"I admit that had read this dissertation and in my opinion this dissertation is satisfactory in the aspect of scope and quality for the bestowal of Bachelor of Mechanical Engineering (Structure and Material)"

Signature	:
Supervisor Name	: Pn Siti Hajar bt Sheikh Md Fadzullah
Date	:

QUENCHING-TEMPERING EFFECTS ON FRACTURE PROPERTIES IN CARBURIZED LOW CARBON STEEL

MOHD ADZWAN BIN ADDLY

THIS REPORT WAS SUBMITTED IN ACCORDANCE WITH THE PARTIAL REQUIREMENT FOR THE HONOR OF DEGREE OF MECHANICAL ENGINEERING (MATERIAL AND STRUCTURE)

FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2008

C Universiti Teknikal Malaysia Melaka

"I verify that this report is my own word except summary and extract that every one of it I have clarify the resource"

Signature : Writer Name : Mohd Adzwan Bin Addly Date :

C Universiti Teknikal Malaysia Melaka

QUENCHING-TEMPERING EFFECTS ON FRACTURE PROPERTIES IN CARBURIZED LOW CARBON STEEL

MOHD ADZWAN BIN ADDLY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

For my beloved parent and siblings

ACKNOWLEDGEMENT

I would like to thank my supervisor, Pn Siti Hajar bt Sheikh Md Fadzullah and co-supervisor, Pn Rafidah bt Hasan for their support, guidance and encouragement during completed this Projek Sarjana Muda.

Not forgetting, I also would like to thanks to all technician staff especially Mr Mahader, Mr Mazlan, Mr Rashdan, Mr Ridzuan and Mr Rizal for the help and collaboration during the specimen preparation, experimental and testing at laboratory. I really appreciate all of your assistance and help.

I would like to dedicate this project to my parents, friends and anyone that together helping me finishes my project. I hope this report can help future student as their revision or resource later.

iv

ABSTRACT

Quenching and tempering process are two common processes that are used in the industrial. Quenching is the process where the steel is rapidly cooled after carburizing by using quenching medium such as oil while tempering is the process where the steel is heated at certain temperature between 400° C to 600° C. In this research, 20 specimens of low carbon steel specimens with dimension of 100mm x 19mm x 10mm are used for heat treatment process such as carburizing, quenching, tempering and normalizing. Then the specimens were fracture by using fracture toughness test as per ASTM E399. The effect of this heat treatment process on the fracture properties were analyzed by doing statistical analysis which is hypothesis test. As for data comparison, 4 set of specimens were treated with different heat treatment process. The results from this research showed that the fracture toughness become higher when the specimen undergo quenching and tempering process. This is due to the change of microstructure in the material which it increases the ductility and strength of the specimen therefore making it tougher and durable. Furthermore, the carburizing process diffused more carbon on the specimens which resulted in a higher wear resistance and hardness surface. As a conclusion, this research gives important information and helps the industry to increase the production of steel with higher strength and longer life span.

ABSTRAK

Proses pelindapkejutan dan pembajaan merupakan dua proses yang biasa digunakan di dalam industri. Proses pelindapkejutan merupakan proses menyejukkan keluli secara mengejut menggunakan medium pelindapkejutan seperti minyak selepas penyusukkarbonan manakala proses pembajaan merupakan proses memanaskan kembali keluli pada suhu tertentu diantara 400°C dan 600°C. Dalam kajian ini, 20 keluli karbon rendah yang berukuran 100mm x 19mm x 10mm telah digunakan untuk proses rawatan haba seperti penyusukkarbonan, pelindapkejutan, pembajaan dan penormalan. Selepas itu keluli dipatahkan menggunakan ujian keliatan patah seperti dalam ASTM E399. Kesan daripada proses rawatan haba ini keatas ciri-ciri patah dianalisis menggunakan statistik analisis iaitu ujian hipotesis. Sebagai perbandingan, 4 set specimen dirawat menggunakan proses rawatan haba yang berbeza. Keputusan daripada kajian ini menunjukkan peningkatan keatas keliatan patah apabila specimen menjalani proses pelindapkejutan dan pembajaan. Ini disebabkan berlakunya perubahan keatas struktur mikro dalam keluli tersebut yang meningkat kemuluran dan kekuatan yang menyebabkannya lebih liat dan tahan lama. Tambahan pula proses penyusukkarbonan menyebarkan lebih karbon untuk meningkatkan ketahanan haus dan kekuatan permukaan specimen. Sebagai kesimpulannya, kajian ini memberi lebih informasi dan membantu industri untuk meningkatkan pengeluaran keluli yang lebih tahan lama dan mempunyai jangka hayat yang panjang.

TABLE OF CONTENT

CHAPTER	ΤΟΡΙΟ	PAGE
	CONFESSION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	TABLE OF CONTENT	vii
	TABLE LIST	ix
	FIGURE LIST	xiii
	SYMBOL LIST	xix
	APPENDIX LIST	XX

CHAPTER	TOPI	С	PAGE
CHAPTER I	INTR	RODUCTION	1
	1.0	General	1
	1.1	Objective	2
	1.3	Problem Statement	3
	1.4	Scope of research	3
	1.5	Plannning and execution	4
CHAPTER II	LITE	RATURE REVIEW	6
	2.0	Steel	6
	2.1	Material properties	7
	2.2	Low Carbon Steel	9
	2.2.1	Types of low carbon steel	10
	2.3	Heat Treatment	10
	2.4	Carburizing Process	12
	2.4.1	Carburizing Theory	12
	2.4.2	Pack Carburizing	14

CHAPTER	TOPI	С	PAGE
	2.5	Quenching Process	15
	2.6	Tempering Process	17
	2.6.1	Structural changes on tempering	17
	2.7	Fracture of steel	18
	2.7.2	Fracture of Martensitic Steel	19
	2.7.3	Fracture of Medium Strength Steel	19
	2.7.4	Fracture Toughness Test	20
CHAPTER III	MET	HODOLOGY	23
	3.1	Materials and specimen preparations	23
	3.1.1	Materials	23
	3.1.2	Specimen Preparations	24
	3.2	Experimental Condition	25
	3.3	Fracture test procedure	25

CHAPTER	TOPIC	C	PAGE
	3.4	Carburizing Process	27
	3.4.1	Carburizing Container	27
	3.4.2	Furnace	28
	3.4.3	Carburizing Procedure	28
	3.5	Quenching Process	30
	3.5.1	Quenching Procedure	30
	3.6	Tempering Process	31
	3.7	Crack Propagation Examination	32
	3.7.1	Axiovert Microscope MAT 200	32
CHAPTER IV	RESU	ILTS	34
	4.1	Result from fracture toughness test	34
	4.2	Surface specimen of treated and untreated Specimen	37
	4.3	Crack propagation	38
	4.4	Hypothesis Test	40

CHAPTER	TOPI	C	PAGE
CHAPTER V	DISC	USSION	44
	5.1	Comparison between uncarburize and carburize-normalize specimen on fracture toughness	44
	5.2	Comparison between carburize-normalized specimen and carburize-quenching-normalize specimen	46
	5.3	Comparison between carburized-quenching- normalized specimen and carburized-quenching tempering-normalizing specimen	48
	5.4	Fracture behaviour	50
	5.4.1	Fracture behaviour of uncarburized specimen	50
	5.4.2	Fracture behaviour of carburized specimen	51
	5.4.3	Fracture behaviour of carburized-quenching- normalized specimen	52
	5.4.4	Fracture behaviour of carburized-quenching- tempering-normalized specimen	53

CHAPTER	TOPIC	PAGE
CHAPTER VI	CONCLUSION	54
CHAPTER VII	RECOMMENDATION	55
	REFERENCES	56
	BIBLIOGRAPHY	59
	APPENDIX	60

TABLE LIST

TABLE	TITLE	PAGE
1.1	Gantt chart of the research	4
2.1	Iron alloy phase and types of steel	7
	(Source:Internet referance, 13/9/07)	
2.2	Other iron based materials	7
	(Source: <i>Internet referance</i> ,13/9/07)	
3.1	Chemical composition of low carbon steel	23
	(Source: Internet referance, 22/9/07)	
3.2	Mechanical properties of low carbon steel	24
	(Source: Internet referance, 22/9/07)	
3.3	Experimental condition for quenching-tempering	25
	effects study	
3.4	Technical data of Axiovert Microscope MAT 200	33
	(Source: Internet referance, 27/9/07)	
4.1	Result of fracture toughness test for uncarburize and	34
	carburized specimens	

TABLE	TITLE	PAGE
4.2	Result of fracture toughness test for carburizing- quenching- normalize specimens and carburizing- quenching-tempering-normalize specimens	35
4.3	Mean Kq, fracture toughness test and variance, S for all Specimen	36
4.4	Result from hypothesis test	40

C Universiti Teknikal Malaysia Melaka

FIGURE LIST

FIGURE	TITLE	PAGE
2.1	Iron carbon phase in necessary condition	8
	(Source:William, 2004)	
2.2	Phase diagram of temperature and carbon range	11
	for certain types of heat treatment	
	(Source:Smith and Hashemi,2006)	
2.3	Phase diagram of gas carburizing process	13
	(Source: Internet referance, 22/9/07)	
2.4	TTT diagram of the temperature condition on	16
	the surface and in the core of a specimen to	
	direct quenching	
	(Source: Prabhudev, 1988)	
2.5	Change in hardness and structure during	17
	tempering of eutectoid steels	
	(Source: Prabhudev, 1988)	
2.6	Bend text figure design	21
	(Source: Adapted from ASTM E399)	

2.7	Types of forces versus displacement behavior that	21
	occur in a fracture toughness	
	(Source:Adapted from ASTM E399)	
2.8	Effect of thickness on fracture toughness of an alloy steel	22
	heat treated to the high strength	
	(Sources: E.Dowling, 2007)	
3.1	Specimen in 3 dimension	24
3.2	Dimension of the specimen	24
3.3	Instron 1331 Servo-Hydraulic Testing Machine	26
	(Source: internet reference: 26/3/2008)	
a 4		•
3.4	Three point bending test	26
25	Carburizina Cantainan	27
3.5	Carburizing Container	27
3.6	Furnace in the laboratory	28
5.0	r unace in the faboratory	20
3.7	Specimen arrangement in container	29
5.7	speemen urungement in container	
3.8	Illustration of carburizing procedures	29
		_,
3.9	Quenching process using oil	30
3.10	Illustration of quenching process	31

C Universiti Teknikal Malaysia Melaka

PAGE

PAGE

xvii

3.11	Illustration of tempering process	32
3.12	Axiovert Microscope MAT 200	33
4.1	Differentiation between untreated and treated specimen in fracture toughness value	36
4.2	Picture of uncarburize and carburized specimen	37
4.3	Picture of carburized-quenching-normalized specimen and carburized-quenching-tempering-normalize specimen	38
4.4	Crack propagation of uncarburized specimen	38
4.5	Crack propagation of carburized specimen	39
4.6	Crack propagation of carburized-quenching-normalize Specimen	39
4.7	Crack propagation of carburize-quenching-tempering- normalizing specimen	39
4.8	Graph of F-distribution	41
4.9	Graph of t-distribution	43
5.1	Comparison between the fracture toughness of carburized and uncarburized specimen	44

FIGURE	TITLE

P	A	G	E

5.2	Transformation of carburized low carbon steel	45
	with normalizing process	
	(Source: W.F. Smith, 1993)	
5.3	Comparison of carburized-normalized specimen and	46
	carburized-quenching-normalized specimen	
5.4	Martensitic microstructure of quenched low carbon steel	47
	(Source: Oppenheimer, 1995)	
5.5	Comparison between carburized-quenching-normalized	48
	specimen and carburized-quenching-tempering-normalized	
	specimen on fracture toughness	
5.6	Changes during the tempering of martensite	49
	(Source: Ashby, 1998)	
5.7	Mechanical properties of quenched and tempered steels	49
	(Source: Ashby, 1998)	
5.8	Crack behaviour of uncarburized specimen	50
5.9	Crack behaviour of carburized-normalize specimen	51
5.10	Crack behaviour of carburized-quenching-normalize	52
	Specimen	
5.11	Crack behaviour of carburized-quenching-tempering-	53
	normalize specimen	

SYMBOL LIST

W	=	Width (cm)
a	=	Crack length (cm)
В	=	Thickness (cm)
S	=	Span (cm)
Р	=	Force (kN)
Kq	=	Fracture toughness (MPa. \sqrt{m})
σ^2	=	Variance
n	=	No of sample
$\frac{1}{x}$	=	Mean of sample

xix

APPENDIX LIST

BIL	TITLE	PAGE
1	AISI 1020 Steel, cold rolled	61
2	AISI 1020 Steel, hot rolled, quenched, and tempered	63
3	Example data from fracture toughness test.	65
4	Standard Test Method for plain stress fracture toughness of metallic materials (ASTM E399)	68
5	Table F-distribution	72
6	Table t-distribution	73

XX

CHAPTER I

INTRODUCTION

1.0 Introduction

Quenching process and tempering process are two of the most basic and widely practiced steel heat treatment processes. Each allows the base properties and performance of the steel to be significantly enhanced, such that a relatively inexpensive and simple starting material can be used for a wide range of demanding application.

These technological developments within these two processes are often ignored in favor of high tech surface treatments. Many research studies are involved in area of surface treatments to increase the material friction and wear resistance. One of the surface treatments is quenching process which is technically developed and widely used in industry to produce extremely hard and wear resistant surface layer on metallic substrate (Selcuk *et al*, 1999).

Certainly the technology of quenching has changed as well as the kind of workpieces being quenched from axes and swords to gears and automotive components to the development of gas turbine blade that has been quenched in a hot isostatic pressing (HIP) quenching unit in argon under 2000 bars of pressure (Liscic *et al*, 1993). Even more important is the fact the simultaneously quenching has changed from an empirical skill to a scientifically founded and

controlled process which now belongs to the area of intelligent processing of materials (Persampieri *et al*, 1984).

In this research, the material used in this process is low carbon steel (AISI 1020). Low carbon steel in other name called plain carbon steel is a metal alloy that has been combined by two elements iron and carbon, where other elements are present in such a small quantities to affect the properties. Steel with low carbon content has the same properties as iron and soft but it is easily to form. This is due to the carbon content rises the metal becomes harder and stronger but less ductile and more difficult to weld. The most important characteristics is the carbon content influences the yield strength of steel because they fit into the interstitial crystal lattice sites of the body-centered cubic arrangement of the iron molecules. The interstitial carbon reduces the mobility of dislocations which in turn has a hardening effect on the iron. To get dislocations to move, a high enough stress level must be applied in order to break way the dislocation (internet reference, 13/9/07). In this research, effect of quenching and tempering process on fracture properties of carburized low carbon steel was studied. This can provide reference data on fracture properties of the steel. Therefore this finding can be beneficial to expand the application of low carbon steel in industries.

1.1 Objectives

The objectives of this research are to study and discuss the effects of quenching-tempering processes on fracture properties of carburized low carbon steel by using statistical analysis.