I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the Bachelor's degree of Mechanical Engineering (Structure and Material)

Signature:1st Supervisor: Pn Nortazi binti SanusiDate: May 2009

EFFECT OF HEAT TREATMENT PROCESS OF TITANIUM FOR WATCH MANUFACTURING APPLICATION

MOHD NAJMI BIN ABDULLAH SANI B040510031 4BMCS1

This report is done in order to fulfill the requirement of the Bachelor's degree of Mechanical Engineering (Structure and Material)

> Fakulti Kejuruteraan Mekanikal (FKM) Universiti Teknikal Malaysia Melaka (UTeM)

> > APRIL 2009

C Universiti Teknikal Malaysia Melaka

"I hereby the author, declare this report entitled " EFFECT OF HEAT TREATMENT PROCESS ON TITANIUM FOR WATCH MANUFACTURING APPLICATION" is my own work except for quotation and summaries which have been state the source"

Signature:Author:Mohd Najmi bin Abdullah SaniDate:10 April 2009

To my dearest parent

Mr Abdullah Sani bin Salam and Mr Nafsiah binti Mat Wali

My sibling,

Masni binti Abdullah Sani

Mazlan bin Abdullah Sani

Mohd Fahmi bin Abdullah Sani

Thanks for all the support

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious, The Most Merciful. Firstly, an utmost gratitude to Allah S.W.T for giving me comforts, patience and opportunity in time and space to successfully complete my final year project thesis or Project Sarjana Muda (PSM).

I also like to express my gratitude to all those who have helped me in one way another way during the planning, information gathering, writing, editing and or reformatting stages of this thesis report. I am particularly indebted to my Projek Sarjana Muda (PSM) subject's supervisor, Mr Ahmad Kamal bin Mat Yamin for his guidance about the information and guideline in doing the Project Sarjana Muda (PSM) report. Millions of thanks also are giving to my supervisor, Pn. Nortazi binti Sanusi for the guidance and advice including the feedback that enabled me to improve upon producing this report. Thanks also to my fellow undergraduates, Bachelor of Structure and Material (BMCS) lectures Mr. Wan Mohd Farid b Wan Mohamad, Mrs. Rafidah binti Hassan, Mrs. Siti Hajar b. Sheikh Md. Fadzullah, and Mrs. Zakiah binti Abdul Halim for sharing their insights and opinion on thesis report writing and providing me with genuine materials in the form of internet sites and engineering books. Besides that, I would like to express my gratitude to my parents for the love and support that they have given me. Finally, I would like to thanks everyone who is willing to spend their precious time reading my thesis report.

ABSTRACT

High strength, low density, and excellent corrosion resistance are the main properties that make titanium attractive for a variety of applications. Examples include aircraft (high strength in combination with low density), aero engines (high strength, low density, and good creep resistance), biomedical devices (corrosion resistance and high strength) and components in chemical processing equipment (corrosion resistance). Titanium also has been an attraction in everyday wear accessories like watch. The advantages of titanium use in watch application are such as it is light, comfortable, hypoallergenic which is free from nickel, durable and have corrosion resistance feature. To give a better quality of titanium in watch application, heat treatment procedure is applied to it. Many methods are use in titanium heat treating. There are such as annealing, quenching, tempering, solution treating and aging and isothermal transformation. Heat treatment process generally execute is to improve the materials properties. The amount of phase present in titanium is control by heat treatment process. The phases that have in titanium are alpha, beta, alpha-beta, nearalpha and near beta. Mechanical test is then executed to prove the quality of heat treatment process in term of its parameter use. The suitable mechanical testing has been choosing for this research and they are Rockwell Hardness Test and Charpy Impact Test. For microscopic analysis Optical Microscope is use to analyze the microstructure of specimen that not undergo heat treatment and specimen that undergo heat treatment process. Data obtain from experimental and testing process will be statistically analyzed by F-Test and T-test method.

ABSTRAK

Kekuatan yang tinggi, ketumpatan yang rendah dan daya tahan karat yang sangat baik adalah ciri-ciri atau sifat-sifat utama yang menjadikan titanium satu tarikan untuk diaplikasikan di dalam pelbagai bidang. Antara bidang-bidang yang mengaplikasikan penggunaan titanium adalah seperti pembuatan pesawat udara (kombinasi kekuatan yang tinggi dan ketumpatan yang rendah), enjin kapal angkasa (kekuatan yang tinggi, ketumpatan yang rendah dan daya tahan kesotan yang baik), alatan bio-perubatan (daya tahan karat yang baik dan kekuatan yang tinggi) dan komponen alatan pemprosesan bahan kimia (daya tahan karat yang baik). Titanium juga telah menjadi satu daya tarikan dalam penggunaan dan pemakaian harian seperti jam. Kelebihan penggunaan titanium dan titanium aloi dalam aplikasi jam adalah ianya ringan, selesa dipakai, hipoalergik iaitu bebas dari nikel, tahan lama dan mempunyai ciri-ciri daya tahan karat. Untuk memberikan mutu yang baik ke atas titanium di dalam penghasilan jam, proses rawatan haba di aplikasikan. Terdapat banyak cara dalam rawatan haba titanium. Antaranya adalah menyepuh lindap, melindap, pembajaan, rawatan larutan dan penuaan dan transformasi isoterma. Proses rawatan haba pada umumnya dilakukan untuk mempertingkatkan sifat-sifat bahan. Di dalam perawatan haba titanium, jumlah fasa alpha, beta, alpha-beta, hampir-alpha and hampir-beta akan dikawal. Setelah perwatan haba selesai, ujian mekanikal dilakukan untuk menunjukkan parameter yang digunakan adalah bagus. Ujian mekanikal seperti Ujian Kekerasan Rockwell dan Ujian Hentaman Charpy turut dijalankan di dalam kajian ini. Mikrostruktur titanium sebelum dan selepas rawatan haba akan di analisa menggunakan Mikroskop Optik. Data yang dikeluarkan daripada semua kaedah yang digunakan akan dianalisa secara statistik meggunakan kaedah Ujian F dan T.

CONTENT

CHAPTER	TOPIC	PAGE
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	ABSTRAK	iii
	CONTENT	iv
	LIST OF TABLE	viii
	LIST OF FIGURES	Х
	LIST OF ABBREVIATIONS AND SYMBOLS	xii
	LIST OF APPENDICES	XV
1	INTRODUCTION	
	1.1 Background of Study	1
	1.2 Objectives	3
	1.3 Scopes	3
	1.4 Problem Statement	4
2	LITERATURE REVIEW	
	2.1 Titanium	5
	2.2 Titanium alloys and its classification	7
	2.2.1 Alpha and near-alpha titanium alloys	8
	2.2.2 Alpha-beta titanium alloys	9
	2.2.3 Beta, near-beta and metastable-beta Ti alloys	9

3

v

2.3	Prope	Properties of titanium and titanium alloys			10
2.4	Phase diagram			12	
2.5	Grade	of titaniu	ım		14
2.6	Heat t	reatment	process		17
	2.6.1	Heat tre	atment proc	cess of titanium and	18
		Titaniur	n alloys		
	2.6.2	Anneali	ng process		19
	2.6.3	Quench	ing and tem	pering process	21
		2.6.3.1	Quenchin	g process	21
		2.6.3.2	Temperin	g process	22
	2.6.4	Solution	n treating ar	nd aging process	22
	2.6.5	Isothern	nal transfor	mation	25
2.7	Destru	active test	ting		26
	2.7.1	Hardnes	s test		27
		2.7.1.1	Measuren	nent of hardness	29
		2.7.1.2	Principal	of hardness test methods	29
			2.7.1.2.1	Rockwell Hardness Test	29
			2.7.1.2.2	Brinell Hardness Test	31
			2.7.1.2.3	Vickers Hardness Test	31
	2.7.2	Charpy	impact test		33
2.8	Micro	structure	analysis		37
ME	ГНОД	OLOGY			
3.1	Exper	imental a	nd mechani	cal testing process flow	38
3.2	Mater	ial specin	nen selectio	n and preparation	40
	3.2.1	Material	l selection		40

- 3.2.2 Specimen preparation 41
- 3.3Annealing heat treatment process42

PAGE

TOPIC

CHAPTER

3.4	Hardness test	
3.5	Charpy impact test	45
	3.5.1 Charpy impact test procedure	46
3.6	Microstructure Investigation	

4 **RESULT AND ANALYSIS**

4.1	Hardness Test		
	4.1.1 Experimental Result	52	
	4.1.2 Result Analysis of Hardness Test	54	
4.2	Impact Test	58	
	4.2.1 Experimental Result	58	
	4.2.2 Result Analysis of Impact Test	59	
4.3	Summary of hardness and impact test compar	rison of 63	
specimen wit 30 minutes and 60 minutes of heat			
	treatment process		
4.4	Microstructure Analysis 6		

5 DISCUSSION

5.1	Hardness effect on the CP Titanium Grade 2 specimens 67	
	5.1.1 Effect of temperature an time to the hardness of	69
	CP Titanium Grade 2 specimens	
5.2	Effect of temperature and time to impact energy of CP	72
	Titanium Grade 2	
5.3	Microstructure Grain Size of CP Titanium Grade 2	74
	specimens	

6	CONCLUSION AND RECOMMANDATION	75
CHAPTER	TOPIC	PAGE
	REFERENCE	77
	APPENDICES	

C Universiti Teknikal Malaysia Melaka

LIST OF TABLE

QTY	TITLE	PAGE
1.1	Commercial and semi commercial grades and alloys of	2
	titanium	
2.1	Properties of titanium and titanium based alloys as compared to	12
	other structural metallic materials	
2.2	Commercial and semi commercial grades of titanium and	16
	titanium alloys	
2.3	The application of titanium and titanium alloy in several	16
	field or industry	
2.4	Recommended solution and aging treatments for titanium alloy	23
2.5	The examples of mechanical tests	27
2.6	Typically Rockwell Hardness test scales	30
2.7	General characteristics of hardness testing methods and	33
•	formulas for calculating hardness	24
2.8	Characteristics of test piece and testing machine	34
2.9	Standard specification of ASTM E23 for the Charpy impact test	36
3.1	Composition of CP Titanium Grade 2	40
3.2	Heat treatment data table	42

QTY	TITLE	PAGE
4.1	Hardness test data for specimens without heat treatment	52
	process and specimens wit heat treatment process for 30	
	minutes period	
4.2	Hardness test data for specimens without heat treatment	53
	process and specimens wit heat treatment process for 60	
	minutes period	
4.3	Average hardness value in Brinell scale for each	54
	specimens	
4.4	Experiment data for impact test specimens with 30	59
	minutes and 60 minutes of heat treatment	
4.5	Statistical data for impact test specimens	59
4.6	Summary data of F-test and t-test for hardness of 30	63
	minutes heat treatment's specimen and 60 minutes heat	
	treatment's specimen	
4.7	Summary data of F-test and t-test for impact test of 30	64
	minutes heat treatment's specimen and 60 minutes heat	
	treatment's specimen	

ix

LIST OF FIGURE

QTY	TITLE	PAGE
2.1	Unit cell of alpha phase	7
2.2	Unit cell of beta phase	7
2.3	Neutral phase diagram	13
2.4	Alpha, α phase diagram	13
2.5	Beta, β phase diagram	13
2.6	Rockwell hardness test principle	30
2.7	Vickers Hardness Test indenter	33
2.8	Charpy Impact Test	35
2.9	Test specimen dimension for Charpy impact test	36
3.1	The flow chart of the process methodology	39
3.2	The dimension of the specimens	41
3.3	CP Titanium Grade 2 specimens	41
3.4	Rockwell Hardness Test Machine	44
3.5	Impact head is position in -120°	47
3.6	Material information is set in the software	47
3.7	The material condition after impact test is apply	48
3.8	Mounting die machine	49
3.9	Grinding process	50
3.10	Ultrasonic water bath machine	50
3.11	Electromagnetic stir machine	51

QTY TITLE

4.1	Microstructure of CP Titanium Grade 2 specimens for	65
	non anneal and 30 minutes of annealing process	
4.2	Microstructure of CP Titanium Grade 2 specimens for	66
	non anneal and 60 minutes of annealing process	
5.1	Graph hardness value against temperature	67
5.2	Statistic of hardness value for each specimen heat treated	69
	in 30 minutes	
5.3	Statistic of hardness value for each specimen heat treated	69
	in 60 minutes	
5.4	Grain size of specimens at heat treated at 700°C of	71
	specimens for 30 minutes	
5.5	Grain size of specimens at heat treated at 700°C of	71
	specimens for 60 minutes	
5.6	The effect of temperature on the energy absorbed upon	72
	impact test	
5.7	Surface of the CP Titanium Grade 2 show ductile fibrous	73
	fracture	

PAGE

LIST OF ABBREVIATIONS AND SYMBOLS

Al	=	Aluminium
ASM	=	American Society for Metals
ASTM	=	American Standard of Testing and Material
BHN	=	Brinell Hardness Number
BCC	=	Body centered cubic
B120VCA	=	Titanium alloys sheet
СР	=	Commercially pure
С	=	Carbon
CNC	=	Computer Numerical Control
Cr	=	Chromium
CRT	=	Cathode Ray Tube
Е	=	Modulus of Elasticity
F	=	Load
Fe	=	Ferum
FE	=	Field Emission
FeTiO ³	=	Ilminite
g/cm ³	=	Gram per cubic centimeter

GPa	=	Giga Pascal
Н	=	Hydrogen
НСР	=	Hexagonal closed-packed
HDH	=	Hydrogenation or dehydrogenation
HF	=	Hydrofluoric
HNO ₃	=	Acid nitric
HRB	=	Rockwell Hardness B scale
HRC	=	Rockwell Hardness C scale
HV	=	Hardness Vickers Number
Ι	=	Iron
J	=	Joules
kV	=	Kilovolts
kg	=	Kilograms
kg-f	=	Kilograms-Force
mm	=	Millimeters
Mpa	=	Mega Pascal
m ²	=	Square millimeters
Ν	=	Nitrogen
Ni	=	Nickel
O^2	=	Oxygen
ppm	=	Parts per million
SEM	=	Scanning Electron Microscopy

Si	=	Silicon
S ₁	=	Standard deviation
S_1^{2}	=	Variance
Ti	=	Titanium
TiO ²	=	Titanium oxide or rutile
Ti-3Al-8V-6Cr-	=	Titanium 3% Aluminium 8% Vanadium 6% Chromium 4%
4Mo-4Zr		Molybdenum 4% Zirconium
Ti-6Al-4V	=	Titanium 6% Aluminium 4% Vanadium
Ti-6Al-2Sn-4Zr-	=	Titanium 6% Aluminium 2% Sn 4% Zirconium 2%
2Mo+Si		Molybdenum + Silicon
Ti-6V-2Sn-2Zr-	=	Titanium 6% Vanadium 2% Sn 2% Zirconium 1%
Cr-2Mo+Si		Chromium 2% Molybdenum + Silicon
Ti-8Al-1Mo-1V	=	Titanium 8% Aluminium 1% Molybdenum 1% Vanadium
Ti-10V-2Fe-3Al	=	Titanium 10% Vanadium 2% Ferum 3% Aluminium
Ti-15-3	=	Titanium alloys
α	=	Alpha
ß	=	Beta
α-β	=	Alpha-beta
°C	=	Degree Celsius
°F	=	Degree Fahrenheit
\overline{x}_1	=	Mean

LIST OF APPENDICES

QTY	TITLE	PAGE
А	Gant Chart for PSM 1	80
В	Flow Chart for PSM 1	81
С	Gant Chart for PSM 2	82
D	Flow Chart for PSM 2	83
Е	Corrosion-Resistant Titanium Alloys	84
F	Titanium Grade 2	85
G	Microstructure of Ti-6Al-4V	86
Н	Microstructure of Ti-6Al-4V after heat treatment	87
	process in different condition	
Ι	Schematic representation of microstructures developed	88
	after solution treatment of casted Ti-6Al-4V titanium	
	alloy	
J	Mitutoyo Conversion Table	89
K1	Hypothesis test procedure	90
K2	F-distribution table	91
K3	t- distribution table	92

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Titanium metal was first discovered by the English chemist William Gregor in 1971 in the black magnetic sand ilmenite. The name of the titanium is referring to the titans of Greek mythology which is mean a symbol of power and strength. Titanium is the fourth most abundant metal in the Earth's crust after aluminium, iron and magnesium. The characteristics of titanium that make it is so attractive to industrial application is such as titanium has low density and high strength, good corrosion and erosion resistance to any medium including the sea water and chlorine, good oxidation resistance and have moderate strength at high temperature. Other characteristic that make it different from other light metals is its physical metallurgy which is complex and interesting. Titanium is an allotropic as an iron and its produces much more similarities in heat treatment compared to steels. Moreover, the presence of alloying elements give special characteristic in which, it can stabilize the low temperature phase, *alpha* or high temperature phase, *beta*. Like steels, titanium and its alloy are characterized by their stable room temperature phases (F. Vander Voort, George, Materials Characterization & Testing: Microstructure of Titanium and Its Alloys, 2006 September 14).

In any manufacturing industries and application including watch manufacturing, they have their own specification and criteria on the selection of titanium grade for their production. Titanium is divide into two application of industrial usage which is corrosion-resistant service and strength-efficient structures. Both applications characteristic are being used in selecting the suitable and exact grade of titanium for different type of manufacturing field. Corrosion resistant service is normally use lower-strength unalloyed titanium and fabricated into tanks, heat exchangers, or reactor vessels for chemical processing or power generation plants. Where as for the strength-efficient structures is use higher-strength titanium alloys. This grade of titanium usually applied in gas turbines, aircraft structures, drilling equipments and submerges components manufacturing field. Table 1.1 below are the several commercial and semi commercial grades for unalloyed and titanium alloys (ASM International, *The Materials Information Society*, 2000).

	Tensile strength (min)		0.2% yield strength (min)		Impurity limits, wt% (max)					Nominal composition, wt%					
Designation	MPa	ksi	MPa	ksi	Ν	С	н	Fe	0	Al	Sn	Zr	Мо	Others	
Unalloyed grades															
ASTM grade 1	240	35	170	25	0.03	0.08	0.015	0.20	0.18						
ASTM grade 2	340	50	280	40	0.03	0.08	0.015	0.30	0.25						
ASTM grade 3	450	65	380	55	0.05	0.08	0.015	0.30	0.35						
ASTM grade 4	550	80	480	70	0.05	0.08	0.015	0.50	0.40						
ASTM grade 7	340	50	280	40	0.03	0.08	0.015	0.30	0.25					0.2Pd	
ASTM grade 11	240	35	170	25	0.03	0.08	0.015	0.20	0.18					0.2Pd	
α and near- α alloys															
Ti-0 3Mo-0 8Ni	480	70	380	55	0.03	0.10	0.015	0.30	0.25				03	0.8Ni	
Ti-5A1-2.5Sn	790	115	760	110	0.05	0.08	0.02	0.50	0.20	5	2.5				
Ti-5A1-2 5Sn-ELI	690	100	620	90	0.07	0.08	0.0125	0.25	0.12	5	2.5				
Ti-8Al-1Mo-1V	900	130	830	120	0.05	0.08	0.015	0.30	0.12	8	210		1	1V	
Ti-6Al-2Sn-4Zr-2Mo	900	130	830	120	0.05	0.05	0.0125	0.25	0.15	6	2	4	2	0.085i	
Ti-641-2Nb-1Ta-0.8Mo	790	115	690	100	0.02	0.03	0.0125	0.12	0.10	6	2		1	2Nb 1Ta	
Ti-2 25A1-11Sp-57r-1Mo	1000	145	900	130	0.02	0.04	0.008	0.12	0.17	2.25	11	5	1	0.25i	
Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si	1030	149	910	132	0.03	0.08	0.006	0.05	0.15	5.8	4	3.5	0.5	0.7Nb, 0.35Si	
α-β alloys															
Ti-6A1-4V(a)	900	130	830	120	0.05	0.10	0.0125	0.30	0.20	6				4V	
Ti 6A1 AV EL I(a)	830	120	760	110	0.05	0.00	0.0125	0.25	0.13	6				41	
$T_{i-6}\Delta I_{-6}V_{-2}S_{n}(a)$	1030	150	970	140	0.04	0.05	0.015	1.0	0.20	6	2			0.75Cn 6V	
Ti-8Mn(a)	860	125	760	110	0.04	0.08	0.015	0.50	0.20	0	2			8 0Mn	
Ti 7A1 (Mo(a)	1020	150	970	140	0.05	0.10	0.013	0.20	0.20	7.0			4.0	0.010111	
$T_{i} = 6A1 2S_{P} \sqrt{2r} 6M_{O}(h)$	1170	170	1100	140	0.05	0.10	0.013	0.15	0.20	6	2		4.0		
$T_{i} = 5A1 2S_{B} 27_{c} 4M_{B} 4C_{c}(b)(c)$	1125	162	1055	152	0.04	0.04	0.0125	0.15	0.13	5	2	2	4	40-	
T_{1}^{-} 5A1 2Sn 2Zr 2Mo 2Cr(c)	1030	150	970	140	0.04	0.05	0.0125	0.30	0.13	57	2	2	2	20-0.255	
T: 2 A1 2 5V(d)	620	150	520	75	0.05	0.05	0.0125	0.20	0.14	2	2	2	2	2 5 V	
Ti 4A1 4Ma 2Sp 0 5Si	1100	160	960	130	(a)	0.05	0.013	0.30	(a)	4	2			0.5%	
11-441-4100-2311-0.331	1100	100	900	139	(e)	0.02	0.0125	0.20	(e)	+	2		4	0.531	
β alloys															
Ti-10V-2Fe-3Al(a)(c)	1170	170	1100	160	0.05	0.05	0.015	2.5	0.16	3				10V	
Ti-13V-11Cr-3Al(b)	1170	170	1100	160	0.05	0.05	0.025	0.35	0.17	3				11.0Cr, 13.0V	
Ti-8Mo-8V-2Fe-3Al(b)(c)	1170	170	1100	160	0.03	0.05	0.015	2.5	0.17	3			8.0	8.0V	
Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c)	900	130	830	120	0.03	0.05	0.20	0.25	0.12	3		4	4	6Cr, 8V	
Ti-11.5Mo-6Zr-4.5Sn(a)	690	100	620	90	0.05	0.10	0.020	0.35	0.18		4.5	6.0	11.5		
Ti-15V-3Cr-3Al-3Sn	1000(b)	145(b)	965(b)	140(b)	0.05	0.05	0.015	0.25	0.13	3	3			15V, 3Cr	
	1241(f)	180(f)	1172(f)	170(f)											
Ti-15Mo-3Al-2.7Nb-0.2Si	862	125	793	115	0.05	0.05	0.015	0.25	0.13	3			15	2.7Nb, 0.2Si	
(a) Mechanical properties given for the annealed nealed condition. (c) Semicommercial alloy; r $O_2 + 2N_2 = 0.27\%$. (f) Also solution treated and	l condition; may nechanical proj aged using an al	be solution t perties and co ternative agin	reated and age omposition lin g temperature (d to increase stren uts subject to neg (480 °C, or 900 °F)	gth. (b) Mech gotiation with	nanical pro h suppliers	perties given s. (d) Prima	for the so ily a tubi	lution-treated ng alloy; ma	l-and-aged y be cold	conditio drawn to	n; alloy 1 o increas	not norm se streng	ally applied in an- th. (e) Combined	

Table 1.1: Commercial and semi commercial grades and alloys of titanium

Heat treatment is a procedure of heating and cooling a material without melting. Typical objectives of heat treatments are hardening, strengthening, softening, improved formability, improved machinability, stress relief and improved dimensional stability of the materials. It also determined the microstructure of small crystals called "grains" or crystallites. The orientation of the grain structure will determined how effective its mechanical properties. The better grain orientation, the better its mechanical properties. The suitable choosing of the parameter during heat treatment process like temperature and time is important to get a better result. Followed by the heat treatment process, several testing is needed to prove the effectiveness of heat treatment parameter that is being used. The testing includes hardness test, impact test and microstructure verifying and analyzing. This is due to the specification needed in watch manufacturing application to maintain the watch quality. The testing will be perform on two condition of the specimen which is specimen undergo heat treatment process. From the result obtained, statistical analysis will be done to provide the analysis of the titanium characteristic that suitable to be used in watch manufacturing application.

1.2 Objective

The objective of this research is to study the effect of heat treatment process of Titanium for watch manufacturing application.

1.3 Scopes

The focus of this technical research is to do a literature study of titanium, heat treatment process of titanium, titanium microscopic structure and its availability to use for watch manufacturing application. This research also will carry out the methodology of heat treatment process of titanium and the testing that perform on it. Data such as laboratory equipment, procedures, parameter use, condition and catalyst will be included in this research. The mechanical testing that will cover in this research is hardness test and impact test. The data obtain from the testing will be compared between specimen that not undergo heat treatment process and specimen undergo heat treatment process. The comparison result is use to analyze its mechanical properties. This research will also concentrate the comparison of the data obtain from all mechanical testing. The heat treatment process that applied in this research can also be used for student of Mechanical Engineering application.

1.4 Problem Statement

Watch manufacturing is one of the manufacturing fields that widely operate in Europe. This manufacturing field also includes Asia in its territory. One of the most famous watch makers is the Swatch Group. Nowadays, titanium is widely use for watch part manufacturing process, for example is the watch model from TISSOT brands, which are T-Touch Titanium and T-Touch Polished Titanium. The problem occur for material of titanium use in this model is its have defect like a small dotted and its surface finish is not smooth. This problem will cause failure when water resistant testing is executed. Other problem during the manufacturing process is that the quantity of tools use in machining process is issuing too many in one week period of production time. The tool is either broken or its total life is short. Too much total issuing will increase the cost of production process. All of the problem might come from heat treatment process, several testing procedure and drawing process of titanium production.

CHAPTER 2

LITERATURE REVIEW

Literature review is the collective of data or information from reading, references and also information from the experts relating to the projects which will be review in this chapter. From here, we will understand the purpose of the project and how we are going to achieve the result. So it is important to review all the information to make sure it will be useful beneficial for this project.

2.1 Titanium

Titanium is present in the earth's crust at a level of about 0.6% and is therefore the fourth most abundant structural metal after aluminum, iron, and magnesium. The most important mineral sources are ilmenite (FeTiO³) and rutile (TiO²) (Lutjering, G., Williams, J.C., Titanium 2nd Edition, Sub chapter 1.2, pg. 2, 2007).

High strength, low density, and excellent corrosion resistance are the main properties that make titanium attractive for a variety of applications. The examples include aircraft which have high strength in combination with low density. Aeroengines are another application that takes the advantage of titanium. The high strength, low density and good creep resistance up to about 550°C that have in titanium attract