DESIGN AND FABRICATION OF GLASS-FIBER COMPOSITE BODYWORK FOR UTeM FORMULA STYLE RACE CAR

AMAR RIDZUAN BIN ABD HAMID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND FABRICATION OF GLASS-FIBER COMPOSITE BODYWORK FOR UTeM FORMULA STYLE RACE CAR

AMAR RIDZUAN BIN ABD HAMID

Laporan ini dikemukakan sebagai memenuhi sebahagiaan daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Automotif)

Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melaka

MAY 2011

'I have read this thesis and from my opinion this thesis is sufficient in aspects of scope and quality for awarding Bachelor of Mechanical Engineering (Automotive)'

Signature	:
Name of Supervisor	: En. Muhd Ridzuan Bin Mansor
Date	:

DECLARATION

"I hereby declare that the work in this report is my own except for summaries and quotations which have been duly acknowledged."

Signature	:
Author	: Amar Ridzuan Bin Abd Hamid
Date	: 16 th May 2011

ii

To my lovely parents Mr. Abd Hamid Bin Awang Nik and Mrs. Manisah Bte Juki..

ACKNOWLEDGEMENT

Alhamdulillah and greatest thank to Allah Almighty for giving me strength while doing this project. Finally I have completed my Project Sarjana Muda report and research to fulfill one of the requirements for Bachelor Degree in Mechanical Engineering (Automotive). I would like to take the opportunity to thank the people who have supported and helped me in completing this PSM project. Without their generous support and kind help, it is difficult to finish this work.

This project could not have been done without Mr. Muhd Ridzuan Bin Mansor, who not only served as my supervisor but also encouraged and challenged me throughout my academic program. He patiently guided me through the study process, never accepting less than my best efforts. I want to express my gratitude to my family, friends and colleagues, whose support and good will kept me going through the project. My biggest thanks go to special friends, Mohd Zaini Bin Jamaluddin and Mohd Sabirin Bin Rahmat who always gave moral support in my difficult time. During the slow and often interrupted evolution of this project I have accumulated many debts, only a proportion of which I have space to acknowledge here. I am grateful to many people for help, both direct and indirect, in writing this technical report.

Thank you.

16th May 2011

ABSTRACT

This project is about design and fabrication of glass-fiber composite bodywork for UTeM formula style race car. The design of the bodywork is made using the CAD software named CATIA V5 to produce the detail 3D design. The determination of plies and orientation for the composite bodywork is made based on the highest flexural strength which is the Chopped Strand Mat (CSM) fiberglass which gives the result of 320.412 MPa flexural stresses at maximum flexural load applied. The method of fabricating the composite bodywork is using manual hand lay-up technique for the whole process. The overall bodywork weight is measured with the digital weighting scale and the overall weight of the bodywork is 9410 gram. The weight reduction of nose cone and side pod from previous bodywork is 1692 gram which gives 25% less weight compared to current bodywork and suggested to be implemented at the new UTeM formula style race car bodywork section.

ABSTRAK

Projek ini adalah mengenai merekabentuk dan fabrikasi bahagian luar komposit gentian kaca untuk kereta UTeM jenis formula. Rekabentuk bahagian luar kereta ini dihasilkan dengan menggunakan perisian CAD bernama CATIA V5 bagi menghasilkan rekabentuk 3D yang terperinci. Penentuan lapisan dan susunan bahagian luar kereta adalah berdasarkan kekuatan lentur tertinggi iaitu gentian kaca Chopped Strand Mat (CSM) yang menunjukkan 320.412 MPa tekanan lenturan pada lenturan maksimum yang diberikan. Proses fabrikasi yang digunakan adalah teknik menggunakan tangan bagi keseluruhan prosess. Keseluruhan bahagian luar kereta diukur dengan menggunakan skala berat digital dan berat keseluruhan bahagian luar kereta yang dicapai adalah 9410 gram. Pengurangan berat pada bahagian muncung hadapan dan sisi dari bahagian luar kereta yang sebelumnya adalah 1692 gram dimana memberikan 25% pengurangan berat dibandingkan dengan bahagian luar kereta jenis formula UTeM yang baru.

CONTENTS

CHAPTER	ITEMS	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xviii
	LIST OF APPENDIX	xix
CHAPTER 1	INTRODUCTION	
	1.1 Background of Project	1
	1.2 Project Significant	2
	1.3 Problem Statement	2
	1.4 Objectives	3
	1.5 Scope	3
	1.6 Planning and Execution Task	4
	1.7 Summary of Technical Report	7

36

CHAPTER II	LIT	ERATURE REVIEW	
	2.1	Introduction	8
	2.2	Bodywork	9
	2.3	Composite Material	11
	2.4	Fiber Reinforcement Composite	12
	2.5	Structural Composite	14
	2.6	Advantages of Composite Materials	16
		2.6.1 Versatility and Freedom of Design	17
		2.6.2 Affordability and Cost Effectiveness	17
		2.6.3 Strength & Durability	17
		2.6.4 Appearance	18
		2.6.5 Special Physical Properties	19
	2.7	Woven Fabrics in Polymeric Composite	19
		Materials	
		2.7.1 Weave Style Properties	24
	2.8	Glass-Fiber	24
	2.9	Fiber Formation	26
	2.10	Glass-Fiber Properties	28
	2.11	Glass-Fiber Composite Bodywork	28
	2.12	Manufacturing Process	30
	2.13	Hand Lay-up Process	31
CHAPTER III	ME	THODOLOGY	
	3.1	Introduction	33
	3.2	Overall Project Workflow	33
	3.3	Design Selection	34
	3.4	Total Design Method	35
	3.5	Designing Workflow	35

3.7 Material Selection 37

Design Concept and Selected Design

3.6

CHAPTER IV DESIGN SELECTION

4.1	Introduction	40
4.2	Background	40
4.3	Bodywork Concept	41
4.4	Total Design Method	42
4.5	Market Investigation	43
4.6	Product Design Specification (PDS)	44
4.7	Conceptual Design	44
4.8	Solution Generation	46
4.9	Evaluation and Selection of the Concept	51
4.10	Weighting Factor	55
4.11	Analysis on the Selected Design	57
4.12	Nosecone	58
4.13	Side Pod	60
4.14	Conclusion	61

CHAPTER V MATERIAL SELECTION

5.1	Introduction	62
5.2	Background	62
5.3	Glass-Fiber	63
5.4	Carbon-Fiber	65
5.5	Aramid-Fiber	66
5.6	Aluminium	68
5.7	Materials Selection Methods	69
5.8	Weighted Property Comparison Method	69

	6.3.1	Procedure of Mould Making
6.4	Final	Product
	6.4.1	Procedure of Final Product Making
6.5	Painti	ng Process

5.9 Scaling Criteria of Material Selection

5.10 Weighting Property Comparison Scaling

6.2.1 Procedure of Plug Making

6.5.1 Process of Painting 91

CHAPTER VII RESULT AND DISCUSSION

5.11 Result

CHAPTER VI

5.13 Conclusion

6.1 Introduction

6.2 Plug Making

6.3 Mould Making

5.12 Glass-Fiber Analyzing

MANUFACTURING PROCESS

7.1	Introduction	94
7.2	Manufacturing and Fitting Problem	94
	7.2.1 Manufacturing Fiberglass with Hand	95
	Lay-up Technique Problems	
	7.2.2 Fitting Problem	98
7.3	Weight of the Bodywork	99
7.4	Cost of Project	100

CHAPTER VIII CONCLUSION AND RECOMMENDATION

8.1	Conclusion	101
8.2	Recommendation	102

х

70

70

72

72

78

79

80

81

83

84

87

87 90

REFERENCES	103
BIBLIOGRAPHY	108
APPENDIX	109

LIST OF TABLES

NO. TITLE

PAGE

2.1	Comparison of properties for weave styles	24
4.1	Product design specification of Formula Varsity 2010	45
4.2	Application of digital logic method to criteria of car body	52
4.3	Weighting factor for criteria of car body	54
4.4	Concept rating	56
5.1	Typical properties of different Glass-Fibers	64
5.2	Tensile properties of Carbon-Fibers	65
5.3	Some properties of Para-Aramid Fibers	67
5.4	Some properties of Aluminium	68
5.5	Weighting property comparison for weight criteria	70
5.6	Weighting property comparison for cost criteria	70
5.7	Weighting property comparison for manufacturing process criteria	71
5.8	Weighting property comparison for strength criteria	71
5.9	Weighting property comparison for final result criteria	71
5.10	Compiled result of all criteria for material selection	72
5.11	Specimen parameter for flexural test	73
5.12	Flexural testing result	73
5.13	Polyester resin versus epoxy resin	76
5.14	Ratio of mixing resin and hardener	77
6.1	Materials needed for plug manufacturing	80
6.2	Materials needed for mould manufacturing	83

xiii

6.3	Materials needed for final product manufacturing	87
6.4	Materials needed for painting	91
7.1	Total weight of the current bodywork	99
7.2	Weight comparison of current and previous bodywork	99

LIST OF FIGURES

NO. TITLE

PAGE

1.1	Section of Outer Panel of Formula Varsity Race Car	1
1.2	Gantt Chart of Project Progress for PSM 1	4
1.3	Gantt Chart of Project Progress for PSM 2	5
1.4	Flow Chart of Project	6
2.1	Logo of Formula Varsity UTeM 2010	9
2.2	Various Bodywork Design of Formula Varsity Race Car	10
2.3	Various Bodywork Design of Formula SAE Race Car	11
2.4	Fiber Orientation in Fiber Reinforced Composites	14
2.5	Structural Composite	16
2.6	Plain Weave Fabric	21
2.7	Twill Weave Fabric	21
2.8	Satin Weave Fabric	22
2.9	Basket Weave Fabric	23
2.10	Leno Weave Fabric	23
2.11	Mock Leno Weave	24
2.12	Example of Glass-Fiber Fabric	25
2.13	Bundle of Glass-Fiber	26
2.14	Example of E-glass Roving	27
2.15	Open Mold Wet Lay-up Process	30
2.16	Hand Lay-up Process	32
3.1	Overall Project Flow Chart	34

3.2	Design Core of Design Selection	35
3.3	Designing Workflow Chart	36
3.4	Material Selection Workflow Chart	37
3.5	Hand Lay-up Technique	39
4.1	3D Solid Model of the Chassis	47
4.2	First concept of design	48
4.3	Second Concept of Design	49
4.4	Third Concept of Design	50
4.5	Fourth Concept of Design	51
4.6	Weighting Factor of Criteria	55
4.7	Three Dimensional View of Car Body Design	57
4.8	Multiple View of Car Body Design	58
4.9	Air flow on Nosecone	58
4.10	Aerodynamic Downforce Concept	59
4.11	Various Type of Nosecone Design	59
4.12	Air Flow on Side Pod	60
5.1	Previous UTeM Formula Varsity Race Car Composite Bodywork	63
5.2	Example of Fiber-Glass	64
5.3	Example of Carbon-Fiber	66
5.4	Example of Aramid-Fiber	67
5.5	Example of Aluminium	68
5.6	Example of Chopped Strand Mat	74
5.7	Example of Woven Fabric	75
5.8	Example of Polyester Resin	77
5.9	Example of MEKP Hardener	78
6.1	Manual Hand Lay-up Process	79
6.2	Measuring Dimension of Dry Foam	81
6.3	Cutting and Trimming of Dry Foam	81
6.4	Trimmed Dry Foam	82
6.5	Rubber Mat is Applied to the Dry Foam	82

6.6	Plug Product	82
6.7	Applying Maximum Mould Released Wax	84
6.8	Applying the Layer of Woven Fabrics	85
6.9	Applying Resin with Brush	85
6.10	Eliminating Air Bubbles using Roller	85
6.11	Curing at Ambient Temperature	86
6.12	Mould Product	86
6.13	Applying Instant Putty Filler	88
6.14	Refined the Defect Surface	88
6.15	Final Product Manufacturing	89
6.16	Mixture and Applying Epoxy Compound to Joint	89
6.17	Eliminating Shape Edges and Refined Surfaces	90
6.18	Fitting to Formula Varsity Race Car	90
6.19	Sweep Out the Dust and Dirt on the Bodywork	92
6.20	Spraying the Primer Undercoat Paint	92
6.21	Spaying the 2K Pearl White Paint	93
6.22	Masking Tape Used to Cover the Pearl White Paint	93
6.23	Spraying The 2K Metallic Blue Paint	93
7.1	Air Bubbles	95
7.2	Dried Surface	96
7.3	Surface Defects	97
7.4	Applying Automotive Putty Filler to Defect Surface	97
7.5	Position of Fuel Tank and Rear Suspension	98
7.6	Two Pieces of Cooling Section (Right and Left)	98
7.7	KERN Digital Weighing Scale	100

LIST OF ABBREVIATIONS

UTeM = Universiti Teknikal Malaysia Melaka

- 3D = Three Dimension
- 2D = Two Dimension
- FV = Formula Varsity
- SAE = Society of Automotive Engineer
- FRP = Fiberglass Reinforced Plastic
- MPa = Mega Pascal
- GFRP = Glass Fiber Reinforced Plastic
- GRP = Glass-Reinforcement Plastic
- MgO = Magnesium Oxide
- CaO = Calcium Oxide
- PDP = Product Delivery Process / Product Development Process
- F1 = Formula One
- PDS = Product Design Specification
- CATIA = Computer Aided Three-dimensional Interactive Application
- GPa = Giga Pascal
- PAN = Polyacrylonitrile
- CSM = Chopped Strand Mat
- kN = Kilo Newton
- ASTM = American Society for Testing and Materials
- MEKP = Methyl Ethyl Ketone Peroxide
- 2K = 2 Komponent
- g = Gram

LIST OF APPENDICES

NO. TITLE

PAGE

A	Flow Chart of Manufacturing Process (Stage 1)	109
В	Flow Chart of Manufacturing Process (Stage 2)	110
С	Detail Drawing of Cooling Section	111
D	Detail Drawing of Front Wing	111
Е	Detail Drawing of Nose Cone 4	112
F	Detail Drawing of Side Pod	112
G	3D Dimension of Bodywork	113
Η	Isometric View of Bodywork	113
Ι	Polyester Resin Description	114
J	Chopped Strand Mat Description	116
Κ	Woven Roving Description	117

xviii

CHAPTER I

INTRODUCTION

1.1 Background Of Project

Formula Varsity Race Car is constructed by student from Faculty of Mechanical Engineering for Formula Varsity race event each couple of year between the local high education institute in Malaysia. The outer panel of the car is divided into two sections. Front section is called nose cone while the middle section is called side pod as shown on Figure 1.1 below.

Figure 1.1: Section of Outer Panel of Formula Varsity Race Car

C Universiti Teknikal Malaysia Melaka

This project involve with these two elements from the beginning of the project to the end. If compare to Formula Student car that been made by university from other country, it has already used composite material which is carbon-fiber. The bodywork also has achieved a high standard of quality and performance to the car. So, the design and fabrication that will be made through this project will open a new potential to experience the new type of material for bodywork of Formula Varsity race car which using composite material instead of using sheet metal.

1.2 Project Significant

١

This project will result to the design and fabrication of glass-fiber composite bodywork for UTeM Formula Style race car. The glass-fiber composite material used in the fabrication will replace old material of fabrication which is use sheet metal. The composite material will give a lot more advantages compare to sheet metal. In design aspect, old design will be replace by this new design which has more stylish compared to previous design. Furthermore, the composite material that will be used will provide weight reduction to the total weight of the bodywork also to the car. Through this project, there are chance to explore in glass-fiber composite manufacturing. The new nose cone and side pod that used glass-fiber composite material will be used in the next construction of Formula Varsity Race Car after this.

1.3 Problem Statement

The problem statement of this project is come out by researching the most common problem of designing and fabrication of the bodywork. The problems are stated as below:

- i. To make a mould for the bodywork
- ii. To create the safe bodywork

2

iii. To reduce the weight of the bodywork (Nose cone and Side pod)

1.4 Objectives

The objective of this project is to design and fabricate glass-fiber composite bodywork for UTeM formula style race car.

1.5 Scope

There are five scopes in this project in order to achieve the project objective.

- i. Literature review
- To produce detail and 3D design of the bodywork using CAD software based on 2010 UTeM Formula Varsity specification and regulation.
- iii. To determine the number of plies and orientation for the composite bodywork
- iv. To fabricate the bodywork using manual hand lay-up technique.
- v. To measure the overall weight of the bodywork.

1.6 Planning And Execution Task

		Week of Progress													
No	Activities	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Literature Review														
2	Design of Bodywork FV 2010														
3	Material Selection														
4	Analyze the Design of Bodywork FV 2010														
5	Report Writing 5.1 Chapter 1 : Introduction 5.2 Chapter 2 : Literature Review 5.3 Chapter 3 : Methodology 5.4 Chapter 4 : Design & Material Selection 5.5 Chapter 5 : Conclusion								—						
6	Presentation														
7	Report Submission		Ī								Ī				

Figure 1.2: Gantt Chart of Project Progress for PSM 1

