
	Transporter	
	7.6 Equipment Flow Processes in Human Mobile	79
	Transporter	

CHAPTER	TITLE	PAGES
	7.7 Function of the Human Mobile Transporter Equipment	80
	7.8 Position of Gyroscope in Human Mobile Transporter.	81
CHAPTER 8	CONCLUSION AND RECOMMENDATION	84
	8.1 Conclusion	84
	8.2 Recommendation	85
	REFERENCES	86
	BIBLIOGRAPHY	89
	APPENDIX	90

LIST OF TABLE

TABLE	TITLE	PAGE
2.1	Segway's Human Mobile Transporter Specification (Source: http://www.howstuffworks.com)	19
2.2	Process Explanation in Human Mobile Transporter	23
2.3	Variable Capacitor Configuration (Source: James, 2005)	31
4.1	List of Equipment	51
5.1	Result from Moment of Inertia Experiment	59
5.2	Result from Angular Momentum Experiment	62
5.3	Result From Rigidity Experiment	63
5.4	Result From Precession Experiment	63

IX

TABLE	TITLE	PAGE
7.1	Engineering Design Specification for Gyroscope.	72
7.2	Function of Each Equipment in HMT	80
7.3	Function and Position of Gyroscope	83

LIST OF FIGURE

FIGURE	TITLE	PAGE
2.1	Basic Universally Mounted Gyroscope	5
	(Source: http://www.tpub.com)	
2.2	Picture of Gyroscope Top	7
	(Source: http://www.tpub.com)	
2.3	The Picture of Application of the Gyroscope in the	8
	Car	
	(Source: http://www.gyroscopes.org)	
2.4	Gyro Precessions	9
	(Source: http://www.tpub.com)	
2.5	The Picture of Force Applied to a Gyro	9
	(Source: http://www.tpub.com)	
2.6	Picture of Simple Hand Rule	10
	(Source: http://www.tpub.com)	

PAGE

2.7	Picture of Right Hand Rule to Determine Direction of Precession (Source: http://www.tpub.com)	11
2.8	Picture of the Autopilot (Source: http://www.gyroscopes.org)	13
2.9	Picture of Computer Pointing Device (Source: http://www.gyroscopes.org)	14
2.10	Picture of Gyrocompass (Source: http://www.gyroscopes.org)	15
2.11	Picture of Segway's Human Mobile Transporter (Source: http://www.howstuffworks.com)	15
2.12	Picture of Vibrating Silicon Gyroscope (Source: Song et. al., 2000)	18
2.13	Basic of MEMS Systems (Source: Hsu, 2008)	21
2.14	Microgyroscope Structure in Single Chip (Source: Hsu, 2008)	22
2.15	Basic Configuration of a Capacitor for Electrostatic Actuation (Source: James, 2005)	26

FIGURE

TITLE

FIGURE	TITLE	PAGE
2.16	Spring and Parallel Plate Capacitor (Source: James, 2005)	28
2.17	Graph Electrostatic Force vs. Normalized Displacement (Source: James, 2005)	29
2.18	Graph Voltage vs. Deflection Curve of a Parallel Plate Capacitor (Source: James, 2005)	30
2.19	Graph Electrostatic Force vs. Normalized Displacement (Source: James, 2005)	33
2.20	Electrostatic Interdigitated Comb Actuators (Source: James, 2005)	34
2.21	Interdigitated Combs and Levitation Forces (Source: James, 2005)	34
2.22	Examples of Parallel Plate and Interdigitated Capacitance Structures (Source: James, 2005)	37
2.23	Differential Capacitor Schematic (Source: James, 2005)	37

FIGURE	TITLE	PAGE
2.24	MEMS Devices Employing Differential Capacitors (Source: James, 2005)	38
2.25	Schematic of Capacitance in a MEMS Device (Source: James, 2005)	38
2.26	AC Bridge Circuit and AM Modulation (Source: James, 2005)	39
2.27	Schematic of a "Turning Fork" Type Micrigyroscope (Source: Hsu, 2008)	40
2.28	Induced Coriolis Force in a Linearly Moving Solid Undergoing a Rotation (Source: Hsu, 2008)	42
2.29	Example of Coriolis Effect (Source: http://abyss.uoregon.edu)	44
3.1	Flow Chart of Overall Process	46
4.1	Picture of Measuring Tape and Stop Watch	51
4.2	Picture of Gyroscope Unit	52
4.3	Picture of Speed Control Unit	52

FIGURE	TITLE	PAGE
4.4	Picture of Weight use in the Gyroscope Experiment	52
4.5	The Picture of Hanging Rotor	54
4.6	Figure of Bicycle's Rim Without Spinning	56
4.7	Figure of Spin the Bicycle Rim	56
4.8	Figure of Spinning Bicycle's Rim on the floor	57
4.9	Figure of Hanging Bicycle's Rim Without Spinning	57
4.10	Figure of Spin the Bicycle's Rim at Hanging Condition	58
4.11	Figure of Spinning Bicycle's Rim at Hanging Condition	58
6.1	Graph Rotor Speed vs. Reciprocal of Precession Speed for Mass 50g	66
6.2	Graph Rotor Speed vs Reciprocal of Precession Speed for Mass 100g	67
6.3	Graph Rotor Speed vs Reciprocal of Precession Speed for Mass 150g	67

FIGURE	TITLE	PAGE
6.4	Graph Rotor Speed vs Reciprocal of Precession Speed for Mass 200g	68
6.5	Graph Mass vs Average Gyroscopic Couple.	69
7.1	Human Mobile Transporter Behaviors When Moving Forward	74
7.2	Human Mobile Transporter Behaviors When Cornering	76
7.3	Human Mobile Transporter Behavior When Stopping	77
7.4	Design of Human Mobile Transporter	78
7.5	Equipment Flow in Human Mobile Transporter	79
7.6	Position of the Gyroscope in Human Mobile Transporter	82
7.8	Gyroscope Order in Human Mobile Transporter	82

LIST OF SYMBOLS

С	= Capacitance of a Fixed Parallel Plate Capacitor
3	= Permittivity of Material between the Parallel Plates
А	= Plate Area
g	= Gap between the Plates
W	= Width of Plate
L	= Length of Plate
Z	= Coordinate of the Movable Plate
W	= Energy of a Capacitor
V	= Voltage across the Plates
Kz	= Force Balance between the Spring and the Electrostatic Forces
ZPI	= Deflection at Pull-in
VPI	= Voltage at Pull-in
Kes	= Negative Electrostatic Stiffness
Х	= Displacement
F	= Electrostatic Force
ωс	= Frequency
Fc	= Coriolis Force
Μ	= Mass of the Moving Fluid
V	= Velocity
Ω	= Rotation
τ	= Rate of the Change of Angular Momentum of the Torque

I = Moment of Inertia of the Disc

C Universiti Teknikal Malaysia Melaka

- ωp = Precession Velocity
- m = Mass of Rotor
- t = Time for 50 oscillation
- T = Periodic Time
- 1 = Length of Wires
- d = Distance between Wires
- HMT = Human Mobile Transporter

LIST OF APPENDIX

NO.	TITLE	PAGE
А	Gantt Chart	90
В	Lab Sheet Angular Momentum Experiment	92
С	Lab Sheet Gyroscope Experiment	99
D	Layout Microgyroscope	102
E	Layout Human Mobile Transporter	104
F	Layout Bill of Material	106
G	Layout Orthographic View	108

CHAPTER 1

INTRODUCTION

1.1 Background study

Final year project (PSM) is a subject that must be taken and pass with the excellent by the final year student under Mechanical Faculties to complete their studies in UTeM. The benefits of the Final Year Project are students will learn about the developing project from the beginning until the end period with applying the technical terms into the projects. From these experiences, student will be able to conduct a proper engineering research in their working life.

For this PSM, a topic related to development of Gyroscope technology in Human Mobile Transporter (HMT) has been selected. HMT is a vehicle similar to mini scooter that are using electric motor as it power train to move it. The HMT is inspired by the Dean Kamen using the effect of the gyroscope to stable it because the Human Mobile Transporter has two wheels.