raf

TK2785 .L39 2009.

0000065696
Developing speed control application using ABB inverter (ABB 550-01-08A8-4) for 3 phase induction motor / Laxchumy Saravanamuthu.

DEVELOPING SPEED CONTROL APPLICATION USING ABB INVERTER (ABB 550-01-08A8-4) FOR 3 PHASE INDUCTION MOTOR

LAXCHUMY A/P SARAVANAMUTHU

BEKE MAY 2009 "I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electrical Engineering (Power Electronics & Drive)"

Signature

Supervisor's Name

: EN. MD HAIRUL NIZAM BIN TALIB

Date

: 7TH MAY 2009

DEVELOPING SPEED CONTROL APPLICATION USING ABB INVERTER (ABB 550-01-08A8-4) FOR 3 PHASE INDUCTION MOTOR

LAXCHUMY A/P SARAVANAMUTHU

This Report Is Submitted In Partial Fulfilment of Requirements for the Bachelor's

Degree in Electrical Engineering

(Power Electronics & Drives)

Faculty of Electrical Engineering
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2009

DECLARATION

"I hereby declare that this report is result of my own effort except for works that have been cited clearly in the references."

Signature :.....

Author : LAXCHUMY A/P SARAVANAMUTHU

: 7TH MAY 2009 Date

For my family, who offered me unconditional love and support throughout the course of this project.

ACKNOWLEDGMENTS

From the formative stages of this thesis, to the final draft, I owe an immense debt of gratitude to my supervisor, Encik Md Hairul Nizam Bin Talib. His sound advice and careful guidance were invaluable as I attempted to progress and deliver this project successfully.

I would also like to thank my friends who helped me throughout this project, for, without your time and cooperation, this project would not have been possible.

For their efforts and assistance, special thanks as well to the technicians and FKE staffs who have lend me a hand throughout this project.

Finally, I would be remiss without mentioning my dearest parents and family members whom supported me all the way and showing me unconditional love.

To each of the above, I extend my deepest appreciation.

ABSTRACT

This project requires developing a speed control application for 3 phase induction motor using ABB inverter (ABB 550-01-08A8-4). It is the aim of this work that the application has to be developed where close loop speed control concept can be applied. The 3 phase induction motor's speed will be controlled via the feedback to the inverter. Based on calculation and comparison of data with the motor's data sheet, the necessary simulation to show the speed control is done. The ABB inverter is also programmed based on the obtained data from the mathematical calculation. The ABB inverter used in this project is programmed via "DriveWindow Light 2" which is the start up and maintenance tool for Inverter ABB ACS 550 drive series. This software enables the monitoring of the actual status of the connected drive, edit and show the drive parameters. Besides that it also allows user to load the drive parameters, control the drive and also graphical monitoring of drive signals such as frequency, speed, torque and current. The tasks is to study the theory of 3 phase induction motor and understand the necessary calculations, design the close loop speed control application for 3 phase induction motor using ABB inverter, do simulation to compare the actual outcome through the drive, and design the electronics part for the suitable application. The application designed is used to control the temperature in a warehouse that stores explosives. The designed involves a temperature controlling circuit which acts as a feedback to the inverter to determine the speed selection of the motor according to the temperature range detected. Therefore the blower's (driven by the 3 phase induction motor) speed should vary according to the temperature changes.

ABSTRAK

Projek ini memberi fokus untuk membangunkan satu aplikasi untuk kawalan kelajuan motor induksi 3 fasa dengan menggunakan penukar 3 fasa daripada model ABB (ABB 550-01-08A8-4). Keutamaan projek ini diberi untuk membangunkan satu aplikasi dimana pengawalan kelajuan motor gelung tertutup boleh diaplikasikan. Kelajuan motor induksi 3 fasa akan dikawal dengan menggunakan mekanisma suap balik. Berdasarkan pengiraan dan perbandingkan data di antara helaian data motor tersebut, simulasi dan eksperimen dibuat bagi mebuktikan pengawalan kelajuan motor dilakukan. Penukar ABB diprogramkan berdasarkan data yang ditentukan menggunakan pengiraan dengan persamaan matematik. Penukar ABB yang digunakan dalam projek ini diprogramkan dengan menggunakan perisian "DriveWindow Light 2" yang juga merupakan perisian untuk memulakan dan menyelenggarakan pemacu penukar ABB siri ACS 550. Perisian ini membolehkan pemantauan status semasa pemacu, menukar dan menunjukkan parameter pemacu, memasukkan parameter pemacu, mengawal pemacu dan juga membolehkan pemantauan grafikal isyarat pemacu seperti frekuensi, kelajuan, daya kilas dan arus. Dalam projek ini juga teori motor induksi 3 fasa serta pengiraan meggunakan persamaan matematik akan dikaji untuk mengawal kelajuan motor induksi 3 fasa. Simulasi dibuat untuk membandingkan keputusan sebenar yang diperolehi melalui pemacu dan merekabentuk bahagian elektronik yang bersesuaian dengan aplikasi yang dipilih. Aplikasi yang direkabentuk digunakan untuk mengawal suhu gudang yang menyimpan bahan letupan. Ia terdiri daripada litar pengawal suhu yang berfungsi sebagai mekanisma suap balik kepada penukar 3 fasa untuk menentukan pemilihan kelajuan motor berdasarkan had suhu yang dikesan. Ini membolehkan kelajuan penghembus (yang dikawal oleh motor induksi 3 fasa) berubah berdasarkan perubahan suhu.

TABLE OF CONTENT

CHAPTER	TIT	LE	PAGE
	SUP	ERVISOR'S ENDORSEMENT	i
	TITI	LE	ii
	DEC	CLARATION	iii
	DED	ICATION	iv
	ACK	NOWLEDGEMENTS	v
	ABS	TRACT	vi
	ABS	TRAK	vii
	TAB	LE OF CONTENTS	viii
	LIST	OF TABLES	xii
	LIST	OF FIGURES	xiii
	LIST	OF SHORTFORMS	xvi
	LIST	OF SYMBOLS	xvii
	LIST	OF APPENDIX	xix
1	INTI	RODUCTION	1
	1.1	Project overview	1
	1.2	Project Objectives	3
	1.3	Problem Statement	3
	1.4	Scope of Works	3
		1.4.1 Software development	4
		1.4.2 Hardware development & design	4
	1.5	Flowchart	5
	1.6	Gantt chart	7

2	LITI	ERATU	RE REVIEW	8	
	2.1	Introd	luction	8	
	2.2	Mach	ine Construction	10	
		2.2.1	Stator Construction	10	
		2.2.2	Rotor Construction	11	
		2.2.3	Enclosure	12	
	2.3	Opera	ation of an Induction motor	13	
	2.4	Induc	tion motor Concepts	15	
	2.5	Speed	Control Methods for Induction Motor	25	
	2.6	Varia	ble Speed Drives	26	
	2.7	Theor	y of Control	30	
		2.7.1	Introduction	30	
		2.7.2	Closed Loop Control	30	
		2.7.3	Control Specification	31	
	2.8	Induc	tion motor speed control using inverter	32	
	2.9	ABB	ACS550 Inverter	32	
3	RES	RESEARCH METHODOLOGY			
	3.1	Projec	et Phases	35	
	3.2	Projec	et Methodology Workflow	37	
	3.3	Projec	t Methodology	38	
	3.4	Softw	are development	39	
		3.4.1	MATLAB software	39	
		3.4.2	DriveWindow Light 2 software	40	
			3.4.2.1 Drive status	41	
			3.4.2.2 Parameter Browser	42	
			3.4.2.3 Parameter Subset selection	42	
			3.4.2.4 Operation	42	
			3.4.2.5 Monitoring setting	44	
		3.4.3	Multisim	46	
		3.4.4	KV Builder	47	

	3.5	Hardy	ware development	48
		3.5.1	Application design	48
			3.5.1.1 Circuit design	50
			3.5.1.2 Interfacing of Hardware	
			and Control System	51
		3.5.2	Test	53
			3.5.2.1 DC test	54
			3.5.2.2 No-load test	55
			3.5.2.5 Blocked Rotor test	56
			3.5.2.4 Operating Characteristics of	
			Three Phase Induction motor test	59
		3.5.3	Hardware set up	62
			3.5.3.1 Start up	63
4			ND ANALYSIS	65
	4.1	Resul		65
		4.1.1	Test results	66
			4.1.1.1 Calculations	68
		4.1.2	Simulation results	72
			4.1.2.1 Torque-speed Characteristics Curve	72
			4.1.2.2 Performance of Single-phase	
			Induction Motor	73
			4.1.2.3 Fixed Voltage with Variable	
			frequency (VFVF)	75
			4.1.2.4 Variable voltage, Fixed Frequency	77
			4.1.2.5 Variable voltage, variable frequency	79
			(VVVF)	
		4.1.3	Results obtained from Drive	
			Windows Light 2	81
			4.1.3.1 No load observation	81
			4.1.3.2 Under load observation	83

		4.1.4	Temperature Controller circuit Simulation	
			Results	84
		4.1.5	Ladder Diagram Analysis	85
			4.1.5.1 Speed Selection Controlling	
			Program	85
		4.1.6	Real Model of Project	87
5	CONC	CLUSIC	ON	89
	5.1	Discus	ssion	89
	5.2	Sugges	stion	90
	5.3	Conclu	asion	91
	REFE	RENC	E	92
	APPE	NDIX ((A-D)	93

LIST OF TABLE

TABLE	TITLE	PAGE
2.0	Comparison of AC drives	29
3.0	Drive control Panel buttons	43
3.1	Monitor Toolbar Panel buttons	43
3.2	Monitoring Settings Function	45
3.3	Constant speed selection	53
4.0	Test results for equivalent circuit	66
4.1	Data of load test	66
4.2	Per-Phase Equivalent circuit parameters	71

LIST OF FIGURE

FIGURE	TITLE	PAGE
1.0	Closed loop speed control application overview	2
1.1	Flowchart of the Methodology	5
1.2	Project Gantt chart	7
2.0	Induction motor	9
2.1	Rotor and stator assemblies of an induction motor	10
2.2	Stator Winding	11
2.3	Rotor	12
2.4	Enclosure of motor	12
2.5	Supply to stator	13
2.6	2 Pole stator winding	14
2.7	Visualization of the induction motor's rotation	14
2.8	Equivalent Circuit of an Induction motor	17
2.9	Power flow diagram	19
2.10	Thevenin's Equivalent circuit	19
2.11	Speed-Torque characteristics of Induction motor	22
2.12	VFD system	26
2.13	The concept of the feedback loop	30
2.14	3 Phase induction motor close loop control by inverter	32
2.15	ABB Inverter	33
3.0	Project phases	36
3.1	Workflow Description	37

3.2	MATLAB software window	39
3.3	M-file window	40
3.4	Drive status panel	41
3.5	Parameter Browser window	42
3.6	Example of simulation using Multisim	47
3.7	Example of KV Builder ladder diagram	48
3.8	Physical system for maintaining warehouse temperature	49
3.9	Two Different Temperature controlling circuit	51
3.10	Interfacing of PLC to the outputs	52
3.11	Constant speed selections by relay	52
3.12	Per-phase equivalent circuit	54
3.13	Experimental setup of the Dc test	54
3.14	Experimental setup of the No-load test	56
3.15	Experimental setup for blocked-rotor test	57
3.16	Experiment circuit of load test	59
3.17	Inverter set up	62
3.18	Power connection at the inverter	62
3.19	De Lorenzo 3 phase induction motor	63
3.20	Motor connected to load	63
3.21	Actual set up of the system	64
4.0	Torque and Power Characteristics of Induction Motor	67
4.1	Torque and speed Characteristics of Induction Motor	67
4.2	Torque and current Characteristics of Induction Motor	68
4.3	Developed torque for single phase induction motor	73
4.4(a)	Performance of single phase induction motor	74
4.4(b)	Performance of single phase induction motor	74
4.4(c)	Performance of single phase induction motor	75
4.5	Torque versus speed characteristics for (VFVF)	76
4.6	Torque versus speed characteristics for (VVFF)	78
4.7	Torque versus speed characteristics for (VVVF)	80
4.8	Motor characteristics for speed 900 rpm	81

4.9	Torque, current and power for speed 900 rpm	81
4.10	Motor characteristics for speed 900 rpm	82
4.11	Torque, current and power for speed 2741 rpm	82
4.12	Speed monitoring with load condition	83
4.13	Torque monitoring with load condition	83
4.14	Current and Power monitoring with load condition	83
4.15	Two temperature range controller circuit	84
4.16	Initial condition	85
4.17	Relay 1 activated for temperature 25°C	86
4.18	Relay 2 activated for temperature 29°C	86
4.19	The relay contacts connections to the inverter	87
4.20	Actual Control Box of Temperature Controller	88

LIST OF SHORTFORMS

UTeM -Universiti Teknikal Malaysia Melaka

PSM -Projek Sarjana Muda

IM Induction motor

NEMA-National Electrical Manufacturer's Association

N-T Speed-Torque

rpm rotation per minute

PLC Programmable Logic Control

AC**Alternating Current**

V Voltage

VFD -Variable frequency drive

AFD -Adjustable frequency drive

VSD -Variable speed drive

VVVF -Variable voltage Variable frequency

DC -Direct Current

IGBT -Insulated-gate bipolar transistor

PWM -Pulse width Modulation

I/O input/output

A Ampere

PC Personal computer

NO Normally open

NC Normally close

RTD -Resistance temperature detector

LIST OF SYMBOLS

Ns Synchronous speed

F Frequency

P Number of poles

 N_r Rotor speed

S slip

angular mechanical speed ω_s

angular rotor speed ω_{m}

 R_1 Stator resistance

 X_1 Stator reactance

 R_2 Rotor resistance referred to stator

Rotor reactance referred to stator X_1

 R_{c} Core losses resistance

 X_{m} Magnetizing reactance

 P_g Power input to rotor

 P_{rc} Rotor copper loss

 P_{m} Mechanical Power

 $V_{ ext{th}}$ Thevenin's equivalent voltage

 R_{th} Thevenin's equivalent resistance

 X_{th} Thevenin's equivalent reactance

 T_{max} Maximum torque

 $s_{maxT} \\$ Slip at maximum torque

 V_{Φ} Phase voltage

 I_{Φ} Phase current $T_{\text{start}} \\$ Starting torque

 $T_{\rm L}$ Load torque

Moment of inertia J

V/Hz -Voltage to frequency ratio

HP Horsepower

%s percentage of slip

Nm Newton meter

torque

Pout Output power

η Efficiency

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
A	LM311 Single Comparator Datasheet	94
В	2N222A Switching Transistor Datasheet	97
C	ABB Standard Setting For ACS 550 Inverter	99
D	ACS 550 Inverter's Hardware Description	100

CHAPTER 1

INTRODUCTION

In this chapter, the background of the project has been discussed briefly. It includes the objectives, scope, and problem statement that had been defined at the initial stage of the project development. The planned methodology and the work breakdown structure of the project are also discussed here.

1.1 **Project Overview**

Three-phase induction motors plays an extremely important part of the modern day electric drive system and their usage is continuously on a rise due to their inherent properties of ruggedness, minimum maintenance requirements and continually increasing efficiencies.

A great deal of work is being done to improve control through simulation of the electric drives used for various high-power purposes. The accuracy of the simulated results is based on the precise modeling of the various parts of the electric drive system. Usually the three-phase induction motor model used in various research works in UTeM does not incorporate the closed loop speed control application. The present paper aims at

developing a three-phase induction motor's speed control application where closed loop concept can be applied.

The biggest advantage is that the model is user-programmable in MATLAB environment and can be used for 3 phase induction motor parameter studies. The simulation results of the developed model, with various parameter variations taken into account and subjected to sudden changes in load, will not be a problem as the motor's speed will change accordingly through the feedback obtained via the inverter. The torque and speed performances of the motor both in steady state and dynamic conditions can be monitored using software.

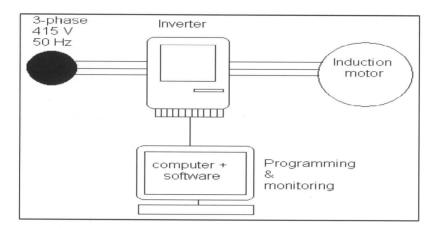


Figure 1.0: Closed loop speed control application overview

Figure 1.0 shows the basic concept of the project. The inverter is fed by a three phase supply to control the three phase induction motor by interfacing the system to computer which enables the programming of the inverter and monitoring of the motor's parameters.

1.2 Project Objectives

There are few objectives that will be fulfilled in order to complete this project.

- a. Simulation of speed control characteristics for the Lorenzo's 3 phase induction motor using MATLAB software.
- b. Investigate the performance of 3 phase induction motor speed control using ABB inverter.
- c. To develop or modify the appropriate application based on closed loop speed control concept.

1.3 Problem Statement

This project is being carried out due to the lack of close loop speed control application for 3 phase induction motor in the Faculty of Electrical Engineering laboratories which enables the user to monitor the parameters to avoid mishaps by choosing the wrong motor sizing for the maximum required load. This project is expected to be a guide line for students to study the characteristics of 3 phase induction motor in the future. This application will also be crucial in market for fields that require constant monitoring for the motor's parameters such as speed, proportional to the applied load.

1.4 Scope of Works

The project limitations that are considered in performing this project are:

a. This project only considers 3 phase induction motor (DE LORENZO DL1021) and a Low Voltage AC Drive which is 3 phase ABB Inverter (ACS 550-01-08A8-4).

- b. Test to be carried out on the 3 phase induction motor to obtain the per-phase equivalent circuit.
- c. Simulation is done using MATLAB software to study the characteristics of threephase induction motor.
- d. The ABB inverter manual is studied in terms of operation and data setting for a closed loop speed control application for the 3 phase induction motor.

The scopes of works in this project can further be divided into 2 categories which are software development and hardware development and design.

1.4.1 Software Development

Software Development includes simulation using MATLAB software to observe the characteristics of the 3 phase induction motor in terms of speed, torque, frequency and current.

The 3 phase ABB inverter will be pre-programmed for a closed loop application and the result of the motor's characteristics with the change of load viewed through the software DriveWindows Light 2.

The characteristics obtained by simulation and by inverter will be compared to check the application's creditability.

1.4.2 Hardware Development and Design

The hardware development includes the connection of motor, inverter and integrating using the software. Upon completion of the hardware and software development, a suitable application such as blower is designed for this system.