STUDY ON MECHANICAL PROPERTIES AND MORPHOLOGY OF BANANA-GLASS FIBRE REINFORCED POLYPROPYLENE (PP) HYBRID COMPOSITES

NOR ASHYKIIN BT MOHAMMAD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Study on Mechanical Properties and Morphology of Banana-Glass Fibre Reinforced Polypropylene (PP) Hybrid Composites

Thesis submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka for the Degree of Bachelor of Manufacturing Engineering (Engineering Material)

By

NOR ASHYKIIN BT MOHAMMAD

Faculty of Manufacturing Engineering April 2009

UTeM Library (Pind.1/2007)

UNIV	'ERSITI TEKN	IIKAL MALAYSIA ME	ELAKA				
	BORA	NG PENGESAHAN S	TATUS TI	ESIS*			
OF BA		HANICAL PROPER' ASS FIBRE REINFO MPOSITES					
SESI PENGAJIAN	:200	5/2009					
mengaku membe Perpustakaan Ur kegunaan sepert	Saya <u>NOR ASHYKIIN BT MOHAMMAD</u> mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:						
 Perpustakaan untuk tujuan Perpustakaan antara institu 	 Tesis adalah hak milik Universiti Teknikal Malaysia Melaka . Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) 						
		(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)					
TER		(Mengandungi maklumat TERHAD yang telah ditentuk oleh organisasi/badan di mana penyelidikan dijalanka					
√ TIDA	k terhad			Disahkan oleh:			
<u></u>	A Parkis			Aut			
(TANDATANGAN PEN		ULIS)	(TAT)	NDATANGAN PENYELIA)			
Alamat Tetap: LOT 1090,JLN M	EKBANG,	Cop Rasmi:					
16040 TUMPAT,				Pensyarah Fakulti Keuruteraan Pembuatan			
KELANTAN DAR		Fakulti Rejuruetaan Fenibodon Universiti Teknikal-Malaysia Melaka Karung Berkunci 1200, Ayer Keroh 75450 Melaka					
Tarikh:	May 2009		Tarikh:	21 May 2009			
disertasi bagi pengajia ** Jika tesis ini SULIT a	an secara kerja atau TERHAD,	a kursus dan penyelidik sila lampirkan surat da	an, atau L ripada pih	jana secara penyelidikan, atau aporan Projek Sarjana Muda (PSM). ak berkuasa/organisasi berkenaan an sebagai SULIT atau TERHAD.			

DECLARATION

I hereby, declared this thesis entitled "Study On Mechanical Properties and Morphology of Banana-Glass Fibre Reinforced Polypropylene (PP) Hybrid Composites" is the results of my own research except as cited in references.

Signature	•	Standard
Author's Name	:	NOR ASHYKIIN BT MOHAMMAD
Date	•	16 APRIL 2009

APPROVAL

This Thesis submitted to the senate of UTeM and has been as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Material). The members of the supervisory committee are as follow:

Jut

(Pn. Intan Sharhida bt Othman) Project Supervisor Faculty of Manufacturing Engineering

> INTAN SHARHIDA BINTI OTHMAN Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayer Keroh 75450 Melaka

> > ii

ABSTRACT

The goal of our research was study about the mechanical properties and morphology of banana-glass fibre reinforced polypropylene hybrid composites. In this study, we choose the banana fibre as first material. This is because, banana trunk are the natural material and easy to get at any place in Malaysia and other place in the world. Preparations for banana fibre are getting from the journal. Before mixing the composition, banana fibre were processes via extraction banana fibre from the trunk of banana. The processing of banana fibre is for different two sizes; 250µm and 500µm. While, the composition prepared with 1.5, 2 and 2.5wt% of banana fibre that, these compositions are tested for mechanical properties and their morphology. Overall of the observation from this study shows the natural fibre have good mechanical properties when mixing with synthetic fibre.

ABSTRAK

Tujuan utama projek ini bagi mengkaji sifat mekanikal dan morfologi campuran antara dua gentian; gentian kaca dan gentian pisang bersama matrik polipropilina. Gentian pisang menjadi bahan utama didalam kajian ini kerana ia merupakan bahan semulajadi yang senang didapati dimerata-rata tempat, khususnya di seluruh Malaysia dan amnya di seluruh dunia. Penyediaan gentian pisang ini diperoleh dari kajian yang terdapat di dalam jurnal yang di akses melalui internet. Sebelum campuran komposit ini difabrikasikan, pemprosesan gentian pisang dijalankan dengan mengekstrak gentian pisang dari batang pisang yang matang. Gentian pisang ini diproses kepada dua panjang yang berbeza, ia itu 250µm dan 500µm. Manakala, campuran yang dibuat pula mengikut komposisi muatan gentian 1.5, 2 dan 2.5wt% dengan mengekalkan komposisi muatan gentian kaca pada 5wt% dengan panjang 2.5mm. Campuran ini kemudiannya di fabrikasi dan diuji terhadap ciri-ciri mekanikal dan analisis morphologi. Pemerhatian secara keseluruhan, dari hasil kajian ini menunjukkan bahan gentian semulajadi mempunyai ciri-ciri mekanikal yang baik apabila digandingkan dengan bahan sintetik.

DEDICATION

For my beloved mother and father also to my family who always give me support:

Mohammad b Mahmood Hawayah bt Mohamad Mohd Hazizie b Mohammad Mohd Nasruddin b Mohammad Mohd Shaziman b Mohammad Nor Shafiqah bt Mohammad Nor Shahirah bt Mohammad Nor Shafarina bt Mohammad Siti Ummi Umairah bt Mohammad

ACKNOWLEDGEMENTS

In the name of Allah SWT, finally I have completed my thesis based on the knowledge and experience that I got during my entire project. Here I would like to take this opportunity to thank the people for their utmost help and guidance given to me. I sincerely appreciate the following people for their utmost cooperation to me during my project flow.

- Dean, Head of Department, Lecturers and Technician of Manufacturing Engineering Faculty who had always given me their undivided guidance and corrected my mistakes during doing my PSM.
- I extend my appreciation to the respective Pn. Intan Sharhida bt Othman, my project supervisor who has shared her knowledge and experience as well as give me information and also given me full support and guidance in order to build my confidence and ability while doing my project.
- > My panel lecturers who will conduct the secondary evaluation for my PSM
- Last but not least, my Colleagues and friends in Bachelor Manufacturing Material Engineering who were always keep in touch and guide me during the project.

This project is dedicated to everyone who was involved while I am doing the project because without his or her help and support, I would not have been able to create this project successfully.

TABLE OF CONTENTS

Declara Approv			i ii
Abstrac	t		iii
			iv v vi vii
List of	Figure		
	viii		
List of	Table		ix
List of	Abbreviations	s, Symbols, Specialized Nomenclature	iix
1. INT	RODUCTIO	N	1
1.1 B	ackground		1
1.2 Pi	roblem Staten	nent	3
1.3 0	bjectives		3
1.4 Se	cope of Study	,	4
2. LIT	ERATURE F	REVIEW	5
2.1	Composite		5
	2.1.1 Introd	luction to Composite	5
	2.1.2 Matri	x	6
	2.1.2.1	Introduction to Matrix	6
	2.1.2.2	Thermoset	6
	2.1.2.3	Thermoplastic	7
	2.1.3 Fibre		13
	2.1.3.1	Introduction to Fibre	13
	2.1.3.2	Natural Fibre	14

	2.1.3.3 Synthetic Fibre	16
	2.1.4 Polymer Matrix Composite	17
	2.1.4.1 Glass Fiber- Reinforced Polymer (GFRP) Composite	18
	2.1.5 Hybrid Composite	20
2.2	Banana Fibre	21
	2.2.1 Introduction to Banana Fibre	21
	2.2.2 Characteristic of Banana Fibre	22
	2.2.2.1 Chemical Composition	22
	2.2.2.2 Physical Properties	22
	2.2.2.3 Mechanical Properties	24
2.3	Glass Fibre	25
	2.3.1 Introduction of Glass Fibre	25
	2.3.1 Chracteristic of Glass Fibre	26
2.4	Mechanical Properties of Composite	27
	2.4.1 Introduction	27
	2.4.2 Impact Properties	27
	2.4.3 Flexural Properties	29
3. MI	ETHODOLOGY	31
3.1	Introduction	31
3.2	Extracting the Natural Banana Fibre	35
3.3	Banana Fibre Reinforced Composite Fabrication	37
	3.3.1 Mould Selection	37
	3.3.2 Material Preparation	38
	3.3.3 Composite Preparation Process	38
	3.3.3.1 Equipments	38
	3.3.3.2 Procedure	39
3.4	Number of Specimen	41
3.5	Mechanical and Physical Testing	42
	3.5.1 Tensile Testing	42
	3.5.1.1 Procedures	42
	3.5.2 Flexural Testing	43

	3.5.2.1 Procedures	43
	3.5.3 Impact Testing	44
	3.5.3.1 Procedures	44
	3.5.3.2 Dimension of Impact Specimen	45
	3.5.4 Water Absorption Test	46
	3.5.4.1 Procedures	46
4. R	ESULTS AND DISCUSSION	47
4.	Data Analyses	47
	4.1.1 Mechanical and Physical Testing	47
	4.1.1.1 Tensile Test	47
	4.1.1.2 Flexural Test	50
	4.1.1.3 Impact Test	53
	4.1.1.4 Water Absorption Test	54
	4.1.2 Mechanical Properties of Banana-Glass Fibre Hybrid Composite	56
4.	2 Morphology analysis	58
	4.2.1 SEM Analysis on Banana-Glass Fibre Hybrid Composites	58
5.	CONCLUSIONS AND RECOMMENDATIONS	
	5.1 Conclusion	61
	5.2 Recommendation	61
	5.2.1 Research	61
REI	ERENCE	63
APF	ENDIX	
A B	Gantt chart for PSM 1& 2 Formulas & Calculation	

- C
- Formulas & Calculation Testing Results Tensile Testing Graph D

LIST OF FIGURES

2.1	Effect of fiber diameter on strength	13
2.2	Back-Scattering Electronic Image (BSEI) of banana trunk fiber	23
	at (MAGx200)	
2.3	Back-Scattering Electronic Image (BSEI) of banana trunk fiber	23
	(MAGx1200)	
2.4	Specimen used for Charpy and Izod Impact Test	28
2.5	The tree-point loading scheme for measuring the stress-strain	30
3.1	The main stage of the project	32
3.2	Flow chart of procedure	34
3.3	Banana fiber preparation	36
3.4	Mould from top view	37
3.5	(a) upper plate (b) main mould lower plate	37
3.6	Hot press machine	38
3.7	The simplified flow of the operation composite preparation	39
	process	
3.8	Universal Testing Machine	42
3.9	Impact Tester Machine	44
3.10	The charpy impact jig	45
3.11	Water absorption testing	46
4.1	Young's Modulus of the banana hybrid composite	48
4.2	Tensile strength of the banana hybrid composite	49
4.3	Flexural strength of the banana hybrid composite	50
4.4	Flexural Modulus of the banana hybrid composite	52
4.5	Impact energy of the banana hybrid composite	54
4.6	Water absorption of the banana hybrid composite	55
4.7	Fracture surface of tensile specimen for 1.5 % fibre content	59
4.8	Fracture surface of tensile specimen for 2 % fibre content	59
4.9	Fracture surface of tensile specimen for 2.5 % fibre content	60

LIST OF TABLES

2.1	Comparison of unmodified Polypropylene with other material:	9					
	Advantages						
2.2	Comparison of unmodified Polypropylene with other material:	10					
	Disadvantages						
2.3	Typical application of Polypropylene 1						
2.4	Critical requirement for applications where Polypropylene is one of	12					
	the best choose of material						
2.5	Chemical composition of the fibers						
2.6	Chemical composition of the banana fibers						
2.7	Physical properties of banana fiber						
2.8	Mechanical properties of banana fiber						
2.9	Characteristic of E-Glass						
3.1	Number of specimens prepared						
4.1	Young's Modulus of the banana hybrid composite						
4.2	Tensile strength of the banana hybrid composite						
4.3	Flexural strength of the banana hybrid composite						
4.4	Flexural Modulus of the banana hybrid composite						
4.5	Impact energy of the banana hybrid composite						
4.6	Water absorption of the banana hybrid composite 5						

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

ASTM	-	American Standard Testing Material
UTM	-	Universal Testing Machine
UTM	-	Universal Testing Machine
Max	-	maximum
Min	-	minimum
⁰ C	-	degrees Celsius
%	-	Percent
SEM	-	Scanning Electron Microscope
PP	-	Polypropylene
⁰ C	-	degrees Celsius
G	-	Giga
Μ	-	Mega
Pa	-	Pascal
Wt%	-	Weight Percent

CHAPTER 1 INTRODUCTION

1.0 INTRODUCTION

1.1 Background

In recent years, polymeric based composites materials are being used in many application such as automotive, sporting goods, marine, electrical, industrial, construction, household appliances, *etc.* Polymeric compositess have high strength and stiffness, light weight, and high corrosion resisitance. Natural fibres are available in abundance in nature and can be used to reinforce polymers to obtain light and strong materials. The information on the usage of banana fibre in reinforcing polymers is limited in the literature. In dynamic mechanical analysis, have investigated banana fibre reinforced polyester composites and found that the optimum content of banana fibre is 40%. The analysis of tensile, flextural, and impact properties of these composites revealed that composites with good strength could be successfully developed using banan fibre as the reinforcing agent. The source of banana fibre is the waste banana trunk or stems which are abundant in many places in the world (Sapuan, 2005).

Nature continues to provide mankind generously with all kinds of rich resources in plentiful abundance, such as natural fibres from a vast number of plants. However, since the last decade, a great deal of emphasis has been focused on the development and application of natural fibre reinforced composite material in many industries. Needless

to say, due to relatively high cost of synthetic fibres such as, glass, plastic, carbon and kevlar used in fibre reinforced composite, and the health hazards of abestos fibres, it becomes necessary to explore natural fibre, like banana fibres (Al-Qureshi, 1999).

The natural fiber present important advantages such as low density, appropriate stiffness, mechanical properties with high disposability and renewability. In this project are used the natural fiber of banana. Moreover, these banana fiber are recycle and biodegradable. These have been lot of research on use of natural fiber in reinforcement. Banana fiber, a ligno-cellulosic fiber, obtained from the pseudo-stem of banana plant (Musa sepientum), is a bast fiber with relatively good mechanical properties. In tropical countries like Malaysia, fibrous plants are available in abundance and some of them like banana are agricultural crops. Banana fiber at present is a waste product of banana cultivation. Hence, without any additional cost input, banana fiber can be obtained for industrial purposes. Banana fiber is found to be good reinforcement in polypropylene resin. The properties of the composites are strongly influenced by the fiber length (Samrat, 2008).

1.2 Problem Statement

The problem statement the research is to find the composition of natural fiber with polypropylene reinforce composite in the several factors such as mechanical properties and physical properties. Banana fiber is a natural fiber thus has the potential to substitute fiberglass and other synthetic fibers that are currently used. Previous researches on banana have found that many good mechanical properties. The good properties of banana fiber include good specific strengths and modulus, economical viability, low density and low weight. In this project, the effect of the fiber length and volume can affect the properties of the composite produced.

1.3 Objectives

- i. Investigate the mechanical properties of banana-glass fibre reinforced polypropylene hybrid composite at different fibre loading and also sizes.
- ii. Study the morphology of banana-glass fibre reinforced polypropylene hybrid composite at different fibre loading.
- iii. Find the optimum composition of banana fibre and polypropylene in hybrid composite.

1.4 Scope of study

Before fabricate the composite, the banana trunk must be process first to find the fiber. The banana fibres were process using the Rotor Machine to find the different sizes of banana fibers. The fabrication process involved Mixer Machine and the Hot Press Machine to produce the composite. Then the mechanical test and physical test are carried out on this composite. The tests that involved are impact test, tensile test, flexural test and water absorption test. The morphology of this composite observed by using the Scanning Electron Microscope (SEM).

CHAPTER 2 LITERATURE REVIEW

2.1 Composite

2.1.1 Introduction

Composite materials are engineered material made from two or more constituent materials with significantly different physical or chemical properties and which remain separate and distinct on a microscopic level within the finished structure. The are two categories of constituent materials there are matrix and reinforcement. At least one portion of each type is required. A synergism produces material properties unavailable from the individual constituent materials, while the wide variety of matrix and strengthening materials allows designer of the product or structure to choose an optimum combinations. Engineered composite materials must be formed to shape. A variety of molding method can be used according to the design requirements. The principal factors impacting the methodology are the natures of the choose matrix and reinforcement materials. Another important factor is the gross quantity of material to be produced (Callister, 2005).

Large quantities can be used to justify high capital expenditures for rapid and automated manufacturing technology. Small production quantities are accommodated with lower capital expenditures but higher labor and tooling cost at a correspondingly slower rate. The physical properties of composite materials are generally not isotropic in nature, but rather are typically orthotropic. For instance, the stiffness of a composite panel will often

depend upon the directional orientation of the applied forces and moments. Panel stiffness is also dependent on the design of the panel (Callister, 2005).

2.1.2 Matrix

2.1.2.1 Introduction

The matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. The matrix holds are fiber together. Even through, the fibers are strong, they can be brittle. The matrix can absorb energy by deforming under stress. This is to say, the matrix adds toughness to the composite. While fibers have good tensile strength, they usually haw awful compression strength. The matrix gives compression strength to the composite. The matrix materials can be introduced to the reinforcement before or after the reinforcement materials is placed into the mold cavity or onto the mold surfaces. The matrix materials experience a melding event, after which the part shape is essentially set. Depending upon the natural of the matrix materials, this melding event can occur in various ways such as chemical polymerization or solidification from the melted state (Callister, 2005).

2.1.2.2 Thermoset

Thermoset polymers become permanently hard when heats is applied and do not soften upon subsequent heating. During the initial heat treatment, covalent crosslinks are formed between adjacent molecular chains; these bonds anchor the chins together to resist the vibration and rotational chain motions at high temperatures. Crosslinking is usually extensive, in that 10 - 50% of the chain polymer units are crosslinked. Only heating to excessive temperatures will cause severance of these crosslink bonds and polymer degradation. Thermoset polymers are generally harder and stronger than thermoplastics, and have better dimensional stability. Most of the crosslinked and net work polymers, which include vulcanized rubbers, epoxies and phenolic and some polyester resins, are thermosetting (Callister, 2005).

2.1.2.3Thermoplastic

The thermoplastic soften when heated (and eventually liquefy) and harden when cooledprocesses that are totally reversible and may be repeated. On a molecular level, as the temperature is raised, secondary bonding forces are diminished (by increased molecular motion) so that the relative movement of adjacent chains is facilitated when a stress is applied. Irreversible degradation results when the temperature of a molten thermoplastic polymer is raised to the point which molecular vibrations become violent enough to break the primary covalent bonds. In addition, thermoplasts are relatively soft. Most linear polymers and those having some branched structures with flexible chains are thermoplastic. These materials are nomally fabricated by the simultaneous application of heat and pressure (Callister, 2005).

i. Polypropylene

Kahraman *et al.* (2005) revealed that polypropylene is mostly used as one of the constituentts in composites compared to other thermoplastics due to its superior properties as well as easy processibility by all processing methods such as molding, extrusion, film and fibre manufacturing. This is also agree by Mohanty *et al.* (2002). In comparison to polyethylene, Kahraman (2005) also ponted out that polypropylene has far superior in terms of heat resistance and mechanical properties, perticularly its low density makes its especially attractive in lightweight applications that require strength. In terms of compatibility with natural fibres, poly[propylene has also showed the most potential benefits of all the thermoplastics matrices available when combined with natural fibres in making composites for industrial application (Mohanty *et al.*,2002).

The pendant methylene group in Polypropylene is replaced by a chlorine atom in polyvinyl chloride (PVC), by a benzene ring in polystyrene (PS) and by a hydrogen atom in polyethylene (PE). The pendant group significantly affects the properties of the polymer, and consequently the properties of PP are very different from other commodity plastic such as PE, PVC and PS (Devesh, 2002).

In 1957, Polypropylene was commercially produced by Montecatini as Moplen. Recently, metallocenes have attracted widespread attention as the new generation of olefin polymerization catalysts. Metallocene catalysts provide enhanced control over the molecular make up of Polypropylene, and grades with extremely high isotacticity and narrow molecular weight distribution (MWD) are possible (Devesh ,2002).

a. Major Advantages

Polypropylene is very popular as a high-volume commodity plastic. However, it is referred to as a low-cost engineering plastic. Higher stiffness at lower density and resistance to higher temperatures when not subjected to mechanical stress (particular in comparison to high and low density PE (HDPE and LDPE) are the key properties. In addition to this, Polypropylene offers good fatigue resistance, good chemical resistance, and good environmental stress cracking resistance, good detergent resistance, and good hardness and contact transparency and ease of machining, together with good processibility by injection moulding and extrusion (Devesh, 2002).

Table 2.1 shows the comparison of unmodified PP with other material. The properties of PP at specific density is very low than others, than the maximum continuous use temperature are highest at 100 ⁰C. The costs for PP are cheaper than others material. That why, this project chooses the PP as a matrix for composites.

Property	PP	LDPE	HDPE	HIPS	PVC	ABS
Flexural modulus (GPa)	1.5	0.3	1.3	2.1	3.0	2.7
Tensile strength (MPa)	33	10	32	42	51	47
Specific density	0.905	0.92	0.96	1.08	1.4	1.05
Specific modulus (GPa)	1.66	0.33	1.35	1.94	2.14	2.57
HDT at 0.45 MPa (0 C)	105	50	75	85	70	98
Maximum continuous use	100	50	55	50	50	70
temperature (⁰ C)						
Surface hardness	RR90	SD48	SD68	RM30	RR110	RR100
Cost (£/tonne)	660	730	660	875	905	1550
Modulus per unit cost (MPa/£)	2.27	0.41	1.97	2.4	3.31	1.74

Table 2.1 : Comparison of unmodified PP with other materials : Advantages

(Devesh ,2002)

b. Major Disadvantages

The major disadvantages of unmodified Polypropylene compared with other competitive thermoplastics are evident from Table 2.2. It can be seen that Polypropylene has significantly higher mould shrinkage, higher thermal expansion and lower impact strength, particularly at sub-ambient temperatures, than HIPS, PVC and ABS. However, Polypropylene has lower mould shrinkage and thermal expansion coefficient than HDPE