DAMAGE INITIATION AND PROPAGATION IN COMPOSITE MATERIALS SUBJECTED TO TENSILE AND COMPRESSION LOADING

NURUL AZWA BINTI ABDUL RAHMAN

This report is submitted as partial fulfillment of the requirements for the award of Bachelor of Mechanical Engineering (Thermal Fluid)

Faculty of Mechanical Engineering
University Technical Malaysia Melaka

APRIL 2009

"I admit that had read this dissertation and in my opinion this dissertation is satisfactory in the aspect of scope and quality for the bestowal of Bachelor of Mechanical Engineering (Thermal Fluid)"

Signature

: Pn Siti Hajar Binti Sheikh Md Fadzullah Supervisor I Name

: 12 may 2009 Date

Signature

Supervisor II Name : Pn Nortazi Binti Sanusi

Date

"I verify that this report is my own word except summary and extract that every one of it I have clarify the resource"

Signature :

Writer Name : Nurul Azwa bt Abdul Rahman

Date : 12/05/09

For my beloved parent and siblings

ACKNOWLEDGEMENT

I would like to thank my supervisor, Pn Siti Hajar bt Sheikh Md Fadzullah for her support, guidance and encouragement during completion of this final year project.

I would like to dedicate this project to my parents, friends and anyone that helped me in finishing my project. I hope this report would be beneficial for future student as a reference.

ABSTRACT

Today, composite materials are useful in reticular structures, however their structure performance related to damage of fresh composite material. This research investigates the damage initiation and propagation for laminated composite under low and high velocity subjected to tensile and compression test. Three types of composite material are used, which include the uni-directional carbon fibre, woven carbon fibre and woven glass fibre. Tensile test as per ASTM D3039 was carried out at different velocity ranging from 0.6mm/min to 1.0mm/min and Compression tests as per ASTM D695 was carried out velocity of 0.2mm/min to 0.6mm/min. The effect of this tensile and compression test at on the specimen were analyzed by using scanning electron micrograph (SEM). The damage modes considered are initial matrix cracking, saturation of matrix cracking, kind band, damage propagation and fiber breakage. The progressive failure is expressed by reducing stiffness of the material at all failed points. The lowest stiffness drop occurred in the laminates with the lowest edge crack density. The orientations of fibre affected the crack density of composite material. To get a clear observation on damage initiation and propagation of composite material, analyses of failure for three of type material were compared by discussing their different damage mechanism. For comparison, the data of mechanical testing was simulated using Finite Element Analysis (FEA), by Cosmos Xpress.

ABSTRAK

Kini, komponen bahan komposit sering digunakan dalam penyatuan strukturnya, walau bagaimanapun prestasi struktur bahan komposit sering dikaitkan dengan kemusnahan bahan mentah. Penyelidikan ini mengkaji tentang kerosakan permulaan dan perambatan bahan komposit yang berlapis pada halaju yang tinggi dan rendah di bawah beban tegasan dan mampatan. Kajian ini terdiri daripada tiga jenis bahan komposit iaitu gentian karbon jenis ekaarah, gentian karbon jenis fabrik tenun dan gentian kaca jenis fabrik tenun. Dalam kajian ini, ujian tegasan dijalankan pada halaju 0.6mm/min hingga 1.0mm/min dengan merujuk pada ASTM D3039, manakala ujian mampatan dijalankan pada halaju 0.2mm/min hingga 0.6mm/min dengan merujuk pada ASTM D695. Kesan daripada ujian beban tegasan dan mampatan ini, spesimen dianalisa dengan menggunakan SEM. Terdapat beberapa jenis kerosakan bahan dikaji, antaranya retakan permulaan matrik, retakan ketepuan matrik, patah jalur punding, kerosakan perambatan bahan dan pecahan bahan karbon. Penambahan kegagalan bahan komposit dapat dilihat dengan mengurangkan pengukuhan stuktur bahan di titik kegagalan bahan komposit. Apabila berlaku pengurangan keretakan tepi pada bahan komposit berlapis, pengukuhan ketumpatan bahan akan menurun dan mengakibatkan kemusnahan bahan. Arah pada struktur bahan gentian mempengaruhi ketumpatan keretakan pada bahan komposit. Untuk melihat lebih dekat kerosakan permulaan dan perambatan bahan, analisis kegagalan dan kemusnahan bagi ketiga-tiga jenis bahan komposit dikaji dengan membuat perbandingan dan perbincangan kerosakan setiap bahan. Di akhir kajian, data yang diperolehi melalui kaedah kajian digunakan untuk perbandingan menggunakan perisian analisis unsur terhingga iaitu 'Cosmos Xpress'.

TABLE OF CONTENT

CHAPTER	TOPIC	PAGE
	CONFESSION	ü
	DEDICATION	ili
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLE	xiii
	LIST OF FIGURE	xv
	LIST OF SYMBOL	xix
	APPENDIX LIST	xx

CHAPTER	TOP	IC P	AGE
CHAPTER I	INT	RODUCTION	Ĭ
	1.0	Introduction	1
	1.1	Objective of this research	2
	1.2	Problem Statement	2
	1.3	Scope of the research	2
	1.4	Planning and execution PSM 1& PSM II	3
CHAPTER II	LITI	ERATURE REVIEW	5
	2.1	An Overview of Composite Materials	5
	2.1.1	Type of Composite Materials	6
	2.1.1.	1 Glass Fibers for Reinforcing Plastic Resins (GFRP)	7
	2,1,1,	2 Carbon Fibers for Reinforced Plastics (CFRP)	7
	2.2	Introduction of Material Testing and Mechanical Properties Composite Material	7
	2.3	Damage of Composite	8
	2.3.1	Damage Constrained Angle-Ply Laminate Composit	te 9
	(C)	Jniversiti Teknikal Malaysia Melaka	

CHAPTER	TOPI	С	PAGE
	2.3.2	Damage Behavior and Life Prediction in CFRP Cross-Ply Laminates under Fatigue Loading	11
	2.3.3	Damage Initiation and Propagation Subjected to Tensile and Compressive loading for laminate composite.	14
	2.4	Tension behavior of unidirectional glass, epoxy Composite under different strain rate	15
	2,4,1	Tensile Fracture behavior result	17
	2.4.2	Characterization of the Mechanical Behavior of Material in the Tensile Test: Experiment and Simulation	18
	2.5	Compression loading test	21
	2.5.1	Compression Fatigue Failure of CFRP Laminates with Impact Damage	24
CHAPTER III	MET	HODOLOGY	
	3.1	Overview	28
	3.2	Material and Specimen Preparation	30
	3.2.1	Material	30
	3.2.1.	1 Carbon Fiber	31

CHAPTER	TOPIC		PAGE
	3.2.1.2	Glass Fiber (GFRP)	33
	3.2.2	Specimen Preparation	34
	3.2.2.1	Fabrications for tensile test	35
	3.2.2.2	Fabrications for compression test	37
	3.3	Experimental Condition	39
	3.3.1	Tensile Test Experimental	40
	3.3.2	Compression Test	41
	3.4	Mechanical Experiment	42
	3.4.1	Tensile Test	43
	3.4.2	Compression Test	45
	3.5	Fractography and Crack Analysis Examination	46
	3.5.1	Surface Analysis via Scanning Electron Microscope (SEM)	47
	3.5.2	Fiber dominated failure unidirectional Compression	47
	3.5.3	Tensile Fractografic	48
	3.6	Finite Element Analysis (FEA) Using	
	3.6.1	Cosmos Express. Finite Element Analysis via Solid Work	50
		Cosmos Xpress.	50

C Universiti Teknikal Malaysia Melaka

4.1 Result of Mechanical Testing of Tensile Test. 51 4.1.1 Tensile Properties of carbon fiber reinforced plastic (CFRP) type of uni-directional of laminate composite. 51 4.1.2 Tensile Properties of Carbon Fiber Reinforced Plastic (CFRP) Type of Woven Laminate Composite 55 4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate Reinforced. 61
 4.1.1 Tensile Properties of carbon fiber reinforced plastic (CFRP) type of uni-directional of laminate composite. 51 4.1.2 Tensile Properties of Carbon Fiber Reinforced Plastic (CFRP) Type of Woven Laminate Composite 55 4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
reinforced plastic (CFRP) type of uni-directional of laminate composite. 4.1.2 Tensile Properties of Carbon Fiber Reinforced Plastic (CFRP) Type of Woven Laminate Composite 55 4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
uni-directional of laminate composite. 4.1.2 Tensile Properties of Carbon Fiber Reinforced Plastic (CFRP) Type of Woven Laminate Composite 55 4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
4.1.2 Tensile Properties of Carbon Fiber Reinforced Plastic (CFRP) Type of Woven Laminate Composite 55 4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
Reinforced Plastic (CFRP) Type of Woven Laminate Composite 55 4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
Woven Laminate Composite 55 4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
4.1.3 Tensile Properties of Glass Fiber Reinforced Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
Plastic (GFRP) Type of Woven Laminate Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
Composite. 58 4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
4.1.4 Comparison of Tensile Properties for Different Orientation and Material of Composite Laminate
Orientation and Material of Composite Laminate
Reinforced. 61
4.2 Compressive Properties of Laminate Composite via
Compression Test as per ASTM D695. 65
4.2.1 Compressive Properties for Uni-directional Carbon
Fiber Reinforced Plastic (CFRP) of Laminate
Composite under Compression Test. 65
4.2.2 Compression Properties for Woven Carbon Fiber
Reinforced Plastic (CFRP) of laminate Composite
under Compression Test. 67
4.2.3 Compressive Properties for Woven Glass Fiber
Reinforced Plastic (GFRP) of Laminate Composite
under Compression Test. 69
4.2.4 Comparison of Compression Properties for
Different Orientation and Material for Advanced
Laminate Composite under compression Test. 71

CHAPTER	TOPIC	PA	GE
	4.3	Damage Initiation and Propagation Subjected	
		to Tensile and Compression Loading for Laminate	
		Composite	75
	4.3.1	Fracture Behaviors	75
	4.3.2	Tensile Fracture Behaviors Result	76
	4.3.3	Compression Fracture Behaviors Result	79
	4.4	Fractographic Analysis of Composite	80
	4.4.1	Fiber Dominated Failure of Compression using	
		Scanning Electron Microscope (SEM).	81
	4.4.2	Cross-Ply Failure of Tension using Scanning	
		Electron Microscope (SEM).	86
	4.5	Finite Element Analysis (FEA) via Cosmos Xpress	92
	4.5.1	FEA Analysis for Uni-Directional Carbon Fibre	
		under Tensile Test	92
	4.5.2	FEA Analysis for Composite Material under	
		Compression Test	95
CHAPTER V	CON	CLUSION	98
CHAPTER VI		RECOMMENDATION FOR FUTURE WORK	99
	REFE	ERENCES	101
	BIBL	IOGRAPHY	104
	APPE	ENDIX	105

LIST OF TABLE

NO	TITLE	PAGE
1.1	Gantt Chart for PSM 1-2008	3
1.2	Gantt Chart for PSM 2-2009	4
2.1	Tensile strength, fracture strain and elastic modulus of	
	unidirectional laminate	12
3.1	The Carbon Fiber Orientation, Compression Modulus and	
	Strength Data for Different Lay-Ups of CFRP,	32
3.2	Carbon Fiber Properties.	33
3.3	Compression Modulus and Strength Data for Different	
	Lay-Ups of GFRP.	34
3.4	Tensile Specimen Geometry Requirements	35
3.5	Tensile Specimen Geometry Recommendations	36
3.6	Dimensions for compression test follow ASTM D695.	38
3.7	Uni-Directional (UD) -Carbon Fibre Reinforced Plastic	40
3.8	Woven Carbon Fibre Reinforced Plastic	40
3.9	Woven- Glass Fibre Reinforced Plastic	41
3.10	Uni-directional (UD) - Carbon Fibre Reinforced Plastic	41
3.11	Woven - Carbon Fibre Reinforced Plastic	42
3.12	Woven - Glass Fibre Reinforced Plastic	42
4.1	Experimental Data for Uni-directional Carbon Fiber	
	(CFRP) under Tensile Test.	52
4.2	Maximum and Minimum Value of Stiffness at	
	Different Loading.	53
4.3	Maximum and Minimum Value of Load at Different Loading	54

NO	TITLE	PAGE
4.4	Experiment Data for Woven Carbon Fiber (CFRP)	
	under Tensile Test.	55
4.5	Maximum and Minimum Value of Stiffness at	
	Different Loading Rate for Woven Carbon fibre.	57
4.6	Experimental Data Woven Glass Fibre (GFRP) under	
	Tensile Test	59
4.7	Maximum and Minimum Value of Stiffness at Different	
	Loading Rate for Woven Glass fibre.	60
4.8	Comparison Data of Different Material and the	
	Orientation for Advanced Laminate Composite.	62
4.9	Experiment Data for Uni-directional Carbon Fiber	
	(CFRP) under Compression Test.	65
4.10	Experimental Data for Woven Carbon Fiber	
	(CFRP) under Compression test.	68
4.11	Experimental Data for Woven Glass Fiber	
	Reinforced Plastic (GFRP) under Compression Test.	70
4.12	Comparison of Different Material and the	
	Orientation Advance Laminate Composite under	
	Compression Test.	72
4.13	Data Analysis of Uni-directional Carbon	
	Fibre via Cosmos Xpress.	93
4.14	Stress Result of Simulation for	
	Uni-directional (UD) Carbon Fibre.	93
4.15	Data Analysis of Glass Fibre via Cosmos	
	Xpress under Compression Test.	95
4.16	Result of Stress Analysis for Glass Carbon	
	Fibre under Compression Test	96

LIST OF FIGURE

NO	TITLE PAGE	E
2.1	Flow of Mechanical Properties of Composite Materials	8
2.2	Characteristic crack pattern captured by image processor in	
	0° +/- 75° laminates.	9
2.3	Edge Crack states in: a) 0°+/-25°, b) 0°+/-45°	10
2.4	Damage curves of 0+/- 25° laminated plotted in maximum cyclic strain.	10
2.5	Specimen for tensile and fatigue tests	11
2.6	Specimen for tests on fiber direction of unidirectional laminate.	12
2.7	Tensile strength of unidirectional laminate as a function of the tensile	
	direction.	13
2.8	Damage evolution in 0° plies of the 0.5-3 ply under on-axis fatigue.	13
2.9	Particular pattern of crack opening measurement	14
2.10	Typical Tensile test specimens	16
2.11	Experimental set up used for high speed tensile test	16
2.12	Typical stress-strain tensile behavior of epoxy/glass composite	
	under various strain rates.	17
2.13	Failure sample of fracture behavior result	18
2.14	Analysis of the tensile test: schematic representation of	
	the necking zone for both cylindrical and strip specimens.	19
2.15	Analysis of a tension specimen: Fracture stage for	20
2.16	Schematic outline of the Mechanical Combined Loading Compression	22
2.17	Sample of grip with test coupon.	22
2.18	UD carbon/epoxy test coupons failed in static compression testing	23

NO	TITLE	E
2.19	Compression test Fixture: (a) Actual and (b) schematic.	25
2.20	Photographs of an un-impacted AS4/PEEK specimen in fatigue life.	26
2.21	Photographs of an impacted UT500/Epoxy specimen	26
2.22	Photographs of an impacted AS4/PEEK specimen in fatigue test.	26
2.23	SEM photographs showing kink band occurred at the	
	degree ply in the AS4/PEEK specimen laminates.	27
3.1	Process Flow Chart of Research	29
3.2	Flow of Material Preparation for Different Type of Composite Material.	30
3.3	Uni-directional Carbon Fiber Reinforced Plastic (CFRP)	32
3.4	Woven Carbon Fiber Reinforced Plastic (CFRP)	32
3.5	Woven-Directional Glass Fiber Reinforced Plastic (GFRP)	34
3.6	A schematic diagram showing 'dog-bone' shape for tensile test	36
3.7	Apparatus for fabrication of tensile test specimen and the cutting condition	37
3.8	Carbon and glass fiber reinforced plastic specimen	37
3.9	A schematic diagram shows dimensions for 0° plies.	
3.10	Process fabricates the specimen for compression test.	39
3.11	A carbon and glass fiber reinforced plastic after cutting process.	39
3.12	Universal Testing Machine (UTM)	43
3,13	Schematic illustration showing how the sample is tested using	
	extensometer	44
3.14	Condition of carbon and glass fiber during tensile test.	44
3.15	Position of specimen before compression test.	45
3.16	Observation of specimen during compression test	45
3.17	Procedure for failure analysis of composites	46
3.18	SEM Machine	47
3.19	Compression failure (a) Klink band (x100) and (b) Micro buckling	48
3.20	SEM micrograph of fractured tensile specimen of AMC225	49
3.21	High magnification SEM image of initiation region	49
3.22	Sample specimen analysis using Cosmos Xpress via Solid Word.	50
4.1	Load, kN versus extension, mm under tensile test for	
	uni-directional carbon fibre.	52

NO	TITLE	PAGE	
4.2	Maximum and minimum value of stiffness versus different		
	loading rate for uni-directional carbon fibre under tensile test.	53	
4.3	Maximum and minimum load, kN versus different loading rate,		
	mm/min for uni-directional carbon fibre.	54	
4.4	Load, kN versus extension for woven carbon fibre under tensile test	. 56	
4.5	Maximum and minimum value of stiffness versus different		
	loading rate for woven carbon fibre under tensile test.	57	
4.6	Maximum and minimum load, N versus different		
	loading rate, mm/min for woven carbon fibre under tensile test.	58	
4.7	Load versus extension for woven glass fibre under tensile test	59	
4.8	Maximum and minimum value of stiffness versus		
	different loading rate for woven glass fibre under tensile test.	60	
4.9	Maximum and minimum load, kN versus different		
	loading rate, mm/min for woven glass fibre under tensile test.	61	
4.10:	Stress versus strain for tensile behavior of advanced		
	composite laminate under tensile test.	63	
4.10	Maximum load versus extension for advanced		
	laminate composite material under tensile test	64	
4,11	Maximum and minimum value of stiffness versus		
	different loading rate for UD-carbon fibre under compression test	66	
4.12	Maximum and Minimum Loads versus difference		
	loading rate for UD carbon fibre.	67	
4.13	Maximum and minimum value of stiffness versus		
	difference loading rate for woven carbon fibre under compression t	est 68	
4.14	Maximum and minimum loads respect with different loading		
	rate for woven carbon fibre under compression test.	69	
4.15	Maximum and minimum stiffness respect with different		
	loading rate for woven glass fibre.	70	
4.16	Maximum and minimum loads respect with different		
	Loading rate for woven glass fibre.	71	

NO	TITLE	PAGE
4.17	Compressive stress respect to different loading rate	
	with same compressive strain at 0.2% yield loads for advanced	
	composite laminate under compression test.	73
4.18	Fracture time at different loading rate for different	
	advanced composite laminates under compression test.	74
4.19	Fracture of specimen at loading rate at 0.6mm/min	76
4.20	Fracture surface analysis using microscope at (0,500)hz	
	for specimen of loading rate 0.6mm/min	7
4.21	Specimen of tensile test by using higher loading rate at 0.8mm/min	
	and 1.0mm/min for	78
4.22	Fracture higher surface analysis using microscope	
	for loading rate 1.0mm/min	78
4.23	Uni-Directional Carbon Fibre (a) Before tested (b) After	
	Compression Test.	79
4.24	Woven Carbon Fibre a) Before tested (b) After Compression Test.	79
4.25	Woven Glass Fibre a) Before tested (b) After Compression Test.	80
4.26	SEM Micrograph of UD carbon fibre at loading rate 0.2mm/min	81
4.27	SEM Micrograph of UD carbon fibre at loading rate 0.6mm/min	82
4.28	SEM Micrograph of UD carbon fibre at loading rate 0.4mm/min	82
4.29	SEM Micrograph of Woven Glass fibre at loading rate 0.2mm/min	83
4.30	SEM Micrograph of Woven Glass fibre at loading rate 0.4mm/min	84
4.31	SEM Micrograph of Woven Glass fibre at loading rate 0.6mm/min	84
4.32	SEM Micrograph of Woven carbon fibre at loading rate 0.2mm/min	85
4.33	SEM Micrograph of Woven carbon fibre at loading rate 0.4mm/min	85
4.34	SEM Micrograph of Woven carbon fibre at loading rate 0.6mm/min	86
4.35	SEM Micrograph of Uni-directional carbon fibre at loading rate	87
4.36	SEM Micrograph of Uni-directional carbon fibre at loading rate	
	1.0mm/min	88
4.37	SEM Micrograph of Uni-directional carbon fibre at loading rate	
	0.8mm/min.	88
4.38	SEM Micrograph of Woven Glass Fibre at loading rate 0.6mm/min8	39
4.39	SEM Micrograph of Woven Glass Fibre at loading rate 0.8mm/min.	89

NO	TITLE	PAGE	
4.40	SEM Micrograph of Woven Glass Fibre at loading rate 1.0mm/mir	ı. 90	
4.41	SEM Micrograph of Woven carbon Fibre at loading		
	rate 0.6mm/min.	90	
4.42:	SEM Micrograph of Woven carbon Fibre at		
	loading rate 0.8mm/min.	91	
4.43	SEM Micrograph of Woven carbon Fibre at		
	loading rate 1.0mm/min.	91	
4.44	Analysis of specimen before and after run		
	simulation for UD carbon.	94	
4.45	Result of specimen after simulation for UD carbon		
	fibre under tensile.	94	
4.46	Analysis of specimen before and after simulation		
	under compression test.	96	
4.47	Result of simulation under compression test via		
	Cosmos Express	97	

LIST OF SYMBOL

 σ = Engineering stress

 Δl = Elongation

 ϵ . = Engineering strain

lo = initial length

Ao = cross section area

F = uniaxial tensile force

°C = Degree celcius

APPENDIX LIST

BIL	TITLE	PAGE
1	ASTM D695 -COMPRESSION TEST ASTM D3039 - TENSILE TEST	105
2.		
2	Compression Test Data - mechanical; testing	110
3,	Tensile Test Data- mechanical testing	120

CHAPTER I

INTRODUCTION

1.0 Introduction

Damage of material means the progressive or sudden deterioration of their mechanical strength because of loadings or thermal or chemical effect. It covers all related phenomena that occur from the virgin or reference state up to a micro crack initiation. The phenomenon happens after two phases. In the first step, the microvoids and micro-cracks growth is nearly uniform: it is the initiation stage. From the critical point the strain and also the damage become more and more localized. In second stage, the load/displacement curves are very different. It becomes instabilities as localized necking.

In basic, composite materials is a structural material which consists of combining two or more constituents. It is fail by the (statistical) accumulation of damage in a progressive process that reduces stiffness and strength and defines the life of the material or components. In general, the early stages of life, damage initiation dominate the damage development process. For fiber-dominated composites, fiber fracture and matrix cracking are common result of the process. Then, damage accumulates and begins to interact over a portion of the life that is often a major fraction of the total. In the final stages, damage interaction creates locally intense concentration that ultimate cause failure.

In this research, two testing mode which include tensile testing and compression testing are utilized use to discuss the effect on the damage initiation and propagation of composite material. In tensile test, the normal stresses are initiated due to force directed away from the plane on the other compression hand in maximum compressive stress that a material is capable of sustaining is measured.

1.1 Objectives

The objectives of this research are to study and discuss the effects of different testing mode (compression and tensile) on the damage initiation and propagation of advanced composite materials.

1.2 Problem Statement

This research has been carried out due to the problem with CRFP. CRFP laminate tend to suffer from internal damage such as ply cracks and delaminating between the plies even under a much lower load. Therefore it is crucial to study the initiation and propagation of the material under tensile and compression loading.

1.3 Scope of the Research

This research comprises of the following scope:-

- To do literature study on composite materials.
- b) To carry out compression test and tensile test.
- To carry out surface analysis after compression and tensile test via scanning electron microscope (SEM).
- d) To compare the data using 'Finite Element Analysis