INFRA RED (IR) BASED TOMOGRAPHY SYSTEM: A COMPARISON BETWEEN ORTHOGONAL AND FAN BEAM PROJECTION

SITI HANAFIAH BINTI JUDDIN

This report is submitted in fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honors

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

UNIVERSTI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

INFRA RED (IR) BASED TOMOGRAPHY SYSTEM: Tajuk Projek : A COMPARISON BETWEEN ORTHOGONAL AND FAN BEAM PROJECTION

Sesi Pengajian : 2008/2009

Saya SITI HANAFIAH BINTI JUDDIN

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
4. Sila tandakan $(\sqrt{ })$:

TERHAD*

TIDAK TERHAD
(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap: LOT 3019, KG BENDANG KERIAN

16200 TUMPAT, KELANTAN
"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature
Author : SITI HANAFIAH BINTI JUDDIN
Date : 30 APRIL 2009
"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honors."

Signature

Supervisor's Name
Date
: EN ADIE BIN MOHD KHAFE
: 30 APRIL 2009

Dedicated for my beloved father and mother...

ACKNOWLEDGEMENTS

Firstly, I would like to dedicate my highest gratitude to Allah SWT for giving me the strength to complete this final project.

With this opportunity, I would like to take this opportunity to express my gratitude to my beloved parents for their continuous support to ensure that I continue growth and success during my educational process. My sincere appreciation also goes to my supervisor, Mr Adie Bin Mohd Khafe for giving me prudent advice and guidance in shaping my direction to ensure that I could complete my final project. Thank you for the time and experiences shared as well as additional knowledge gained as I believe that I would not get this kind of opportunity elsewhere.

I am also indebted to my friends and I would like to thank all of them from 4 BENC S2 and group's members of PSM who had been such wonderful friends to me and also to everyone else who was involved in the completion of this project. I would like to thank them for all the support and encouragement to me which have given me the courage and wisdom to fulfill my final year project. Thank you.

Abstract

This project is to design, implement and compare infra red based tomography system which using orthogonal and fan beam projection. Here, the basic concept of orthogonal and fan beam projection must be understood. Infra red will be used as the light emitter and receiver sensor in this project. In terms of hardware, two types of jig/fixture will be designed in order to comparing orthogonal and fan beam projection. The reconstructed images from these two types of projections (orthogonal and fan beam) can be formed by design a signal conditional circuit and fabricate into printed circuit board (PCB) and the data from this circuit will be transferred through Data Acquisition (DAQ). Besides the hardware, this project will include the use of user friendly, Visual Basic 6.0 program to implement voltage linear back projection in order to reconstruct the image by comparing the result between both projections. Through this project, the comparison result of both projections can be obtained.

Abstract

ABSTRAK

Projek ini adalah untuk mereka bentuk, melaksanakan dan membandingkan inframerah berdasarkan sistem tomografi (kaedah radiografi yang mempamerkan perincian tubuh badan) dengan menggunakan unjuran 90° dan unjuran sinaran kipas. Di sini, konsep asas unjuran 90° dan unjuran sinaran kipas haruslah difahami. Inframerah akan digunakan sebagai cahaya pemancar dan penerima penderia dalam projek ini. Dari segi perkakasan, 2 jenis aci (alat pemegang sesuatu bahan kerja supaya ia tetap) akan direka untuk membandingkan unjuran 90° dan unjuran sinaran kipas. Pembinaan semula imej daripada 2 jenis unjuran ini (unjuran 90° dan unjuran sinaran kipas) akan dibentuk dengan merekabentuk satu litar isyarat dan dibina ke dalam litar tercetak dan data daripada litar ini akan dipindahkan ke dalam sistem perolehan data. Selain daripada perkakasan, projek ini temasuk dengan penggunaan pengguna yang mesra, program visual asas 6.0 untuk melaksanakan unjuran voltan garis lurus belakang dalam pembinaan semula imej dengan membandingkan keputusan di antara 2 jenis unjuran tersebut. Melalui projek ini, keputusan pembandingan di antara 2 jenis unjuran tersebut akan diperoleh.

TABLE OF CONTENTS

CHAPTER CONTENTS
TITLE i
STATUS REPORT FORM ii
VERIFICATION OF REPORT iii
VERIFICATION BY SUPERVISOR iv
DEDICATION v
ACKNOWLEDGEMENTS vi
ABSTRACT vii
ABSTRAK viii
TABLE OF CONTENTS ix
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF APPENDICES xvii
I INTRODUCTION
1.1 Project Synopsis 1
1.2 Project Objectives 1
1.3 Problem Statements 2
1.4 Scopes Of Work 2
1.5 Expected Result 3
II LITERATURE REVIEW
2.1 Process Tomography 4
2.2 Types Of Projection 6
2.3 Types Of Sensor 11
2.3.1 Electrical Capacitance Tomography 12
2.3.2 Ultrasonic Tomography 13
2.3.3 Gamma Ray Tomography 15
2.3.4 Optical Tomography 16
2.4 Data Acquisition (DAQ) 17
2.4.1 Quantizing Theory 20
2.4.2 Analog-To-Digital Conversion 21
2.4.2.1 Introduction 21
2.4.2.2 Analog-to-Digital Converters 24
2.4.3 Digital-To-Analog Conversion 28
III METHODOLOGY
3.1 A Comparison Between Orthogonal And Fan Beam 32 Projections
3.1.1 Fan Beam Projection Technique 32
3.1.2 Parallel Projection Technique 34 (Orthogonal Projection)
3.2 Hardware 35
3.2.1 Infrared Sensor 36
3.2.2 Infrared Receiving Circuit 36
3.2.3 Data Acquisition (DAQ) 39
3.2.4 Image Reconstruction 40
3.2.5 Linear Back Projection (LBP) Algorithm 40
3.3 Software 52

IV RESULTS \& DISCUSSION

4.1 Introduction 55
4.2 Prototype Circuit (Receiving Circuit) 55
4.3 Pipe Design 59
4.3.1 Jig/fixture of the projection 60
4.4 Experiment To Evaluate IR Penetration Limit 61
4.5 Result Of Image Reconstruction For Orthogonal 64

Projection
4.5.1 Result for $2 \mathrm{~cm} \times 2 \mathrm{~cm} \quad 65$
4.5.2 Result for $3 \mathrm{~cm} \times 3 \mathrm{~cm} \quad 66$
4.5.3 Result for $4 \mathrm{~cm} \times 4 \mathrm{~cm} \quad 68$
4.6 Result Of Image Reconstruction For Fan Beam 71

Projection
4.6.1 Result for $2 \mathrm{~cm} \times 2 \mathrm{~cm} \quad 72$
4.6.2 Result for $3 \mathrm{~cm} \times 3 \mathrm{~cm} \quad 73$
4.6.3 Result for $4 \mathrm{~cm} \times 4 \mathrm{~cm} \quad 74$
4.7 Color Scheme 76

V CONCLUSION \& SUGGESTION
5.1 Conclusion 77
5.2 Future Recommendation 78

REFERENCES 79
APPENDIX A 80
APPENDIX B 85
APPENDIX C 88
APPENDIX D 90
APPENDIX E 103
APPENDIX F 116

LIST OF TABLES

TITLE

PAGE

2.1 Sensor Grouping 12
$2.2 \quad$ 2-bit flash converter output 27
3.1 Implementation schedule of PSM I 54
3.2 Implementation schedule of PSM II 54

LIST OF FIGURES

NO TITLE PAGE
2.1 X-ray tomographic projection 6
2.2 Parallel beam projections 7
2.3 Two orthogonal projections 8
2.4 Two rectilinear projections 8
2.5 Three rectilinear projections 9
2.6 A combination of two orthogonal and two rectilinear projections 9
2.7 Three fan-beam projections 10
2.8 Four fan-beam projections 10
2.9 Analog signal and sampled equivalent 18
2.10 Aliasing 19
2.11 Analog-to-digital conversions 20
2.12 Components used in A / D conversion 22
2.13 Block diagram of the KUSB-3108 23
2.14 A/D conversion aperture time 24
2.15 Successive approximation A/D converters 25
2.16 4-bit successive approximation A / D conversions 26
2.17 A/D flash converters 27
2.18 4-bit resistor ladder D/A converter 28
2.19 4-bit resistor ladder D/A with digital input 0001 29
2.20 Computer control hardware 31
3.1 Two fan-beam projections 33
3.2 Four fan-beam projections 33
3.3 Parallel beam projections 34
3.4 Two orthogonal projections 35
3.5 Block diagram of developed system 35
3.6 Signal conditioning for receiver circuit 37
3.7 Receiving circuit 39
3.8 Illustration of back projection scheme 41
3.9 The sensitivity map for 16 matrices of projection for orthogonal 45
3.10 The sensitivity map for 16 matrices of projection for fan beam 51
3.11 GUI of the system 52
3.12 Methodology of the project 53
4.1 Prototype circuit (receiving circuit) 56
4.2 Infrared (transmitter) 56
4.3 Taking measurement from the circuit. Range from the 57 transmitter to the receiver sensor is 10 cm .
4.4 Output 10 V using oscilloscope 57
4.5 Obstruction at the signal path (between emitter and receiver) 58
4.6 Output when an infrared (emitter) was blocked 58
4.7 The conveyor pipe of orthogonal projection 59
4.8 The conveyor pipe of fan beam projection 59
4.9 Dimension of conveyor pipe 60
4.10 Jig/fixture of orthogonal projection 60
4.11 Jig/fixture of fan beam projection 61
4.12 Types of cube size ($4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 2 cm) 62
4.13 Measurement part using orthogonal projection 62
4.14 Measurement part using fan beam projection 63
4.15 Infrared light come out from digital camera (orthogonal 63 projection)
4.16 Infrared light come out from digital camera (fan beam 64 projection)
4.17 The minimum value at voltage drop in 1 channel 65
4.18 The minimum value at voltage drop in 16 channels 65
4.19 Concentration profile and LBP algorithm interfaced using VB 66
4.20 The minimum value at voltage drop in 1 channel 66
4.21 The minimum value at voltage drop in 16 channels 67
4.22 Close up view of voltage drop at minimum value of 67 measurement
4.23 Concentration profile and LBP algorithm interfaced using VB 68
4.24 The minimum value at voltage drop in 1 channel 68
4.25 The minimum value at voltage drop in 16 channels 69
4.26 Close up view of voltage drop at minimum value of measurement
4.27 Concentration profile and LBP algorithm interfaced using VB 71
4.28 The minimum value at voltage drop in 1 channel 72
4.29 Concentration profile and LBP algorithm interfaced using VB 72
4.30 The minimum value at voltage drop in 1 channel 73
4.31 Concentration profile and LBP algorithm interfaced using VB 73
4.32 The minimum value at voltage drop in 1 channel 74
4.33 The minimum value at voltage drop in 16 channels 74
4.34 Close up view of voltage drop at minimum value of measurement
4.35 Concentration profile and LBP algorithm interfaced using VB 75
4.36 Color scheme bar 76

LIST OF APPENDICES

PAGE
A TL084CN Datasheet 80
B Infrared Led Datasheet 85
C Layout Of PCB For Receiving Circuit 88
D Orthogonal Projection 90Data Sample For Measurement Of Object WithDimension Of $2 \mathrm{cmx} 2 \mathrm{~cm}, 3 \mathrm{~cm} \times 3 \mathrm{~cm}$ And 4 cmx 4 cm
E Fan Beam Projection 103
Data Sample For Measurement Of Object With
Dimension Of $2 \mathrm{cmx} 2 \mathrm{~cm}, 3 \mathrm{~cm} \times 3 \mathrm{~cm}$ And 4 cmx 4 cm
F Source Code Of Programming 116

CHAPTER 1

INTRODUCTION

1.1 Project Synopsis

The objective of this project is to design, implement and compare infra red based tomography system which using orthogonal and fan beam projection. Infra red will be used as the light emitter and receiver sensor in this project. The reconstructed images from these two types of projections can be formed by reconstructing signal control circuit, jig and fixture design / fabrication. Besides the hardware, this project will include the use of user friendly, Visual Basic 6.0 program to visualize the concentration profile by comparing the result between both projections.

1.2 Project Objectives

1. To design jig/fixture for IR based tomography system using orthogonal and fan beam projection.
2. To design and fabricate PCB of signal conditional circuit.
3. To compare IR based tomography system using orthogonal and fan beam projection.
4. To interface hardware circuit using Visual Basic through Data Acquisition (DAQ).
5. To design a program that can visualize the concentration profile by comparing the result between both projections using Visual Basic 6.0.

1.3 Problem Statements

Process tomography is the method to obtain cross-sectional image over measurement area. There are several methods to array the projection such as:

1. Orthogonal projection.
2. Fan beam projection.
3. Rectilinear projection.
4. Mix all projection.

Most of the researches in process tomography are related on orthogonal projections because it is easy to implement. However, compare to the orthogonal projection, the fan beam projection will give high resolution image, although it used the same number of sensor.

1.4 Scopes Of Work

The scopes of work for this project including:

1. To understand the concept of orthogonal and fan beam projection.
2. To design, fabricate or build signal conditional circuit.
3. To test the usability of IR sensor for this project.
4. To design, evaluate and manufacture jig/fixture that can produce 2 types of projections (orthogonal and fan beam).
5. To implement voltage linear back projection in order to reconstruct the image using Visual Basic.

1.5 Expected Result

The expected result that student should get from this project is to develop or built several hardware which can compare the infra red based tomography system which using orthogonal and fan beam projection. The images from these two types of projections can be formed by reconstructing signal obtained from signal control circuit, and be process with software (Visual Basic 6.0) to visualize the concentration profile by comparing the result between two projections. Through this project, the comparison result of both projections can be obtained.

CHAPTER 2

LITERATURE RIVIEW

2.1 Process Tomography

Tomography refers to the reconstruction of the internal distribution of 2D and 3D objects from multiple external viewpoints, thus providing cross-sectional slices through the object. The term originates from the Greek words tomos (for slice) and graph (for image). The term is commonly found in medical diagnostics, where computerized tomography (CT) x-ray scanning systems are well known. The medical applications of tomography provide a useful illustration of the principle, although this review is of course concerned primarily with industrial processes.

In a conventional x-ray imaging system, a cone-shaped beam of x-rays is used to illuminate the subject on one side. In passing through the subject, the radiation is attenuated (either absorbed or scattered) in proportion to the local electronic density; thus, variations in density or composition determine the intensity of the radiation as it leaves the subject. The final intensity pattern is captured as an image on a photographic plate mounted on the opposite side. The pixels of the resulting photograph (radiograph) represent the attenuation integrated through the object along the rays emanating from the source. This integration in effect removes depth information from the image, so if for
example a tumor were seen on a radiograph one could not determine (on the basis of one image) which of several overlaying organs was affected.

In contrast, early tomography systems used several different views to build up an image of a slice at a predetermined depth in the subject. Most x-ray tomography systems in recent times have been designed to obtain cross-sectional slice images perpendicular to some axis, around which the sources and detectors are rotated. This process is known as axial tomography. In a first-generation CT system, a narrow x-ray beam is transmitted through the subject, and a collimated detector is placed on the side of the subject. This measures the line-integrated attenuation of the beam through the subject along the path so defined. Figure 2.1 illustrates this arrangement in general form. The example subject has a circular cross-section and contains further contrasting circular features. An x-ray transmission source U and receiver V are shown. A beam is transmitted from the source along the line shown, displaced by length s from the origin and at angle \varnothing, creating the line of integration, l. The measurement system measures the path integral of the subject's density distribution along this line, and it call this quantity the path density integral (PDI). If the angle is held constant and the beam is displaced across the subject (in direction s), a "shadow" of the subject can be seen in the attenuation data. This composite set of data is called the projection.

A set of projections can be obtained by repeating this process for a range of values of the angle \varnothing, in effect providing an observation of the subject's shadow from multiple viewpoints. From an intuitive perspective, these projections are the prerequisite for tomographic imaging. In fact, from a mathematical perspective, the individual PDI values are the basic requirement.

Clearly, the measured PDI values will depend on the attenuation distribution, depicted in Figure 2.1 as $f(x, y)$. If sufficient PDI data are obtained, these may be used to estimate this distribution. In mathematical terms, this is a classic inverse problem, and the process of solving it to generate the estimated distribution is commonly called image
reconstruction. The quality of the resulting estimate depends on the quality and number of PDI data and on the reconstruction algorithm.

Figure 2.1 X-ray tomographic projection

2.2 Types Of Projection

Tomographic techniques vary widely in their instrumentation and applications, all of them can be characterized by a common two-step approach to the imaging process; firstly gather projection data based on some physical sensing mechanism, then reconstruct a cross sectional image from the projections. The term "projection" has a specific meaning in tomography which a projection can be visualized as type of radiography of the process vessel.

In tomography, many projections are needed to reconstruct the interior volume or cross-section of an object. Projections actually can be referred as sensor arrangement. In practical systems, there are two types of projection that have been investigated and applied to measure gas / solid flow, which are:

1. Parallel projection (Orthogonal Projection).
2. Fan beam projection

For parallel projection, the number of emitter and receiver are the same. Each pair of trans-receiver is arranged in a straight line and the received signal only corresponds to its emitter source, while for fan beam projection, the number of emitter and receivers can be unequal. The fan beam projection technique provides a higher resolution system compared to the same number of sensors used in parallel projection due to high obtaining information several projections are needed to reduce aliasing which occurs when two particles intercept the same view.

However from both methods, it can be illustrated into a various techniques of arrangement which all of that has been widely investigated to implement into flow imaging of conveying system. The various arrangements can be illustrated into six types of projection, which are:

1. Parallel beam projection. (Figure 2.2)
2. Two orthogonal projections. (Figure 2.3)
3. Two rectilinear projections. (Figure 2.4)
4. Three rectilinear projections. (Figure 2.5)
5. A combination of two orthogonal and two rectilinear projections. (Figure 2.6)
6. Three fan-beam projections. (Figure 2.7)
7. Four fan-beam projections. (Figure 2.8)

Figure 2.2 Parallel beam projections

