I / We* admit that had read this dissertation and in my / our* opinion this dissertation is satisfactory in the aspect of scope and quality for the bestowal of Bachelor of Mechanical Engineering (Structure and Material)

Signature	:
Name of 1 st Supervisor	•••••••••••••••••••••••••••••••••••••••
Date	

Signature	:
Name of 2 nd Superviso	r :
Date	:

QUENCHING-TEMPERING EFFECTS ON HARDNESS AND COMPRESSION STRENGTH OF CARBURIZED LOW ALLOY STEEL

NORDIANA BT SIDI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

"I declare that this report is done by my own exclude the citation with the mentioned references for each."

Signature:	•
Author:	•
Date:	

ACKNOWLEDGEMENT

All praises be to Allah S.W.T, The Most Gracious, The Most Merciful for His Guidance and Blessing.

Firstly, I would like to take this opportunity to acknowledge my supervisor, Pn. Rafidah who is very committed to give the best cooperation and also for her guidance in completing this final year project. This appreciation also dedicated to my second supervisor, Mr Hamzah Mat Dom for his time and energy to make sure this project is successfully done.

Secondly, this appreciation goes to the technicians involved; Mr. Mahathir (Material Lab), Mr. Junaidi and Mr Mazlan (Machines Lab), Mr. Rashdan (Solid Lab) and Mr. Azhar (FKP Material Lab). Then, a lot of thanks to the Faculty of Mechanical Engineering UTeM, Faculty of Manufacturing Engineering UTeM, Faculty's PSM Committee and also to my fellow friends for their helps and supports.

Last but not least, bundle of thanks to my family who is always pray for my success and also to everyone who is involved directly and indirectly, their help and support are highly appreciated.

ABSTRACT

Nowadays, the major challenge in engineering field is to improve the properties of steels in order to meet the entire engineering requirement. A better toughness, strength and ductility of steels can be achieved by applying several types of heat treatments and surface treatments. In this study, the effects of quenching and tempering of carburized low alloy steel on hardness and compression strength are investigated. There are two conditions of specimens; carburized and uncarburized low alloy steels. The carburized specimens then face different phases of heat treatments. The phases of heat treatments are carburizing and normalizing; carburizing, quenching and normalizing; and carburizing, quenching, tempering and normalizing. Then, the specimens are tested by using Rockwell hardness test and compression test. The data obtained will be analyzed and a comparison will be carried out by using statistical analysis.

ABSTRAK

Kini, cabaran yang paling utama dalam bidang kejuruteraan adalah untuk meningkatkan sifat-sifat keluli supaya dapat diaplikasikan untuk seluruh keperluan bidang ini. Kekerasan, keliatan dan kemuluran yang lebih baik dapat dicapai dengan menggunakan beberapa jenis rawatan haba dan rawatan permukaan. Dalam kajian ini, kesan-kesan rawatan sepuh lindap dan pembajaan ke atas kekerasan dan kekuatan mampatan keluli beraloi rendah yang ditusukkarbon dikaji. Terdapat dua keadaan spesimen; ditusukkarbon dan tidak ditusukkarbon. Spesimen yang ditusukkarbon kemudiannya melalui rawatan haba yang berlainan fasa. Fasa-fasa rawatan haba adalah penusukkarbonan dan penormalan; penusukkarbonan, sepuh lindap dan penormalan, sepuh lindap dan penormalan, kekerasan dan dian penormalan. Kemudian, specimen-spesimen tersebut diuji dengan menggunakan ujian kekerasan Rockwell dan ujian kekuatan mampatan. Data yang diperolehi akan dianalisis dan satu perbandingan dapat dilakukan daripada analisis statistik.

CONTENTS

CHAPTER	ITE	М	PAGE
	DEC	LARATION	ii
	ACK	NOWLEDGEMENT	iii
	ABS	TRACT	iv
	ABS	TRAK	V
	CON	ITENTS	vi
	LIST	FOF TABLES	Х
	LIST	FOF FIGURES	xii
	LIST	FOF ABBREVIATIONS	xvii
	LIST	FOF APPENDICES	xviii
CHAPTER 1	INT		
	1.1	Background	1
	1.2	Objectives	2
	1.3	Scopes	3
	1.4	Problem Statement	3
CHATER 2	LITI	ERATURE REVIEW	
	2.1	Alloy Steel	4
		2.1.1 Low Alloy Steel	6
	2.2	Surface Hardening	7
		2.2.1 Carburizing	8
		2.2.1.1 Pack Carburizing	9
	2.3	Heat Treatment	12

PAGE

CHAPTER ITEM

	2.3.1	Quenching	13
		2.3.1.1 Quenching Media	15
	2.3.2	Tempering	16
	2.3.3	Normalizing	19
2.4	Mecha	anical Test (Destructive Test)	20
	2.4.1	Hardness Test	21
		2.4.1.1 Rockwell Test	23
	2.4.2	Compression Test	25

CHAPTER 3 MET

METHODOLOGY

3.1	Mater	ials	27			
3.2	Proces	Process Flow				
	3.2.1	Specimens Preparation	32			
	3.2.2	Carburizing Process	34			
	3.2.3	Heat Treatment Process	37			
		3.2.3.1 Phase 1: Carburizing and				
		Normalizing	38			
		3.2.3.2 Phase 2: Carburizing,				
		Quenching and Normalizing				
		Process	39			
		3.2.3.3 Phase 3: Carburizing,				
		Quenching, Tempering and				
		Normalizing Process	40			
	3.2.4	Rockwell Hardness Test	41			
	3.2.5	Compression test	43			
	3.2.6	Hypothesis Test in Statistical Analysis	46			

CHAPTER	ITEN	M		PAGE	
CHAPTER 4	RESULT AND ANALYSIS				
	4.1	Hardn	ess Test	47	
		4.1.1	Result	47	
		4.1.2	Statistical Analysis	49	
			4.1.2.1 Comparison between Group		
			5A and 5B	49	
			4.1.2.2 Comparison between Group		
			5C and 5D	52	
			4.1.2.3 Comparison between Group		
			5B and 5D	55	
	4.2	Comp	ression Test	58	
		4.2.1	Result	58	
		4.2.2	Statistical Analysis	59	
			4.2.2.1 Comparison between Group		
			5A and 5B	59	
			4.2.2.2 Comparison between Group		
			5A and 5D	62	
			4.2.2.3 Comparison between Group		
			5B and 5D	65	
			4.2.2.4 Comparison between Group		
			5A and 5C	68	
	4.3	Summ	nary of Hardness and Compressive		
		Streng	th Comparison by Statistical Analysis	71	
CHAPTER 5	DISC	CUSSIO	N		
	5.1	Effect	s On Hardness	72	
		5.1.1	Hardness comparison between Group)	
			5A and 5B	73	
		5.1.2	Hardness comparison between Group)	
			5C and 5D	74	

CHAPTER	ITEM			PAGE
	5.	.1.3	Hardness comparison between Group	
			5B and 5D	75
	5.2 Ef	ffects	On Compression Strength	76
	5.1	.2.1	Comparison of Compressive Strength	
			between Group 5A and 5B	77
	5.1	.2.2	Comparison of Compressive Strength	
			between Group 5A and 5D	78
	5.1	.2.3	Comparison of Compressive Strength	
			between Group 5B and 5D	79
	5.1	.2.4	Comparison of Compressive Strength	
			between Group 5A and 5C	80
CHAPTER 6	CONCL	USIC	DN	81
CHAPTER 7	RECOM	IMEN	NDATION	82
	REFERE	ENCI	ES	83
	BIBLIO	GRA	РНҮ	85
	APPEND	DIX A	A	86
	APPEND	DIX F	3	88
	APPEND	DIX (2	93

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Colours formed on steel in the tempering process. (Source: Rajput, R.K. 2000)	18
2.2	The examples of mechanical tests. (Source: Rajput, R.K. 2000)	20
2.3	General characteristics of hardness testing methods and formulas for calculating hardness. (Source: Kalpakjian, S. and Schmid, S. 2006)	22
2.4	Rockwell scales (Source: Horath, L. 2001)	23
2.5	Equation for converting HRC and HRB to Brinell Hardness. (Source: Chapman, W.W. 2004)	24
3.1	Chemical composition of A-2 Low Alloy Steel (Source: Farrar, J.C.M. 2004)	28
3.2	International standards of A-2 Low Alloy Steel (Source: Farrar, J.C.M. 2004)	28

NO.	TITLE	PAGE
3.3	Specimen distributions	32
4.1	Experimental data for Group 5A and 5B	47
4.2	Experimental data for Group 5C and 5D	48
4.3	Average hardness in Brinell for each group	49
4.4	5A vs 5B	49
4.5	5C vs 5D	52
4.6	5B vs 5D	55
4.7	Experimental data of compressive strength	58
4.8	Average compressive strength for each group	59
4.9	5A vs 5B	60
4.10	5A vs 5D	62
4.11	5B vs 5D	65
4.12	5A vs 5C	68
4.13	Conclusion of hardness compression	71
4.14	Conclusion of compressive strength comparison	71

xi

LIST OF FIGURES

NO.	TITLE	PAGE
2.1	The effect of the percentage of alloying elements on the eutectoid temperature of the transformation of austenite to pearlite in the Fe-Fe ₃ C phase diagram. (Source: Smith, W.F. 2004)	5
2.2	Hardening effects of alloying elements in solid solution in fully annealed ferrite. (Source: <i>Internet reference</i> 22th July 2007)	5
2.3	Carburizing of a low carbon steel to produce a high carbon, resistant surface. (Source: Askeland, D.R. 1994)	8
2.4	Carburizing powder. (Source: <i>Internet reference</i> , 11 Sept. 2007)	10
2.5	Graph of quenching effects on hardness. (Source: <i>Internet reference</i> , 17 August 2007)	14
2.6	Hardness variation with martensite percentage and carbon content after quenching. (Source: Totten, G.E. and Liang, H. 2004)	14

NO.	TITLE	PAGE
2.7	Thermal cycle of quenching and tempering. (Source: Rajput, R.K. 2000)	16
2.8	The effect of tempering temperature on the mechanical properties of 1050 steel. (Source: Askeland, D.R. 1994)	17
2.9	The effect of carbon and heat treatment on the property of carbon steels. (Source: Askeland, D.R, 1994)	19
2.10	Column action (Source: Horath, L. 2001)	25
2.11	Compression specimen specifications (Source: Horath, L. 2001)	26
3.1	The alloy tree (Source: Farrar, J.C.M. 2004)	27
3.2	Evaluation of Group A of Low Alloy Steel (Farrar, J.C.M 2004)	30
3.3	Process flow of project	31
3.4	The dimension of specimen	32
3.5	Low alloy steel specimens	32
3.6	Bendsaw	33

NO.	TITLE	PAGE
3.7	The wilcarbo powder was packed at the bottom of the containers.	34
3.8	The arrangement of specimens in the container	35
3.9	The extra container	35
3.10	The container were taken out from the furnace after 6 hours	36
3.11	The specimens were taken out from the containers	36
3.12	Flow chart of heat treatment processes	37
3.13	Carburizing process	38
3.14	Normalizing process	38
3.15	The schematic diagram of the carburizing-normalizing process	38
3.16	Carburizing process	39
3.17	Quenching process	39
3.18	Normalizing process	39
3.19	The schematic diagram of the carburizing, quenching and normalizing process	39

NO.	TITLE	PAGE
3.20	Carburizing process	40
3.21	Quenching process	40
3.22	Tempering process	40
3.23	Normalizing process	40
3.24	The schematic diagram of the carburizing, quenching, tempering and normalizing process	40
3.25	Hardness Test machine	41
3.26	Diamond indenter for HRC scale	41
3.27	Compression test machine	43
3.28	Difference in measurement before and after compression test	45
3.29	Flow of hypothesis test	46
5.1	Hardness of Group 5A, 5B, 5C and 5D	72
5.2	Hardness comparison between Group 5A and 5B	73
5.3	Hardness comparison between Group 5C and 5D	75
5.4	Hardness comparison between Group 5B and 5D	76
5.5	Compressive strength of Group 5A, 5B, 5C and 5D	77

C Universiti Teknikal Malaysia Melaka

NO.	TITLE	PAGE
5.6	Comparison of compressive strength between Group 5A and 5B	77
5.7	Comparison of compressive strength between Group 5A and 5D	78
5.8	Comparison of compressive strength between Group 5B and 5D	79
5.9	Comparison of compressive strength between Group 5A and 5C	80

xvi

LIST OF ABBREVIATIONS

ASTM	=	American Society of Testing and Material
AISI	=	American Iron and Steel Institute
UNS	=	Unified Numbering System
BHN	=	Brinell Hardness Number
HRB	=	Rockwell B Hardness
HRC	=	Rockwell C Hardness
EN	=	Euro Norm
СО	=	Carbon monoxide
CO_2	=	Carbon dioxide
Fe	=	Ferum

xvii

LIST OF APPENDICES

	PAGE
APPENDIX A	86
Mitutoyo Conversion Table	
APPENDIX B	88
Graphs of compressive strength	
APPENDIX C	93
F Distribution table	
t Distribution table	

CHAPTER 1

INTRODUCTION

1.1 Background

Low alloy steels have been developed to overcome the deficiencies of plain carbon steels that contain alloying elements to improve their properties. The principle alloying elements added to make alloy steel are manganese, nickel, chromium, molybdenum and tungsten. Alloy steels are expensive than plain carbon steel but for many applications, they are the only materials that can be used to meet engineering requirements especially in the manufacture of automobiles and trucks parts. Beside that, low alloy steels also have better combination of strength, toughness and ductility than plain carbon steel. They contain about 0.2 percent C which commonly carburized or surface heat-treated to produce a hard, wear resistance surface while maintaining a tough inner core (Smith, 2004).

Carburizing is a thermal diffusion of an adequate quantity of atomic carbon on to the surface layer of steel and it takes place in its atomic state (Prabhudev, 2000). Basically, there are three most important methods of carburizing; pack carburizing, gas carburizing and liquid carburizing. For this project, pack carburizing method was elected due to simplify of experimental set up. Pack carburizing or powder carburizing process consists of packing the component in a solid carburizing compound in a suitable box and heating it slowly in a furnace to attain a temperature of about 900° to 950°C (Prabhudev, 2000). In this project, three types of heat treatment processes were carried out in order to compare the effect of quenching, tempering and normalizing after carburizing.

For the experimental set up, the heat treatment were divided into three phases, the first phase consists of carburizing then followed by normalizing, while for the second phase is carburizing, quenching and normalizing and the last phase consists of carburizing, quenching, tempering and normalizing. Quenching is a method of rapid cooling of a metal in a bath of liquid during heat treatment (Rajput, 2000) while the definition of tempering is a reheating of previously quenched alloy to a temperature below the critical range, holding the alloy for a specified time at that temperature, and then cooling it at a controlled rate, usually by immediate rapid quenching, to room temperature (Tomsic and Hodder, 2000). The final treatment is normalizing which it is the term applied to the process of heating the steel approximately 4°C above the critical temperature followed by cooling below this range in still air (Rajput, 2000).

After the heat treatment processes, hardness and compression strength test were carried out to study the effects of those heat treatments on low alloy steel specimens. Hardness is a material's ability to resist surface abrasion while the compression strength is defined as malleability which it is a measure of the extent to which a material can withstand deformation in compression before failure occurs (Chapman, 2004). The data obtained from these test were compared to each other and the effects on low alloy steel were evaluated and analyzed after the three phases of heat treatments.

1.2 Objective

The objective of this research is to study and discuss the effects of quenchingtempering processes on hardness and compression strength of carburized low alloy steel using statistical analysis. The scopes of this study are:

- (a) To do literature study on carburizing process.
- (b) To carry out carburizing treatment, carburizing-normalizing, carburizingquenching-normalizing, carburizing-quenching-tempering-normalizing on low alloy steel.
- (c) To carry out hardness and compression test on the material, before and after treatments.
- (d) To compare the data using statistical analysis in order to propose a better carburizing treatment process.

1.4 Problem Statement

In advance engineering, low alloy steels are widely used for some applications due to better combination of strength, toughness and ductility than plain carbon steel. In order to obtain the superior strength and toughness properties, there are some heat treatments that should be going through. Low alloy steels are commonly carburized to produce hard, high wear-resistant of the outer surface.

In previous study of FKM student, hardness of carburized low alloy steel was investigated but the result was against the prediction. Supposedly, hardness of carburized low alloy steel should be better than uncarburized low alloy steel. This research is carried out to make some enhancement with further heat treatment processes. After carburizing process, it was followed by other heat treatments like quenching, tempering and normalizing. Each process will presents different effects on the mechanical properties of low alloy steels. These desired properties are depending on how crucial the engineering works are. The effects of these surface hardening and heat treatments on low alloy steels will be investigated.

CHAPTER 2

LITERATURE REVIEW

2.1 Alloy Steel

Smith (2004), said alloy steels have been developed to overcome the limitations of plain carbon steel which are used widely in engineering application. Some of the limitations of carbon steels are:

- (a) Plain carbon steels cannot be strengthened beyond about 100,000 psi (690MPa) without a substantial loss in ductility and impact resistance.
- (b) Large-section thickness of plain carbon steels can not be produced with a martensitic structure throughout. That is, they are not deep hardenable.
- (c) Plain carbon steels have low corrosion and oxidation resistance.
- (d) Medium-carbon plain carbon steels must be quenched rapidly to obtain a fully martensitic structure. Rapid quenching leads to possible distortion and cracking of the heat-treated part.
- (e) Plain carbon steels have poor impact resistance at low temperature.

In order to improve the properties of plain carbon steels, alloying elements added such as manganese, nickel, chromium, molybdenum, and tungsten to make alloy steels. Other elements that are added include vanadium, cobalt, boron, copper, aluminum, lead, titanium, and columbium (niobium).

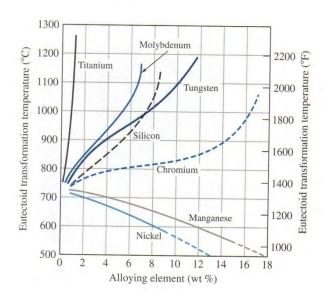


Figure 2.1: The effect of the percentage of alloying elements on the eutectoid temperature of the transformation of austenite to pearlite in the Fe-Fe₃C phase diagram (Source: Smith, 2004).

Beside that, according to Askeland (1994), the alloying elements are added to steels to provide solution strengthening of ferrite, cause the eutectoid temperature of the Fe-Fe³C phase diagram to be raised or lowered (as shown in Figure 2.1), improve corrosion resistance and other special characteristics of the steel, and improve hardenability. Improving the hardenability is the most important in alloy and tool steels and the general effectiveness is shown in Figure 2.2:

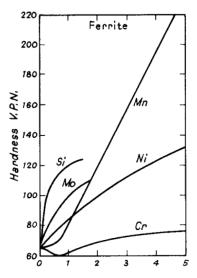


Figure 1.2: Hardening effects of alloying elements in solid solution in fully annealed ferrite (Source: *Internet reference* 22th July 2007).

C) Universiti Teknikal Malaysia Melaka