Saya/Kami akui bahawa telah membaca karya ini dan pada pandangan saya/kami karya ini adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal(Rekabentuk dan Inovasi)

Tandatangan

Nama Penyelia

: EN. FAIZ REDZA BIN RAMLI

Tarikh

: 24 APRIL 2009

MEREKABENTUK DAN MENGANALISA MEKANISMA PERGERAKAN TANGAN MEKANIKAL MENGGUNAKAN **LEGO MINDSTORMS**

MOHD. SYAFIQ BIN MD.TAIB

Laporan ini dikemukakan sebagai memenuhi sebahagian daripada syarat Ijazah Sarjana Muda Kejuruteraan Mekanikal(Rekabentuk & Inovasi)

> Fakulti Kejuruteraan Mekanikal Universiti Teknikal Malaysia Melaka

> > **MEI 2009**

PENGHARGAAN

Alhamdulillah. Jutaan kesyukuran dipanjatkan kepada Allah S.W.T. kerana dengan izin kurnianya Projek Sarjana Muda ini berjaya disiapkan dengan jayanya.

Sekalung penghargaan diucapkan kepada En. Faiz Redza, selaku penyelia projek yang banyak memberi panduan dan nasihat sepanjang penghasilan projek ini.

Tidak lupa kepada ibu bapa yang sentiasa memberi dorongan bagi memastikan projek ini berjaya dilengkapkan sebaik mungkin. Ribuan terima kasih juga diucapkan kepada rakan-rakan yang tidak jemu membantu sama ada secara langsung mahupun tidak langsung dalam usaha menyiapkan projek ini. Semoga laporan ini mampu dijadikan sebagai panduan berguna untuk pelajar lain pada masa akan datang.

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya."

Tandatangan

: MOHD SYAFIQ BIN MD TAIB Nama penulis

Tarikh : MEI 2009

ABSTRAK

Projek Merekabentuk dan Menganalisis Tangan Mekanikal menggunakan LEGO Mindstorms ini dijalankan bagi memenuhi keperluan Projek Sarjana Muda. Projek ini adalah mengenai mengenai kajian terhadap mekanisma pergerakan sesebuah tangan mekanikal. LEGO Mindstorms adalah satu set mekanikal yang sangat sesuai digunakan bagi mengkaji pergerakan serta mekanisma tangan mekanikal. Justeru, pemilihan LEGO Mindstorms adalah amat sesuai bagi tujuan kajian projek ini. Keseluruhan laporan projek ini mengandungi tujuh(7) bab dan setiap bab menghuraikan setiap fasa pembangunan sistem ini. Permulaan bab dimulakan dengan Pengenalan, Kajian Ilmiah, Projek Metodologi, Merekabentuk Model, Pengaturcaraan Menggunakan LabVIEW, Analisis Keputusan, serta Kesimpulan Projek. Di akhir projek ini diharapkan segala maklumat berguna dan penting berkaitan mekanisma pergerakan tangan mekanikal dapat dikenalpasti dan diguna pakai untuk tujuan kajian yang lebih mendalam pada masa akan datang. Diharapkan projek ini dapat diperbaiki untuk kegunaan pada masa hadapan.

ABSTRACT

This Design and Analysis of Mechanical Hand Using LEGO Mindstorms project is developed in order to fulfill the Projek Sarjana Muda(PSM) requirements. The project are concerning about how to create and study the mechanism of a mechanical hand using LEGO Mindstroms. LEGO Mindstorms is the best mechanical model to study the mechanism and the reliability of a mechanical hand. The report consists seven (7) chapters in and each chapter describes about each phases of the development. Starting with Introduction, Literature Review and Project Methodology, Design Product, Programming Using LabVIEW, Results Analysis and Project Conclusion. At the end of this project, hopefully all important information regarding to mechanism of a mechanical hand can be obtain and be used for further study. It is really hoped that the system will be enhanced in the future in order to make it more efficient to be used for the organizations.

KANDUNGAN

BAB	PER	KARA	MUKA SURAT
	PEN	GAKUAN	ii
	ABS	TRAK	iii
	ABS	TRACT	iv
	KAN	IDUNGAN	v
	SEN	ARAI JADUAL	viii
	SEN	ARAI RAJAH	x
BAB I	PEN	GENALAN	1
	1.1	Latar belakang projek	1
	1.2	Skop	2
	1.3	Pernyataan masalah	3
	1.4	Objektif	5
	1.5	Kesimpulan	5
BAB II	KAJ	IAN ILMIAH	6
	2.1	Pengenalan kepada robot	6
	2.2	Sistem tangan mekanikal	8
		2.2.1 Tangan manusia sebagai rujukan	8
		2.2.2 Contoh-contoh hasil kajian sistem	
		tangan mekanikal	11
	2.3	LEGO Mindstorms	16
		2.3.1 Latar belakang	16
		2.3.2 Komponen-komponen	
		LEGO Mindstorms NXT	18

BAB	PER	KARA	MUKA SURAT
		2.3.3 Perisian LEGO MINDSTORMS Education	
		NXT	29
	2.4	LabVIEW	31
		2.4.1 LabVIEW Toolkit for	
		LEGO MINDSTORMS NXT	32
BAB III	MET	TODOLOGI	33
	3.1	Carta alir gerak kerja	33
BAB IV	MEF	REKABENTUK MODEL	38
	4.1	Pengenalan	38
	4.2	Proses melakar bentuk model	39
		4.2.1 Penjanaan idea dan konsep	39
		4.2.2 Melukis model	41
	4.3	Memasang model sebenar	47
BAB V	PEN	GATURCARAAN	53
	5.1	Pengenalan	53
	5.2	LabVIEW Toolkit For LEGO	
		MINDSTORMS NXT	54
	5.3	Membuat pengaturcaraan	57
BAB VI	KEP	UTUSAN DAN PERBINCANGAN	68
	6.1	Pengenalan	68
	6.2	Keputusan ujian	69
		6.2.1 Ujian Pergerakan	69
		6.2.2 Ujian Pegang dan Pindah	87
		6.2.3 Ujian Kawalan Pergerakan Secar	a
		Manual Menggunakan Sensor	98

BAB	PER	KARA	MUKA SURAT
BAB VII	KES	IMPULAN	104
	4.1	Kesimpulan projek	104
	4.2	Cadangan	105
	RUJ	UKAN	106
	BIBI	LIOGRAFI	107

SENARAI JADUAL

BIL.	TAJUK	MUKA SURAT
2.1	Dimensi Shadow Dextrous Hand	12
2.2	Jenis-jenis material yang digunakan dalam	
	Shadow Dextrous Hand	13
2.3	Port pengesan NXT Brick	18
2.4	Port Output (motor) dan USB port	19
2.5	Jenis-jenis kepingan LEGO	26-28
4.1	Langkah-langkah pemasangan model tangan mekanikal	47
6.1	Keputusan Ujian Pergerakan bagi bahagian pusat	73
6.2	Keputusan Ujian Pergerakan bagi bahagian siku ke arah hadapan	80
6.3	Keputusan Ujian Pergerakan bagi bahagian siku ke arah belakang	82
6.4	Keputusan Ujian Pergerakan bagi bahagian jari	85
6.5	Hasil ujian pergerakan tanpa sensor	89
6.6	Hasil ujian pergerakan dengan sensor	91
6.7	Mekanisma pergerakan dengan sensor	94
6.8	Mekanisma pergerakan tanpa sensor	96
6.9	Keputusan ujian mengangkat objek berlainan berat	99

6.10 Keputusan ujian menggenggam dan mengangkat berlainan sifat fizikal

101

SENARAI RAJAH

BIL.	TAJUK	MUKA SURAT
2.1	Anatomi tangan manusia	9
2.2	Beberapa gambaran tentang genggaman	
	tangan manusia	10
2.3	Shadow Dextrous Hand	11
2.4	Struktur kinematik tangan mekanikal	
	Shadow Dextrous	13
2.5	Lakaran Prosthetic Arm	15
2.6	Set LEGO Mindstorms	16
2.7	NXT Brick	18
2.8	Port Input	19
2.9	Port output dan port USB	20
2.10	Servo motor	21
2.11	Binaan dalaman servo motor	21
2.12	Pengesan sentuhan	22
2.13	Fungsi-fungsi pengesan sentuhan	22
2.14	Pengesan cahaya	23
2.15	Perbandingan antara pandangan mata	
	manusia dan pengesan cahaya	23
2.16	Pengesan bunyi	24

2.17	Pengesan ultrasonic	25
2.18	Paparan antara muka perisian NXT	29
2.19	Logo LabVIEW	31
2.20	Contoh pengaturcaraan menggunakan LabVIEW	31
2.21	Contoh pengaturcaraan menggunakan komponen LabVIEW Toolkit For LEGO MINDSTORMS NXT	32
3.1	Carta alir gerak kerja	33
3.2	Proses merekabentuk model	35
4.1	Mekanisma pergerakan konsep model tangan tangan mekanikal 1	39
4.2	Mekanisma pergerakan konsep model tangan tangan mekanikal 2	40
4.3	Lukisan tapak model tangan mekanikal	42
4.4	Lukisan bahagian pusat yang disambungkan ke bahagian tapak	43
4.5	Lukisan gear pandu dan gear terpandu di bahagian pusat	43
4.6	Lukisan bahagian siku	45
4.7	Lukisan bahagian jari	46
4.8	Bahagian kaki yang dipasang kemudian	52
4.9	Model tangan mekanikal yang siap dipasang	52
5.1	Kategori-kategori utama LabVIEW Toolkit	
	For LEGO MINDSTORMS NXT	56
5.2	While Loop	57

5.3	Case Structure	57
5.4	Pengaturcaraan Uji Gerak 1	58
5.5	Pengaturcaraan Uji Gerak 2	59
5.6	Carta alir pengaturcaraan Uji Gerak	60
5.7	Pengaturcaraan Uji Jari	61
5.8	Carta alir pengaturcaraan Uji Jari	62
5.9	Pengaturcaraan Pegang dan Pindah 1	63
5.10	Pengaturcaraan Pegang dan Pindah 2	64
5.11	Carta alir pengaturcaraan Pegang dan Pindah	65
5.12	Pengaturcaraan Sistem Kawalan Jauh	66
6.1	Kedudukan pembolehubah yang diubah-ubah	
	dalam pengaturcaraan Uji Gerak 1	70
6.2	Kedudukan gear-gear di bahagian pusat	71
6.3	Kedudukan pembolehubah yang diubah-ubah	
	dalam pengaturcaraan Uji Gerak 2	77
6.4	Kedudukan gear-gear di bahagian siku	78
6.5	Kedudukan pembolehubah yang diubah-ubah	
	dalam pengaturcaraan Uji Jari	83
6.6	Kedudukan gear-gear di bahagian jari	84
6.7	Komponen di bahagian siku yang membataskan	
	pergerakan ke belakang	86
6.8	Bahagian pembolehubah yang memainkan peranan	
	untuk menentukan jumlah kuasa motor yang ingin	
	digunakan	88

6.9	Komponen-komponen yang perlu diubah kuasa	
	motornya untuk menilai hasil yang berbeza	90
6.10	Hasil pengaturcaraan pergerakan dengan sensor	92
6.11	Hasil pengaturcaraan pergerakan tanpa sensor	93
6.12	4 butang sensor sentuhan yang berfungsi sebagai	
	alat kawalan	98
6.13	Butang NXT yang turut bertindak sebagai alat	
	kawalan	98

BABI

PENGENALAN

1.1 Latar belakang projek

Dalam era globalisasi yang serba canggih ini, pelbagai rekaan dan ciptaan telah dihasilkan bagi membantu manusia dalam pelbagai cabang kehidupan seharian. Kepesatan pembangunan ini dapat dilihat dengan penggunaan pelbagai peralatan yang canggih selaras dengan peningkatan teknologi yang telah berjaya dicapai.

Penciptaan robot yang semakin banyak pada hari ini merupakan salah satu contoh kepada kepesatan pembangunan teknologi. Pelbagai jenis robot telah dicipta, bergantung kepada fungsinya yang tersendiri.

Antara jenis robot yang dicipta ialah tangan mekanikal. Penggunaan tangan mekanikal agak meluas jika dibandingkan dengan jenis-jenis robot lain yang berada di pasaran. Kita boleh dapati bahawa tangan mekanikal telah digunakan dalam berbagai-bagai bidang kehidupan seharian, termasuklah untuk perindustrian, perubatan, sukan, dan sebagainya. Bentuknya juga

berbeza-beza, bergantung kepada fungsinya dan juga bagaimana ianya digunakan.

Justeru, dalam projek ini, satu model tangan mekanikal akan dibina menggunakan LEGO MINDSTORMS bagi mengkaji mekanisma pergerakan tangan mekanikal tersebut, di samping menguji keupayaan robot tersebut untuk menggarap sesuatu objek. Projek ini mampu memberi kefahaman yang lebih jelas tentang penggunaan tangan mekanikal dalam pelbagai cabang kehidupan seharian.

1.2 Skop

1.2.1 Pengenalan kepada LEGO MINDSTORMS.

Sebelum meneruskan projek, sedikit kajian tentang LEGO MINDSTORMS telah dilakukan bagi mengenali produk dengan ini lebih lanjut. Pengetahuan yang mendalam terhadap produk ini membantu saya untuk menggunakannya dengan cara dan kaedah yang betul dan mampu disesuaikan dengan apa yang ingin dihasilkan dalam projek ini, iaitu model tangan mekanikal.

1.2.2 Merekabentuk

Model tangan mekanikal ini direkabentuk melalui beberapa kaedah yang difikirkan sesuai. Ini termasuklah menggunakan perisian seperti Solidworks 2007 yang lazimnya digunakan dalam bidang kejuruteraan. Perisian berkaitan rekabentuk model LEGO MINDSTORMS juga digunakan, seperti MLCAD dan LEGO Digital Designer. Tidak lupa juga dengan cara memasang komponen-komponen LEGO MINDSTORMS secara cuba-jaya.

1.2.3 Membina model

Model tangan mekanikal dibina dengan menggunakan LEGO MINDSTORMS yang telah dibekalkan.

1.2.4 Pengaturcaraan

Pergerakan LEGO MINDSTORMS ini dikawal dan diprogram menggunakan perisian LabVIEW 8.5.

1.2.5 Analisis

Melakukan analisis terhadap model yang telah siap dibina. Analisis dilakukan bagi mengenalpasti faktor-faktor pengehad, membandingkan keputusan mekanisma pergerakan model sebenar dengan keputusan daripada perisian yang digunakan. Selain itu, analisis juga dijalankan bagi mengelakkan model yang dihasilkan tidak lari daripada spesifikasi yang ditetapkan.

1.3 Pernyataan masalah

Dalam usaha saya untuk menghasilkan sebuah model tangan mekanikal(mechanical hand) menggunakan LEGO MINDSTORMS, terdapat beberapa masalah yang telah berjaya dikenalpasti. Masalah-masalah inilah yang perlu ditangani dengan mencari penyelesaian terbaik bagi memastikan projek ini berjaya disempurnakan dengan jayanya.

Masalah pertama yang perlu diambil kira ialah tentang apakah rekabentuk model tangan mekanikal yang paling sesuai boleh dihasilkan dengan menggunakan LEGO MINDSTORMS.

Rekabentuk yang perlu dihasilkan adalah terbatas kepada komponenkomponen yang dibekalkan bersama-sama set LEGO MINDSTORMS, atau lebih dikenali sebagai *Bricks*. Dengan erti kata lain, model tersebut perlulah direka dengan mengambil kira *Bricks* yang hanya terdapat dalam jumlah dan bentuk yang terhad.

Masalah kedua ialah bagaimana hendak menggerakkan model tangan mekanikal ini sebagaimana yang kita kehendaki. Beberapa perisian pengaturcaraan atau *programming software* yang difikirkan sesuai perlu dikenalpasti bagi memastikan model ini mampu bergerak untuk menggarap objek dan memindahkannya dari satu tempat ke tempat lain. Perisian yang bakal digunakan juga perlulah perisian yang lazimnya digunakan dalam bidang kejuruteraan.

Selain itu, selepas selesai menyempurnakan rekabentuk model dan memilih perisian yang sesuai, langkah dan kaedah yang sesuai perlu difirkan untuk menguji pergerakan model ini bagi memastikannya mampu berfungsi seperti yang diharapkan. Ujian yang akan dilakukan perlulah mengambil kira kombinasi antara mekanisma pergerakan model tersebut dengan program pengaturcaraan yang telah ditetapkan.

Masalah seterusnya ialah bagaimana hendak mengenalpasti faktorfaktor pengehad(*limitation factors*) model ini, seperti jenis-jenis objek yang boleh digarap, berat minimum dan maksimum objek, saiz objek, dan lain-lain lagi.

Masalah terakhir yang telah dikenalpasti ialah bagaimana hendak menentukan model yang telah siap dibina tidak lari daripada spesifikasi yang telah ditetapkan. Ini penting bagi memastikan model tersebut berada dalam keadaan terbaik dan mampu berfungsi sebaiknya untuk tempoh masa yang lama.

Objektif 1.4

Antara objektif projek ini ialah:

- i. Merekabentuk model mekanikal tangan menggunakan LEGO MINDSTORMS.
- ii. Menggunakan perisian pengatucaraan LabVIEW 8.5 untuk menggerakkan model tangan mekanikal tersebut.
- iii. Membuat beberapa ujian pergerakan terhadap model tersebut bagi memastikannya mampu berfungsi sebagaimana yang diprogramkan.
- iv. Mengenalpasti kemampuan sebenar model yang telah dihasilkan.
- v. Membuat perbandingan keputusan antara mekanisma pergerakan sebenar model tersebut dengan analisis yang telah dibuat menggunakan perisian pengaturcaraan.

1.5 Kesimpulan

Secara kesimpulannya, Bab I ini menerangkan tentang pengenalan awal serta penerangan ringkas tentang projek tangan mekanikal ini, iaitu merangkumi skop projek ini sepanjang proses pelaksanaan, pernyataan masalah yang dihadapi, serta objektif yang ingin dicapai.

BABII

KAJIAN ILMIAH

2.1 Pengenalan kepada robot

Dewasa ini, pelbagai jenis robot telah dihasilkan seiring dengan kemajuan teknologi yang kian membangun dengan pesatnya. Robot-robot ini dibina dengan bermacam-macam tujuan dan digunakan dalam pelbagai cabang bidang kehidupan manusia, termasuklah dalam bidang pembuatan, servis pembungkusan, pengangkutan, penerokaan bumi dan angkasa lepas, perubatan, system pertahanan dan sebagainya.

Perkataan robot mula digunakan pada tahun 1921 melalui sebuah filem Karel Capek yang bertajuk R.U.R.(Rossum's Universal Robots). Perkataan robot berasal daripada perkataan 'robota', istilah bagi rakyat Czech ysng merujuk kepada buruh paksa. Walaubagaimanapun, definisi robot yang sebenar adalah jauh lebih meluas. Mengikut Kamus Dewan(Edisi Ketiga,Dewan Bahasa dan Pustaka,1994), robot didefinisikan sebagai mesin automatic yang diprogramkan untuk bergerak dan melakukan sesetengah kerja bagaikan seorang manusia.

Encyclopaedia Britannica mendefinisikan robot sebagai sebarang mesin automatic yang mampu menggantikan kerja-kerja manusia, walaupun ia tidak mempunyai persamaan dengan manusia dari segi penampilan mahupun sifat manusia.

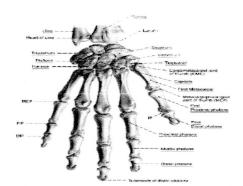
Menurut Rodney Brooks, pengarah Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory berkata: "Robot adalah sesuatu yang memberi sedikit kesan kepada dunia, tetapi itu bergantung kepada bagaimana ia mengenali dunia dan bagaimana dunia di sekelilingnya berubah."

Kebiasaannya, sesuatu robot itu mempunyai sebahagian atau kemungkinan juga kesemua sifat-sifat berikut:

- Dicipta melalui sistem kepintaran
- Boleh berinteraksi dan memanipulasi persekitaran
- Mempunyai keupayaan untuk membuat keputusan berdasarkan keadaan persekitaran.
- Telah diprogramkan
- Bergerak dengan satu atau lebih paksi putaran
- Bergerak tanpa campurtangan manusia secara terus

Memang tidak dinafikan terdapat pelbagai jenis robot yang boleh didapati pada hari ini. Walaubagaimanapun, dalam projek ini, jenis robot yang akan dikaji dan diberi perhatian adalah robot system tangan mekanikal.

2.2 Sistem tangan mekanikal


Sistem tangan mekanikal merupakan salah satu jenis robot yang terdapat dalam penggunaan kehidupan seharian. Bagi kebanyakan robot, sistem tangan mekanikal adalah asas kepada pergerakan mereka.

Pada hari ini, pelbagai kajian telah dilakukan bagi menghasilkan pelbagai jenis sistem tangan mekanikal. Setiap satunya mempunyai keupayaan yang berbeza, bergantung pada tujuan penciptaan tangan mekanikal tersebut.

Bagaimanapun, fungsi utama bagi setiap sistem tangan mekanikal yang dicipta ini adalah supaya ia dapat memegang dan menggenggam sesuatu. Kajian yang mendalam terhadap bagaimana sistem tangan mekanikal bertindak untuk memegang dan menggenggam sesuatu objek adalah sangat penting bagi memastikan robot tersebut mampu untuk beroperasi sebaiknya.

2.2.1 Tangan manusia sebagai rujukan

Umum ketahui bahawa tangan manusia adalah satu bentuk sistem mekanikal kompleks terbaik pernah wujud, mampu bergerak dalam pelbagai arah pergerakan dan sangat berkuasa melakukan berbagai-bagai kerja. Justeru, untuk mencipta sebuah sistem tangan mekanikal yang baik, rujukan terhadap tangan manusia amat diperlukan.

Rajah 2.1 : Anatomi tangan manusia

(sumber: Construction and Animation of Anatomically Based Human Hand Models, Irene Albrecht, Jörg Haber, and Hans-Peter Seidel)

Terdapat lebih 30 otot yang bertindak untuk lengan dan tangan. Tangan manusia mempunyai 27 tulang utama, dan sekurang-kurangnya 18 sendi pergerakan, dan lebih 27 atau lebih darjah kebebasan(degrees of freedom). Fungsi utama lengan adalah untuk meletakkan tangan pada posisi yang sesuai, manakala tangan pula berfungsi bagi membolehkan manusia berinteraksi dengan persekitaran.

Gabungan kesemua tulang dan sendi-sendi pada tangan manusia telah membentuk satu sistem mekanikal yang sangat hebat. Setiap daripada bahagian tulang dan sendi tersebut memainkan peranannya yang tersendiri dalam satu-satu masa. Daya-daya yang bertindak pada setiap bahagian tangan manusia membolehkannya bergerak dan berfungsi dengan lancar. Keseragaman dan kelancaran inilah yang perlu dikaji sebaiknya dalam usaha menghasilkan sistem tangan mekanikal yang terbaik.

Dalam kajian bertajuk 'Physically Based Grasping Control from Example' oleh Nancy S.Pollard dan Victor B.Zordan, mereka telah melakukan kajian berkomputer tentang bagaimana tangan manusia menggenggam sesuatu objek. Antara aspek yang perlu diambil kira ialah ialah kekuatan genggaman dan sistem kawalan.