AIR-CONDITIONING SYSTEM BY USING DISTRICT COOLING SYSTEM (DCS): THERMAL ENERGY STORAGE (TES) TECHNOLOGY

NORDIANA BINTI MOHD HATTA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

"I admit that had read this dissertation and in my opinion this dissertation is satisfactory in the aspect of scope and quality for the bestowal of Bachelor of Mechanical Engineering (Design and Innovation)"

Signature: Name of Supervisor 1: Date:

Mr. Safarudin Gazali Herawan

Signature : Name of Supervisor 2:

Mr. Afzanizam

Date:

AIR-CONDITIONING SYSTEM BY USING DISTRICT COOLING SYSTEM (DCS): THERMAL ENERGY STORAGE (TES) TECHNOLOGY

NORDIANA BINTI MOHD HATTA

This report was submitted in accordance with the partial requirement for the honor of Bachelor of Mechanical Engineering (Design and Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2009

"I verify that this report is my own word except summary and extract that every one of it I have clarify the resource"

> Signature: Writer Name:

Nordiana binti Mohd Hatta

Date:

ii

For my beloved parents, siblings and friends

ACKNOWLEDGEMENT

I would like to acknowledge and extend my heartfelt gratitude to the following persons who have made the completion of this *Projek Sarjana Muda* (PSM) report possible. I would like to express my deep and sincere gratitude to my supervisor, Mr. Safarudin Gazali Herawan, His wide knowledge and his logical way of thinking have been of great value for me. I am deeply grateful for his detailed and constructive comments, and for his important support throughout this work.

I wish to express my warm and sincere thanks to Mr. Amiruddin Ghazali, Head of Section of TNEC and Mr. Sharulnizam Shariff, Plant Supervisor of TNEC who gave me the opportunity to gain knowledge and experiences about the DCS and TES systems that wholly-liable under TNB Engineering Corporation (TNEC) and gave me untiring help during my difficult moments. I owe my most gratitude to Mr. Nazree Abdullah, Senior Technician of TNEC for his valuable advice and friendly help. Their extensive discussions around my work and interesting explorations in operations have been very helpful for my PSM.

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work. The generous support from all of you is greatly appreciated. I cannot end without thanking my family, on whose constant encouragement and love I have relied throughout my time at the university. Their unflinching courage and conviction will always inspire me, and I hope to continue, in my own small way, the noble mission to which they gave their lives. It is to them that I dedicate this knowledge and experience. And to God, who made all things possible.

iv

ABSTRACT

This study is about the air conditioning system by using District Cooling System (DCS) with the Thermal Energy Storage (TES) technology. DCS is a system where a central chiller plant provides chilled water for air-conditioning purposes for multiple buildings. Whereas TES is the storage of cooling energy during low airconditioning loads period and used later to meet the air-conditioning loads. TES can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal-melt or external-melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Ice-on-coil systems come in several variations. In all variations, ice is formed on a heat transfer surface (generically referred to as a "coil") without being released during the charging mode and melted away during the discharge mode. Ice-harvesting systems form ice on coils or other refrigerant evaporating surfaces and periodically release the ice into a storage tank that contains a mixture of ice and water. Ice slurry systems produce small particles of ice within a solution of glycol and water, resulting in a slushy mixture that can be pumped. Encapsulated ice systems consist of water contained in plastic containers surrounded by coolant, all contained within a tank or other storage vessel. Within this report, all of these systems will differentiate by the storage system technologies, the mechanism, design and operating systems. Considering the pros and cons, the most suitable system will choose. The reasons of choosing that system as the best option will briefly explain. Moreover, the cooling load of FKM blocks in Durian Tunggal will calculate by using Carmel software. The overview of the software is preview, also the data insertion, check and end result. There are two types of outcomes of the program which consisting of result output and graph output. The most appropriate

capacity/types of equipments that could go well with the system would be selected in order to ensure the system can operate efficiently. These equipments comprise of STL tank, chiller, cooling tower, heat exchanger and air-handling unit (AHU).

The end part of this report will gives general conclusion on this study. It also include a suggestion to continue the research on this topic for better understanding on the refrigeration system and more to the point of obtaining the most competent cooling system in order to reduce its monthly expenses but with higher efficiency and give much benefits to the consumers.

vi

ABSTRAK

Kajian ini adalah mengenai sistem penyejukan udara menggunakan Sistem Pendingin Lingkungan (District Cooling System-DCS) dengan teknologi Tenaga Pendam Lakuran (Thermal Energy Storage-TES). DCS ialah sistem di mana pusat chiller plant membekalkan air sejuk untuk tujuan penyejukan bagi beberapa bangunan sekitar. Manakala TES adalah penyimpanan tenaga penyejukan pada waktu beban penyejukan rendah dan akan digunakan kemudian ketika tenaga penyejukan itu diperlukan. TES terbahagi kepada beberapa jenis iaitu *ice harvesting*, ice-on-coil, ice slurry dan encapsulated ice Sistem Ice-on-coil terbahagi kepada dua iaitu pencairan dalam (internal-melt) dan pencairan luar (external-melt) di mana ia akan dicaj dan nyahcaj menggunakan bahan penyejuk atau cecair penyejuk satu fasa (biasanya campuran air/glikol). Terdapat pelbagai variasi di dalam sistem *ice-on-coil* di mana di dalam semua variasi, ais terbentuk pada permukaan haba dipindahkan (disebut sebagai "coil") tanpa dibebaskan semasa pengecasan dan ais mencair semasa penyahcasan. Sistem ice harvesting membentuk ice-on-coil atau permukaan sejatan bahan penyejuk lain dan menyalurkan ais secara berperingkat ke dalam tangki yang mengandungi campuran ais dan air. Sistem ice slurry menghasilkan ais yang kecil di dalam larutan glikol dan air menjadikan ia sebagai larutan separa cair yang boleh dipam. Sistem kapsul ais (encapsulated ice) adalah kapsul plastik yang mengandungi air dan dikelilingi oleh cecair penyejuk di dalam sebuah tangki atau bekas penyimpanan lain. Di dalam laporan ini, sistem-sistem ini akan dibezakan melalui teknologi sistem penyimpanan, mekanisma, rekabentuk serta sistem operasi setiap satunya. Selepas mengambil kira kelebihan dan kekurangan, system yang paling sesuai akan dipilih dan sebab-sebab sistem ini dipilih akan dijelaskan. Beban penyejukan bagi blok FKM di durian tunggal akan dikira menggunakan perisian Carmel. Sedikit gambaran tantang program perisian akan diterangkan beserta cara memasukkan data, penyemakan dan hasil akhir. Terdapat dua jenis hasil iaitu keputusan teks dan graf. Kelengkapan lain berkaitan sistem ini seperti tagki STL, *chiller*, menara penyejuk, penukar haba dan *air handling unit (AHU)* akan dipilih berdasarkan kapasiti/jenis yang terbaik yang dapat memaksimakan kecekapan sistem. Kesimpulan mengenai kajian disertakan di akhir laporan yang juga merangkumi cadangan untuk meneruskan kajian berkenaan topik ini dengan tujuan untuk lebih memahami tentang sistem penyejukan dan lebih menjurus kepada menghasilkan sistem yang kompeten untuk mengurangkan kos bulanan dan dalam masa yang sama merupakan sistem yang efisien serta memberi banyak kelebihan kepada pengguna.

viii

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vii
	TABLE OF CONTENT	ix
	LIST OF TABLES	xiv
	LIST OF FIGURES	XV
	LST OF SYMBOLS	xvii
	LIST OF ABBREVIATIONS	xix
	LIST OF APPENDIX	XX
CHAPTER I	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	2
	1.3 Objectives	3
	1.4 Scope of Study	3
CHAPTER II	LITERATURE REVIEW	5
	2.1 District Cooling System (DCS)	5
	2.1.1 Overview of DCS	5

ix

Х

	2.1.2 The District Cooling System (DCS)	7
	Concept	
	2.1.3 The Benefits of DCS	8
	2.2 Thermal Energy Storage (TES)	9
	2.2.1 Overview of TES	9
	2.2.2 Economics of Thermal Storage	10
	2.2.3 Other Benefits	12
	2.2.4 Storage System Technologies	14
	2.2.4.1 Chilled Water Storage	14
	2.2.4.2 Ice storage	17
	2.2.4.3 Eutectic Salts Storage	21
	2.2.5 The Variations of Mechanisms	22
	2.2.5.1 Chilled Water System	22
	2.2.5.2 Ice Storage System	25
	2.2.5.3 Eutectic Salt Systems	32
	2.2.6 The Variations of Design and Operating	33
	Strategies	
	2.2.6.1 Full Storage System	33
	2.2.6.2 Partial Storage	34
CHAPTER III	METHODOLOGY	36
	3.1 Introduction	36
	3.2 Implementation Flow Chart	37
	3.3 Carmel Software	38
	3.4 Loadsoft 6.0 Software	40
	3.5 Data Insertion, Checks and Outputs	41
	3.5.1 Terminology	41
	3.5.2 Data Insertion	43
	3.5.3 Checks	60

3.5.4 Ou	tputs	61
3.5.4.1	Calculation Month and Time	62
	Range	
3.5.4.2	Standard Outputs	63
3.5.4.3	What-If Scenario Outputs	64
3.5.5 Re	port Description	64
3.5.5.1	System/Area Heating and Cooling	64
	Load Summary Report	
3.5.5.2	Breakdown of All Load	65
	Components Report	
3.5.5.3	Detailed Psychrometric Analysis	67
	Report	
3.5.5.4	Wall and Window Load Summary	67
	Report	
3.5.5.5	Graph Outputs	68
3.6 Equipr	nent Selection	70
3.6.1 ST	L Tank	70
3.6.1.1	Atmospheric Tank Option	71
3.6.1.2	Pressurized Tank design Option	72
3.6.2 Ch	illers	73
3.6.2.1	Types of Chillers	74
3.6.3 Co	oling Tower	77
3.6.3.1	Type of Cooling Tower	77
3.6.3.2	Water Treatment	79
3.6.4 He	at Exchanger	80
3.6.4.1	Types of Heat Exchanger	80
3.6.5 Air	r Handling Unit (AHU)	82
3.6.5.1	Temperature Control	84
3.6.5.2	Humidity Control	84

CHAPTER IV	RESULT	85
	4.1 Introduction	85
	4.2 DCS Incorporating With TES Technology	86
	4.3 Results/Outputs of Carmel Software	86
	4.3.1 System/Area Heating and Cooling	87
	Load Summary Report	
	4.3.2 Breakdown of All Load Components	89
	Report	
	4.3.3 Detailed Psychrometric Analysis	91
	Report	
	4.3.4 Wall and Window Load Summary	92
	Report	
	4.3.5 Graph Output	93
	4.4 Result Analysis	95
CHAPTER V	DISCUSSION	96
	5.1 Introduction	96
	5.2 Equipment Selection	97
	5.2.1 Encapsulated Ice	97
	5.2.1.1 Benefits of Using Ice Balls	99
	5.2.1.2 Basic System Operation	100
	5.2.1.3 Modular Tanks vs. Encapsulated	101
	Ice Storage	
	5.2.2 STL Tank	104
	5.2.2.1 Inventory Tank	104
	5.2.2.2 STL Tank Size Determination	105
	5.2.3 Chiller	107
	5.2.3.1 Centrifugal Chiller	108
	5.2.4 Cooling Tower	109

CHAPTER	TITLE	PAGE	
	5.2.5 Heat Exchanger	110	
CHAPTER IV	CONCLUSION AND SUGGESTION	112	
	6.1 Conclusion	112	
	6.2 Suggestion	112	
	REFERENCES	114	
	BIBLIOGRAPHY	116	

APPENDIX A	118
APPENDIX B	120

APPENDIX C	128
------------	-----

LIST OF TABLE

TABLETITLEPAGE2.1Comparison of alternative thermal storage technologies144.1Benefits of using ice balls994.2Typical tank size dimension106

xiv

LIST OF FIGURES

FIGURE TITLE

2.1	Typical DCS configuration	7		
2.2	Typical design day chilled water load profile 11			
2.3	How TES technology saves energy cost	13		
2.4	Chilled water storage tank with siphon baffles	16		
2.5	Ice shedder thermal storage system schematic	18		
2.6	External melt coil freezing thermal storage system	19		
	schematic			
2.7	Internal melt coil freezing thermal storage system	20		
	schematic			
2.8	Chilled water stratification	24		
2.9	Typical chilled water configuration	24		
2.10	Typical ice-harvesting configuration 26			
2.11	External-melt ice-on-coil 27			
2.12	Internal melt ice-on-coil 27			
2.13	Direct refrigerant external-melt ice-on-coil	28		
	configuration			
2.14	Secondary coolant external-melt ice-on-coil	28		
	configuration			
2.15	Typical internal-melt ice-on-coil configuration	29		
2.16	Typical Ice Slurry Configuration	30		
2.17	Encapsulated ice balls 31			
2.18	Typical encapsulated ice configuration 31			
2.19	Eutectic salt container 32			
2.20	Typical eutectic salt configuration32			

FIGURE TITLE

2 21	Full storage	33
2.21		55
2.22	Partial storage – load leveling	34
2.23	Partial storage – demand limiting	35
3.1	Implementation flow chart	37
3.2	Software program from Carmel	39
3.3	Basic data input	44
3.4	System inputs	45
3.5	Air volume calculation type / pretreating	47
3.6	Zone inputs	48
3.7	General area	49
3.8	Wall and roof envelope	50
3.9	Wall CTS number	51
3.10	Roof CTS number	52
3.11	Window envelope	53
3.12	Window SHGC properties	53
3.13	Window construction U-value	54
3.14	Door envelope	55
3.15	Internal / other	56
3.16	People activity level	56
3.17	Schedule	58
3.18	Appliance list	59
3.19	Checks/outputs	61
3.20	Display Report 1	63
3.21	Display Report 2	63
3.22	Graphing output option	69
3.23	Atmospheric Tank System	72
3.24	Pressurized tank system	73
3.25	Centrifugal chiller	75
3.26	Reciprocating chiller	76

FIGURE TITLE

3.27	Screw chiller	76
3.28	Cross flow cooling tower	78
3.29	Cross flow cooling tower system	78
3.30	Counter flow cooling tower	79
3.31	Counter flow cooling tower system	79
3.32	Shell and tube heat exchanger	81
3.33	Plate heat exchanger	82
3.34	Plate fin heat exchanger	82
3.35	Air handling unit	83
4.1	Horizontal bar chart	93
4.2	Pie chart	94
4.3	Line chart	94
5.1	Ice ball characteristic	98
5.2	Charging and discharging process of ice ball	98
5.3	Charging cycle	100
5.4	Discharging cycle	100
5.5	Standby mode	101
5.6	Modular ice storage tanks	102
5.7	Encapsulated ice	103
5.8	Centrifugal chiller parts	108
5.9	Reduction in chiller capacity usage	110
5.10	Cooling tower crossflow type design	111
5.11	Plate heat exchanger (PHE)	113
5.12	Partial storage – load leveling	114

LIST OF SYMBOLS

BTU	=	British Thermal Unit
С	=	Celsius
CFM	=	Cubic Feet Meter
F	=	Fahrenheit
hr	=	Hour
J	=	Joule
J/kg	=	Joule per kilogram
Κ	=	Kelvin
kg	=	Kilogram
KJ	=	Kilojoules
kPA	=	Kilopascal
kW	=	Kilowatt
kW/h	=	Kilowatt per Hour
kWh	=	Kilowatt hour
m ³	=	Cubic meters
m ³ /hr	=	Cubic meters per Hour
mm	=	Millimeter
RT	=	Refrigerant ton
RTHr	=	Refrigerant ton hour
SqFt	=	Square feet
SqM	=	Square meter
Ton-Hr	=	Ton hour

LIST OF ABBREVIATION

ASHRAE	=	American Society of Heating, Refrigerating and
		Air-Conditioning Engineers
CMA	=	Calcium Magnesium Acetate
СОР	=	Coefficient of Performance
CTS	=	Conduction Time Series
DCS	=	District Cooling System
DX	=	Direct Expansion
FKM	=	Fakulti Kejuruteraan Mekanikal
		(Faculty of Mechanical Engineering)
HCFC	=	Hydrochlorofluorocarbons
HFC	=	Hydrofluorocarbon
HVAC	=	Heating, Ventilating and Air-Conditioning
HW	=	Heavy Weight
IP	=	Inch-Pound
L/s	=	Litres per second
O&M	=	Operation and Maintenance
PSM	=	Projek Sarjana Muda
RTS	=	Radiant Time Series
SHGC	=	Solar Heat Gain Coefficient
SI	=	System International
STL	=	Storage Thermal Latent
TES	=	Thermal Energy Storage
TNB	=	Tenaga Nasioanal Berhad
TNEC	=	TNB Engineering Corporation
UTeM	=	Universiti Teknikal Malaysia Melaka
VAV	=	Variable Air Volume

LIST OF APPENDIX

APPENDIX TITLE

А	Gantt Chart	118
В	Data Insertion in Carmel Software and Graph Output	120
С	FKM Block Floor Plan	128

C Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

1.1 Background

Referred to Robert (2003), there are two types of HVAC systems designed to satisfied building cooling requirements; direct expansion (DX) systems, in which there is direct heat exchange between the building air and the refrigerant, and secondary refrigerant systems that utilize chilled water as an intermediate heat exchange medium to transfer heat from the building air to the refrigerant which we called it centralized cooling system or commercially named Direct Cooling System (DCS).

Basically, a DCS distributes thermal energy in the form of chilled water or other media from a central source to multiple buildings through a network of underground pipes for use in space and process cooling. The cooling or heat rejection is usually provided from a central cooling plant, thus eliminating the need for separate systems in individual buildings. In DCS there is one new technology which called Thermal Energy Storage (TES). This type of system has been use widely in overseas but only introduced in Malaysia for about few years.

Thermal Energy Storage capitalizes on the cheaper off-peak tariff offered by the electric utility company. The system produces cooling energy at night when the electricity tariff is low. During the day, when the air-conditioning demand is high, the stored cooling energy is released by circulating chilled water through the storage system and onto the buildings. Only a limited amount of chiller capacity needs to operate during this period. By adopting this concept, the plant consumes less electricity during the day, when electricity tariff is high. This leads to significant savings in operating costs. As the electrical power demand for this plant is also low during the day, further cost saving is achieved through reduced maximum demand charges.

There are many different types of thermal storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. This system can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options.

1.2 Problem Statement

The purpose of the study is to find an approach in order to get lower cost and high efficiency for air-conditioning system. Almost every commercial buildings and offices have an air conditioning unit. It has become necessity of modern life. There are two major options to distribute cooling energy to building which are direct expansion system and centralized system. For the average sized of office and home, the trend is to use building-specific cooling that is a split air conditioning unit. For large and/or multiple buildings, it make use of central air conditioning unit which also called District Cooling System (DCS). District cooling means the centralized production and distribution of cooling energy. Commonly, many building which applied this DCS system would use water as a refrigerant. This system will cost high monthly expenses of the electricity consumption of the system also for the maintenance and services. This is because the water chillers will be operated all the time as required to supply cooling energy into buildings and normally the demand is during peak hours. In order to solve this problem, there is new development of refrigeration technology called Thermal Energy Storage (TES). TES can reduce cost by shifting the electricity consumption from day to night. With this system, the