

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Mechanical Properties of Mullite-Bonded Silicon Carbide Sintered at Various Heating Temperature

Thesis submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka for the Degree of Bachelor of Engineering (Honours) Manufacturing Engineering (Engineering Materials)

By

Lim Yee Kai

Faculty of Manufacturing Engineering March 2008

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM			
JUDUL:			
Mechanical Properties of Mullite bonded Silicon Carbide Sintered At Various			
Heating Temperature			
SESI PENGAJIAN: Semester 2 2007/2008			
Saya <u>LIM YEE KAI</u> mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:			
 Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. *Sila tandakan (√) (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972) TERHAD			
52100 Kuala Lumpur			
* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.			

FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref): 01 Mei 2008

Pustakawan

Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) Taman Tasik Utama, Hang Tuah Jaya, Ayer Keroh, 75450, Melaka

Saudara,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD - LAPORAN PSM SARJANA MUDA KEJURUTERAAN PEMBUATAN (BAHAN KEJURUTERAAN): LIM YEE KAI TAJUK: Mechanical Properties of Mullite bonded Silicon Carbide Sintered At Various Heating Temperature

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk " Mechanical Properties of Mullite bonded Silicon Carbide Sintered At Various Heating Temperature" mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

"BERKHIDMAT UNTUK NEGARA KERANA ALLAH"

Yang benar,

DR. MOHD WARIKH BIN ABD RASHID Pensyarah, Fakulti Kejuruteraan Pembuatan

DECLARATION

I hereby declare that this report entitled "Mechanical Properties of Mullite-Bonded Silicon Carbide Sintered at Various Heating Temperature" is the result of my own research except as cited in the references.

Signature Date

<u> M</u>i Author's Name : LIM YEE KAI 30/4/2008

:

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials). The members of the supervisory committee are as follow:

DR. MOHD WARIKH BIN ABD RASHID

(PSM Supervisor)

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Mullite-bonded porous silicon carbide samples are produced by the reaction sintering in air from silicon carbide (SiC), alumina (Al₂O₃), and using graphite as the pore former. The sintering process is based on the oxidation of SiC and the mullitization between Al₂O₃ and oxidation derived SiO₂ (Cristobalite). At mullitization temperature (1450°C), SiC particles are bonded by the mullite (3Al₂O₃.2SiO₂) and SiO₂. Sintered samples will be characterized by density determination and three-point bend tests. Morphology and microstructure analysis study will be done by scanning electron microscopy, while the phase composition will be investigated by X-ray diffraction. Mullite phase transformation start at 1450[°]C which was the optimum sintering temperature for mullite transformation. The mullite content increase with sintering temperature concurrent with decrease of Al₂O₃. Porous SiC ceramics were bonded by the mullite (needle like) and oxidationderived SiO₂. The densities was increase while the open porosity was decreases with increasing of sintering temperature. Flexural strength was direct proportion to the sintering temperature but inverse proportional to the percentage of open porosity. Highest content of mullite and mechanical properties achieved at 1500°C.

ABSTRAK

Poros Mullite-bonded silikon karbida dihasilkan oleh reaksi pensinteran dalam udara dari silikon karbida (SiC), alumina (Al₂O₃), dan menggunakan grafit sebagai pembentuk liang. Proses sinter adalah berasaskan pengoksidaan SiC dan mullitization antara Al₂O₃ dan pengoksidaan terbitan SiO₂ (Kristobalit). Di mullitization suhu, zarah-zarah SiC adalah diikat oleh mulit (3Al₂O₃.2SiO₂) dan SiO₂. Sampel yang tersinter akan dijalankan ujian ketumpatannya and kelenturan tiga mata. Morfologi dan mikrostruktur kajian analisis akan dibuat oleh mikroskop elektron pengimbasan (SEM), manakala komposisi fasa akan disiasat oleh belauan sinar X (XRD). Mulit permulaan penjelmaan fasa pada 1450⁰C merupakan optimum pensinteran suhu untuk mulit tranformasi. Mulit peningkatan dengan pensinteran suhu serentak dengan pengurangan Al₂O₃. SiC yang poros seramik adalah diikat oleh mulit (bentuk jejarum) dan pengoksidaan terbitan SiO₂. Ketumpatan adalah meningkat manakala keporosan terbuka adalah berkurangan dengan penambahan pensinteran suhu. Lenturan kekuatan hádala berkadar terus dengan pensinteran suhu tetapi berkadar songsangan dengan peratusan keporosan. Kandungan mulit dan ciriciri mekanikal tertinggi dicapai pada 1500°C,

ACKNOWLEDGEMENTS

I would like to thanks and deepest gratitude from bottom of my heart for all the support, encouragement and inspiration that I obtain to finish these thesis.

My special thanks to my supervising lecturer, Dr. Mohd Warikh, which we had a good working relationship and who offered help, guidance and encouragement during prepare this thesis.

I also thank to my family for their constant encouragement and support. To all of my lecturers, technician, and friends who help, guide and encourage me.

TABLE OF CONTENTS

Declaration	1
Approval	ii
Abstract	iii
Acknowledgement	v
Table of Contents	vi
List of Figures	ix
List of Tables	xii
Sign and Symbols	xiv

1 INTRODUCTION

1.1	Overview	1
1.2	Statements of problem	2
1.3	Objectives	3
1.4	Scopes of the project	4

2 LITERATURE REVIEW

2.1	Overview of Ceramic Material	5
2.2	Silicon Carbide	6
2.3	Mullite	9
2.4	Strength of ceramics	12
2.5	Sintering Process	13
2.6	Reaction Sintering	14
2.7	Effect of sintering temperature on the reaction bonded SiC	14

3 METHODOLOGY

3.1 Introduction

3.2	Fabric	ation of mullite-bonded porous silicon carbide	21
	3.2.1	Raw material aggregate	21
	3.2.2	Dry milling	22
	3.2.3	Powder preparation with binder	23
	3.2.4	Green Compact Preparation	24
	3.2.5	Sintering	25
3.3	Deterr	mination percentage of open porosity in porous	26
	ceram	ic	
3.4	Test N	Aethod for Flexural Strength of ceramic	27
3.5	Sampl	le Preparation (Cold Mounting)	28
	3.5.1	Vacuum Impregnation Process for porous ceramic	30
3.6	Grindi	ing and Polishing for Mounting Sample	31
	3.6.1	Abrasive grinding procedures	31
	3.6.2	Polishing procedure	33
	3.6.3	Precaution step in polishing technique	33
3.7	Scann	ing Electron Microscope (SEM/EDX) Observation	34
3.8	Phase Composition Analysis by Using XRD		
	3.8.1	Sample preparation	35
	3.8.2	XRD operation	36

4 **RESULTS AND DISCUSSIONS**

4.1	Raw Material Analysis	37
4.2	Energy Dispersion X-ray (EDX) analysis	41
4.3	In-situ reaction bonding behavior	46
4.4	Phase Composition Analysis	48
4.5	Microstructural evolution	51
4.6	Density and porosity of porous SiC ceramic	57
4.7	Flexural strength of porous SiC ceramic	59

5 CONCLUSION AND FUTURE WORKS

5.2	5.2	FUTURE WORKS		62
		5.2.1	Improve imaging methods of optical microscopy	62
		5.2.2	Three-point bending test specimen	62
		5.2.3	Sintering Profile	63

64

6 **REFERENCES**

APPENDICES

- Glossary Α
- Properties of the sintered mullite ceramics В
- Property of Sintered Silicon Carbide, SiC С
- Percentage of Porosity D
- E Flexural Strength
- Particle size measurement for raw material: (a) SiC (b) Al_2O_3 (c) F Graphite
- Gantt Chart: (a) PSM 1 (b)PSM 2 G

LIST OF FIGURES

FIGURES

TITLES

PAGES

2.1	Crystalline SiC grain from the Acheson process	7
2.2	Nonmetallic hard materials in the system B-C-Si-N	8
2.3	Crystal structure of the SiC polytype 3C and 6H	9
2.4	The ceramic phase diagram (Al ₂ O ₃ .SiO ₂)	10
2.5	Schematic indication of the distinction between densifying	13
	and nondensifying microstructural changes resulting from	
	atom transport during the sintering of ceramic powders	
2.6	Plot of oxidation degree of SiC vs. sintering temperature	16
2.7	Changes of oxygen content for the following systems:	17
	(a) SiC containing 3 wt.% of carbon, (b)pure SiC	
2.8	Average pore radius vs. sintering temperature and	17
	composition: (a)pure SiC, (b) SiC containing 0.5 wt.% of	
	boron, (c) SiC containing 3 wt.% of carbon as well as	
	(d) SiC containing 3 wt.% of carbon and 0.5 wt.% of boron	
3.1	Process flow of the steps taken in fabricating and testing on	20
	the porous SiC specimens	
3.2	Steps taken in ball milling: (a) clean for bowl and steel ball	22
	(b) filling powder and steel ball (c) clamping of cap and	
	tightening with lids (d) milling	
3.3	Preparation of binder solution: (a) Hot distilled water	23
	(b) dissolving binder (c) mix binder solution with powder	
	(d) filter the excess water	
3.4	Powder preparation: (a) slurry after filtered 1 day (b) dry in	24
	oven (c) crush into powder27	
3.5	Uniaxial die press process: (a) filling powder (b) clamp and	25
	compact (c) eject green compact	

3.6	Heating profile	25
3.7	Steps taken in identify samples' density: (a) calculate for	26
	bulk volume (b) drying (c) find the dry weight (d) find the	
	density	
3.8	Three point fixture configuration	28
3.9	Steps taken in 3-point test method: (a) alignment for spans	28
	distance (b) place sample (b) apply load (c) brittle fracture	
	sample	
3.10	Cold mounting step for porous ceramic: (a) stirring	29
	(b) filling resin into mold (c) vacuum impregnation	
	(d) eject sample	
3.11	Steps taken in abrasive grinding: (a) edge rounding	30
	(b) surface grinding (c) change grit (d) cleaning	
3.12	Steps taken in polishing: (a) apply diamond lubricant	32
	(b) apply diamond suspension (c) sweep suspension to the	
	whole pad (c) polishing	
3.13	(a) Sample for 1400°C, 1450°C, 1500°C. (b) Disperse raw	34
	material powder: Silicon carbide, Alumina oxide, Graphite,	
	Binder (PVA)	
3.14	Scanning Electron Microscope (SEM/EDX): (a) vacuum	34
	chamber (b) operation unit	
3.15	Sample preparation using spinning stage: (a) Press and	35
	clamp specimen stage (b) fill in powder (c) press and mate	
	both templates (d) finish sample	
3.16	Sample preparation using flat stage: (a) filling powder (b)	36
	press and compact (c) even or flatten the powder's surface	
3.17	X-ray Diffraction scanning: (a) spinning stage (b) flat stage	36
4.1	Single crystal SiC platelets (plate-like) or flaky shape. SEM	37
	1000X	
4.2	Alumina Oxide, Al ₂ O ₃ particles. SEM 1000X	39

4.3	Graphite, C particle. SEM 1000X	39
4.4	XRD pattern of the composition contain in the green	40
	powder	
4.5	Sample sintered at 1400°C. SEM/EDX 1000X	41
4.6	Sample sintered at 1400°C. SEM/EDX 2000X	42
4.7	Sample sintered at 1400 [°] C. SEM/EDX 1000X	43
4.8	Sample sintered at 1500 [°] C. SEM/EDX 1000X	44
4.9	XRD patterns of the specimens sintered in air, where the	50
	10um graphite was used, the volume ration of SiC,	
	Al ₂ O ₃ and C in green bodies was 2.1:1:1.2 and the forming	
	pressure of green bodies was 16 ton (S is SiC, M is Mullite,	
	C is Cristobalite, and A is Aluminium Oxide	
4.10	Microstructure of mounting sample sintering at 1400°C.	51
	SEM,2000X	
4.11	Grain growth structure and phase transformation for	52
	ceramic sintering temperature. (a) 1400°C, (b) 1450°C,	
	(c) 1500 ⁰ C	
4.12	Ceramic sintered at 1400°C. Arrow A show the	53
	transgranular fractures on the SiC grain. The cracks appear	
	inside the grain of the microstructure. Optical, 200X	
4.13	Ceramic sintered at 1450°C. The dark areas (Arrow B) were	53
	pore. Pore between particles. The particles contain fine,	
	internal pores and some coarse pores. Optical. 200X	
4.14	Scanning Electron Microscope (SEM/EDX): (a) vacuum	54
	chamber (b) operation unit	
4.15	Sample preparation using spinning stage: (a) Press and	54
	clamp specimen stage (b) fill in powder (c) press and mate	
	both templates (d) finish sample	
4.16	Ceramic sintered at 1450°C. The surface of SiC having a	55
	high density of interconnecting void, resulting in a porous,	
	weak material. The arrow show the smaller closed pores	
	caused by the gaseous SiO and CO during the heat treating	

in porous SiC ceramic. SEM 2000X

- 4.17 Sample sintered at 1450°C. The first stage of mullitization 55 led to the entrapment of many alumina particles within the growing mullite grains. The pores form by stacking Al2O3 particle. The arrows indicate needlelike crystalline mullite embedded at the necks of surface SiC. SEM 10000X
- 4.18 Stable structure with obvious connected pores and the well 56 developed necks appear between SiC particles. SEM 2000X
- 4.19 Sample sintered at 1500°C. Continued growth of mullite 56 during the second stage required interdiffusion of alumina and silica through the grains. Arrows Y showed the necks forming between two adjacent particles. These necks (solid regions) replace particle boundaries as sintering progress. Arrows X indicate pores opening into the spongy interior. SEM 6500X.
- 4.20 The sintered densities of the fabricated SiC specimens 57
- 4.21 Plot of open porosity vs. sintering temperature; the 57 specimens were sintered at indicated temperatures for 4 hours in air, where 10 graphite was used as the pore former
- 4.22 Relationship of flexural strength vs. sintering temperature; 59 the specimens were sintered at indicated temperatures for 4 hours in air, where 10um graphite was used as the pore former
- 5.1Beveled surface after polishing625.2Suggested sintering profile63

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLES	TITLES	
2.1	Dominant SiC types	8
3.1	Calculation for the powder grammage	20
3.2	Powder compositions and characterization of material used in	20
	this study	
3.3	Sintering Temperature	25
3.4	The abrasive size using in grinding and polishing	33
4.1	Raw material characteristic	39
4.2	Effect of sintering temperature on density, open porosity and	59
	flexural strength	

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

Al_2O_3	-	Aluminium Oxide
$3Al_2O_3$ $2SiO_2$	-	Mullite
SiC	-	Silicon Carbide
PVA		Polyvinyl Alcohol
EDX	-	Energy Dispersion X-ray
SEM	-	Scanning Electron Microscope
XRD	-	X-ray diffraction
ϕ		Percentage of porosity
$V_{\mathbf{V}}$	-	volume of void-space
V _T	-	total or bulk volume of material
σο	-	strength of a nonporous structure
σ	-	strength of the pore characteristic
Р	-	porosity
b	-	constant depending on the pore
		characteristics

CHAPTER 1

INTRODUCTION

1.1 Overview

Ceramic are inorganic, nonmetallic materials and can be crystalline or amorphous. Ceramic are compounded with metallic and non-metallic element, such as aluminum or calcium, oxygen or silicon and nitrogen. Normally, sintered ceramics are required to have minimum porosity. However, there are cases where porosity is desirable for example in humidity and gas sensors and where there thermal shock resistance is of overriding importance. Porous silicon carbide ceramic is one of the potential materials to be used as filters, membranes, catalytic substrates, thermal insulation, gas burner media, and refractory materials due to of their excellent mechanical and chemical stability, such as low bulk density, high permeability, high temperature stability, erosion and corrosion resistance, and excellent catalytic activity.

The high degree of covalence in SiC ceramic makes it difficult to sinter SiC by heating of powder compacts at moderate temperature. Hence, many different sintering techniques have been developed. Among those techniques, hotpressing with a sintering aid, pressureless sintering with a sintering aid and reaction sintering are the important one. In this study, in situ reaction bonding technique is use in low temperature fabrication of SiC ceramic.

In reaction bonding technique, a secondary phase may add and utilize the oxidation derived silica to bond SiC particles with mullite bonding. Mullite $(3Al_2O_3$.2SiO₂) is the intermediate phase in the SiO₂-Al₂O₃ system. It has excellent high

temperature properties with improved thermal shock and thermal stress owing to the low thermal expansion, good strength and interlocking grain structure. It is believed that mullite bonding will possesses better high temperature stability and oxidation resistance, matching thermal expansion and good chemical compatibility between mullite and SiC.

The effect of charge composition, characteristic of the starting material (silicon carbide, SiC and alumina, Al_2O_3) and pore-forming agent (graphite) on the formation of highly porous SiC-based by in situ reaction bonding will be studied. Pores in porous SiC ceramics can be made by burning out the graphite during sintering process. These can keep the skeleton of the green bodies intact before the bonding phase formed at higher temperature.

The fabrication process of synthetic mullite porous ceramic involves precision mixing, forming and sintering. The preparation of SiC green body is using reaction sintering below the melting point. Then sample is test for its mechanical properties; microstructure and phase composition analysis. The effect of sintering temperature on properties of porous SiC ceramics such as porosity and flexural strength will be study.

1.2 Statements of problem

Ceramic materials face a stiff competition from metal alloy and composites in the extreme environment applications. In order to compete well, new and low cost processing method with high performance ceramic is needed. In the meantime, porous silicon carbide ceramic have wide application in filtration, separation, catalysis and high temperature structural material. As diesel particulate filter, SiC ceramic has a higher melting temperature (2700°C), better thermal shock resistance and high chemical stability but with lower mechanical properties compare to metal alloy. Further, the SiC ceramic also facing major problem in fabrication process due to the natural high degree of covalency in SiC makes it difficult to sinter to high densification by normal heating of powder compacts. As a result, various low

temperature sintering techniques have been developed. This reaction bonded silicon carbide (RBSC) technique required no machining and low cost manufacturing technique. This technique had solved the problem of high cost techniques (hot press and hot isostatic press) of sintering and high cost of machining after sintering because it able to produce very low shrinkage of sintered ceramic. The reaction sintering in pressureless environment further reduces the fabrication cost of the material. The low mechanical strength of the porous SiC ceramic can be improved by mullite bonding during reaction sintering. Therefore, in this study of alumina and graphite will be added for reaction sintering in order to produce mullite bonded which exhibit excellent high temperature strength. According to Ding et al., (2007), the flexure strength of porous ceramic is highly dependent on the sintering temperature. The strength of porous ceramics is exponential increase with the decrease of the porosity and the porosity also inverse proportional to raising sintering temperature. Subsequently, it is important to determine the optimum sintering temperature in the fabrication of mullite bonded porous silicon carbide with improved mechanical properties.

1.3 Objectives

The purposes of this project are:

- i. To identify the optimum sintering heating temperature for mullite-bonded porous SiC ceramic with highest mechanical properties.
- ii. To examine the morphology and microstructure of porous SiC ceramic at elevated temperature.
- iii. To investigate the phase composition evolution at elevated temperature

1.4 Scopes of the project

This project studies the effect of elevated sintering temperatures on porous SiC ceramic by in-situ reaction bonding technique. Mullite formed during the sintering process will act as the bonding phase between silicon carbide. The effect of the bonding material on the porous microstructure will be examined under SEM. Phase evolution was investigated using X-ray diffraction. The mechanical properties of porous SiC ceramic will be studied in the aspect of percentage of porosity and flexural strength.

CHAPTER 2

LITERATURE REVIEW

This chapter reviewed the basic theory on properties and mechanical testing on mullite bonded porous silicon carbide. It also cover various study and analysis results and finding from previous researches. Most of the review base on fabrication and sintering of silicon carbide with the effect of temperature, material composition, porosity and material characteristic.

2.1 Overview of Ceramic material

Ceramic (Munz *et al.*, 2001) can be classified into different group by considering their chemical composition, microstructure, or application. We can distinguish the traditional ceramics and advanced based on their application. The traditional ceramics include tableware, pottery, sanitary ware, tiles, bricks and clinker. The advance ceramic can be divided into electronic ceramics (insulators, substrates, capacitors, varistors, actuators, and sensors), optical ceramics (window, laser), magnetic ceramics and structural ceramics. The structural ceramic was applied in mechanical engineering, chemical engineering, high temperature technology, and in biomedical technology. Special ceramic which were not directly related to the categories mentioned above were reactor ceramics (absorber materials, breeder materials, nuclear fuels) and refractory product.

Classification of ceramic was to distinguish between

- Silicate ceramics
- Oxide ceramics
- Non-oxide ceramics

The classification was a mixture of composition (oxide, non-oxide) and atomic structure (glassy-amorphic, crystalline). The main feature of silicate ceramics was the glass-amorpic phase with a pronounced pore structure. The main content was SiO₂ with additions of Al₂O₃, MgO, BeO, ZrO₂ and other oxides. The further subdivision was between clay-ceramic with mullite (3Al₂O₃.2SiO₂) as the main constituent and other silica ceramics, e.g. cordierite (2MgO.2Al₂O₃.5SiO₂). Clay ceramics were subdivided into those with coarse grain structures. Earthenware, tableware, porcelain and tiles belong to the first category. Bricks, clay pipes, and clinker belong to the latter.

Oxide ceramics were different from silica ceramic due to it have major crystalline phase with only a small content of glassy phase. Example of oxides:

Al₂O₃, BeO, MgO, ThO₂, TiO₂, UO₂, ZrO₂

The properties of single oxide can be modified by additives. Al_2O_3 ceramic was the dispersion toughened ceramic with fine dispersion of particle of ZrO_2 or TiC. The system Al_2O_3 - ZrO_2 was name ZTA (zirconia-toughened aluminium oxide).

2.2 Silicon Carbide

According to Munro (1997) sintered silicon carbide ceramics was produced by using submicrometer powders that extracted from an Acheson furnace and ground to a fine particle size. Acheson furnace (Saddow *et al.*, 2004) was invented by Eugene and Alfred Cowles and this furnace was adopted by Acheson to produce suitable materials that could substitute diamond as an abrasive and cutting material. Acheson mixed coke and silica in the furnace and discover a crystalline product which have great hardness, refractability, and infusibility, which was the compound of carbon and silicon. The product was given by name "carborundum" with formula SiC (Figure 2.1). SiC was sinter at temperature 2500 °C with boron and carbon as sintering aids to achieve improved densification during sintering. However, Evans et al. had realized that silicon carbide was very difficult to manufacture and the fully dense sintered SiC raw material was very expensive.

Riedel (2000) had stated that SiC was the most important carbide due to its extreme properties and potential commercial applications and its belongs to the group of nonmetallic hard materials (Figure 2.2) which had great hardness and high melting point result from a high fraction of covalent bonding. Superhard compounds were obviously formed by combination of the four low atomic number elements: boron, carbon, silicon, and nitrogen to form a quaternary system; carbon as diamond, boron nitrogen as cubic boron nitride, boron-carbon as boron carbide, and silicon-carbon as silicon carbide belong to the hardest materials.

Figure 2.1: Crystalline SiC grain from the Acheson process

🔘 Universiti Teknikal Malaysia Melaka