TK7881.25 .M42 2009.

0000065819
PC based controller for home automation / Mohd Hanafiah

PC BASED CONTROLLER FOR HOME AUTOMATION

MOHD HANAFIAH BIN NAWI B010510031

NOVEMBER 2009

"I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Control, Instrumentation & Automation)"

> Signature Name of Supervisor : EN AHMAD AIZAN BIN ZULKEFLE . 18 NOVEMBER 2009 Date

"Saya akui bahawa saya telah membaca karya ini pada pandangan saya karya ini adalah memadai dari skop dan kualiti untuk tujuan penanugerahan ijazah Sarjana Muda Kejuruteraan Elektrik

(Kawalan, Instrumentasi & Automasi)."

Tarikh : 1.8 NOVEMBER 2009

PC BASED CONTROLLER FOR HOME AUTOMATION

MOHD HANAFIAH BIN NAWI

This Report Is Submitted In Partial Fulfillment Of Requirements For The Degree of

Bachelor In Electrical Engineering

(Control, Instrumentation, Automation)

Faculty of Electrical Engineering
Universiti Teknikal Malaysia Melaka

October 2009

PENGAWAL BERASASKAN KOMPUTER UNTUK AUTOMASI RUMAH

MOHD HANAFIAH BIN NAWI

Laporan Ini Dikemukakan Sebagai Memenuhi Syarat Sebahagian Daripada Syarat
Penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektrik
(Kawalan, Instrumentasi & Automasi)

Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka

Oktober 2009

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature

Name

: MOHD HANAFIAH BIN NAWI

Date

. 18 NOVEMBER 2009

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya."

Tarikh : 18 NoVEMBER 2009

Buat abah dan mak, Nawi bin Ngah dan Habesah binti Jusoh, adik-beradik, Zamri, Zuriah, Zainudin, Norhafizah, Ariff dan Al Nazirul Mubin, Rakan-rakan seperjuangan yang dikasihi,

Dan

Teman-teman istimewa yang menjadi inspirasi.

Ini untuk kamu.

ACKNOWLEDGEMENT

Alhamdulillah, first and foremost, I thank Allah the Almighty for blessing me to complete my Project Sarjana Muda 2. I would like to enlarge my appreciation to Mr Ahmad Aizan Bin Zulkefle because of the kindness heart to accept me as one of the student under his supervision. Special thanks also dedicated to his for all comments, idea, and a guideline begin from the first day I start this project.

This appreciation also goes to my friend that always gives support, opinion, and advices for me to complete this report especially my friends under Mr Ahmad Aizan bin Zulkefle supervision.

To my beloved parent, Nawi and Habesah, a million of thanks to them who has spending their time, money and advices that never ends. Last but not least, thanks to my friends especially from BEKC who have been such wonderful friends to me and also to everyone involved in the completion of this project. I would like to thank them for all support and encouragement to me which have given me the courage and wisdom to fulfill my final year project.

THANK YOU.

ABSTRACT

This project is about to design and develop a PC Based Controller For Home Automation via Microsoft Visual Basic 6.0. This design will able to control electrical devices in the home. This design will use a home computer to communicate with panel board through the parallel port that interface to devices and allow the user to manage these devices manually or automatically. Manual operation will be through a graphical user interface on a computer that will allow the user to select a device and then change its state whether on or off. Automatic operation will allow actions to be performed based on a user required entered into the software on the computer. Relay circuit board will be used to interface between electrical device and Visual Basic and the output from Visual Basic will be transmitted via Parallel Port DB25 to the relay circuit. The circuit will activate the relay. The relay will connect the electrical device to an extension cord. So it will save time and energy for user to control this device. Moreover, Visual Basic programming that writes is more flexible to make it user friendly and the graphics are more interesting. The significant of this project will help user to control electrical appliances automatically.

ABSTRAK

Projek ini dilaksanakan untuk merekabentuk dan membangunkan Pengawal Berasaskan Komputer untuk Automasi Rumah dengan menggunakan Visual Basic 6.0. Alat ni berupaya untuk mengawal suis perkakas elektrik di rumah. Ianya akan menggunakan komputer peribadi di rumah untuk berkomunikasi dengan papan panel litar melalui Pot Selari yang disambungkan kepada perkakas elektrik dan membolehkan pengguna mengawal perkakas itu secara automatik. Pengguna cuma perlu melakukannya secara manual semasa menggunakan grafik antaramuka pada skrin komputer yang mana membolehkan pengguna untuk memilih perkakas mana yang mahu dikawal untuk menukar statusnya samada buka atau tutup. Operasi secara automatik akan berlaku berdasarkan kemahuan yang dihantar oleh pengguna melalui perisian di komputer. Papan litar relay akan digunakan sebagai penyambung antara perkakas elektrik dan perisian Visual Basic yang dikawal oleh pengguna. Keluaran daripada Visual Basic akan dihantar melalui Pot Selari DB25 kepada litar. Litar akan mengaktifkan relay dan relay akan melengkapkan atau mematikan litar ini kepada perkakas elektrik. Ini akan memudahkan kerja pengguna seterusnya dapat menjimatkan tenaga dan masa. Program yang dibangunkan daripada perisian Microsoft Visual Basic 6 lebih fleksibel dan mesra pengguna disamping kelihatan menarik. Signifikan projek ini ialah membolehkan pengguna mengawal perkakas elektrik secara automatik.

CONTENTS

CHAPTER	TITLE	PAGE	
	TITLE	i	
	DECLARATION	ii	
	DEDICATION	iv	
	ACKNOWLEDGEMENT	v	
	ABSTRACT		
	ABSTRAK	vii viii xii	
	CONTENTS		
	LIST OF TABLES		
	LIST OF FIGURES	xiii	
	LIST OF APPENDICES	xv	
I	INTRODUCTION		
	1.1 Introduction	1	
	1.2 Project Objectives	2	
	1.3 Problem Statement(s)	2	
	1.4 Project Scope(s)	3	
11	LITERATURE REVIEW		
	2.1 Overview	4	

	2.2	PC Base	ed Controller	4
	2.3	Home A	Lutomation	5
		2.3.1	X-10	6
		2.3.2	LonWorks	7
	2.4	Hardv	vare Section	8
		2.4.1	Relay	8
		2.4.2	Diode	8
		2.4.3	Resistor	10
		2.4.4	Parallel Port	11
			2.4.4.1 Parallel Port Registers	12
		2.4.5	IC ULN 2803	12
			2.4.5.1 Working	14
	2.5	Softw	are Section	16
		2.5.1	Microsoft Visual Basic 6.0	16
			2.5.1.1 Structure of a Visual	17
			Basic Application	
			2.5.1.2 Steps in Developing	17
			Application	
			2.5.1.2.1 Drawing the User	18
			Interface and Setti	ng
			Properties	
			2.5.1.3 Visual Basic Toolbox	21
		2.5.2	TVicLPT	23
Ш	PRO	DJECT N	METHODOLOGY	
	3.1	Project	Background	25
	3.2	Project	Planning	26
	3.3	Project	Flow	26
		3.3.1	Information Gathering	28
		3.3.2	Designing Process	28

		3.3.3	Testing and Troubleshooting	28
		3.3.4	Redesign and Conclusion	29
	3.4	Software Development Using Visual Basic		29
		(VB)		
		3.4.1	Log In Page	31
		3.4.2	Parallel Port Home Monitor	33
	3.5	Constru	action Of The House Model	35
	3.6	Wiring	Of Hardware	38
		3.6.1	Model House Wiring Circuit	38
		3.6.2	Interfacing Circuit	39
		3.6.3	Power Circuit	42
IV	PRI	ELIMIN	ARY RESULT	
	4.1	Overvi	ew	44
	4.2	4.2 Software		44
		4.2.1	Graphical User Interface (GUI)	44
		4.2.2	Source Code	45
	4.3 Hardware		are	47
	4.4	Testing	g Hardware and Software	48
	4.5	Discussion		50
		4.5.1	Discussion of power circuit	50
		4.5.2	Analysis the output coding	50
V	co	NCLUS:	ION AND RECOMMENDATION	
	5.1	Conc	elusion	55
	5.2	Reco	mmendation	55
REFERENCES				57

APPENDIX A	Graphical User Interface Coding	59
APPENDIX B	CK1601 Parallel Port relay Board	64
APPENDIX C	Value Based Home Automation for Today's I	Market 66
APPENDIX D	Numeric Relay Specification Sheet List	69
APPENDIX E	Project Planning Gantt Chart	70
APPENDIX F	Interfacing Circuit	71
APPENDIX G	IC ULN2803 Datasheet	72
APPENDIX H	Diode 1N4004	77

LIST OF TABLES

NUM.	TITLE	PAGE
3.1	List of Components	39
4.1	List of Binary Value	51

LIST OF FIGURES

NUM.	TITLE	PAGE
2.1	X-10 Signal Transmission	7
2.2	SPDT Relay	8
2.3	Diode Symbol	9
2.4	Current-voltage Graph	9
2.5	Resistor Colour Band	10
2.6	Parallel Port Pins	11
2.7	IC ULN 2803 Pinout	13
2.8	Pin connections of IC ULN 2803	14
2.9	NPN Darlington	14
2.10	Darlington pair	15
2.11	Graph Power (Watt) vs Temperature (°C)	16
2.12	Form Window	18
2.13	Toolbox of Visual Basic	19
2.14	Properties Window	20
2.15	Form Layout Window	20
2.16	Project Window	21
2.17	Symbol of TVicLPT component	24
3.1	Project Flow Process	25
3.2	Project Process Flowchart	27
3.3	Flowchart of GUI Development	30
3.4	Log In Page	31
3.5	Login Success	32
3.6	Invalid username or password message	32
3.7	Log In page coding	33

3.8	Graphical User Interface	34
3.9	House Plan Top View	36
3.10	Top View	37
3.11	Top View	37
3.12	Hardware Circuit	38
3.13	House Model Wiring Circuit	39
3.14	Interfacing Circuit Diagram	40
3.15	Relay Interfacing Circuit	40
3.16	Parallel port cable	41
3.17	Parallel port (Female and Male)	42
3.18	Power Circuit Diagram	43
3.19	Power Circuit	43
4.1	Graphical User Interface	45
4.2	House Model	47
4.3	Power Supply (Battery) 12V	48
4.4	Switch Box and Relay Interfacing Circuit	48
4.5	Hardware Testing	49
4.6	Interfacing Testing	49
4.7	Power circuit	50
4.8	TVicLPT ActiveX Control Module	53
4.9	TVicLPT	54

LIST OF APPENDICES

NUM.	TITLE	PAGE
A	Graphical User Interface Coding	59
В	CK1601 Parallel Port relay Board	64
C	Value Based Home Automation for Today's Market	66
D	Numeric Relay Specification Sheet List	69
E	Project Planning Gantt Chart	70
F	Interfacing Circuit	71
G	IC ULN2803 Datasheet	72
Н	Diode 1N4004	77

CHAPTER I

INTRODUCTION

1.1 Project Background

Modern homes with an emphasis on comfort and convenience are being increasingly equipped with programmable installation technology that has already become a matter of course in functional buildings. Different technologies are available to control different things through PC. And there various technologies that are useable depending what devices needs to be controlled and how long away they are from PC.

Today's homes are becoming increasingly centered around the home computer as technology advances, providing more powerful and diverse computer systems. Computers offer communications through email and instant messaging; they provide access to the Internet for reference and entertainment. Computers can be used as a multimedia center to store, play, and create music, or they can play DVD movies and many other media formats. Computers can also be used for applications such as downloading images from a digital camera which the user can print or send to family and friends. Hundreds of applications exist for home computing and new uses are constantly being devised. Due to the versatility and declining prices for such a tool, selected socio-economic statistics show that number of computers per 1,000 populations for 2006 is 244.

The impact of home automation on domestic lifestyles will be as far ranging as was that of factory automation on industry and its benefits will be available to all sectors of society. Home automation will be achieved not with the household robot

but with embedded computing power and memory within dozens of pieces of domestic equipment, each of which will communicate with the user and with other equipments. PC-Based control is a new way of control related to industrial equipment. Its importance has been increasing remarkably in the last few years because of industry's need to find new solutions for increasing productivity and replacing the traditional control equipment with newer solutions that can take advantage of the latest technologies.

Some of the benefits that PC Control is bringing compared to the traditional systems are lower overall costs, independence from proprietary control systems, easiness to integrate logic, motion, process control and fieldbus systems, and the integration of control and HMI in a single hardware platform. Having a look to the actual situation in industry we find that it is only a question of time before computers replace the traditional control systems partially or totally. This thought is strengthened by the high technology level of the PC market, the amount of research money that is available, the low costs of fieldbus systems and the functionality of the modern operating systems.

1.2 Project Objective(s)

The main objectives of performing this project are:

- a) To apply PC based controller to the electrical appliances at home.
- b) To maximize using the PC in our home.

1.3 Problem Statements

Homes have numerous electronic devices such as televisions and stereos, as well as standard electrical appliances such as lights, coffee pots, and toasters. All of these devices require manual interaction (i.e. flipping a switch, pressing a button, turning a knob, etc.) to turn them on and off. The average household consumes approximately 4200 kWh of electricity per year, more than half of which is used to

power these small appliances [8]. The only time a consumer can interact with these devices is when he or she is near it.

A method is needed to control these appliances automatically and also a way to control them remotely. Such a method would provide a consumer with added convenience, cost savings, security, and protection. The elder and disabled people also have problems with this.

1.4 Project Scope(s)

Project scope is limitation that being considered in order to perform this project. There are:

- a) Learn the Microsoft Visual Basic 6.0 source code and designing of the graphical user interface (GUI) to be used in this project.
- b) Learn how to design and wire the house model that includes facilities such as lamp and fan. Interfacing between both hardware and software are using Input/output Module Interface Circuit.

CHAPTER II

LITERATURE REVIEW

2.1 Overview

Literature review involves obtaining, collecting and information or data analyzing through related works that have been done. This includes all related thesis, documents and paper works from individuals or companies involved in developing or researching the technology. For that, some materials have been used as reference to assist in carrying out this project.

This review will describe the summaries, evaluate and clarify of this literature. It should give a theoretical base for the research and help to determine the nature for this research. In this section, it will be discussing about the theory and concepts that is accordingly to the project in details. Also, it will inform about the perspective and method that have been using in this project. It is also discuss previous researches and work. Through the literature review for this project, it can identify and evaluate technical issues about PC Based Controller reliability.

2.2 PC Based Controller

One simple way to do controlling is connect several relays to PC parallel port, and then make their contacts to switch power to different devices on and off. [7]. This can be used to control anything (on or off) that are wired to PC and back to appliance. With suitable software on the PC, the PC could use for controlling whatever that is wired to those relays on electrical panel. PC parallel port can be very

useful I/O channel for connecting your own circuits to PC. The PC's parallel port can be used to perform some very amusing hardware interfacing experiments. The port is very easy to use when understand some basic tricks. [4]

2.3 Home Automation

The By definition, automation refers to:

The automatic operation or control of equipment, a process, or a system without conscious thought. [9]

Home Automation provides for the centralized control of lights and electric devices throughout the home. These devices are controlled by the occupant or by sensors or timed events. The central controller can also act as a gateway into the home allowing for remote control and monitoring.

Within the integrated home system the communication media will include infra-red, radio, mains wires, installed twisted wires and coaxial cable, and later perhaps optical fibre. Applications will include security, lighting, heating, cooking, washing appliances, audio and video systems, energy management as well as a number of new applications such as health monitoring, home publishing etc. A large standards activity is in place by the major manufacturers of domestic equipment throughout Europe to ensure that their equipments are reliable and compatible. [1]

At present, according to Home Toys [11], there are 6 open and 5 proprietary home automation standards all vying to be the leading industry standard. These standards operate over a variety of communications mediums1. This confusing array of protocols and mediums has resulted in appliance manufacturers being loath to commit to developing Plug 'n' Play type products until it becomes apparent which of the competing standards will eventually win consumer support.

As a result specialist home automation companies have been concentrating their efforts on developing automated versions of traditionally "dumb" devices such