VARIABLE SPEED CONTROL OF 3 PHASE INDUCTION MOTOR (DL 1021) USING INVERTER (ABB 550-01-08A8-4)

IMRAN BIN SUTAN CHAIRUL

This Report Is Submitted In Partial Fulfillment Of Requirements For The Degree Of Bachelor In Electrical Engineering (Industry Power)

> Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka

> > Mei 2008

C Universiti Teknikal Malaysia Melaka

" I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature	:
Name	: IMRAN BIN SUTAN CHAIRUL
Date	:

" I hereby declared that I have read through this report and found that it has comply The partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Industrial Power)."

Signature	:
Supervisor"s Name	: EN. MD. HAIRUL NIZAM BIN TALIB
Date	:

To Muslims May Allah bless us all here and hereafter -Al-fatihah-

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious, The Most Merciful. Peace be upon the Messenger of Allah, Prophet Muhammad s.a.w, his companions (r.a) and followers until the end of day. Thanks to Allah, with His blessing, this final project is successfully delivered.

First of all, I want to thanks my beloved mom and dad, whom keep prays for me, gives me freedom and show understanding to me as a student because their loves keep me moving forward.

Secondly, I want to thanks my supervisor for this final project, Mr Hairul Nizam Bin Talib whom shares knowledge and idea so that I will keep on the right track which leads to this project successful. I also want to thanks all technicians and FKE staff who lend me a hand through out this project.

Last but not least, to all my friends, thank you for making my life happens.

Wassalam

ABSTRAK

Projek ini akan memberi fokus kepada membangunkan satu model simulasi mengenai kawalan kelajuan bagi satu penggerak motor induksi 3 fasa melibatkan gabungan kelajuan boleh ubah dan voltan boleh ubah (VVVF). Komponen utama bagi sistem yang dibangunkan ini terdiri daripada sebuah motor induksi 3 fasa (DL 1021) dan sebuah penukar 3 fasa keluaran ABB (ACS 550-01-08A8-4). Merujuk kepada motor induksi 3 fasa yang digunakan, parameter seperti R₁, X₁, R₂, X₂ dan X_m ditentukan menggunakan ujian yang dijalankan iaitu ujian litar buka dan ujian litar tutup. Parameter yang lain seperti arus permulaan, daya kilas maksimum dan daya kilas kadaran ditentukan menggunakan gabungan persamaan matematik dan simulasi program MATLAB. Bagi gabungan kelajuan boleh ubah dan voltan boleh ubah (VVVF), penukar ABB akan memainkan peranan utama dalam menentukan aras voltan, aras frekuensi dan aras arus yang akan diterima oleh motor induksi 3 fasa dalam sistem ini. Maka, fokus pada bahagian penukar ABB ini adalah berkenaan dengan pemahaman konsep dan cara memasukkan data-data parameter yang diperlukan ke dalam penukar tersebut. Di akhir projek ini, sebuah manual akan dibangunkan berkenaan gabungan kelajuan boleh ubah dan voltan boleh ubah (VVVF) bagi sistem ini.

ABSTRACT

This project will focus on developing a simulation model of variable speed, variable voltage for an induction motor drive. The main component of this system consists of a 3-phase induction motor (DL 1021) and a 3-phase ABB inverter (ACS 550-01-08A8-4). Based on the actual 3-phase induction motor (DL 1021), the parameters such as R_1 , X_1 , R_2 , X_2 and X_m is defined using certain tests which are open and short circuit test. Using mathematical equations and MATLAB simulation, others parameter such as starting current, maximum torque and rated torque will also are defined. For variable voltage variable frequency (VVVF), the ABB inverter will play a major role. Inverter section determines the voltage level, frequency level and the current level that a motor receives in order to control the motor speed. So, the inverter section will focus on the concepts study and parameter setting of an ABB inverter. Finally, this project will develop a simple manual of variable speed control system.

LIST OF CONTENT

CHAPTER	TITL	ĿE	PAGE
	SUPI	ERVISOR"S VERIFICATION	
	TITL	le page	i
	CON	IFESSION	ii
	DED	DICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRAK	V
	ABS	TRACT	vi
	LIST	OF CONTENT	vii
	LIST	OF TABLE	xi
	LIST	OF FIGURE	xii
	LIST	OF ABBREVIATION	XV
	LIST	OF APPENDIX	xvi
Ι	INTF	RODUCTION	
	1.1	Project Overview	1
	1.2	Project Objectives	2
	1.3	Problem Statements	3
	1.4	Project Scopes	3
	1.5	Expected Results	4
II	LITE	ERATURE REVIEW	
	2.1	Introduction	5
	2.2	Induction Motor Speed Control Methods	5
		2.2.1 Speed Control By Pole Changing	6
		2.2.2 Speed Control By Line Frequency Changing	6

C Universiti Teknikal Malaysia Melaka

	2.2.3	Speed Control By Line Voltage Changing	6
	2.2.4	Speed Control By Rotor Resistance Changing	7
2.3	Comp	arison Between AC And DC Drives	7
2.4	Speed	Control Using VFD	8
	2.4.1	Frequency Adjustment	9
	2.4.2	Voltage And Frequency Patterns	9
		2.4.2.1 General-Purpose Pattern	10
		2.4.2.2 High Starting Torque Pattern	10
		2.4.2.3 Low Starting Torque Pattern	11
	2.4.3	Independently Adjustable Acceleration	12
		And Deceleration Ramps	
	2.4.4	Motor Protection	12

III THEORY

3.1	Introd	uction	13	
3.2	Induct	Induction Motor		
	3.2.1	Construction Of An Induction Motor	16	
	3.2.2	Rotor Rotation	18	
	3.2.3	Basic Induction Motor Concepts	20	
	3.2.4	Equivalent Circuit Of An Induction Motor	21	
	3.2.5	Rotor Circuit Model	23	
	3.2.6	Final Equivalent Circuit	24	
	3.2.7	Power And Torque In Induction Motor	26	
	3.2.8	Induced Torque Equation	29	
3.3	Invert	er	32	
	3.3.1	Voltage Source Inverter (VSI)	32	
	3.3.2	Rectifier, Filter And Inverter	33	
	3.3.3	Inverter Control	34	
		3.3.3.1 Basic PWM Technique	34	
		3.3.3.2 Three Phase Sinusoidal PWM VSI	37	

V

METHODOLOGY

4.1	Projec	et Phases	43
4.2	Gantt	Santt Chart	
4.3	Tests		47
	4.3.1	DC Test	48
	4.3.2	No-load Test	49
	4.3.3	Blocked-rotor Test	51
4.4	Softwa	are	54
	4.4.1	MATLAB Software	54
		4.4.1.1 Compile A Torque-speed Characteristic	
		Curve	56
		4.4.1.2 MATLAB M-file	59
	4.4.2	MATHCAD Software	61
	4.4.3	DRIVE WINDOW LIGHT 2 Software	64
		4.4.3.1 Parameter Browser	65
		4.4.3.2 Drive Status	66
		4.4.3.3 Control Panel	67
		4.4.3.4 Drive Monitoring	68
		4.4.3.5 Monitor Settings	69
		4.4.3.6 Parameter Subset Selection	71
DEGU			
RESU	LTS AI	ND CALCULATION	
5.1	Introd	uction	72
5.2	Result	ts And Calculation Of Induction Motor Test	73
	5.2.1	Test Results	73
	5.2.2	Parameter Calculation	73
	5.2.3	Per-phase Equivalent Circuit	75
	5.2.4	Thevenin Equivalent Circuit	76
5.3	Result	ts Of MATLAB Simulation	78
	5.3.1	VVVF	78
	5.3.2	VVFF	81

		5.3.3 VFVF	83
	5.4	Results From Drive Window Light 2	85
		5.4.1 Torque	85
		5.4.2 Speed	86
		5.4.3 Current	87
		5.4.4 Voltage	88
VI	ANA	LYSIS AND DISCUSSION	
	6.1	Introduction	89
	6.2	VVVF Torque-speed Characteristics	89
	6.3	VVFF Torque-speed Characteristics	90
	6.4	VFVF Torque-speed Characteristics	90
	6.5	Torque Versus Time	91
	6.6	Speed Versus Time	92
	6.7	Current Versus Time	92
	6.8	Voltage Versus Time	93
VII	CON	ICLUSION AND SUGGESTION	
	7.1	Conclusion	94
	7.2	Suggestion	95
	REF	ERENCES	96

APPENDIX 97-106

LIST OF TABLE

NO	TITLE	PAGE
2.1	Comparison between AC and DC drives	7
4.1	Induction motor"s parameters	47
4.2	Software and its usage	54
4.3	Voltage and frequency relationship of VVVF	56
4.4	Voltage and frequency relationship of VVFF	57
4.5	Voltage and frequency relationship of VFVF	58
4.6	Icons of the Math Toolbar	62
4.7	Icons of the Control panel Toolbar	67
4.8	Icons of the Drive Monitoring Toolbar	68
4.9	Monitoring Settings	69
5.1	Test results	73
5.2	Induction motor"s parameters	75
5.3	Thevenin circuit parameters	77
5.4	Torque for different frequency	85
5.5	Speed for different frequency	86
5.6	Current for different frequency	87
5.7	Voltage for different frequency	88

LIST OF FIGURE

NO	TITLE	PAGE
1.1	Variable speed control of a blower system	2
2.1	General purpose pattern	10
2.2	High starting torque pattern	11
2.3	Low starting torque pattern	12
3.1	Induction motor	14
3.2	Stator of an induction motor	16
3.3	Rotor of an induction motor (Squirrel cage type)	17
3.4	Rotor of an induction motor (Wound type)	17
3.5	Rotor rotation (1)	18
3.6	Rotor rotation (2)	19
3.7	Rotor rotation (3)	19
3.8	Transformer model of an induction motor	22
3.9	(a) Rotor circuit model of an induction motor	
	(b) Rotor circuit model with all frequency (slip) effects concentrated	
	in resistor, R _R	23
3.10	The per-phase equivalent circuit of an induction motor	25
3.11	Power flow diagram of an induction motor	26
3.12	Thevenin equivalent voltage	29
3.13	Thevenin equivalent impedance	30
3.14	Simplified equivalent circuit of an induction motor input circuit	31
3.15	Basic Variable Voltage Variable Frequency (VVVF) circuit	33
3.16	Rectifier, Filter and Inverter	33
3.17	Triangular wave (carrier)	35

3.18	Sine wave (modulating)	35
3.19	Comparison between carrier signal and modulating signal	36
3.20	PWM waveform	36
3.21	3-phase Sinusoidal PWM Voltage Source Inverter	37
3.22	Repeating sequence	38
3.23	3 sinusoidal references waves	39
3.24	Comparison between carrier signal and 3 sinusoidal references waves	39
3.25	Comparison between carrier signal and 3 sinusoidal references waves	
	(close up)	40
3.26	PWM waveform for 1 st sine wave	40
3.27	PWM waveform for 2 nd sine wave	41
3.28	PWM waveform for 3 rd sine wave	41
3.29	Output voltage (line to line)	42
4.1	Project phases	43
4.2	Gantt Chart	46
4.3	Per-phase equivalent circuit	47
4.4	Test circuit for DC test	48
4.5	DC test equivalent circuit	49
4.6	Test circuit for No load test	49
4.7	No-load test equivalent circuit	50
4.8	Simplified No-load test equivalent circuit	51
4.9	Test circuit for Blocked-rotor test	51
4.10	Blocked-rotor test equivalent circuit	52
4.11	Simplified Blocked-rotor test equivalent circuit	52
4.12	MATLAB window	55
4.13	M-file window	55
4.14	Voltage versus frequency for VVVF	56
4.15	Voltage versus frequency for VVFF	57
4.16	Voltage versus frequency for VFVF	58
4.17	Example of initializing values needed in the program	59
4.18	Calculate the Thevenin voltage (V_{TH}) and impedance (Z_{TH})	60

4.19	Torque calculation and torque speed characteristic plot	60
4.20	MATHCAD window	61
4.21	Math Toolbar	62
4.22	Drive Window Light 2 window	64
4.23	Parameter Browser window	65
4.24	Drive Status	66
4.25	Monitoring Settings window	69
4.26	Parameter Subset Selection window	71
5.1	Per-phase equivalent circuit	76
5.2	Thevenin equivalent circuit	77
5.3	VVVF torque-speed characteristic curves	80
5.4	VVFF torque-speed characteristic curves	82
5.5	VFVF torque-speed characteristic curves	84
5.6	Torque versus time	85
5.7	Speed versus time	86
5.8	Current versus time	87
5.9	Voltage versus time	88

XV

LIST OF ABBREVIATION

- AC Alternate Current
- DC Direct Current
- DOL Direct On Line
- EMF Electromagnetic Field
- PSM Projek Sarjana Muda
- PWM Pulse-Width Modulated
- RPM Rotation Per Minute
- TNB Tenaga Nasional Berhad
- UTeM Universiti Teknikal Malaysia Melaka
- VFD Variable Frequency Drive
- VFVF Voltage Fix Variable Frequency
- VSI Voltage Source Inverter
- VVFF Variable Voltage Fix Frequency
- VVVF Variable Voltage Variable Frequency

LIST OF APPENDIX

NO	TITLE	PAGE
A	Manual of variable speed control of 3-phase induction motor using an	97-106
	ABB inverter	

CHAPTER I

INTRODUCTION

1.1 Project Overview

Nowadays, induction motor is used widely in the industrial and domestic sector because of it advantages if compared to Direct Current (DC) motor such as induction motor use Alternate Current (AC) power source to be function which is identical with the power source supplied by the utilities company, Tenaga Nasional Berhad (TNB). It is tough in many applications used and also cheaper. The widely usage of induction motors can be approved because statistic of load shows that merely 70% of load used is contributed by induction load.

Even though induction motor is widely used, there are many type of load connect to it which is indicate that different kind of load will influence the speed controlling method and the speed needed by the motor. However, the method is suggested after the cost effectiveness and how the induction motor will be use is being considered.

This project basically about controlling the speed of a 3-phase induction motor variably, in this case the DL1021 and the mechanism used to control the speed is by using a 3-phase ABB inverter (ACS 550-01-08A8-4) which is a Low Voltage AC Drives.

Figure 1.1: Variable speed control of a blower system

1.2 Project Objectives

The main objectives of performing this project are:

- To model the per-phase equivalent circuit of a 3-phase induction motor used in this project (DL 1021).
- To simulate the characteristics of the 3-phase induction motor such as starting current, maximum torque and rated torque by using MATLAB or MATHCAD software.
- To study the concept and operation of a 3-phase ABB inverter used in this project (ACS 550-01-08A8-4) and apply it to the speed control system.
- To develop a manual of variable speed control operation

1.3 Problem Statements

Problems which have been known for this project are:

- A high starting current is needed with limited range of speed if using the Direct on Line (DOL) in order to start and controlling the speed of a 3-phase induction motor.
- There is no proper set of experimental instrument in Universiti Teknikal Malaysia Melaka (UTeM) about controlling the speed of a 3-phase induction motor variably using an inverter such as ABB inverter. So, this project will provide a proper and simple experimental manual with a complete education references including simulation and hardware settings of variable voltage variable frequency (VVVF) speed control system.

1.4 Project Scope

Project scope is limitation that being considered in order to perform this project. There are:

- This project only considered a 3-phase induction motor (DL 1021) and a Low Voltage AC Drives which is a 3-phase ABB inverter (ACS 550-01-08A8-4).
- Tests that being execute to the 3-phase induction motor are DC test, No-load test and Blocked Rotor test to produce the per-phase equivalent circuit.
- Using MATLAB software in order to simulate the torque-speed characteristics of the 3-phase induction motor.
- The torque-speed characteristic under consideration is only the VVVF.
- Study the ABB inverter manual provided by the manufacturer in terms of concepts, operation and data setting.

1.5 Expected Results

The final results which are being expected are:

- An operational and stable variable speed control system of VVVF of 3-phase induction motor system is developed.
- A proper, simple experimental manual and a complete education references including simulation and hardware settings of VVVF will be produce.
- The manual produced can be used as a short term syllabus for the future usage in a related field such as Electric Machine subject.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Literature review is conducted in order to achieve project objectives. The main chapter under consideration is about controlling the speed of 3-phase induction motor variably using an AC drive.

2.2 Induction motor speed control methods

In point of fact, speed controlling application is not suitable for an induction motor because the normal operating range of typical induction motor is confined to be less than 5% slip, and the speed variation over that range is more or less directly proportional to the load on the shaft of the motor [1]. This is because induction motor efficiency will be low if slip is high due to larger rotor copper losses. However, before a modern solid-state drive is introduce, 2 major techniques in controlling speed of an induction motor are used:

- 1. Vary the synchronous speed (stator and rotor magnetic speed) by changing electrical frequency and changing number of poles on the machine.
- 2. Vary the slip by varying the rotor resistance or varying the terminal voltage of the motor.

2.2.1 Speed control by pole changing

Scheme for pole changing are method of consequent poles and multiple stator windings. The method of consequent poles can be done via changing numbers of poles in the stator windings of an induction motor by a factor of 2:1 through simple changes in coil connection. Using this method, a winding with two stator magnetic poles will has four magnetic poles which are twice as before. However, this method disadvantage is that ratio 2:1 is an obligation. In order to conquer the inconvenience ratio of 2:1, multiple stator windings can be employed. Regrettably, this choice adds the expense of the motor and can only be energize a set at a time.

2.2.2 Speed control by line frequency changing

As we know, the rate of rotation of magnetic field is directly proportional to electrical frequency. So, when frequency is varying, the speed can be adjusted either above or below the base speed. Due to safety issue, it is vital to maintain certain voltage and torque limits by reduce the terminal voltage when running below the base speed called *derating If* it is not done, the steel in the core of the induction motor will saturate and excessive magnetization currents will flow in the machine [1]. Next, maintain the rated voltage supply to the stator when running above the base speed to protect the winding insulation of the motor.

2.2.3 Speed control by line voltage changing

Induction motor torque is proportional to the square of applied voltage. By using this varying the line method, the speed can only be controlled over a limited range after taken into consideration the load torque-speed characteristic.

2.2.4 Speed control by rotor resistance changing

Torque-speed curve of a wound rotor induction motor can be change by inserting extra resistance into the rotor circuit. Because of efficiency reduced if using this method, it is normally applied for only short periods.

2.3 Comparison between AC and DC drives.

There are 2 types of drives in the market, AC drive and DC drive. This project will be using an AC drive rather than a DC drive because of its advantages. Comparison between AC drive and DC drive are stated below:

A C Ining	DC Ining
AC drive	DC drive
They was conventional lawy cost 2 mbage	DC drives are lass complex with a single
They use conventional, low cost, 3-phase	DC drives are less complex with a single
AC induction motors for most applications	power conversion from AC to DC
AC motors are smaller, lighter, more	DC drives are normally less expensive for
commonly available, and less expensive	most horsepower ratings.
	1 0
than DC motors.	
Whenever the operating environment is	DC motors have a long tradition of use as
wet, corrosive or explosive and special	adjustable speed machines and a wide
motor enclosures are required. Special AC	range of options have evolved for this
motor enclosure types are more readily.	purpose.
Available at lower prices.	
Multiple motors in a system must operate	Cooling blowers and inlet air flanges
simultaneously at a common frequency /	provide cooling air for a wide speed range
speed.	at constant torque.
-	-

Table 2.1: Comparison between AC and DC drive	S
---	---