CONCEPTUAL DESIGN AND DEVELOPMENT OF A COMPOSITE DRIVETRAIN DIFFERENTIAL CASING FOR FORMULA STUDENT RACE CAR

MOHAMAD ARIFF SHAH BIN MOHAMED NAZMI

This report is submitted in accordance with the requirements of the Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MAY 2009

I admit that have read this work and in my opinion this work was adequate from scope aspect and quality to award in purpose Degree of Bachelor of Mechanical Engineering (Automotive)

Signature	:	
1 st Supervisor's na	ne:	
Date	:	

DECLARATION

"I hereby, declare this report entitled "Conceptual Design of a Composite Drive Train Differential Casing for Formula Student Race Car" is the results of my own research except as cited in the reference."

DEDICATION

For my beloved father, papa, mom, sisters and brother.

ACKNOWLEDGEMENT

In the name of Allah, the Most Merciful and the Most Beneficent. It is with the deepest senses gratitude of the almighty that gives strength and ability to complete this project and technical report.

First of all, I would like to dedicate my special thanks to my supervisor, En Muhd Ridzuan Bin Mansor and also lecturers at Universiti Teknikal Malaysia Melaka because allowed to take me under his supervision. All of them has given me valuable information and ideas how to perform this project.

I would also to express my thanks to all the faculty lecturers and technicians for their assistance and guidance advice in developing and producing this work and also an effort to guide me through my Projek Sarjana Muda (PSM).

Last, but certainly not least, the continual encouragement and support of my family and not forgotten to all my friends in Universiti Teknikal Malaysia Melaka and the others who somehow that invite whether directly or indirectly in the completion of my project. Without their support, dedication kindness and guides, I can't finish my training and also this report. I hope that this report will be a good reference for other students in the future.

ABSTRACT

The main goal of this project is to design and fabricate a composite drive train differential casing for formula student race car. The main problem of this project is to test whether the Glass Fiber Reinforced Plastic (GFRP) is suitable enough to be used as the material of the product. Aiming to achieve this goal, several techniques were carried out with method. In the first phase, literature review regarding the material has been carried out. Concept design of the differential case, load calculation for the design and composite material were presented in this report. Manufacturing process also will be explained in this report. The conclusion of this project is to have a completed concept design with its final product of the composite drive train differential casing given with its proven load calculation.

ABSTRAK

Objektif utama projek ini ialah untuk merekabentuk pelindung komposit gear kebezaan pada kereta lumba formula pelajar. Masalah utama yang perlu dititkberatkan ialah untuk menguji samada bahan komposit sesuai untuk dijadikan sebagai material binaan untuk pelindung gear kebezaan pada kereta lumba Formula Pelajar. Untuk mencapai matlamat ini, terdapat beberapa teknik yang telah dilakukan. Kajian ilmiah mengenai bahan Komposit polimer gentian kaca telah dilakukan. Beberapa konsep rekabentuk berkenaan rekabentuk juga telah dilakukan. Seterusnya, pengiraan daya terhadap kekuatan dan ketahanan terhadap rekabentuk produk juga dilakukan. Proses pembuatan rekabentuk juga ditunjukkan di dalam projek ini. Secara kesimpulannya,di akhir projek ini akan dikeluarkan rekabentuk serta produk penuh pelindung komposit gear kebezaan pada kereta lumba Formula Pelajar berserta pengiraan daya untuk rekabentuk bahan berkenaan.

CONTENTS

CHAPTER MATTER

	PAGE TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	CONTENTS	vii
	LIST OF TABLES	XV
	LIST OF FIGURES	xvii
	LIST OF SYMBOLS	xxi
	APPENDIX	xxii
CHAPTER 1	INTRODUCTION	1
	1.1 OBJECTIVES	1
	1.2 PROJECT SCOPE	2

PAGES

CHAPTER	MATTER	PAGES
CHAPTER 1		
	1.3 PROBLEM STATEMENT	2
	1.4 EXPECTED RESULT	2
CHAPTER 2	LITERATURE REVIEW	3
	2.1 HISTORY OF FORMULA STUDENT	3
	2.2 SAE RULES FOR FORMULA STUDE	NT 4
	2.2.1 Drive Train Shields and Guards	4
	2.3 DIFFERENTIAL TERMINOLOGY	5
	2.4 THE PURPOSE OF DIFFERENTIAL G	EAR 5
	2.5 FUNCTIONAL DESCRIPTION OF	
	DIFFERENTIAL GEAR	6
	2.6 DIFFERENTIAL GEAR CASE DESIGN	7
	2.7 COMPOSITE MATERIAL	9
	2.8. GLASS-REINFORCED PLASTIC (GRE	P) 11
	2.8.1. CONSTRUCTION METHODS	12
	2.8.1.1 Fiberglass Hand Lay-Up Op	peration 12
	2.8.1.2 Fiberglass Spray Lay-Up O	peration 13
	2.8.1.3 Pultrusion Operation	13
	2.9 CARBON FIBER	13

CHAPTER	MATTER	PAGES
CHAPTER 2	2.9.1 APPLICATION	14
	2.10 COMPARISON BETWEEN CARBON FIBER AND FIBERGLASS	16
	2.11 RESIN	17
	2.11.1 VINYLESTER	18
	2.12 EPOXY	18
	2.12.1 ADHESIVES	19
	2.13 THERMOSETTING PLASTIC	19
	2.13.1 THERMOSETS	20
	2.13.2 METHOD OF MOLDING THERMOSETS	20
	2.14 DISADVANTAGES OF FIBER-REINFORCED	
	COMPOSITE MATERIALS	21
	2.14.1 DAMAGE MECHANISMS UNIDIRECTIONAL	_
	(GFRP) COMPOSITE	22
	2.14.1.1Effect of the fiber misalignment	22
	2.14.1.2 Effect of the stress level	22
	2.15 BUCKLING OF SYMMETRIC LAMINATED FIBERGLASS REINFORCED PLASTIC (FRP) PLATE	2S 23
	2.15.1 MICROMECHANICS	23

CHAPTER 2

2.15.2	MECHANICAL PROPERTIES OF THE
	CONSTITUENTS

2.15.3	MACROMECHANICS	25
	2.15.3.1 Stress-Strain Relationship in a Lamina	26
	2.15.3.1.1 Lamina Coordinate System	27
	2.15.3.1.2 Global (Pultrusion) Coordinate Syste	m 28
	2.15.3.2 Special Types of Laminates	31
	2.15.3.2.1 Symmetric Laminates	31
	2.15.3.2.2 Antisymmetric Laminates	32
	2.15.3.2.3 Angle-Ply Laminates	32
	2.15.3.2.4 Balanced Laminates	32
	2.15.3.3 Interlaminar Stresses	33

2.15.4	LAMINATE PLATE BUCKLING	34
	2.15.4.1 Analytical Critical Buckling Load of	
	Plates Using ANSYS	34
	2.15.4.1.1 Homogeneous Plates	34
	2.15.4.1.2 Symmetric Laminated Plates	36

2.16	SHAPE INFLUENCE IN BUCKLING OF GFRP		
	PULTR	UDED COLUMNS	37
	2.16.1	EXPERIMENTAL	37

PAGES

24

CHAPTER 2

2.17	DESIG	N OF COMPOSITE STRUCTU	JRES CONTAINING	
	BOLT I	HOLES AND OPEN HOLES		38
	2.17.1	STRESS ANALYSIS		38
		2.17.1.1 Laminates with open	n holes	39
		2.17.1.2 Bolted laminates		40
	2.17.2	FAILURE PREDICTION		41
		2.17.2.1 Failure prediction in	laminates	
		with open hole		41
		2.17.2.2 Failure predictions i	n laminates	
		with bolted joints		43

2.18	BOLTED JOINT		
	2.18.1	PROPERTY CLASS	46
	2.18.2	LOCKING MECHANISMS	47
	2.18.3	MEASUREMENTS OF FRICTIONAL TORQUE	
		OF THREADS IN BOLT	48

2.19	• OPEN MOLD PROCESSES FOR FIBER				
	REINFO	DRCEMENT PLASTIC	49		
	2.19.1	HAND LAY-UP PROCESS	49		
	2.19.2	SPRAY-UP PROCESS	51		
	2.19.3	VACUUM BAG PROCESS	51		

CHAPTER 3	RE	SEARCH METHODOLOGY	5	53
	3.1	PROCESS PLANNING	5	53
	3.2	PROBLEM IDENTIFICATION	5	55

PAGES

CHAPTER	MATTER

CHAPTER 3			
	3.3	LITERATURE REVIEW	56
	3.4	IDENTIFICATION ON RELATED PARAMETER	
		FOR COMPOSITE DIFFERENTIAL CASE	56
	3.5	GENERATING DIFFERENTIAL	
		CONCEPT DESIGN	57
		3.5.1 CONCEPT DESIGN SKETCHES FOR	
		DIFFERENTIAL CASE	58
		3.5.2 DESIGN FOR DIFFERENTIAL CASE USING	
		CATIA SOFTWARE	58
	3.6	LOAD CALCULATION FOR DIFFERENTIAL CASE	59
	3.7	COMPOSITE CALCULATION FOR DIFFERENTIAL	
		CASE	60
	3.8	FABRICATION OF DIFFERENTIAL CASE	61
CHAPTER 4	THI	EORY AND LOAD CALCULATION	62
			02
	4.1	SHEAR STRESS	62
	4.2	BEARING STRESS	63
	4.3	LOAD CALCULATION ON CASE 1	
		(SHEAR STRESS)	66
	4.4	LOAD CALCULATION ON CASE 2	
		(BEARING STRESS)	67
	4.5	THEORY COMPOSITE CALCULATION	68
		4.5.1 COMPOSITE CALCULATION	69

CHAPTER	МАТ	TER	PAGES
CHAPTER 4			
	4.6	BOLT-JOINED CALCULATION	70
CHAPTER 5	CON	CEPT DESIGN	72
	5.1	CURRENT DESIGN	72
	5.2	SKETCHES	74
	5.3	CONCEPT DESIGN BY CATIA VSR16	74
	5.4	QUALITY FUNCTION DEPLOYMENT (QFD)	76
	5.5	MOLD DESIGN	78
	5.6	ASSEMBLY DESIGN	78
CHAPTER 6	FAB	RICATION	80
	6.1	MOCK-UP MODEL	80
	6.2	MOLDING MODEL	81
	6.3	PRODUCT PROCESS	83
	6.4	FINAL PRODUCT	86

CHAPTER	MA	TER	PAGES
CHAPTER 7	RES	ULTS AND DISCUSSION	88
	7.1	RESULTS	88
	7.2	PROBLEMS AND DIFFICULITIES	89
		7.2.1 PROBLEM IN ANALYSIS	89
		7.2.2 PROBLEM IN FABRICATION METHO	D 89
		7.2.3 PROBLEM IN TESTING	90
CHAPTER 8	CON	CLUSION AND FUTURE RECOMMENDATION	DN 92
	8.1	CONCLUSION	92
	8.2	FUTURE RECOMMENDATION	93
DEFEDENCE	C		0.4
REFERENCE	3		94
BIBLIOGRA	PHY		97
APPENDIX			99

LIST OF TABLES

NO	TITLE PA	GES
2.1	Properties of carbon fiber and fiberglass (Wonderly, 2005)	19
2.2	Properties of Polyester and epoxy (Smith and Hashemi, 2006)	22
2.3	Tensor versus Contracted Notation for Stresses and Strains (Jones, 1999)	29
2.4	Shape of Tensile Specimens (Austin, 2000)	38
2.5	Longitudinal Tensile Strength of Flange Specimens (Austin, 2000)	39
2.6	Comparison between Predicted and Experimental Tensile Properties	
	(Austin, 2000)	40
2.7	Longitudinal Compressive Strength of Flange Specimens (Austin, 2000)	41
2.8	Longitudinal Compressive Modulus of Flange Specimens (Austin, 2000)	42
2.9	Comparison of Tensile and Compressive Properties (Austin, 2000)	42
2.10	Critical Buckling Load Results for Homogeneous Plates: Simple-Fixed-Simple-Free (Austin, 2000)	44
2.11	ANSYS Determined Laminate Plate Buckling Loads for (90/+45/- 45): Simple-Fixed-Simple-Free (Austin, 2000)	45
2.12	Properties class of bolted joint (George,2001)	61
4.1	Allowable stresses for bolts (Mort, 2004)	71

NO	TITLE	PAGES
5.1	Quality Function Deployment (QFD) design criteria	76
5.2	QFD indicator	76
7.1	Differential casing comparison between glass fiber and steel material	88

LIST OF FIGURE

NO	TITLE PAG	ES
2.1	Differential gear in a car (cut model) (www.tpub.com)	5
2.2	Exploded view of a differential gear (www.tpub.com)	6
2.3	Differential of a rear axle of the car (www.howstuffworks.com)	7
2.4	Gear box case design (www.grandprix.com)	8
2.5	CFRP composite differential gear carrier (Gear Mechanic Corporation)	8
2.6	Bundle of a fiberglass (www.wikipedia.com)	12
2.7	Fabric made of woven carbon filaments (www.wikipedia.com)	14
2.8	Monocoque shell of Panoz DP01 champ car (www.wikipedia.com)	15
2.9	Lamina Coordinate System (Hyer, 1998)	24
2.10	Laminate Made-up of Laminae (Reddy, 1997)	25
2.11	Lamina On- and Off-axis Configurations (Staab, 1999)	29
2.12	Symmetric Angle-Ply Laminate and Stresses (Pipes and Pagano, 1970)	33
2.13	Free Edge Delaminations (Jones, 1999)	34

NO	TITLE	PAGES
2.14	Collapse of an I-shape GFRP column (Di Tommaso, 1998)	37
2.15	Collapse of an H-shape GFRP column (Di Tommaso, 1998)	38
2.16	Laminated composite plate containing a hole and subjected to general in-plane loading (Ireman, 1999)	39
2.17	Failure modes in a composite ply (Ireman, 1999)	42
2.18	Failure modes for composite bolted joints (Ireman, 1999)	44
2.19	Bolted joint (www.wikipedia.org)	45
2.20	Car hub cotter pin (www.wikipedia.org)	48
2.21	Hand lay-up procedure (Akavoli. 2001)	50
2.22	Spray-up process (Akavoli. 2001)	51
2.23	Schematic of vacuum bag process (www.azom.com/, 2000)	52
2.24	General Process of bag molding (www.niir.org/, 2004)	52
3.1	PSM 1 Flow Chart	54
3.2	PSM 2 Flow Chart	55
3.3	Design process flow chart	57
3.4	Load calculation flow chart	59
3.5	Composite calculation flow chart	60
3.6	Fabrication process flow chart	61
4.1	Single shear in bolt (Pytel ,2003)	63
4.2	A bolt in a lap joint (Pytel ,2003)	64
4.3	Non-constant bearing stress (Pytel ,2003)	64

NO	TITLE	PAGES
4.4	bearing stress caused by the bearing force P_b	
	is assumed to be uniform on projected area td (Pytel,2003)	65
4.5	Front view of differential casing	66
5.1	Rear View of UTEM Racing Car	73
5.2	Current design of differential casing	73
5.3	Concept design A	74
5.4	Concept design B	75
5.5	Concept design C	75
5.6	Schematic Drawing of the New Composite Differential Casing	76
5.7	Mold Design for Differential Casing	77
5.8	Assembly design of Composite differential casing product	78
6.1	Ready-to-cut model	79
6.2	Several view of mock-up model	80
6.3	Mold Model	81
6.4	Mold model layered by cement and plastic tape	82
6.5	GFRP woven roving and chopped strand mat	83
6.6	Mold Wax	83
6.7	Waxing process	84
6.8	Patching process	84
6.9	Final product of composite differential casing (half part)	85

NO	TITLE	PAGES
6.10	Final product of composite differential casing (full part)	85
7.1	Unsmooth material after cutting process	90
7.2	gap caused by rugged surface	90
7.3	The joint that has been welded permanently	91

LIST OF SYMBOLS

$\tau =$ Shear Stress
P = V = Shear Force
A = Area
A_b = Reduced Area
<i>t</i> = Thickness
d = Diameter
P_b = Bearing Force
σ_b = Bearing Stress
M = Moment
Fr = Friction force
r = Radius
E_{11} = Modulus young
G_{12} = Tensile modulus
V_{21} = Poisson ratio

LIST OF APPENDIX

NO	TITLE	PAGES
A	Concept Design Sketches	99
В	Concept Design A	100
С	Concept Design B	101
D	Schematic Diagram of Conceptional Drivetrain Differential Casing (Half Mold)	; 102
Е	Schematic Diagram of Conceptional Drivetrain Differential Casing	, ,
	(Final Product)	103
F	Chopped Strand Mat Manufacturer Details	104
G	Woven Rowing Manufacturer Details	105
Н	Resin Manufacturer Details	106
Ι	PSM 1 and PSM 2 Gantt Chart	107

CHAPTER 1

INTRODUCTION

Formula student race car is using rear wheel drive for its transmission. In formula student race car, drive train differential gear plays an important role in rear drive wheel transmission. The function of the gear differential is to allow the rear wheels rolling with different rate of speed when its moving in straight line and cornering on the road. A casing for the drive train differential casing of the car is needed in case to protect the gear parts and its oil from damage.

1.1 OBJECTIVES

The objectives of the project are:

- i. To produce a composite drive train differential casing for Formula Student Race Car
- ii. To reduce the component weight on the existing Formula Student race car.