DESIGN OPTIMIZATION OF A BOILER FURNACE

AZRUL AFFENDI ATAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

"I hereby verify that I have read this report and I find it sufficient in term of quality and scope to be awarded with the Bachelor Degree in Mechanical Engineering "

Signature	:
Supervisor Name	:
Date	:

i

DESIGN OPTIMIZATION OF A BOILER FURNACE

AZRUL AFFENDI ATAN

This report is submitted to Faculty of Mechanical Engineering in partial fulfill of the requirement of the award of Bachelor's Degree of Mechanical Engineering (Thermal-fluid)

Faculty of Mechanical Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APRIL 2010

C Universiti Teknikal Malaysia Melaka

"I hereby to declare that the work is my own except for summaries and quotations which have been fully acknowledge"

Signature	:
Author	: AZRUL AFFENDI ATAN
Date	: 7 th April 2010

DEDICATION

To him who is our source of grace, our source of commitment, and our source of knowledge, And, To her, whose love is a source of joy.

iv

ACKNOWLEDGMENT

All praises to the Almighty Allah, for giving me the strength, patience and guidance throughout the process of completing this investigation. I am grateful to have the morally and physically support from many people throughout completing this study. For this opportunity, I would love to thank whose are either directly or indirectly involved during the process of this research is conducted.

Most important, I would like to express my very special gratitude and appreciation to my supervisor, Mdm. Ernie bte Mat Tokit for her valuable suggestion, comments and advice in every stage of this project. All the discussion makes me understand every detailed in this biomass boiler analysis. My token of appreciation also goes to all the lecturers from Faculty of Mechanical Engineering especially from Mechanical Department for being very nice and making this study easier to be completed.

Special Thanks should also be forwarded to my all my beloved family members, especially my dad, Atan bin Arif and my mum, Masiah bte Ahmad, who never failed to be there for their support, prayer and love. Last but not least, I would like to thank all my friends, especially all my classmates. Not to forget to all Universiti Teknikal Malaysia Melaka staff that gives cooperation on this project. Thanks you very much.

ABSTRACT

Air has most important function in biomass boiler system. Instead of supplying air required for combustion, it also functions to dissipate fuel in order to have wider heating surface. Turbulence created is necessarily to be controlled to avoid excessive or too lack of air being supplied into the system. Therefore, analysis on turbulence pattern and rate of air injected is needed in order to understand their relationship toward combustion performance. Using analysis performed, optimization can be predicted. Standard K-ɛ model of turbulence will be used in this analysis. The whole project will depend most of computer application which consist of Computational Fluid Dynamics (CFD) and Solidwork 2008 software. Parameters and systems definitions are provided by ENCO DANSTOKER (M) sdn bhd, a local company which run biomass steam boiler using empty fruit bunch as fuel. Several problems have been detected in their current design and operating system. Through this project, those flaws will be analyzed and overcome.

ABSTRAK

Udara memainkan peranan yang penting didalam sesebuah sistem dandang. Bukan sahaja membekalkan udara bagi tjuan pembakaran, udara juga berfungsi sebagai penghambur bagi bahan bakar mendapatkan lebih permukaan yang terdedah kepada pembakaran. Golakan yg terhasil perlu dikawal bagi memastikan jumlah udara yang dibekalkan tidak berlebihan dan tidak jega terlalu kurang. Oleh itu, analisa ke atas corak golakan angin dan kadar bekalan udara adalah perlu bagi memahami hubungan yang wujud daalam mencapai tahap pembakaran yang sempurna. Hasil analisa juga akan dijadikan asas dan rujukan bagi merancang proses penambahbaikan terhadap sistem. Bagi tujuan itu, model golakan k-ε akan digunakan sebgai asas. Projek ini akan bergantung keseluruhannya kepada penggunaan applikasi beasaskan computer yang terdiri daripada aplikasi pengiraan dinamik bendalir (CFD) dan juda Solidwork 2008. Parameter dan sifat-sifat asas sistem dibekalkan oleh syarikat ENCO DANSTOKER (M) sdn bhd, yang merupakan syarikat tempatan yang menjalankan dandang berasaskan sumber semulajadi sebagai bahan bakar. Beberapa kelemahan dan masalah telah dikenal pasti pada sistem yang sedia ada. Melalui projek ini, masalah-maslah tersebut akan cuba difahami dan diatasi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	vii
	LIST OF TABLE	xi
	LIST OF FIGURE	xii
	LIST OF SYMBOL	xiii
	LIST OF APPENDIX	xiv

CHAPTER 1	INTE	RODUCTION	
	1.1	INTRODUCTION	2
	1.2	OBJECTIVES	3
	1.3	WORK SCOPES	3
	1.4	PROBLEMS STATEMENT	4
	1.5	SIGNIFICANT OF STUDY	4
CHAPTER 2	LITE	CRATURE REVIEW	
	2.1	COMPUTATIONAL FLUID	5
		DYNAMICS (CFD)	
	2.2	BIOMASS STEAM BOILER	8
		(CONTROL VOLUME)	
	2.3	OPERATING SYSTEM	11
	2.4	AIR FLOW PATH DESIGN	12
	2.5	TURBULENT MODELLING IN	14
		FLUENT	
	2.5.1	THE SPLALART ALLMARAS	14
		TURBULENT MODEL	
	2.5.2	THE STANDARD k- ε	15
		TURBULENCE MODEL	
	2.5.3	RENORMALIZATION GROUP	15
		(RNG) k- ε MODEL	
	2.5.4	REALIZABLE k- ε (RKE) MODEL	15
	2.5.5	LARGE EDDY SIMULATION (LES)	16
	2.6	OPERATING PROFILE	17

CHAPTER 3 METHODOLOGY

3.1.	CONTROL VOLUME MODELING 20		
3.2.	RAW DRAWING EXTRACTION 2		
3.3.	SOLIDWORK 3D MODELING	24	
3.4.	MESHING	29	
3.5.	FLUENT	34	
3.6.	DESIGN MODIFICATION	36	
3.6	5.1. CASE STUDY 1 –		
	ACTUAL DESIGN ANALYSIS	36	
3.6	5.2. CASE STUDY 2 –		
	MODIFICATION OF		
	FLUE DUCT	37	
3.6	5.3. CASE STUDY 3 –		
	MODIFICATION OF		
	SECONDARY INLET		
	POSITION (DESIGN 1)	39	
3.6	5.4. CASE STUDY 4 –		
	MODIFICATION OF		
	SECONDARY INLET		
	POSITION (DESIGN 2)	41	

C Universiti Teknikal Malaysia Melaka

4.

CHAPTER 4

RESULT

4.1.	RES	ULTS OF CASE STUDY 1 –	
	SIM	ULATION FOR ACTUAL DESIGN	45
	4.1.1.	FLOW PENETRATION	
		IN FIRE TUBES BOILER	45
	4.1.2.	TURBULENCE ANALYSIS	46
	4.1.3.	FLOW TRACKING ANALYSIS	48
4.2.	RES	ULTS OF CASE STUDY 2 –	
	SIM	ULATION FOR FLUE DUCT	
	MOI	DIFICATION	53
	4.2.1.	FLOW PENETRATION IN	
		FIRE TUBES BOILER	53
	4.2.2.	TURBULENCE ANALYSIS	55
	4.2.3.	FLOW TRACKING ANALYSIS	56
4.3.	RES	ULTS OF CASE STUDY 3 –	
	SIM	ULATION FOR MODIFICATION	
	OF S	ECONDARY AIR INLET	
	POS	ITION (DESIGN 1)	58
	4.3.1.	TURBULENCE ANALYSIS	59
	4.3.2.	FLOW TRACKING ANALYSIS	60
4.4.	RES	ULTS OF CASE STUDY 4 –	
	SIM	ULATION FOR MODIFICATION OF	
	SEC	ONDARY AIR INLET POSITION	
	(DES	SIGN 2)	61
	4.4.1.	TURBULENCE ANALYSIS	62
	4.4.2.	FLOW TRACKING ANALYSIS	63
4.5.	ERR	OR AND RECOMMENDATION	64
4.6.	. SUM	IMARY	65

CHAPTER 5	CONCLUSION & RECOMMENDATION	66
	REFERENCES	67
	APPENDICES	69

xii

LIST OF TABLE

NO.	TITLE	PAGE	
2.6.1	Operating Profile	17	

LIST OF FIGURES

NO.	TITLE	PAGE
2.1.1	Light time of particles trajectories	6
2.1.2	Flow chart of CFD simulation	7
2.2.1	Biomass boiler construction	8
2.2.2	Particulate distribution simulation	9
2.2.3	Boiler System Components	10
2.4.1	Flue duct design	12
2.4.2	Particles trajectories	13
3.2.1	AUTOCAD Drawing	22
3.3.1	3D drawing using solidwork	23
3.3.2	Left view of the control volume	24
3.3.3	Front view of the control volume	24
3.3.4	Transparent view inside the furnace	25
3.3.5	Transparent view of fire tubes inlet	26
3.3.6	Extruded cutting process of the fire tubes	26
3.3.7	Position of inlet secondary air	27
3.3.8	Primary fan construction	27
3.4.1	Meshing grid construction	29
3.4.2	Meshing around critical area	30
3.7.1	Predicted temperature distribution in mid plane view	32
4.1	Reference planes	44
4.1.1.1	Velocity vectors at fire tubes section	46
4.1.2.1	Contour of turbulent intensity viewed from plane 1	47
4.1.2.2	Contours of turbulent viscosity viewed from plane 1	48
4.1.3.1	Flow tracking of secondary air	49

4.1.3.2	Particles path line after 1000 steps	50
4.1.3.3	Graph of particle ID versus travelling time for 1000 steps	50
4.2.1.1	Comparison of velocity magnitude	53
4.2.1.2	Plant layout	54
4.2.2.1	Result comparison between actual and	
	modified turbulent intensity	55
4.2.2.2	Result comparison between actual and modified	
	turbulent viscosity	55
4.2.3.1	Pathlines colored by partcle ID	56
4.2.3.2	Graph related to particle trajectories	57
4.3.1.1	Turbulent viscosity for actual and modified design	59
4.3.1.2	Turbulent intensity for actual and modified design	59
4.3.2.1	Pathlines colored by travelling time for case study 3	60
4.3.2.2	Graph of particles trajectories for case study 3	60
4.4.1.1	Turbulent viscosity comparison for case study 4	62
4.4.1.2	Turbulent intensity comparison for case study 4	62
4.4.2.1	Flow tracking analysis	63
4.4.2.2	Graph related to particle ID	63

LIST OF SYMBOL

2D	=	2 Dimension
3D	=	3 Dimension
CFD	=	Computational Fluid Dynamics
CDM	=	Clean Development Mechanism
SGS	=	Sub-grid scale
LES	=	Large Eddy Simulation
SSTKW	=	Shear Stress Transport k- ω
SKW	=	Standard k-w
3	=	Epsilon
ω	=	Omega

xvi

LIST OF APPENDICES

NO.	TITLE	PAGE
А	Biomass boiler plant blue print	70
В	System component	71
С	Plant construction	72
D	3D Control volume drawing	73
E	Carta alir pengendalian psm	74
F	Technical data	75
G	Hardware and software specification	79
Н	Project implementation schedule	80

xvii

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Boiler is a steam producing system that involve of heating raw water into a high energy of steam. The manipulation of steam properties produced are varies in wide range of application and industry. High in temperature, pressure and velocity has made steam as a main medium of energy transportation since decades ago. With modernization and continuous technology upgrading, the ability of boiler seems to move along and become more important.

High velocity of steam produced has many applications mostly in power generating system. Low power requirement and high of capacity produced making a steam boiler is an ideal way to generate power. Its high temperature property is also being widely manipulated especially in manufacturing industry. Paper maker industry as example uses the heat transferred by steam to dry their paper product. The introduction of biomass fuel boiler from years ago seems to gain more acceptances in industry. This is due to the manipulation of solid waste which giving much more benefit in aspect of cost cutting. With continuous research and ability upgrading, little by little this type of boiler is replacing the use of oil based fuel boiler. Thanks to the current market price of oil that is high and sometimes undetermined. Moreover, the high efficiency of biomass steam boiler strengthens the reason for having a place in industry.

Since solid wastes are continuously produced and need proper management, the existence of biomass boiler seems to have solves or at least reduces responsibility carried by industries such as palm oil and wood manufacturing industry. Here the useable chain of solid waste were created where biomass steam boiler optimize the use of natural source until the maximum. Moreover, ashes produced from complete combustion in the boiler furnace recently rising in request especially from agriculture industries.

This project was inspired from my industrial training experience in biomass steam plant at ENCO DANSTOKER (M) SDN BHD. Empty fruit bunch is the main fuel used and at certain time being supported by palm kernel shell, wood chips and mesocarp fiber. The whole system applied in the plant is so interesting where water treatment, fuel processing, air cycle, combustion and steam transportation systems were combined using latest technology.

Produces 35 tons steam capacity per hour, this type of boiler has been classified as the most efficient boiler currently. Therefore, optimization and analysis of current operating system is highly important in order to get maximum performance while reducing its disadvantages and minimizing source required.

1.2 OBJECTIVES

1. To optimize the current boiler design by modifying the flue duct design and secondary air inlet positions.

1.3 WORK SCOPES

- 1. To run a simulation of flow in biomass boiler furnace using computational fluid dynamics (CFD) software.
- 2. To study the effects of current design towards air flow pattern.
- 3. To make comparison and optimization of fuel scattering by modifying flue duct design.
- To make comparison and optimization of turbulence and fuel trajectories relative with time by modifying secondary air inlet positions.
- To make comparison and optimization of turbulence and fuel scattering by trying new sets of primary and secondary air velocity.

1.4 PROBLEMS STATEMENT

During normal operation, Enco Danstoker (M) sdn bhd's biomass boiler facing several problems related to its system. Flow distribution at the outlet of the furnace (inlet of fire tubes) is not evenly distributed. This will result in right side of the fire tubes inlet clogging faster than the other side. Too much ash particulate emission is obtained released from the system which indicates a problem in flow pattern inside the furnace and combustion level.

1.5 SIGNIFICANT OF STUDY

Simulation using CFD in the boiler furnace can be used to analyze the effect of system's design towards flow pattern or turbulence. Simulation of flow will track and prove the path of the flue gas and fuel particle during operation. Thus, by monitoring the simulation, modification can be done to change the flow pattern. Results of this study can be use to predict the best design to reduce ash emission and increase blending time of oxygen in the furnace.

CHAPTER 2

LITERATURE REVIEW

2.1 COMPUTATIONAL FLUID DYNAMICS (CFD) IN FLOW ANALYSIS

The equations for fluids thermal are quite complex and can be difficult to solve, especially if the geometry of a problem is complex. By making use of computers as a computational tool, we can solve these equations in nearly any arbitrary situation. The computational method allows us to get results quickly (a matter of minutes to hours depending on the complexity) and visually close to reality. These results can be used to guide experiments and even as a substitute for preliminary testing in situations where building prototypes might be prohibitively expensive.

Using CFD application, analysis of flow pattern inside a furnace, combustion performance, particulate's velocity profile and design modification can be done. Using data and simulation obtained from the analysis, any defect in the current operating design system can be predicted, thus, with smallest cost and shortest time of methods, modification can be made. Current CFD software compatibility allows integrated with other software such as Solidwork. This will be taken as advantages where degree of similarity of the analysis's system can be achieved as close as possible with the true system. The use of Soliwork software will make drawing process of control volume easier, faster and more accurate.

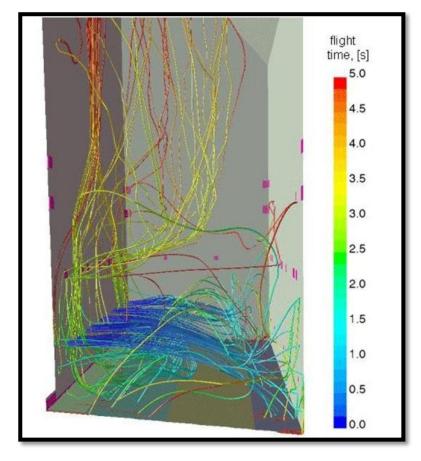


Figure 2.1.1: Light time of particles trajectories (Source: FLUENT.com)

As shows in figure 2.1.1 above, particulate trajectories can be simulated using CFD. Example above shows a trajectory relative to flight time. Thus, this is very useful in order to track the flow path of the ash particle. From current condition, the particulate emission rate out of the system is quite high and need to be reduced. By making the flight time longer at the bottom of the furnace, even fuel with high moisture content will have enough time to be complete combusted. In another terms, simulation of particle velocity respect with time is also useful to the analysis.