"I hereby declared that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and qualify for the award of the Degree of Bachelor Mechanical Engineering (Design & Innovation)"

Signature	:	
Name of Supervisor	:	
Date	:	

LEACHING PROCESS OF NATA DE COCO: AUTOMATION SYSTEM DESIGN AND IMPLEMENTATION

CHOY YING YI

A project report submitted in partial fulfillment of the requirements for the award of the Degree of Bachelor Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2009

C Universiti Teknikal Malaysia Melaka

"I hereby declared that this is my own work except the ideas and summaries which I have clarified their sources"

Signature	:
Author	:
Date	:

Special dedicate to

my family, supervisor, my friends, and all that help me to finish my thesis.

iii

ACKNOWLEDGEMENT

The success of any project as extensive as this one involves the contributions and support of many people. There are many people I would like to express my gratitude and appreciation from the depth of my heart for their support, guidance and cooperation during the time I undergo this project.

A special note of thanks dedicated to my supervisor, Mr. Zairulazha bin Zainal for his guidance, help, support, advices, critics and motivation. He never refuses to spare his precious time on teaching and sharing his professional knowledge and experience with me. Without his help and support, this project would not have been the same as presented here.

I would also like to extend my thanks to Mr. Faizil bin Wasbari for guiding me and sharing his professional knowledge. Note of thanks is also given to Mr. Ikhmal, Mr. Khairul, and Mr. Hairul who had helped and guided me during the undergo of my project. Special appreciation goes to all the staff of UTeM for their help and guidance. My appreciation is also extended to all who provided helpful suggestions, ideas and encouragement in completing this project and report.

Last but not least, my family those were always behind me no matter what happened. Their full support and encouragement were such a boost for my capabilities and confidence to undergo the PSM. Again, I like to extend my appreciation to the kindnesses of everyone I mentioned above.

ABSTRAK

Projek ini adalah berkaitan dengan rekabentuk dan pemupukan system automasi dalam proses peneutralan Nata de Coco. Untuk kajian ini, cara kawalan berdasarkan sifat dinamik system digunapakai. Pada awalnya, sifat dinamik untuk sistem pengawalan cecair dikaji dengan menggunakan cara matematik and simulasi. Kajian untuk sifat dinamik sistem pengawalan cecair dibuat dengan mengambilkira tiga kes iaitu sistem dengan satu tangki, sistem dengan dua tangki dan sistem dengan tiga tangki. Sistem untuk proses peneutralan Nata de Coco direkabentuk dengan berdasarkan kes yang sistem itu mempunyai sifat dinamik yang paling bagus. Satu experiment dijalankan untuk membandingkan keputusan simulasi dan experimen. Untuk kajian kawalan pH, experimen juga dijalankan. Sistem automasi dicadangkan dan penerangan kasar terhadap sistem automasi dibuat. Rekebentuk sistem automasi adalah berdasarkan data yang diambil dari kajian experiment dalam kerja ini. Prototaip untuk proses peneutralan Nata de Coco dibuat. Sistem automasi dipasang pada prototaip yang telah dibuat. Sifat dinamik untuk cecair system adalah tak linear. Perbandingan antara keputusan experiment dan simulasi membuktikan kesahihan experiment dan simulasi. Sistem automasi beroperasi berasaskan penukaran antara "on" atau "off" status untuk injap, dan masa untuk penukaran status adalah berdasarkan data experiment kajian ini. Cara kawalan berdasarkan sifat dinamik system yang diguna pakai mempunyai kebaikan dari segi kos yang rendah.

ABSTRACT

This project is about automation system design implementation on Nata de Coco leaching process. The dynamic behavior based control approach is implemented in this work. Initially, study on dynamic behavior of the liquid level system is done with mathematical modeling and simulations. The system is studied by considering three cases; single tank system, two tanks system and three tanks system. The water level system for Nata de Coco leaching process is designed by considering the case which the system has best dynamic behavior. Experiment is implemented to compare simulations results and experimental results of the dynamic behavior of liquid level system. For the study of pH control, experiment is also implemented. An automation system is proposed and a brief overview of the proposed automation system process is also included. The automation system is designed based on data obtained from experiment in this study. The prototype for Nata de Coco leaching process is fabricated. The automation system is implemented on the prototype. The dynamic behavior of the liquid level system is found to be highly non linear. The comparison of simulation results and experimental results validated both the simulation and experiment on liquid level system. The automation system is found to be operated on the basis of switching between on and off status of the valves at different time interval, and the on off switching time is obtained from experiments that had been done in this study. The dynamic behavior based control approach that has been used in this study has the advantage of low cost.

LIST OF CONTENT

CHAPTER	CONTENT	PAGE
	DECLADATION	
	DECLARATION	11
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRAK	V
	ABSTRACT	vi
	LIST OF CONTENT	ix
	LIST OF TABLES	xxvii
	LIST OF FIGURES	xxix
	NOTATION	xxxvii
	LIST OF APPENDICES	xxxviii

CHAPTER I

INTR	ODUCTION	1
1.1	Background	1
1.2	Objectives of Study	3
1.3	Problem Statement	4
1.4	Scopes	5

enefits of Study	6
6	enefits of Study

CHAPTER II	LITI	ERATURE REVIEW	7
	2.1	Nata de Coco Leaching Process	8
	2.2	Dilution	8
	2.3	Process Control	9
		2.2.1 Liquid Level Control	10
		2.3.2 Liquid Flow Control	11
		2.3.3 Single Input Single Output Liquid	
		Level System	12
		2.3.4 Controller for Liquid Level System	13
		2.3.5 pH Control	14
	2.4	Programmable Logic Controller (PLC)	
		Based Process Control System	14

CHAPTER	CON	TENT		PAGE
	2.4	Summ	ary	15
CHAPTER III	MET	HODO	LOGY	16
	3.1	Dynar	nic Behavior Based Control Approach	ı 17
	3.2	Mathe	matical Modeling and Simulations	18
		3.2.1	Overview	18
		3.2.2	Case 1: Single Tank System	19
			3.2.2.1 Mathematical Modeling	20
			3.2.2.2 Simulation	22
			3.2.2.3 Simulation Result of h_1	23
			3.2.2.4 Dynamic Behavior of Respon	1se 23
		3.2.3	Case 2: System with Two Tanks	24
			3.2.3.1 Mathematical Modeling	25
			3.2.3.2 Simulation	28
			3.2.3.3 Simulation result of h_1 and h_2	2 29
			3.2.3.4 Dynamic Behavior of Respon	1se 29
		3.2.4	Case 3: System with Three Tanks	
			Tanks	30
			3.2.4.1 Mathematical Modeling	31

PAGE

CHAPTER	CONTENT

3.3

3.2.4.2 Simulation	35
3.2.4.3 Simulation Results of h_1 , h_2	
and h ₃	36
3.2.4.4 Dynamic Behavior of Respon	se 36
mental Setup	37
Simulations with Prototype Parameter	r 37
Case 1: Single Tank System	38
3.3.2.1 Simulation for Single Tank	
System	39

3.3.3	Case 2: System with Two Tanks	40
	3.3.3.1 Simulation for Two Tanks	
	System	41
3.3.4	Case 3: System with Three Tanks	42
	3.3.4.1 Simulation for Three Tanks	

Experimental Setup

3.3.1

3.3.2

System	43
--------	----

	Implementation of Experiment	44				
3.4	Selection of Liquid Level System for					

Improvement on System Response for Water 3.5 Level System 44

3.5.1	Improvement on System Response for	
	Single Tank Water Level System	46
	3.5.1.1 Step Change in Input for	
	Improvement on System	
	Response	46
	3.5.1.2 Designed Input One: Input	
	Water Flow Rate is 17 cm ³ /s	
	at the Beginning of	
	Experiment	46
	3.5.1.3 Designed Input Two: Input	
	Water Flow Rate is 2.6 cm ³ /s	
	When h_1 is 5 cm	48
	3.5.1.4 Designed Input Three: Input	
	Water Flow Rate is	
	2.8 cm^3 /s When h_1 is 8.4 cm	50
	3.5.1.5 Variations in Input on	
	Single Tank Water Level	
	System	53

3.5.2	Improvement on System Response	
	for Two Tanks Water Level System	55
	3.5.2.1 Step Change in Input for	
	Improvement on System	
	Response	55
	3.5.2.2 Designed Input One:	
	Input Water Flow Rate is	
	$17 \text{ cm}^3/\text{s}$ at the Beginning	
	of Experiment	55
	3.5.2.3 Designed Input Two:	
	Input Water Flow Rate is	
	$2.8 \text{ cm}^3/\text{s}$ When h_1	
	is 13.3 cm	57
	3.5.2.4 Designed Input Three:	
	Input Water Flow Rate	
	is 2.48 cm ³ /s	
	When h_1 is 15.3 cm	60

CHAPTER CONTENT

PAGE

		Two Tanks Water Level	
		System	63
3.6	Impler	nentation of Experiment on	
	Water	Tank Level System	64
	3.6.1	Implementation of Experiment	
		on Single Tank Water	
		Level System	64
		3.6.1.1 Experiment Setup	64
		3.6.1.2 Procedure of	
		Experiment	66
	3.6.2	Implementation of Experiment	
		on Two Tanks Water	
		Level System	66
		3.6.2.1 Experiment Setup	67
		3.6.2.2 Procedure of	
		Experiment	68

3.5.2.5 Variations in Input on

3.7	Proposed System Design for Nata				
	de Coco Leaching Process: Two				
	Tanks Water Level System	69			
	3.7.1 Overview	69			
	3.7.2 Processes in System	71			
3.8	Proposed Automation System	72			
3.9	Programmable Logic Controller				
	Automation System Design	74			
	3.9.1 Overview	74			
	3.9.1.1 Keyence KV-16DR				
	Programmable Logic				
	Controller Unit	74			
	3.9.1.2 Ladder Builder for KV	75			
3.9.2	PLC Ladder Diagram Design Setup	75			
	3.9.2.1 Inputs and Input Relay				
	Number	76			
	3.9.2.2 Output Coil Number, Output				
	Relay Number, Internal Relay				

Number and Internal Coil

CHAPTER	CONT	ΓΕΝΤ		PAGE
			Number for Each Valve 3.9.2.3 Number of Timer, Preset Value in Timer and Timer Number for Operation of Each Valve	76 77
		3.9.3	Proposed Design of Ladder Diagram	
			for Programmable Logic	
			Controller (PLC)	81
			3.9.3.1 Introduction	81
			3.9.3.2 Operation and Sequence of	
			Ladder Diagram	82
		3.10	Methodology Flow Chart	94
CHAPTER IV	RESU	ILTS A	ND DISCUSSION	96
	4.1	Simula	ation Results and Dynamic Behavior	96
	4.2	Simula	ation Results and Dynamic Behavior	
		for Wa	ater Tank Level System	97
		4.2.1	Simulation Results and Dynamic	

Behavior for Single Tank System 97

CHAPTER CONTENT

	4.2.1.1 Simulation Result of h_1	97	
	4.2.1.2 Dynamic Behavior of h ₁	98	
4.2.2	Simulation Results for Two Tanks		
	System	99	
	4.2.2.1 Simulation Result of h_1	99	
	4.2.2.2 Dynamic Behavior of h_1	100	
	4.2.2.3 Simulation Result of h_2	101	
	4.2.2.4 Dynamic Behavior of h_2	102	
	4.2.2.5 Comparison of h_1 and h_2	103	
4.2.3	Simulation Results for Three Tanks		
	System		
	4.2.3.1 Simulation Result of h_1	104	
	4.2.3.2 Dynamic Behavior of h_1	105	
	4.2.3.3 Simulation result of h_2	106	
	4.2.3.4 Dynamic Behavior of h_2	107	
	4.2.3.5 Simulation Result h ₃	108	
	4.2.3.6 Dynamic Behavior of h_3	109	
	4.2.3.7 Comparison of h_1 , h_2 and h_3	110	
4.2.4	Summary of Simulation Results for		
	Three Cases	111	
Simul	ation Results for Improvement on		
System Response on Single Tank 112			
4.3.1	Simulation Results Before		
	Improvement on System Response	112	

4.3

CHAPTER	CONTENT		PAGE
		4.3.1.1 Simulation Results for h_1	112
		4.3.1.2 Dynamic Behavior of h_1	113
	4.3.2	Simulation Result and Dynamic	
		Behavior After Improvement on	
		System Response	113
		4.3.2.1 Simulation Result of h_1	113
		4.3.2.2 Dynamic Behavior of h_1	114
	4.3.3	Analysis of System Response	
		Improvement on Single Tank	
		System	115
		4.3.3.1 Simulations Results of h_1	
		When Input Flow	
		Rate is $17 \text{ cm}^3/\text{s}$	115
		4.3.3.2 Simulation Result for h_1	
		when Input Water Flow	
		Rate is Reduced from	
		$17 \text{ cm}^3/\text{s}$ to 2.6 cm ³ /s	116

 $4.3.3.3 \ Simulation \ Result \ for \ h_1$

when Input Water Flow

Rate is Reduced from

 $17 \text{ cm}^3/\text{s}$ to 2.6 cm³/s and

from 2.6 cm³/s to 2.8 cm³/s 117

		4.3.4	Comparison of Water Level Rise	
			Time in Single Tank System	
			before and after Improvement	
			on System Response	118
4.4	Simul	ation Re	esults of Improvement on System	
	Respo	nse for	Two Tanks Water Level System	119
	4.4.1	Simul	ation Results and Dynamic	
		Behav	ior of Two Tanks System	
		Before	e Improvement on System Response	119
		4.4.1.1	l Simulation Results for h ₁	119
		4.4.1.2	2 Dynamic Behavior of h ₁	120
		4.4.1.3	3 Simulation Results for h ₂	120

4.4.1.4 Dynamic Behavior of h₂ 121

	4.4.1.5 Comparison of h_1 and h_2	121
4.4.2	Simulation Results and Dynamic	
	Behavior of Two Tanks System After	
	Improvement on System Response	122
	4.4.2.1 Simulation Result of h_1	122
	4.4.2.2 Dynamic Behavior of h ₁	123
	4.4.2.3 Simulation Result of h ₂	124
	4.3.2.4 Dynamic Behavior of h ₂	125
	4.4.2.5 Comparison of h_1 and h_2	126
4.4.3	Analysis of System Response Improvement	
	on Two Tanks System	127
	4.4.3.1 Simulation Result for h_1 when	
	Input Water Flow Rate is 17 cm ³ /s	127
	4.4.3.2 Simulation Result for h_1 when	
	Input Water Flow Rate is Reduced	

from 17 cm³/s to 2.8 cm³/s

APTER		CON	ΓΕΝΤ	PAGE
			4.4.3.3 Simulation Result for h ₁ when	
			Input Water Flow Rate is Reduced	
			from 17 cm ³ /s to 2.8 cm ³ /s and	
			from 2.8 cm ³ /s to 2.48 cm ³ /s	129
		4.4.4	Comparison of Water Level Rise Time	
			in Each Tank before and after	
			Improvement on System Response	130
	4.5	Exper	imental Results for Single Tank Water	
		Level	System	131
		4.5.1	Experimental Results for Liquid Level	
			System	131
		4.5.1.1	l Graph of Water Level in Tank, h ₁ versus	
			Time, t	131
		4.5.1.2	2 Dynamic Behavior of h ₁	132
	4.5.2	Exper	imental Results for pH Variations	133
		4.5.2.1	l Graph of pH in Tank Versus Time	133
	4.5.3	Analy	sis on Experimental Results	134
	4.5.4	Comp	arison of Experimental Results and	
		Simula	ation Results	134

C Universiti Teknikal Malaysia Melaka

CHAPTER		CONTENT	PAGE
		4.5.4.1 Percentage Difference between	
		Experimental and Theoretical	
		Value for Dynamic Behavior of	
		Water Level in Tank, h ₁	135
		4.5.4.2 Discussion on Comparison	
		of Experimental and Simulation Results	136
4.6	Exper	imental Results for Two Tanks Water Level System	138
	4.6.1	Experimental Results for Liquid Level System	139
		4.6.1.1 Water Level in Tank 1, h1 versus Time, t	139
		4.6.1.2 Dynamic Behavior of h ₁	140
		4.6.1.3 Water Level in Tank 2, h ₂ versus Time, t	141
		4.6.1.4 Dynamic Behavior of h ₂	141
		4.6.1.5 Graph of Comparison of h_1 and h_2	143
	4.6.2	Experimental Results for pH Variations	144
		4.6.2.1 Graph of pH in Tank 1 Versus Time	144
		4.6.2.2 Graph of pH in Tank 2 Versus Time	145
	4.6.3	Analysis on Experimental Results	145

CHAPTER		CONTENT		PAGE	
	4.6.4	Comparison of			
		Simulation R	esults	146	
		4.6.4.1 Percer	ntage Difference between		
		Exper	imental and Theoretical Value		
		for Dy	ynamic Behavior of Water Level		
		in Tank 1, h ₁		146	
		4.6.4.2 Percer			
		Exper	imental and Theoretical Value		
		in Tar	in Tank 2, h ₂		
	4.6.4.3 Discussion on Comparison of				
		Exper	imental and Simulation Results	150	
4.7	Analysis on Operation of Proposed PLC Ladder Diagram				
	4.7.1 Introduction				
		4.7.2	Operation of Ladder Diagram		
			for Valve 1	153	
		4.7.3	Operation of Ladder Diagram for		
			Valve 2	156	

CHAPTER	CON	TENT	ſENT	
		4.7.4	Operation of Ladder Diagram for	
			Valve 3	157
		4.7.5	Operation of Ladder Diagram for	
			Valve 4	158
		4.7.6	Operation of Ladder Diagram for	
			Valve 5	160
		4.7.7	Concluding Remarks For PLC	
			Ladder Diagram Analysis	161
	4.8	Propo	Proposed Design of Ladder Diagram for	
		Two Tanks Water Level System		162
		4.8.1	Mnemonic List Generated by	
			Ladder Builder for KV	165
		4.8.2	Entered Label and Comment List	
			Generated by Ladder Builder	
			for KV	168
	4.9	Auton	nation System Implementation	170
		4.9.1	Fabrication of Prototype	170

4.9.2 Automation System Implementation 170

C Universiti Teknikal Malaysia Melaka