ANALYSIS AND MEASUREMENT OF ALIGNMENT AND TRACKING METHOD OF EARTH STATION ANTENNA IN SATELLITE COMMUNICATION SYSTEM

HO SHU MEI

This report is submitted in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > May 2011

FAKULTI K	UNIVERSTI TEKNIKAL MALAYSIA MELAKA ejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek:ANDANTESesi:1Pengajian:	LYSIS AND MEASUREMENT OF ALIGNMENT TRACKING METHOD OF EARTH STATION ENNA IN SATELLITE COMMUNICATION SYSTEM 0 / 1 1
mengaku membenarkan Laporan syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Ur 2. Perpustakaan dibenarkan me	(HURUF BESAR) n Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- niversiti Teknikal Malaysia Melaka. embuat salinan untuk tujuan pengajian sahaja. embuat salinan laporan ini sebagai bahan pertukaran antara institusi
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PE	NULIS) (COP DAN TANDATANGAN PENYELIA)
Tarikh:	Tarikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the references"

Signature	:
Author	:
Date	•••••••••••••••••••••••••••••••••••••••

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award for Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours"

Signature	:
Supervisor's Name	:
Date	:

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor, Mr Chairulsyah bin Abdul Wasli for teaching and guiding me during the project period. Many thanks also to the FKEKK's lecturers for giving me a wonderful and cheerful time during my four years of study in UTeM.

Next, I would to express my gratitude to Mr. Kamarulzaman, the manager of Melaka Earth Satellite Station and En. Azizi, PASCA lab technician for your time in explaining and guiding me in this project.

Lastly, I would like to thank my family and friends. Without your support, I would not have completed this project smoothly.

ABSTRACT

Communication satellites in the geostationary orbits possess daily motion which causes the apparent position of the satellite to wander in the sky as seen by the earth station. If uncompensated, it will cause a variation in the performance of communication link. Therefore, the movement of the satellite has to be tracked by the earth station antenna. This reports aims to give an understanding of the satellite communication system and also the requirements in the alignment and tracking method of the earth station. In this report, we will explore the functions of communication system and its subsystems. The parameters in the link budget and earth station configuration will also be discussed. Other than that, the determination of the azimuth and elevation angles and slant range will be done in order to point the earth station to the satellite by using calculation and simulation method. Then, the results will be analyzed and compared. To conclude, the alignment and tracking is important to ensure reliable communication links between satellite and earth station.

Key words: Satellite communication system, earth station antenna, antenna alignment, antenna tracking

ABSTRAK

Satelit komunikasi pada orbit geopegun mempunyai gerakan harian yang menyebabkan kedudukan nyata satelit untuk berkeliaran di langit seperti yang dilihat oleh stesen bumi. Jika tidak dikompensasi, ia akan menyebabkan variasi dalam prestasi komunikasi. Oleh kerana itu, pergerakan satelit harus dikesan oleh stesen bumi antena. Laporan ini bertujuan untuk memberikan pemahaman tentang sistem komunikasi satelit dan juga faktor yang memainkan peranan dalam kaedah penjajaran dan pengesanan yang digunakan oleh stesen bumi. Dalam laporan ini, kita akan membincangkan fungsi sistem komunikasi dan sub sistemnya. Parameter dalam 'link budget' dan tatarajah stesen bumi juga akan dibincangkan. Selain itu, penentuan sudut azimuth dan elevasi dan jarak satelit dari stesen bumi akan dilakukan untuk menentukan titik stesen bumi ke satelit dengan menggunakan perhitungan dan kaedah simulasi. Kemudian, hasilnya akan dianalisis dan dibandingkan. Kesimpulannya, penyelarasan dan pengesanan adalah penting untuk memastikan hubungan komunikasi handal antara satelit dan stesen bumi.

Kata kunci: Satelit komunikasi, stesen bumi antenna, kaedah penjajaran antenna, kaedah pengesanan antena

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	iii
	ACKNOWLEDGEMENTS	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xiii
	LIST OF FIGURES	XV
	LIST OF APPENDIXES	xvii
Ι	INTRODUCTION	
	1.1 INTRODUCTION	1
	1.2 OBJECTIVES	2
	1.3 SCOPE OF WORK	2

1.5	EXPECTED OUTCOMES	3

3

1.4 PROBLEM STATEMENTS

1.6 METHODOLOGY

II LITERATURE REVIEW

2.1 INTRODUCTION TO A SATELLITE 5 COMMUNICATION SYSTEM

2.1.1 Conf	iguration of A Satellite System	6
2.1.2 Com	munication Links	6
2.1.3 The	Space Segment	7
2.1.4 The	Ground Segment	8

2.2 SATELLITE ORBITS 9

- 2.2.1 Low Earth Orbit (LEO) 10
- 2.2.2 Medium Earth Orbit (MEO) 10
- 2.2.3 Highly-eccentric Orbit (HEO) 10
- 2.2.4 Geostationary Orbit (GEO) 11

2.3 FREQUENCY ALLOCATIONS 11

2.4	LINK	BUDGET	12
	2.4.1	Transmitter Power (P)	12
	2.4.2	Antenna gain (G)	13
	2.4.3	Equivalent Isotropically	13
		Radiated Power (EIRP)	
	2.4.4	Illumination Level (W)	14
	2.4.5	Free Space Path Loss (L)	14
	2.4.6	Figure of Merit (G/Ts)	15

4

2.4.7 Carrier-to-Thermal Noise Ratio (C/T)	15
2.4.8 Carrier-to-Noise Density Ratio (C/No)	16
2.4.9 Carrier-to-Noise Ratio (C/N)	16
2.4.10 Examples of Link Budget	17

2.5 EARTH STATION ANTENNA 18

2.5.1 Configuration of Earth Station	
2.5.2 Mountings to Permit Antenna Pointing	20
2.5.2.1 The X-Y mount	20
2.5.2.2 The AZ/EL mount	21
2.5.2.3 Polar mount	23

2.6 ALIGNMENT	
2.6.1 Azimuth (A) and Elevation (h) Angles	25

2.6.2	Slant Range (S)	27
	0 ()	

2.7 TRACKING	27
2.7.1 Fixed Antenna without Tracking	28
2.7.2 Programmed Tracking	29
2.7.3 Computed Tracking	29
2.7.4 Closed Loop Automatic Tracking	30
2.7.4.1 Sequential Amplitude Detection	30
2.7.4.1.1 Conical scanning	31
2.7.4.1.2 Step-by-step tracking	32
2.7.4.1.3 Electronic tracking	33
2.7.4.2 Monopulse Technique	33
2.7.5 Example of Tracking Process	34

2.8	DIST	CANCE CALCULATION	35
	2.8.1	Distance in One Dimension	36
	2.8.2	Distance in Two Dimensions	36
	2.8.3	Distance in Three Dimensions	37
		2.8.3.1 Cartesian coordinate system	37
		in three dimension	
		2.8.3.2 Geographic coordinate system	38
		in three dimensional system	
	2.8.4	Distance between Earth Station and Satellite	39
	2.8.5	Distance between Two Satellites in the	39
		Same Orbit	

III	METHODOLOGY	40
	3.1 FLOW CHART OF PROJECT	40
	METHODOLOGY	
	3.2 ANIMATION	41
	3.3 CALCULATION	42
	3.4 SIMULATION	44
	3.5 MEASUREMENT	45

IV	RESULT AND ANALYSIS	47
	4.1 CALCULATION RESULT	48
	4.2 SIMULATION RESULT	48
	4.3 MEASUREMENT RESULT	48

V	CONCLUSION	53
	5.1 DISCUSSION	53
	5.2 CONCLUSION	56
	5.3 FUTURE RECOMMENDATION	56

REFERENCES

57

LIST OF TABLES

NO	TITLE	PAGE
2.1	Platform subsystems	7
2.2	INTELSAT Standard Earth Stations	8
2.3	The frequency allocations and its usage	11
2.4	Uplink budget for International TV	17
2.5	Downlink budget for International TV	18
2.6	The summary of tracking method	35
3.1	The latitudes and longitudes of the earth station and satellites	42
3.2	Satellite position according to DiSEqC positioner	45
4.1	The calculation result	47
4.2	The simulation result	48
4.3	The list of channels that can received in the	48
	Asiasat 3S C-band 105.5E satellite	

4.4	The list of channels that can be received in	51
	Asiasat 2C 100.5E satellite	
5.1	The comparison between calculation and simulation results	53
5.2	The comparison between the signals received from	54
	Asiasat 3S 105.5E and Asiasat 2C 100.5E	

LIST OF FIGURES

NO	TITLE	PAGE
1.1	The flowchart of the project	4
2.1	Satellite communication system	6
2.2	The satellite orbits	9
2.3	The configuration of an earth station	19
2.4	10 meter diameter X-Y mount antenna	20
2.5	11 meter diameter AZ/EL mount antenna	21
2.6	97 foot diameter antenna using AZ/EL mount	22
2.7	Wheel-and-track pedestal system	22
2.8	Polar mount geometry	23
2.9	The flow chart of antenna alignment process	24
2.10	Azimuth and elevation angles from	25
	the earth station to the satellite	
2.11	Spherical triangle showing satellite azimuth A	25
	and earth station latitude ϕ	
2.12	The slant range between the satellite and earth station	27
2.13	The types of tracking system	28

2.14	The movement of antenna in conical scanning	31
2.15	Possible step-tracking subsystems configuration	32
2.16	Tracking process of conical scanning	34
2.17	Distance in two dimensions	36
2.18	A three dimensional Cartesian coordinate system, with	37
	origin O and axis lines X, Y and Z, oriented as shown	
	by the arrows	
2.19	The geographic coordinate system	38
3.1	The flow chart on project methodology	40
3.2	Sequence of animation on earth station antenna tracking	41
3.3	Azimuth and elevation angles	42
3.4	Geometric relation between satellite range, earth station	43
	elevation angle, central angle from earth's center	
	and nadir angle	
3.5	Simulation using Satellite az-el Calculator	45
4.1	The measurement of channel 788, NOW	50
	transmitted by Asiasat 3S satellite	
4.2	The channel 788, NOW transmitted by Asiasat 3S	50
	satellite visualized using PROMAX	
4.3	The signal information channel 117, Jame-Jam	51
	TV Ne obtained from the TV monitor	
4.4	The measurements obtained for the channel	52

LIST OF APPENDIXES

NO TITLE

PAGE

A	The Standard Operating Procedure of Earth Station	58
	Antenna	
В	The Standard Maintenance Procedure of Earth Station	63
	Antenna	
С	Asiasat 3S 105.5E	67
D	Asiasat 3S 105.5E Channel Guide	68
E	Asiasat 2C 100.5E	77
F	List of Channels for Asiasat 2C 100.5E	78
G	DiSEqC	79

CHAPTER I

INTRODUCTION

This chapter consists of the outline of the project in terms of objectives, scope, problem statement, expected outcomes and methodology. It aims to give the reader a deeper understanding of the project.

1.1 INTRODUCTION

Earth station antenna is a main component in satellite communication system and plays an important role in determining the quality of a signal. Antenna should be aligned precisely on the ground with the satellite beforehand in order to establish and maintain reliable and high quality two-way communication services at all time. While the satellite is moving at a certain path, the antenna should also follow the satellite movement. This action is called "antenna tracking". There are several methods in alignment and tracking which depend on the type of antenna and services. This project will analyze the alignment and tracking method from the theoretical, design, simulation and measurement aspect. The measurement presents azimuth and elevation angle, power loss, signal-to-noise ratio, carrier-to-noise ratio and other parameters that will be affected. Measurements will take place at FKEKK and Lendu Earth Station. Other than that, an animation on how the alignment and tracking method works will be done.

1.2 OBJECTIVE

The objectives of this project are:

- To gain knowledge and skill in alignment and tracking system of earth station antenna.
- To prepare the SOP and SMP of FKEKK earth station antenna.
- To be able to use FKEKK earth station antenna for student's experiment.
- To foster close relation between UTeM and Telekom in satellite field.

1.3 SCOPES OF WORK

This project will discuss on:

- Background of satellite communication system and earth station antenna.
- Parameters involved in the alignment and tracking system of earth station antenna.
- Design for alignment and tracking system.
- Implementation and simulation of the parameters involved in alignment and tracking system.
- Analysis and measurement of alignment and tracking of earth station antenna at FKEKK and Lendu Earth Station.
- Comparison between the theoretical, simulation and measurement results of the alignment and tracking system.

1.4 PROBLEM STATEMENT

Earth station consists of an antenna sub-system with an associated tracking system, transmitting and receiving section. This type of antenna can be seen in FKEKK, UTeM whereby it is used for television broadcasting. However, the Standard of Operating Procedure (SOP) and Standard of Maintenance Procedure (SMP) are not available for the antenna in UTeM. It will be a problem to realign and operate the antenna if crisis occurs such as the antenna's system break down. Moreover, there is not much study in satellite topic related at UTeM at this time. In other words, there is not much relation of UTeM with leading telecommunication company such as Telekom in terms of satellite studies at current time.

1.5 EXPECTED OUTCOMES

At the end of the project, the expected results will be as the following:

- Animation on alignment and tracking system of earth station antenna.
- Analysis of alignment and tracking of the satellite using FKEKK earth station antenna.
- Develop the SOP and SMP for FKEKK earth station antenna.
- Simulation of antenna alignment and tracking system.
- Conference technical paper.

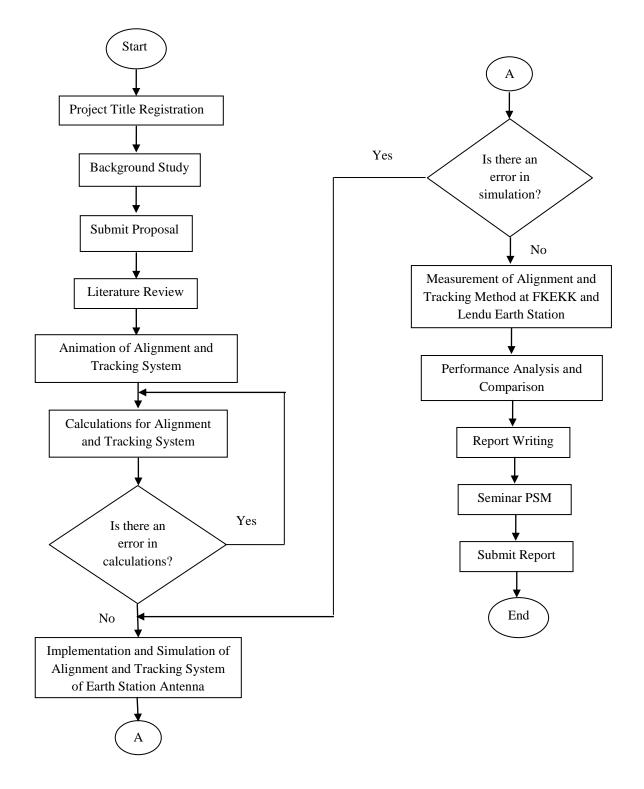


Figure 1.1: The flowchart of the project

CHAPTER II

LITERATURE REVIEW

This chapter is devoted to the studies on satellite communication system and its orbit. The allocation of frequency band based on space radio communication services is also discussed. This chapter will also sees into the link budget, organization of earth station and the characteristics of the antenna. In the last part, the alignment and tracking system will be examined.

2.1 INTRODUCTION TO A SATELLITE COMMUNICATION SYSTEM

A communication satellite is an orbiting artificial earth satellite that receives communication signal from a transmitting ground station, amplifies and then transmits it back to the earth for reception by one or more receiving ground stations.

In the mid-1960s, the commercial satellite communications industry has started and in less than 50 years, has progressed from an alternative technology to mainstream transmission technology. Today's communication satellites offer extensive capabilities in applications involving data, voice and video, with services provided to fixed, broadcast, mobile, personal communications and private network users.[1]

2.1.1 Configuration of A Satellite Communication System

Figure 2.1 gives an overview on the satellite communication system and its interfacing with terrestrial entities. The system is consists of space segment, control segment and ground segment.

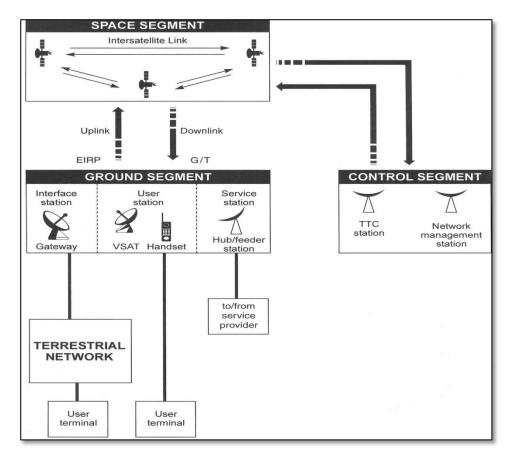


Figure 2.1: Satellite communication system

2.1.2 Communication Links

A link between a transmitting terminal and a receiving terminal consists of a radio or optical modulated carrier. The types of link are the uplinks from the earth stations to the satellites, downlinks from the satellites to the earth stations and the intersatellite links between the satellites. Uplinks and downlinks consist of radio frequency modulated carriers, while intersatellite links can be either radio frequency or optical. Carriers are modulated by baseband signals conveying information for communication purposes.

The link performance can be measured by the ratio of the received carrier power to the noise power spectral density, C/N_o ratio (Hz). This ratio will determine the quality of service of connection between the end terminals in baseband signal-to-noise power ratio, S/N or bit error rate (BER). [1]

2.1.3 The Space Segment

The space segment contains one or several active and spare satellites organized in a constellation and the satellite consists of the payload and the platform. In the payload, there are the receiving and transmitting antennas and all the electronic equipment which supports the transmission of the carriers. The two types of payload organization are transparent and regenerative. The platform consists of all the subsystems which permit the payload to operate. The Table 2.1 below lists these subsystems and indicates their respective main functions and characteristics: [1]

Subsystem	Principal Functions	Characteristics
Attitude and orbit control	Attitude stabilisation	Accuracy
(AOCS)	and orbit determination	
Propulsion	Provision of velocity	Specific impulse, mass
	increments	of propellant
Electric power supply	Provision of electrical	Power, voltage stability
	energy	
Telemetry, tracking and	Exchange of	Number of channels,
command (TTC)	housekeeping	security of
	information	communications
Thermal control	Temperature	Dissipation capability
	maintenance	
Structure	Equipment support	Rigidity, lightness

Table 2.1: Platform subsystems