DEVELOPMENT OF AN IOT-BASED SMART FLOOD ALARM SYSTEM BY USING NODEMCU ESP8266 ESP12-E

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF AN IOT-BASED SMART FLOOD ALARM SYSTEM BY USING NODEMCU ESP8266 ESP12-E

This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours

Faculty of Technology Electronic and Computer Engineering University Technical Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN KOMPLITER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek DEVELOPMENT OF AN IOT-BASED SMART FLOOD ALARM SYSTEM BY USING NodeMCU ESP8266 ESP12-E

Sesi Pengajian 2024/2025

Saya MUHAMMAD FAIZ BIN MOHD NASIR mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓): (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang TERHAD* telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan. TIDAK TERHAD Disahkan oleh: MUHAMMAD FAIZ BIN MOHD NASIR SITI HARYANTI BINTI HJ HAIROL ANUAR Alamat Tetap: Fekulti Teknologi Dan Kejuruteraan Elektronik Dan Komputer (FTKEK) Universiti Teknikal Malaysia Melaka (UTeM) -----Tarikh: Tarikh: 06/01/2025 06/01/2025

DECLARATION

I declare that this project report entitled development of an IoT-based smart flood

alarm system by using NodeMCU ESP8266 ESP12-E is the result of my own research except

as cited in the references. The project report has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Signature :

Author : MUHAMMAD FAIZ BIN MOHD NASIR

Date : 06/01/2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follows:

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Signature

Supervisor Name : SITI HARYANTI BINTI HJ HAIROL ANUAR

Date 21/1/2025

DEDICATION

I dedicate this dedication to my beloved family, my father Mohd Nasir bin Mohd Nor, and my mother, Nik Maheran binti Nik Hassan, who never stopped praying and sending prayers for my success. Also, not forgotten my brothers and sisters who never stopped giving advice and being loyal supporters of this project in addition, I would like to thank my supervisor, Puan Siti Haryanti Binti Hj Hairol Anuar, who has provided guidance and advice to complete this project, Bachelor's Project2 (PSM 2).

Finally, to all my dear friends who have helped and are always with me in any situation. May all your good deeds be rewarded with kindness. Thank you so much for all your support and help.

ABSTRAK

Banjir merupakan salah satu bencana alam yang pernah berlaku di negara kita. Sebelum ini, kebanyakan sistem sedia ada yang dibangunkan hanya tertumpu kepada bidang tertentu. Oleh itu, sistem amaran banjir diperlukan untuk memberi amaran kepada penduduk tentang paras air terutama pada musim tengkujuh. Objektif kajian ini adalah untuk membangunkan sistem yang mengukur paras air banjir dan purata hujan harian menggunakan sensor ultrasonik dan tolok hujan tipping. Sensor ultrasonik akan mengukur tiga tahap, normal, amaran, dan bahaya. Tolok hujan tipping digunakan untuk mengira purata hujan harian. Penderia ini akan menghantar data kepada mikropengawal, yang disambungkan terus kepada ThingSpeak untuk menghantar maklumat ke telefon pengguna. Dengan sistem ini, pengguna akan menerima pesanan ringkas melalui aplikasi ThingSpeak, memberitahu mereka tentang paras air banjir semasa. Selain itu, ESP32-CAM dipasang untuk menyediakan rakaman video masa nyata paras air semasa, membolehkan pemantauan yang lebih cekap. Kesimpulannya, sistem ini membolehkan penduduk yang tinggal di kawasan rendah atau bersebelahan sungai mengambil langkah berjaga-jaga sekiranya berlaku banjir di kawasan mereka.

ACKNOWLEDGEMENTS

This is my admiration for this Final Year Project. I'd like to thank my fantastic supervisor, Siti Haryanti Binti Hj Hairol Anuar, for her motivating encouragement and valuable suggestions that helped me reach my final year research goals. Her continual advice, unwavering support, and contagious excitement for research and education are vital. This project could not have been completed without her leadership. I'd also want to thank the laboratory assistants in each lab for freely sharing their experiences and contributing vital insights to the research. Their unwavering support, readiness to answer inquiries, and great contributions were critical to the success of our project.

I would especially like to thank my parents for their constant support and spiritual encouragement. Their assistance has been beneficial in all aspects of my academic and personal development. I'm also grateful to my friends, whose encouragement and suggestions, either directly or indirectly, helped me finish this project. Their encouragement, sharing of ideas, and unwavering attitude kept me going till I succeeded. Finally, I'd want to convey my heartfelt appreciation to everyone who assisted me during this academic adventure and project, which was successfully finished.

TABLE OF CONTENTS

Decla	nration		
Appr	oval		
Dedic	cation		
Abstr	rak Element of the Control of the Co	ii	
Ackn	owledgements	iii	
Table	e of Contents	iv	
LINIVERSITI TEKNIKAL MALAYSIA MELAKA List of Figures		ix	
List o	of Tables	xii	
List of Symbols and Abbreviations		xiii	
Appe	ndix	xiv	
СНА	PTER 1 INTRODUCTION	1	
1.1	Project Background		1
1.2	Problem Statement		4
1.3	Objective		4
1.4	Scope of Project		5

1.5	Research Questions	5
1.6	Significance of Study	6
CHA	APTER 2 LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Past-Related Research	7
	2.2.1 Flood Monitoring and Warning System	8
	2.2.2 Flood Level Control and Management Using Instrumentation	Control 9
	2.2.3 Early Flood Detection and Environment Monitoring System	10
	2.2.4 Design Implementation of Flood Early Warning System for R	
	Monitoring.	11
	2.2.5 Enhancement of IoT-based Flood Detection and Prevention us	sing Arduino
	UNO with Wi-Fi Module. MALAYSIA MELAK	A 12
	2.2.6 Smart Flood Monitoring System via IoT Platform for Early W	arning of Road
	Closures Against Flood Events.	13
	2.2.7 Smart IoT Flood Monitoring System	14
	2.2.8 Flood Monitoring and Warning System with IoT	14
	2.2.9 The Development of Smart Flood Monitoring System using U	Ultrasonic sensor
	with Blynk Application.	15
	2.2.10 Internet of Thing-Based Smart Flood Forecasting and Early W	Varning System.
		16
	2.2.11 Smart Early Flood Monitoring System Using IoT.	17

	2.2.12 Solar Fed Flood Alert System Using Arduino.	18
	2.2.13 Water Level Monitoring and Flood Alerting by Applying IoT.	19
	2.2.14 A Prototype for Flood Warning and Management System Using Mobile Networks.	20
	2.2.15 A Water Level Detection IoT Platform Based on Wireless Sensor Network	k.21
2.3	Research Gaps	21
	2.3.1 Current Research and Technology	22
2.4	Comparisons of Existing Techniques of Smart Flood Detection	23
СНА	PTER 3 METHODOLOGY 30	
3.1	Introduction	30
3.2	Flowchart for Project Development	31
3.3 ^U	Block Diagram for Project Development	33
3.4	Project Hardware Selection	36
	3.4.1 NodeMCU ESP8266 ESP12-E	37
	3.4.2 Ultrasonic Sensor	39
	3.4.3 LED (Traffic Light LED Module)	43
	3.4.4 Buzzer	44
	3.4.5 Hall Magnetic Sensor	46
	3.4.6 LCD I2C	48
	3.4.7 Tipping Rain Gauge	50

	3.4.8 Servo Motor	52
	3.4.9 Voltage Regulator	54
	3.4.10 ESP32 CAM	55
	3.4.11 Acrylic Perspex	55
	3.4.12 Lithium Battery 3.7v	57
3.5	Project Software Selection	58
	3.5.1 Arduino IDE	58
	3.5.2 ThingSpeak	59
	3.5.3 Web Server	61
	3.5.4 Fritzing	62
СНА	PTER 4 RESULTS AND DISCUSSION 63	
4.1	Introduction	63
4.2	Software Part	64
	4.2.1 Coding for ESP12e	64
	4.2.2 Coding for ESP32-CAM	65
4.3	Hardware Part for ESP12e	76
4.4	Hardware Part for ESP32-CAM	76
4.5	Result for ESP12e	77
	4.5.1 Water Level	78

	4.5.2 Average of rain		81
4.6	Result for ESP32-CAM		83
4.7	Prototype		84
СНА	PTER 5 CONCLUSION AND FUTURE WORKS	86	
5.1	Conclusion		86
5.2	Recommendation of the Future		87
REF	وبنورسين نبكنيك ملسيا ملاك	88	

LIST OF FIGURES

Figure 1.1 Statistics Of The Distribution Of Average Daily Rainfall [1]	2
Figure 1.2 Flood Level [4].	3
Figure 1.3 Rain Intensity [5].	3
Figure 2.1 Block Diagram of Flood Monitoring and Warning System [9].	9
Figure 2.2 Block Diagram of Flood Level Control and Management [10].	9
Figure 2.3 Block Diagram of Early Flood Detection [11].	10
Figure 2.4 Block Diagram of Flood Early Warning System [12].	11
Figure 2.5 Block Diagram of IoT-Based Flood Detection [13].	12
Figure 2.6 Block Diagram of Smart Flood Monitoring System Via IoT Platform [14].	13
Figure 2.7 Block Diagram of smart IoT flood monitoring system [15].	14
Figure 2.8 Block Diagram 0f Flood Monitoring and Warning [16].	15
Figure 2.9 Block Diagram of Smart Flood Monitoring System [17].	16
Figure 2.10 Block Diagram of Flood Forecasting and Early Warning [18].	17
Figure 2.11 Block Diagram of The Smart Early Flood Monitoring System [19].	18
Figure 2.12 Block Diagram of Proposed Flood Alert System [20].	19
Figure 2.13 Block Diagram of Water Level Monitoring & Flood Alerting [21].	20
Figure 2.14 Block Diagram of Flood Warning and Management System [22].	20

Figure 2.15 Block Diagram of A Water Level Detection [23].	21
Figure 3.1Flowchart for Smart Flood Alarm System	32
Figure 3.2 Block Diagram	34
Figure 3.3 Connection ESP32-CAM	35
Figure 3.4 NodeMCU ESP8266 ESP12-E	38
Figure 3.5 Ultrasonic Sensor HC-SR04 [32].	41
Figure 3.6 Ultrasonic Works [31].	42
Figure 3.7 LED Traffic Light [34].	44
Figure 3.8 Buzzer 5v	45
Figure 3.9 KY-024 Hall Magnetic Sensor [36].	47
Figure 3.10 LCD I2C [37].	49
Figure 3.11 Part of The Tipping Rain Gauge [8].	50
Figure 3.12 The Top of The Tipping Rain Gauge [8]. YSIA MELAKA	50
Figure 3.13 The Middle Part of The Tipping Rain Gauge [8].	51
Figure 3.14 The Bottom of The Tipping Rain Gauge [8].	51
Figure 3.15 Servo Motor SG90	53
Figure 3.16 Voltage Regulator LM2596	54
Figure 3.17 ESP32 CAM	55
Figure 3.18Acrylic Perspex	56
Figure 3.19 Lithium Battery	57
Figure 3.20 Arduino IDE [38].	58
Figure 3.21 ThingSpeak	60
Figure 3.22 Function of ThingSpeak	60

Figure 3.23 Web Server	61
Figure 3.24 Fritzing	62
Figure 4.1 Circuit for Smart Flood Alarm System	76
Figure 4.2 Circuit for ESP32-CAM Monitoring	77
Figure 4.3 Result 1 for Water Level	78
Figure 4.4 Result 2 for Water Level	79
Figure 4.5 Result 3 for Water Level	80
Figure 4.6 Graph for Water Level	81
Figure 4.7 Result 1 for Rainfall	81
Figure 4.8 Result 2 for Rainfall	82
Figure 4.9 Result 3 for Rainfall	82
Figure 4.10 ESP32-CAM Monitoring	83
Figure 4.11 Prototype TEKNIKAL MALAYSIA MELAKA	84

LIST OF TABLES

Table 2.1 Comparison of journal	24
Table 3.1 List of Component	36
Table 3.2 Comparison of micro controller	37
Table 3.3 Comparison of ultrasonic sensor	39
Table 3.4 Comparison of LED	43
Table 3.5 Comparison of Buzzer	45
Table 3.6 Comparison of Hall Magnetic Sensor	46
Table 3.7 Comparison of LCD	48
Table 3.8 Comparison of Servo	53
Table 3.9 Comparison of Voltage Regulator	54
Table 3.10 Comparison of Material	55
Table 3.11 Comparison of Batteries	57

LIST OF SYMBOLS AND ABBREVIATIONS

For example:

μs : microseconds

s : seconds

m : meter

VCC : Voltage Common Collector

GND : Ground

LED : Light Emitting Diode

LCD : Liquid Crystal Display

PCB : Printed Circuit Board

DC : Direct Current

AC : Alternating Current

APPENDIX

Appendix A: Coding for ESP12e

Appendix B: Coding for ESP32-CAM

72-75

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

1.1 Project Background

Floods are among the most common and catastrophic disasters in the world, affecting millions of people every year. Floods and heavy rains are unavoidable occurrences that can result in loss of life and massive infrastructure damage. According to a report issued by (Jabatan Pengairan dan Saliran Malaysia, 2012) [1]. Figure 1.1 shows the average daily rainfall, the data explains that daily rainfall can increase the water level of the river. The increase in the river water level is measured using units of mm.

Figure 1.1 Statistics Of The Distribution Of Average Daily Rainfall [1]

Heavy rain in a few hours or days will cause flash floods. As shown in figure 1.1, the state of Terengganu received the most rainfall, 203mm. It may be due to the geography of the earth's surface which causes a lot of rain. Based on a report issued by the Department of Statistics, in 2020. Melaka is the smallest state in Malaysia with an area of 1,650 km² [2]. According to news issued by Astro Awani, 2023. Continuous heavy rain that continues up to 100mm per day is one of the causes of floods in Melaka, especially in Jasin [3]. Based on data released by the Department of Irrigation and Drainage Malaysia, 2024. The Durian Tunggal dam level is at the normal level which is 3.00m [4]. Figure 1.2 shows the flood level to determine the flood level is divided into 4 which are normal, alert, warning, and dangerous. The danger level is the river water starts to overflow and will cause flooding. The warning level means the river water is approaching the flood level. The alert level is the river water starting to rise. The normal level is the normal water level.

Figure 1.2 Flood Level [4].

There are several rain intensity categories of light rain 1-10mm, moderate rain 11-30mm, heavy rain 31-60mm and very heavy rain over 60mm. This reading is measured every hour. Figure 1.3 shows the rain intensity [5].

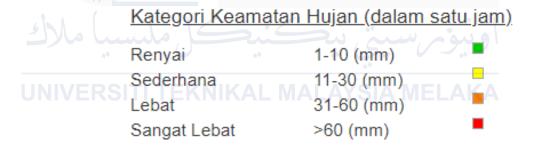


Figure 1.3 Rain Intensity [5].

The current chapter provides an example of the flood application along with its background or history, purpose, and some limitations. It explains what is contained in a range of services, features, and limitations. To increase the resilience level by IoT for early data collection for smart flood alert applications as the application was designed to popularize the concept of smart city and citizen engagement. Through such technology, one can detect and or forecast the occurrence of floods and prevent the event to reduce the effects.

1.2 Problem Statement

According to a report published by Adi et al, 2020. Flood disasters are among the most frequent disasters in Malaysia. A flood is a condition of water that submerges in a large area. Excessive rainfall is one of the causes. Also, the agencies involved may have a low level of preparation [6]. Lack of accurate and real-time water level detection. Current flood monitoring technologies are ineffective at correctly detecting increasing water levels and providing dependable early warning. Insufficient systems for measuring and analyzing rainfall. There is no effective mechanism for measuring rainfall quantities and calculating averages as part of flood assessments. Flood monitoring relies heavily on manual intervention. Current systems frequently rely on manual monitoring and data collecting, which limits efficiency and increases the likelihood of delayed reactions during emergencies. To prevent this from happening during the flood season, a "smart flood alarm system" device will be created to reduce unwanted accidents. The way to use the device is to place it in such a place as in low-lying areas that are often flooded or by rivers.

1.3 Objective

- To develop a flood detector that can detect the increased level of water and calculate the average amount of rain.
- b) To detect the current level of the flood where the data will be sent from NodeMCU ESP8266 ESP12-E to ThingSpeak Application.
- c) To analyze the performance of the development of an IoT-based smart flood alarm system.

1.4 Scope of Project

Research is underway on the benefits of using ultrasonic in smart flood alarm systems compared to other types of sensors. The HC-SR04 ultrasonic sensor has an accuracy limit range of 2cm to 400cm. This sensor is suitable for water level readings. The inability to detect certain materials such as soft surfaces or absorbents that might absorb or permeate ultrasonic waves, affects the sensor's ability to bounce back signals for measurement according to the journal issued by Raza and Monnet, 2019 [7]. The second sensor is the LM393 hall effect magnetic detector. Using a tipping rain gauge, where tipping rain gauge uses buckets to collect water. The amount of water accumulated in the bucket is calculated in ml units divided by the surface area of the rain catchment to get the average of rain. Magnetic sensors are placed in the bucket to calculate how many times the bucket pours water. One time the water is poured multiplied by the amount of water accumulated in the bucket [8]. This project uses only 2 sensors so that interruptions do not occur frequently, and the data is sent faster.

1.5 Research Questions

- a) What are the methods and technologies required to develop a flood detector that can detect an increased water level and calculate the average amount of water?
- b) How can the current level of a flood be accurately detected?
- c) How effective is an IoT-based smart flood alarm system detecting and alerting users about flood conditions, and what are the key performance metrics for such a system?

1.6 Significance of Study

This kind of research is highly valuable for refining the early experience and avoiding harm from floods. Thus, this developed smart flood warning system for IoT technology of NodeMCU ESP8266 ESP12-E hardware platform is capable of alarming the flood before entering the water more precisely and within less time than the other systems. In this system, a new palette of fresh sensors has been incorporated including ultrasonic sensors together with magnetic sensors, which allows us to pinpoint the changes in environmental parameters in real-time. This data is then passed to ThingSpeak where a much better forecast of the floods as per the diagram is made possible. Disaster information is well-timed; thus, it can be considered appropriate to help the inhabitants and the officials in terms of prevention. Such a kind of project can locate areas of interest and track them without establishing people there directly, which eradicates unnecessary loss of lives and property. It is coupled with mobile apps to allow an interchange of information in a way that assists in the cause of providing efficiency to a disaster response system.

CHAPTER 2

2.1 Introduction

This section focuses on research or selection of components, as well as system research to develop the project. Several related and comparable projects have been analyzed and distinguished in this chapter. The literature review section is an important component in showing the importance of this project and the expected results once it is completed.

2.2 Past-Related Research

The efficient implementation of the smart flood warning system project, a report on the reading materials and components about flood and flood control has been conducted. These data and research materials are available in books, journals, newspapers, or websites that belong to a specific part. Of this piece of information, the project schedule becomes part of its specifications for successful completion on time. Therefore, the described projects can be used as reference solutions, as well as examples of optimal practices for enhancing various aspects of the smart systems for flood warnings, including the time for defining the levels, the frequency of the alert issuance, and the frequency of the data exchange in between the components of the smart system for flood warnings.

2.2.1 Flood Monitoring and Warning System

Referring to the report issued by Khan et al, 2020. The flood monitoring and warning system uses automatic sensors such as rain gauges, ram meters, and water level sensors to measure flood parameters [9]. This project uses an Arduino Uno-type ATMEGA238 microcontroller to collect data from sensors, calculate parameters like flow and water level, and trigger an alert via FM transmitter in flood situations. The Arduino ATMEGA238 is compatible with the system and easy to combine with other sensors, making it suitable for disaster applications. Figure 2.1 illustrates a flood monitoring system, powered by a battery, that collects, analyzes, and disseminates environmental data via wireless means, aiming for real-time environmental monitoring.

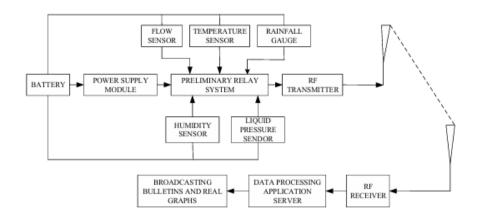


Figure 2.1 Block Diagram of Flood Monitoring and Warning System [9].

2.2.2 Flood Level Control and Management Using Instrumentation Control

According to the journal issued by Rajput et al, 2021. The flood control and management system uses instrumentation and control technology to monitor water levels in river catchment regions [10]. The project utilizes an Atmega328P-type microcontroller on an Arduino board for controlling water levels in model river systems, offering a cost-effective solution for integrating multiple sensors. Figure 2.2 shows the block diagram of flood level control and management shows the main components of the model. The PLC, ATmega328P, ultrasonic sensor, and LED screen work together to monitor water levels, provide early warnings, and control water flow for flood management.

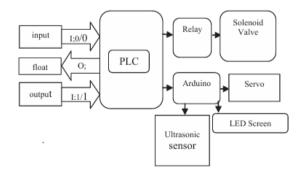


Figure 2.2 Block Diagram of Flood Level Control and Management [10].

2.2.3 Early Flood Detection and Environment Monitoring System

Referring to the report published by Bhuvana and Siva Shankar, 2022. This report used the ESP32 microcontroller to monitor a system that used IoT technologies for early flood detection and environmental monitoring [11]. The system uses sensors to gather data for flood prediction, monitor environmental elements, automate floodgate control, and reduce human interaction. The project uses an ESP32 Wi-Fi module for real-time data transmission from sensors to an IoT platform, enabling rapid monitoring of flood parameters and providing immediate alerts, ensuring reliable operation and extended battery life. Figure 2.3 shows an early flood detection system using ESP32 sensors. The system collects data, controls servo motors, and alerts LEDs and buzzers. It also sends data to the Blynk app for remote monitoring, ensuring environmental protection.

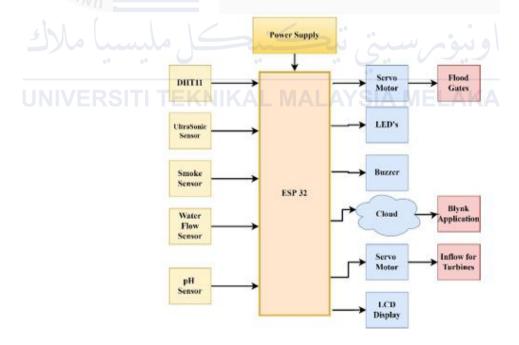


Figure 2.3 Block Diagram of Early Flood Detection [11].

2.2.4 Design Implementation of Flood Early Warning System for Residential Monitoring.

As per the report released by Simatupang and Arrazaq, 2023. The study article focuses on developing a Flood Early Warning System (FEWS) prototype for household monitoring to mitigate flood risk in Indonesia [12]. The system uses an Ultrasonic Sensor, Arduino Nano, NodeMCU, and HC-12 Wireless Serial Communication Module for accurate water level detection and flood early warning systems, displaying data online via the Blynk application. Figure 2.4 shows a block diagram of design implementation of flood early warning system showing a water level monitoring system that has two main units which are the transmitter unit and the receiver unit. A transmitter unit uses an ultrasonic sensor to measure water level, processed by a NodeMCU ESP8266 and sent to the Blynk cloud. The data is received by an HC-12 and sent to an I2C LCD, triggering alarms.

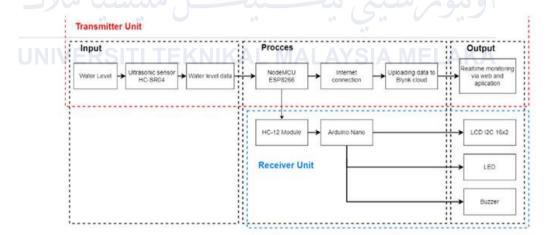


Figure 2.4 Block Diagram of Flood Early Warning System [12].

2.2.5 Enhancement of IoT-based Flood Detection and Prevention using Arduino UNO with Wi-Fi Module.

As indicated in the report published by Charaan et al, 2023. Enhancement of IoT-based flood detection has used the Wi-Fi Module to make this project an IoT project [13]. This project uses an Arduino Uno, humidity, flow, float, and ultrasonic sensors to predict and prevent floods. Data from these sensors is sent to the Bolt cloud for immediate alerts. The Arduino Uno is the main processing unit, facilitating real-time flood predictions and rapid prototyping for real-world applications. Figure 2.5 illustrates an IoT-based flood detection and prevention system using an Arduino-type UNO. The system receives water level and temperature data from sensors, displays it on an LCD screen, and controls a buzzer. The ESP8266 module sends data to a server for remote monitoring and control.

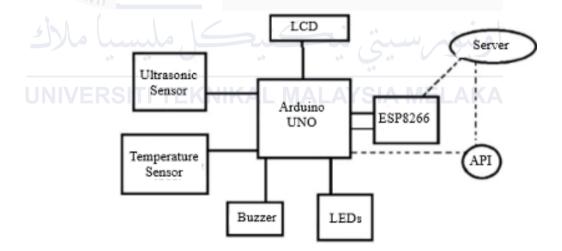


Figure 2.5 Block Diagram of IoT-Based Flood Detection [13].

2.2.6 Smart Flood Monitoring System via IoT Platform for Early Warning of Road Closures Against Flood Events.

As reported in the released document by Zainal and Ahmad, 2024. The Smart Flood Monitoring System utilizes IoT technology to provide early warnings of road closures during flood events [14]. The system alerts users about flooding-related road closures using an ultrasonic sensor. The Durian UNO controller sends water level data to the Blynk application, improving system efficiency and usability. The system integrates with ESP8266, offers wireless data transmission, and is user-friendly. Figure 2.6 shows the block diagram of smart flood monitoring. An ultrasonic sensor is used to calculate the water level and then the data will be sent to the microcontroller. The microcontroller is connected using the Blynk application. Data will be sent directly to the Blynk application and users can access Blynk just by entering their email to the Blynk application. Figure 2.6 shows the block diagram of smart flood monitoring.

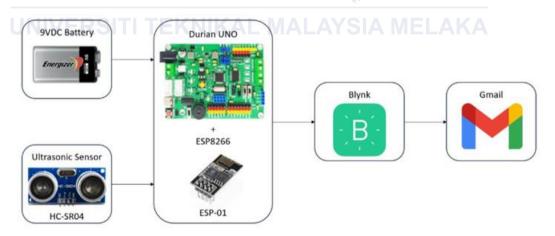


Figure 2.6 Block Diagram of Smart Flood Monitoring System Via IoT Platform [14].

2.2.7 Smart IoT Flood Monitoring System

Based on the journal published by Binti Zahir et al, 2019. The Smart IoT Flood Monitoring System operates by using an ARM Mbed NXP LPC1768 microcontroller to collect data from an ultrasonic sensor [15]. The ARM Mbed NXP LPC1768 is a suitable choice for high-performance, reliable, and speed-driven Smart IoT Flood Monitoring Systems. It receives input from an ultrasonic sensor and processes it to control various output devices, including a buzzer, LCD, LED, and stepper motor. The system also includes a Wi-Fi module for wireless communication and remote monitoring. Figure 2.7 illustrates the integration between sensors, processors, and various output devices for advanced control and monitoring applications.

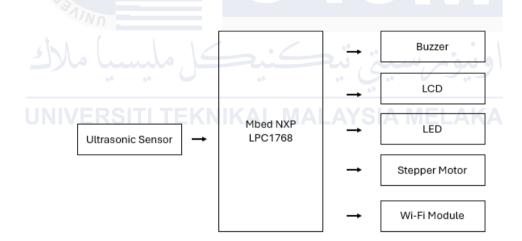


Figure 2.7 Block Diagram of smart IoT flood monitoring system [15].

2.2.8 Flood Monitoring and Warning System with IoT

As stated in the report published by Sufa, Yusof, and Sani, 2019. States that the Flood Monitoring and Warning System Project with IoT (FMWSI) uses technology (IoT) to improve the flood monitoring and warning system in Malaysia [16]. Figure 2.8 shows the block diagram of flood monitoring and warning shows the ultrasonic sensor connected to the

microcontroller to send the data. Microcontroller-type Arduino WeMosD1R1 will send the data to outputs such as LCD and LED. The LCD and LED will produce an output that shows the water level to inform the user. In addition, the data will be sent to the Blynk application to be displayed to users remotely. It is made as an IoT project.

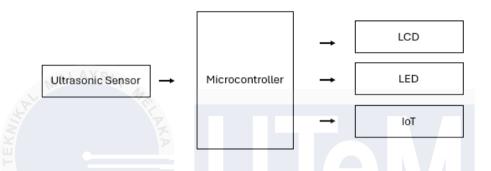


Figure 2.8 Block Diagram 0f Flood Monitoring and Warning [16].

2.2.9 The Development of Smart Flood Monitoring System using Ultrasonic sensor with Blynk Application.

According to the documented report by Noar and Kamal,2017. The paper presents the development of a smart flood monitoring system using the Blynk platform for data transmission, integrating two NodeMCU [17]. The smart flood monitoring system utilizes two NodeMCU boards, one transmitting data wirelessly and the other triggering a buzzer and LED, enhancing system responsiveness during flood events. Figure 2.9 shows the block diagram development of a smart flood monitoring system showing where the first NodeMCU is connected from the Ultrasonic sensor. The first NodeMCU reads the data from the ultrasonic and the data will be sent to the Blynk application and display the data on the LCD. The second NodeMCU will read what is sent by the Blynk application and then activate the LED and Buzzer.

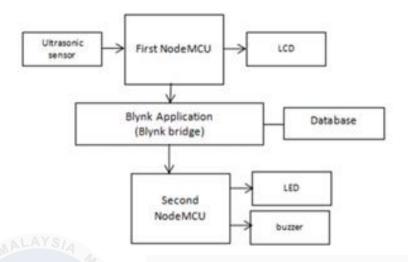


Figure 2.9 Block Diagram of Smart Flood Monitoring System [17].

2.2.10 Internet of Thing-Based Smart Flood Forecasting and Early Warning System.

Based on a report written by B. Shankar, T. John, S. Karthick et al. 2021. This project uses Internet of Things (IoT) architecture. The NodeMCU controller is the main component of the system, managing all activities. Sensors are responsible for detecting environmental characteristics such as temperature, humidity, snow melting, wind speed, rain, and air pressure [18]. The main goal of this initiative is to issue early flood warnings. This system aims to warn the community in the upstream and downstream areas about flash floods that will occur by continuously monitoring water levels, rainfall, and other related data. This early warning system is essential for immediate disaster response. Figure 2.10 shows the block diagram for the proposed method. In the modern world, there are extensive devices therefore using the BMP180 sensor that measures the temperature and humidity to differentiate between floods and let people know when there will be intense rain.

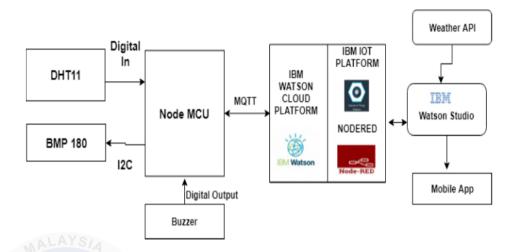


Figure 2.10 Block Diagram of Flood Forecasting and Early Warning [18].

2.2.11 Smart Early Flood Monitoring System Using IoT.

From the review conducted on MD. Ether Deowan, 2022. The project "Smart Early Flood Monitoring System Using IoT" uses IoT-enabled sensors, machine learning, and MATLAB to anticipate floods using time series forecasting [19]. They can observe these characteristics frequently, this may enable them to see flood characteristics before they appear thereby getting the communities out of large disasters. Figure 2.11 shows the block diagram of smart early flood monitoring system along with a detailed explanation of each part being discussed below. This system implements a NodeMCU ESP8266 microcontroller to handle the data transfer to ThingSpeak to indicate floods and predictions.

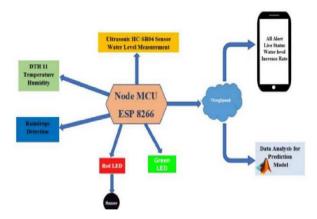


Figure 2.11 Block Diagram of The Smart Early Flood Monitoring System [19].

2.2.12 Solar Fed Flood Alert System Using Arduino.

The publications under study are the research article titled "Solar Fed Flood Alert System Using Arduino," which was authored by M. Karthika; S. Paramasivam; D. Manivannan; and S. Karthik, in 2023 This article describes the design of a flood alarm system by integrating IoT technologies, Arduino, wireless communication, Bolt Wi-Fi, and solar panel. Sensors for floods and floods alerting systems belong to the system; they assist in offering timely notifications to prevent a disastrous situation [20]. Figure 2.12 shows the block diagram of the proposed flood alert system. The system aims to identify floods early, alert locals, and aid disaster management. It uses solar electricity, making it sustainable and reliable.

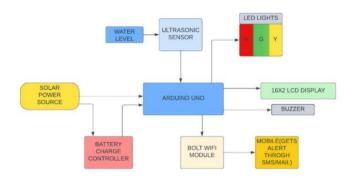


Figure 2.12 Block Diagram of Proposed Flood Alert System [20].

2.2.13 Water Level Monitoring and Flood Alerting by Applying IoT.

The report "Water Level Monitoring and Flood Alerting by Applying IoT" was authored by T. Opasworakun et al. 2024. Their work focuses on developing a robust and responsive flood warning system. The project created a flood warning system employing water level measurement devices outfitted with ultrasonic sensors and rain detection modules, all controlled by a microprocessor. Data was communicated using an IoT system that included ThingSpeak and Line apps, guaranteeing real-time data availability and effective communication [21]. Figure 2.13 shows the block diagram. The system uses microcontrollers and ultrasonic sensors to produce data, transmitted via ThingSpeak to a central control unit. Its primary function is to provide early flood alerts to locals, enabling swift response.

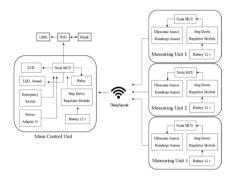


Figure 2.13 Block Diagram of Water Level Monitoring & Flood Alerting [21].

2.2.14 A Prototype for Flood Warning and Management System Using Mobile Networks.

The report titled "A Prototype for Flood Warning and Management System using Mobile Networks" is authored by S. Ali, F. Ashfaq, E. Nisar et al. 2019. Their work presents a sophisticated approach to flood warning and management leveraging mobile networks and IoT technology [22]. Figure 2.14 shows the block diagram of the system. The system uses an ESP32 board, sensors, and actuators to collect data for flood warnings and spillway management. MATLAB algorithms process the data, which is sent to an IoT platform, and an Android application enhances public response.

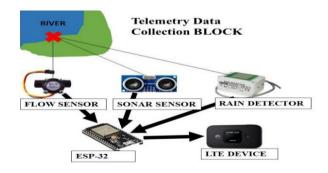


Figure 2.14 Block Diagram of Flood Warning and Management System [22].

2.2.15 A Water Level Detection IoT Platform Based on Wireless Sensor Network.

The research paper " A Water Level Detection: IoT Platform Based on Wireless Sensor Network " was authored by A. Prafanto and E. Budiman, in 2018. To monitor real-time water levels in flood-prone locations, the project uses a wireless sensor network using HC-SR04 proximity sensors and NodeMCU. This structure provides continual monitoring of water levels, which successfully reduces flood threats [23]. The technology uses ultrasonic sensors to detect water height and send results to a website for public monitoring, enabling real-time river level monitoring, and improving flood preparedness. Figure 2.15 shows the block diagram of a water level detection. The project uses HC-SR04 sensors and a NodeMCU for monitoring water levels in flood-prone areas.

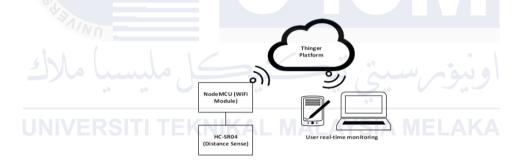


Figure 2.15 Block Diagram of A Water Level Detection [23].

2.3 Research Gaps

Research gaps are places where present information, expertise, or technology is insufficient or incomplete, showing the need for more inquiry to develop the subject. Identifying these gaps helps to guide future research efforts.

2.3.1 Current Research and Technology

According to Noar and Kamal, 2017, The study develops a smart flood monitoring system using ultrasonic sensors and Blynk apps, but suggests improvements in real-time monitoring, predictive analytics integration, scalability, energy efficiency optimization, and user interface refinement. According to the issued report by Rath et al. 2022, Current research lacks a comprehensive flood monitoring system, necessitating future improvements in algorithms, sensor upgrades, and communication protocols for improved flood alert systems.

According to Bhuvana and Siva Shankar, 2022, Current research lacks comprehensive environmental factors for flood detection, dam gate automation, and monitoring, necessitating advanced, accessible, and affordable early warning systems, particularly in underserved areas. Following the report issued by Charaan et al, 2023, Current flood detection research lacks multi-sensor integration, scalability, power efficiency, and reliable communication, necessitating further research for better sensors, larger coverage, sustainability, and real-time monitoring capabilities. As per the report released by Khan et al, 2020, The research focuses on developing cost-effective flood monitoring systems using sensor networks, with future opportunities to optimize sensors, consider solar power, and enhance data accuracy. The research aims to enhance flood warning systems (FEWS) mobility, accuracy, and cost-effectiveness through IoT technology. It proposes an IoT-based solution for real-time notifications, addressing shortcomings in manual flood monitoring. The Smart IoT Flood Monitoring System uses ARM Mbed IoT technology for data collection and distribution [16].

2.4 Comparisons of Existing Techniques of Smart Flood Detection

In the past journals have outlined several approaches for delivering high-quality projects, some of which include sound project management structures, incorporation of best technologies, integration of multi-disciplinary teams, and lastly effective quality checks. They help to be more in line with stakeholders' expectations, utilize new trends in software and hardware, focus on innovations, and look for efficient solutions. Table 2.1 shows the comparison of the comparison of the journals reveals that it is critical to approach project execution in some interrelated and complex ways and change management tactics should be tailored to the given project type, goals, and environment.

اونیورسینی تیکنیکل ملیسیا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 2.1 Comparison of journal

REF	TITLE & AUTHOR	PROPOSED TECHNIQUE	ADVANTAGE	DISADVANTAGE
1. Ref [9]	Flood Monitoring and Warning System. (Khan et al, 2020)	The main goals of this project are to develop a system for measuring the level of water and the rate of water that will help people track the actual	 Enhance disaster preparedness through real-time monitoring and forecasting. Cost-effective and easy to deploy, making it accessible for 	 Rely on sensors that may require maintenance and calibration over time. Limited by the reach of the sensor network, impacting coverage in remote areas.
	FIST	level of water.	various regions.	
2.Ref [10]	Flood Level Control and Management Using Instrumentation and Control. (Rajput et al, 2021)	Level monitoring and measurement systems, alarm systems, and the use of LEDs using which people can be warned and therefore help to reduce the effects of floods.	 Helps minimize the environmental impacts of flood hazards. Reduces the risk of flood and channel migration hazards. 	Requires significant resources for implementation and maintenance.
3. Ref [11]	Early Flood Detection and Environment Monitoring System.	Multiple sensors such as temperature, humidity, water level, flow, and ultrasonics. An Android app with an intuitive GUI helps to display	Early detection of floods helps in timely evacuation and reduces damage.	 System dependency on sensors and connectivity for accurate predictions. False alarms triggered by sensor inaccuracies can lead to unnecessary panic.

1

	(Bhuvana and Siva	all relevant data in a visual	Monitoring environmental	
	Shankar, 2022)	format.	parameters ensures the safety of	
		AV	aquatic life.	
4. Ref [12]	Design	Design and implement an	Accurate water level readings	Lack of data logging features in
	Implementation of	affordable FEWS model for	provided by the prototype system.	the current prototype system.
	Flood Early	monitoring the performance	High consistency in sensor	Absence of renewable power
	Warning System	of the designed prototype,	readings observed during testing.	source integration (like solar panels) for
	for Residential	based on the accuracy of		sustainability
	Monitoring.	sensor reading and prototype		
	(Simatupang and	functionality.		
	Arrazaq, 2023)	ليحل مليسيا ما	اوبيوم سيتي بيڪ	
5. <i>Ref</i> [13]	Enhancement of	This system combines an	Early flood detection through	Reliance on technology may lead
	IoT-based Flood	Arduino Uno with a few	sensor integration.	to system failures during emergencies.
	Detection and	sensors, including DHT-11,	Immediate alert system for	Limited effectiveness in areas
	Prevention using	ESP8266 and others. This	nearby communities to evacuate	with poor internet connectivity for data
	Arduino Uno with	module produces a warning	promptly.	transmission
	Wi-Fi Module.	signal that is wirelessly		
		transmitted to the appropriate		
	(Charaan et al,	authorities.		
	2023)			

6. <i>Ref</i> [14]	Smart Flood	uses IoT technologies to	Provides accurate water level	Relies on electronic components
	Monitoring System	develop a smart flood	measurements with 96.65%	that may have maintenance requirements.
	via IoT Platform	monitoring system. This	precision.	Initial setup and implementation
	for Early Warning	technology is intended to	Enables authorities to	costs might be a factor.
	of Road Closures	offer early notifications	promptly announce vehicle	
	Against Flood	regarding road closures	restrictions or road closures.	
	Events.	during flood disasters.		
	(Zainal and	1/NO		
	Ahmad, 2024)			
7. Ref [15]	Smart IoT Flood	Smart IoT Flood Monitoring	Provides early warnings to	Initial setup and maintenance
	Monitoring	System warns the public	residents to take preventive actions.	costs could be high.
	System.	before a flood occurs.	• A Helps in monitoring flood-	Limited reach to areas without
	(Binti Zahir et al,		prone areas efficiently.	internet connectivity.
	2019)			
8. <i>Ref</i> [16]	Flood Monitoring	This system will help the	Helps in monitoring flood-	Limited processing power and
	and Warning	residents to act before the	prone areas effectively.	memory make possible limits for
	System with IoT	floods get worse and prevent	Enables early warning	sophisticated activities.
	(Sufa, Yusof, and	flood traps.	notifications to residents before	
	Sani,2019)		flooding	

9. <i>Ref</i> [17]	The Development	Smart flood monitoring using	The Blynk application	Limited range of data
	of Smart Flood	ultrasonic sensor with Blynk	provides real-time data transmission	transmission between NodeMCUs (less
	Monitoring System	application	for quick responses	than 50 meters).
	using Ultrasonic	MALAYS/A	Smart flood monitoring	Relies on wireless connection
	Sensor		system enhances early detection of	which may be susceptible to interference.
	KW	X	water levels	
	with Blynk			
	Applications. (Noar			
	and Kamal,2017)			
10. <i>Ref</i>	Internet of Thing-	The system monitors floods,	• Early detection of events like	Reliance on technology may lead
[18]	Based Smart Flood	and predicts events using	floods, fires, and gas/water leaks.	to system failures.
	Forecasting and	IoT-based environmental	Provides alerts to prevent	Initial setup costs for
	Early Warning	monitoring TEKNIKAL	risks to human life and property.	implementing the IoT infrastructure.
	System. (B.			
	Shankar, T. John,			
	S. Karthick et al.			
	2021)			
11. <i>Ref</i>	Smart Early Flood	Water level and rainfall are	Utilizes IoT technology for	Dependency on technology may
[19]	Monitoring System	monitored using ultrasonic	real-time data collection and	lead to system failures during disasters.
	Using IoT. (MD.	and rain sensors, respectively.	monitoring.	
		Data transferred to the		

	Ether Deowan,	ThingSpeak server using IoT	• Enhances overall	
	2022)	technology.	preparedness and response to flood	
		1.14	situations.	
12. <i>Ref</i>	Solar Fed Flood	Includes sensors, Arduino,	Solar-powered for system	Limited errors during
[20]	Alert System Using	wireless connectivity, IoT	efficiency and lower power use	malfunctions
	Arduino. (M.	platforms, and Bolt Wi-Fi.		
	Karthika et	Solar-powered for system		
	al.2023)	efficiency and lower power		
	di	use.		
13. <i>Ref</i>	Water Level	Ultrasonic sensors are used	 Provides early flood warnings 	Dependence on stable
[21]	Monitoring and	for measuring water levels,	to enable prevention.	connectivity for IoT functionality
	Flood Alerting	and rain detection modules	Allows residents to quickly	
	UNI	are integrated to monitor	assess situations and respond	
	by Applying IoT.	rainfall.	effectively.	
	(T. Opasworakun			
	et al. 2024)			
14. <i>Ref</i>	A Prototype for	The ESP32 microcontroller is	Efficient real-time	Reliance on mobile networks may
[22]	Flood Warning and	utilized for data collecting	monitoring of flood risk situations.	face connectivity issues.
	Management	and transmission.	Utilizes ESP32 development	Dependency on sensor units
			board for data collection.	which can malfunction.

	System using			
	Mobile Networks.			
	(S. Ali, F. Ashfaq,			
	E. Nisar et al.	MALAYS/A		
	2019)			
15. <i>Ref</i>	A Water Level	Water level sensing is carried	Real-time monitoring of river	Limited to specific areas with
[23]	Detection: IoT	out using an HC-SR04	water level for public safety.	implemented sensor networks
	Platform Based on	proximity sensor and a	Low power consumption for cost-	
	Vá	NodeMCU.	effective continuous operation.	
	Wireless Sensor			
	Network. (A.	نىك ملىسىا ما		
	Prafanto and E.	0 .		
	Budiman, 2018)	/ERSITI TEKNIKAL	MALAYSIA MELAKA	

CHAPTER 3

3.1 Introduction

The methodology for developing this IoT-based smart flood alarm system is divided into two main components: hardware and software development. The process involves a systematic approach, beginning with the selection of suitable components based on the project's requirements. The selected hardware components include the NodeMCU ESP8266 and ESP32-cam microcontroller, HC-SR04 ultrasonic sensor, tipping rain gauge, LEDs, buzzers, and an I2C LCD display. These components are chosen for their compatibility, cost-effectiveness, and reliability in providing accurate real-time data. The integration process involves interfacing the sensors with the microcontroller, where the ultrasonic sensor measures the water level while the tipping rain gauge calculates the rainfall intensity. This integration is crucial to ensure the sensors operate harmoniously, with accurate data

collection and seamless communication with the microcontroller. The NodeMCU ESP8266 acts as the central processing unit, receiving data from the sensors and processing it for analysis and decision-making. The processed data is displayed locally on the I2C LCD and transmitted to the ThingSpeak platform for remote monitoring and alerting. On the software side, the Arduino IDE is used for programming the NodeMCU ESP8266, ensuring the microcontroller can accurately interpret sensor data and perform logical operations. The programming also includes setting thresholds for the ultrasonic sensor to categorize water levels into safe, warning, and danger zones. Simultaneously, the tipping rain gauge's software calculates the total rainfall by counting bucket tips and resets the data every 24 hours for accuracy. In addition, ESP32-CAM also works to broadcast live videos by using a web server to display the video. The system undergoes iterative testing in real-world conditions to ensure its reliability. Calibration is performed to fine-tune sensor readings, and troubleshooting addresses any discrepancies in data transmission or alert mechanisms. This comprehensive methodology ensures the smart flood alarm system is robust, efficient, and capable of delivering accurate early warnings

3.2 Flowchart for Project Development

The flowchart focuses on the sequential phases of project development, starting with the selection and interfacing of the water level sensor, magnetic sensor and the interfacing of the NodeMCU for data collection and programming for the acquisition of the data required.

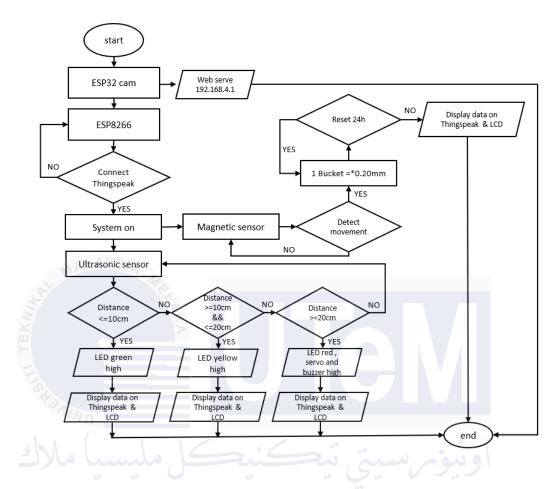


Figure 3.1Flowchart for Smart Flood Alarm System

Based on figure 3.1 explains how the smart flood alarm system project works. ESP32 Cam is used to make real-time monitoring which is accessed via a web server with IP address 192.168.4.1. ESP8266 sends data to ThingSpeak. If ESP8266 cannot connect to ThingSpeak, the process will return to the beginning. If ESP8266 can connect to ThingSpeak, the system will start operating. There are two sensors used, the first is an ultrasonic sensor, measuring the distance and responding to the set distance. If the distance is less than 10cm, the green LED will light up and the data will be sent to ThingSpeak and displayed on the LCD. If the distance is more than 10cm and less than 20cm, the yellow LED will light up and the data will be sent to ThingSpeak and displayed on the LCD. If the distance is more than 20cm, the

red LED will light up, the buzzer will sound, in addition, the servo motor will move 180 degrees, and the data will be sent to ThingSpeak and displayed on the LCD.

The second sensor is a magnetic sensor, the magnetic sensor will detect when it detects the movement of the magnetic field found on the bucket tipping rain gauge. If it detects a magnetic field, it will be calculated by multiplying by 0.2mm. If it does not detect a magnetic field, no multiplication process will occur. Data will be recorded and read for up to 24 hours. If 24 hours are not enough, data will be taken continuously. If it has reached 24 hours, the data will be reset to 0mm and the data will be sent to ThingSpeak and displayed on the LCD.

3.3 Block Diagram for Project Development

Figure 3.2 shows the block diagram of the development of an IoT-based smart flood alarm system using NodeMCU ESP12-E. On the input side, two sensors are used which are Ultrasonic Sensor and Hall Effect Magnetic Detector Sensor. Where the function of ultrasonic is to measure the flood water level. Sensor and Hall Effect Magnetic Detector Sensor are for detecting magnetic fields, where the magnetic will be installed in the rain gauge to calculate how often the rain gauge moves.

The second part is the process. NodeMCU ESP12-E is used as a microcontroller. The data from the sensor will then be processed on the microcontroller. The microcontroller processes the sensor data to determine whether a flood condition exists and calculates the average rainfall. Controls device output (LED, Buzzer, LCD I2C) based on processed data. Send data to the ThingSpeak platform for remote monitoring and logging. On the output side, there are four outputs namely LED, Buzzer, LCD I2C, and ThingSpeak. Based on the processed data, the NodeMCU activates the LED and Buzzer for local alerts. The LCD I2C

displays the current water level and status. Simultaneously, NodeMCU sends the data to the ThingSpeak platform for remote monitoring

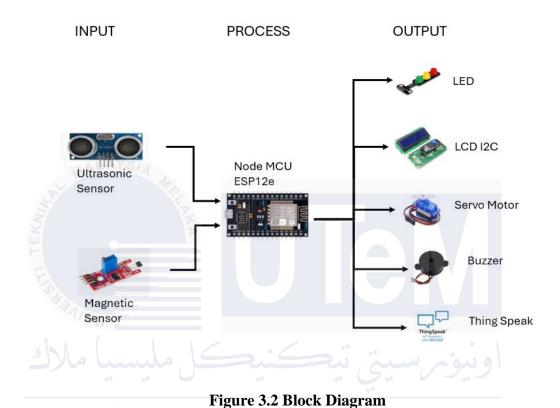


Figure 3.2 shows the block diagram provides a clear overview of the components and their interactions in the development of an IoT-based smart flood alarm system project, showcasing how the system works from data acquisition to alerting and remote monitoring.

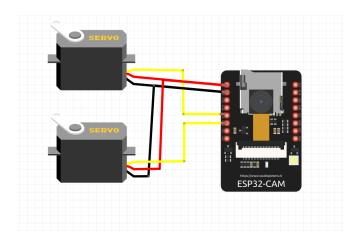


Figure 3.3 Connection ESP32-CAM

Figure 3.3 shows the ESP32-CAM connected to two servo motors configured for pan-tilt motion, enabling the camera module to move. Servo Motor 1 controls horizontal movement (pan), allowing the camera to rotate left and right, while Servo Motor 2 controls vertical movement (tilt), enabling the camera to move up and down. This setup provides full flexibility for the ESP32-CAM to monitor its surroundings. In a water level monitoring project, the ESP32-CAM streams video or captures images via a web server, allowing remote monitoring through a web browser. The servos are controlled using PWM signals programmed on the ESP32-CAM, enabling the camera's angle to be adjusted for specific areas based on user commands or automated settings.

3.4 Project Hardware Selection

The items used to complete this smart flood alarm system project are as shown in the following table.

Table 3.1 List of Component

No	Component	Price	Quantity	Total
1	NodeMCU ESP8266 ESP12-E	RM19.90	1	RM19.90
2	Ultrasonic Sensor	RM4.40	1	RM4.40
3	LED (Traffic Light LED Module)	RM2.50	1	RM2.50
4	Active Buzzer 5v	RM2.00	2	RM4.00
5	KY-024 hall magnetic sensor	RM4.50	1	RM4.50
6	LCD I2C 16x2	RM8.50	اوييز	RM8.50
7 — U	Cable Jumper (M-M, F-F, M-F)	RM5.00	3 AKA	RM15.00
8	Servo motor sg90	RM6.40	3	RM19.20
9	voltage regulator	RM14.50	2	RM29.00
10	Lithium battery 3.7v	RM10.00	3	RM30.00
11	Battery holder	RM3.00	1	RM3.00
12	ESP32 CAM	RM25.00	1	RM25.00
13	Acrylic Perspex	RM30.00	1	RM30.00
14	Tipping Rain Gauge	RM70.00	1	RM70.00
	TOTAL	<u>l</u>	I	RM265.00

3.4.1 NodeMCU ESP8266 ESP12-E

In the project, the development of an IoT-based smart flood alarm system by using NodeMCU ESP8266 ESP12-E. NodeMCU ESP8266 ESP12-E is an open-source firmware and development kit based on the ESP-12E module, which is an ESP8266-based Wi-Fi module. NodeMCU V3 is closely related to the ESP8266 ESP-12E module, as it forms the basis for the wireless communication features of the NodeMCU development board. The ESP-12E module is a Wi-Fi SoC variant of the ESP8266, which is the core component of the NodeMCU board. It enables rapid prototyping of IoT products using the Arduino IDE. The board has multiple GPIO pins that support various communication protocols such as PWM, I2C, SPI, and UART.NodeMCU V3 is suitable for Wi-Fi applications and can be programmed using Arduino IDE software [30].

NodeMCU ESP8266 ESP-12E has advantages and disadvantages compared to various other platforms. To choose a suitable microcontroller for IoT projects, consider factors such as built-in Wi-Fi, processing speed (ESP32 has 240MHz), memory and storage options (ESP8266 and WeMos D1 R1 offer enough), and PIO and peripheral support (ARM mbed NXP LPC1768 provides broad continuous support).

Table 3.2 Comparison of micro controller

Type	Specifications		
	Wi-Fi Connectivity	Processing	Memory, Storage & Pin
		Power	
ESP32	Integrated Wi-Fi and	Dual core, up to	Up to 16 MB Flash, 520 KB
	Bluetooth	240 MHz	SRAM
Arduino Uno	No Wi-Fi	16 MHz, 8-bit	32 KB Flash, 2 KB SRAM, 1
			KB EEPROM

ESP01	Integrated Wi-Fi	80 MHz, single	1 MB Flash, 50 KB SRAM
		core	
Arduino Nano	No Wi-Fi	16 MHz, 8-bit	32 KB Flash, 2 KB SRAM, 1
			KB EEPROM

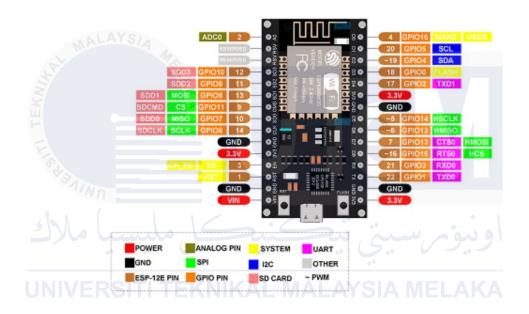


Figure 3.4 NodeMCU ESP8266 ESP12-E

Figure 3.4 shows NodeMCU ESP8266 ESP12. NodeMCU ESP8266 ESP-12E is version 3 NodeMCU based on the ESP-12E module, which is an ESP8266-based Wi-Fi module. The pinout of the NodeMCU board is displayed in the table below. If based on the original NodeMCU Devkit design, a typical NodeMCU board has 30 pins. Eight of the pins are needed for power, with two remaining. The remaining 20 pins link to the ESP-12E Module's pins.

The ESP8266 ESP12E type microcontroller was chosen for an IoT-based smart flood alarm system project due to its Wi-Fi connectivity and minimal pin usage of 10 I/O pins, making it the most suitable and affordable choice for this project.

3.4.2 Ultrasonic Sensor

An ultrasonic sensor is a device that uses ultrasonic sound waves to measure the distance between the sensor and the object. It emits sound waves that bounce back when it hits an object. The time taken by the wave to return is measured and converted to distance. This sensor is used in robotics, automation, and parking aids. There are several types of ultrasonic in the market and each ultrasonic has its advantages and disadvantages.

Table 3.3 Comparison of ultrasonic sensor

Type	Specifications			
	Detection Range	Accuracy	Price	
HC-SR04	2cm-400cm	± 3 mm.	Cheap	
MaxBotixLV-	0cm-645cm	± 1 cm.	Expensive	
MaxSonar-EZ	نيكل مل	سيني نيڪ	اونيوس	
ParallaxPing	2cm-300cm	±3 mm.	Normal	

Ultrasonic sensor which is very used for measuring distance and HC-SR04 is utterly a sensor that recklessly uses an ultrasonic wave. For instance, people use it in robotics to control the motion of the robots as well as their avoidance system, tallying items and measuring the distance between objects. I will begin by outlining what is not, briefly defining it, and speaking of its main characteristics and applications. So, the HC-SR04 has a transmission and receiving element and it transmits an ultrasound wave and then measures the time duration taken to get the reflected wave back from the object. Adding the time taken by the echo and then multiplying it by the speed of sound and then the resultant distance of the object is obtained. [31].

Minimum range HC-SR04 sensor, which is also called distance measurement, means the minimum distance at which the sensor can minimize. This distance is normally of the order of 2cm. However, if the two objects are nearer each other than this distance, the sensor cannot discern between the two due to its extremely poor resolution in the short range. Thus, for the measurements to be accurate it is necessary to place the object at least 2 cm away from the Light Sensor.

On the other hand, the maximum range refers to the distance up to which the given sensor can detect an object with the maximal desirable distance. Based on the configuration of the HC-SR04 sensor the maximum range is only up to 400cm. Objects beyond this distance might go unnoticed because the reflected signal from the target can no longer be sensed due to the thresholds of the sensor. Therefore, this specific kind of sensor should be used where the range of measurements in centimeters is between 2 cm and 400 cm. To populate range, it is the time that elapses between the moment of sending a signal and the moment of receiving the echo signal. This formula is used near the determination of the distances through the ultrasonic waves, distances measured in centimeters CM are obtained from the microseconds (µs) travel time of the ultrasonic signal.

$$centimenter = uS / 58$$

The formula below is used to calculate the distance based on the travel time of the ultrasonic signal and the speed of sound. Where, distance is the measured distance, in meters (m) or centimeters (cm) depending on the unit used for the speed of sound. Duration is the travel time of the ultrasonic signal, usually measured in seconds (s) or microseconds (μ s). The speed of sound is the speed of sound in air, about 340 meters per second (m/s) or 0.0343 centimeters per microsecond (cm/ μ s).

$$Distance = \frac{\left(duration * speed of sound(340ms^{-1})\right)}{2}$$

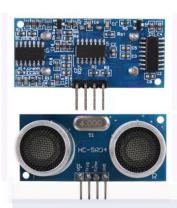


Figure 3.5 Ultrasonic Sensor HC-SR04 [32].

Figure 3.5 shows an ultrasonic sensor HC-SR04 which has 4 pins. Vcc, Trig, Echo, and GND. Input the trigger to the module. The sensor requires a 10 µs pulse on the Trig pin to start a measurement. This pulse informs the sensor to begin the distance-measuring procedure. The Echo pulse output to the user timing circuit. When ultrasonic waves strike an item and bounce back, the sensor's Echo pin turns high (emits a pulse). The duration of this strong signal is proportional to the time it takes for the waves to reach the item and return.

Figure 3.6 shows the ultrasonic sensor working. The Trig Pin is used as a signal transmitted to the object in front and the signal will be reflected and received by the Echo Pin. For this project, the Ultrasonic sensor measures the water level 3 distances. 400cm and above is a safe distance. 300cm to 400cm is a warning. 300cm below is a dangerous distance.

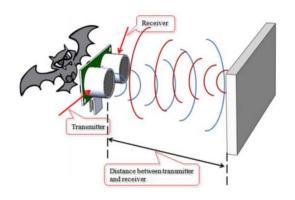


Figure 3.6 Ultrasonic Works [31].

The ultrasonic HC-SR04 was chosen for this project for several good reasons. First, it is the right choice because of its ability to measure distances, especially in the context of measuring water levels that require high accuracy. The project required accurate distance measurements for three categories of water levels: normal, precautionary, and dangerous. The HC-SR04 can measure distances with satisfactory accuracy, allowing accurate categorization for each water condition.

The HC-SR04 sensor is an economical choice for this project due to its reasonable price, offering high performance and value, ensuring efficient execution without compromising budget, making it an ideal choice.

3.4.3 LED (Traffic Light LED Module)

Light Light-emitting diodes (LEDs) are semiconductor devices that emit light when an electric current passes through them. Their primary function is to provide visual indicators, signaling the operational status of electronic devices [33]. There are many types of LEDs sold in the market, but not all LEDs can be used in a project. Table 3.4 shows the comparison of LED.

Table 3.4 Comparison of LED

Type	Specifications		
	Light Intensity	Shape	Price
Through-Hole	Relatively low,	consists of 1 LED	Cheap
LED	used for indication	and does not have	
سيا مارك		a resistor	اويور
Traffic Light LED	Very tall, designed	consists of 3 LEDs	Expensive
Module	for long-range	and has a resistor	
	visibility		

The mini traffic light display module, with high brightness, is very suitable to produce traffic light system models. It stands out for its small size, simple wiring, and easy custom installation. Unlike Through-Hole LEDs, which are also small but used individually in basic electronics projects, mini traffic light modules combine several LEDs in one unit for more focused applications such as traffic light system simulations. Through-hole LEDs usually require more complicated wiring and installation, while these modules offer a more integrated and easy-to-use solution for specific purposes.

Figure 3.7 LED Traffic Light [34].

Figure 3.7 shows 4 pins. Pin R for LED Red, Pin Y for LED Yellow, Pin G for LED Green, and the last Pin is for GND. For this project, the traffic light module is used to give signals to users related to the increase in water level. When the water level is more than 400 cm, the green light will light up, while when the distance is 300 cm to 400 cm, the yellow LED light will light up, and when the distance is less than 300 cm red LED light will light up.

The IoT-based smart flood alarm system project utilizes an LED traffic light type due to its compact, integrated design, small size, easy wiring, and current-limiting resistor, making it a suitable choice for the project.

3.4.4 Buzzer

A buzzer is a simple but effective component for adding sound elements to a project/system. The tiny and compact 2-pin construction allows for easy usage on breadboards, Perf Boards, and PCBs. This makes it a commonly utilized component in most electrical applications. Buzzers are often classified into two sorts. A basic buzzer emits a continuous beep sound when energized, whereas a premade buzzer is larger and produces a beep. Beep [35]. There are many types of buzzers with different sizes and different sound levels. Table 3.5 shows the comparison of the buzzer.

Table 3.5 Comparison of Buzzer

Type	Specifications				
	Sound Frequency	Operating Voltage	Sound Level		
Buzzer5v (Active/	2kHz	5V	85dB 10cm		
Passive)					
SFM-20B(Active)	2kHz (±500Hz)	1.5V-3.6V	80dB 3V, 10cm		
SFB-55(Active)	2.3kHz (±300Hz)	3V-24V	95dB 12V, 30cm		

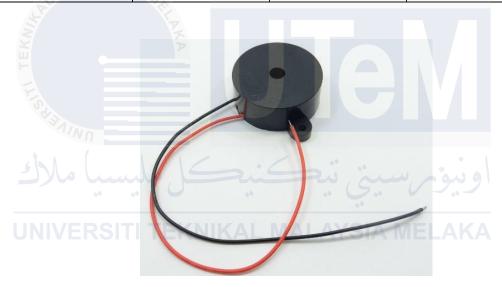


Figure 3.8 Buzzer 5v

The buzzer 5v was chosen for the IoT-based smart flood alarm system project compatibility with microcontroller logic voltages. Most microcontrollers (ESP8266, Arduino, etc.) operate on 5V or 3.3V logic voltages. 5V buzzers are easy to integrate as they are compatible with 5V-based systems without the need for additional circuitry such as voltage regulators.

3.4.5 Hall Magnetic Sensor

A Hall Magnetic Sensor is a device that detects magnetic fields. It consists of a Hall plate that releases electrons when exposed to a magnetic field. These electrons produce a voltage that is measured by the sensor. When the magnetic field changes, the direction of electron flow changes, causing a change in the detected voltage. This allows the sensor to detect changes in the magnetic field and produce an appropriate output signal. With that, Hall Magnetic Sensors are used in various applications such as position recognition, current measurement, and rotation detectors. There are various types of hall magnetic sensors that have different specifications. Table 3.6 shows the comparison of the hall magnetic sensor.

Table 3.6 Comparison of Hall Magnetic Sensor

Type	Specifications				
سيا ملاك	Output signal	Operating Voltage	Sensitivity		
KY-003	Signal digital	3.3V -5V	Low		
KY-035 / = RS	Signal analog	3.3V-5V	Low		
KY-024	Signal analog	3.3V-5V	High		

KY-003 (Digital Hall Magnetic Sensor): Generates easy-to-interpret digital signals, ideal for fast detection in applications requiring a lightning response. Installation is simple and suitable for beginners or simple projects.KY-035 (Analog Hall Magnetic Sensor): Provides continuous magnetic field readings, suitable for applications that require continuous monitoring with high accuracy [36]. Flexible in use and commonly used in various projects.KY-024 (Analog Hall Magnetic Sensor): Very sensitive to current changes, suitable for high-precision AC or DC current measurements. Capable of producing stable

analog output, providing high reading accuracy in applications that require precise current monitoring.

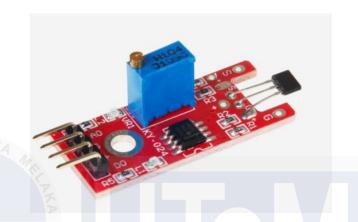


Figure 3.9 KY-024 Hall Magnetic Sensor [36].

Figure 3.9 shows the KY-024 hall magnetic sensor. This sensor is very important in the project development of an IoT-based smart flood alarm system because this sensor is used to calculate the amount of tipping rain gauge moves. This sensor will be installed on the outside of the tipping rain gauge and the magnetic field will be installed on the inside of the tipping rain gauge. The middle part moves when water passes through, and the sensor will detect the movement.

The Hall Magnetic Sensor KY-02 was chosen for an IoT-based smart flood alarm system project due to its stable analog output, easy integration with IoT platforms, low power consumption, high sensitivity to magnetic field changes, compact design, and quick response to flooding situations. This sensor enhances the system's reliability, performance, and effectiveness, supporting safety and risk mitigation in flood management.

3.4.6 LCD I2C

LCD 16x2 is a popular character display module that can display text and symbols in a format of 16 characters per line and two lines simultaneously. This module uses liquid crystal display (LCD) technology to display information and is usually used in electronic projects to display data such as text messages, temperature, time, and other information. 16x2 LCDs usually require a few pins to connect to a microcontroller or other operating system, and their setup and use require appropriate programming. There are several LCDs that are of different sizes and different installations. Table 3.7 shows the difference between LCDs that have I2C and those that do not have I2C.

Table 3.7 Comparison of LCD

Type	Specifications					
سيا ملاك	Number of Cables	Operating Voltage	Price			
LCD 16x2	16 cables (8 for data,	5V ** •	Cheap			
UNIVERSITI	3 for control, 5V and	ALAYSIA MEI	_AKA			
	GND).					
LCD I2C 16x2	4 cables (VCC,	5V	Expensive			
	GND, SDA, SCL)					
	for I2C connection.					

I2C (Inter-Integrated Circuit) LCD screens are liquid crystal displays that interface with microcontrollers or other processing units using the I2C protocol. A 16x2 LCD display with an I2C interface enables simple connection and communication with microcontrollers, decreasing the number of pins needed. This I2C Serial LCD module simplifies circuit

connections, saves I/O pins on the Arduino board, and facilitates firmware development with the widely available Arduino library [37].

Figure 3.10 shows the LCD I2C. This type of LCD is very important in the development of an IoT-based smart flood alarm system project because this LCD is used to display the current water level and average rainfall. This LCD will display the water level distance read by the sensor. The water level distance will be displayed in cm units.

An LCD with an I2C interface has several advantages over a normal LCD that uses a parallel (parallel) interface. Here are some of the main advantages, among them is the reduction of Pins used. LCD I2C only needs 2 pins (SDA and SCL) for data and clock communication. The IoT-based smart flood alarm project utilized an I2C LCD for its ease of use, design cleanliness, and flexibility, compared to a normal LCD that requires 6-10 pins for control.

3.4.7 Tipping Rain Gauge

A tipping-type rain gauge is a device that measures the quantity of rain that falls. This contraption works by channeling rainwater via a funnel into a tiny seesaw-shaped container with two buckets on either side. When one of the buckets reaches a specific level, it will fill with water, releasing the stored water and repositioning the other bucket to collect additional rainfall. Each time the bucket is tilted, it is tallied, and the total number of tilts represents the total rainfall [8]. Figure 3.11 shows the parts of the tipping rain gauge.

Figure 3.11 Part of The Tipping Rain Gauge [8].

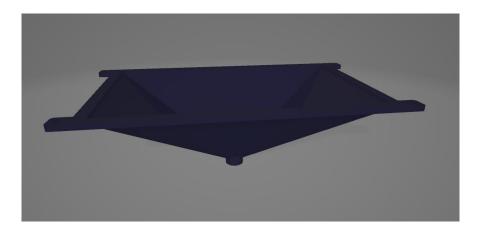


Figure 3.12 The Top of The Tipping Rain Gauge [8].

Figure 3.12 shows the top part of the tipping rain gauge. On the top part, there are two main functions, namely the funnel part. The function of the funnel is to direct rainwater to the tilted bucket mechanism. The second is the cover. The function of the cover is to protect the components from dirt.

Figure 3.13 The Middle Part of The Tipping Rain Gauge [8].

Figure 3.13 shows the center section for the tipping rain gauge which is divided into three. The first bucket is tipping. Once the bucket collects enough water (usually 0.2 mm to 0.5 mm of rainfall, it tips, dumping the water and positioning the other bucket under the funnel. The second one is counting. Each tip is counted by a mechanical counter or a magnetic reed switch and electronic counter. The third is a shaft mechanism, allowing the bucket to tilt and return to its initial position.

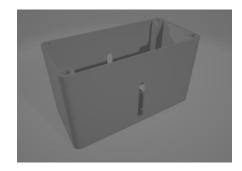


Figure 3.14 The Bottom of The Tipping Rain Gauge [8].

Figure 3.14 shows the bottom part of the tipping rain gauge, the main function of this part is as a part to combine the 2 parts earlier. To calculate the amount of rainwater, use the formula. To get the most accurate measurement possible, count the 100milliliters needed to move the centerpiece 22 times. By averaging, it got 4.5 milliliters per displacement. After that, it is necessary to calculate the surface area on the top of the tipping rain gauge by using the formula of a rectangle.

$$Area = lenght * width$$

After calculating the volume. By using the formula below the average rainfall will be able to be calculated.

$$Average\ rainfall = \frac{total\ tipping\ x\ sensitivity}{area}$$

- Total Tipping is the number of times it rains on the gauge.
- Sensitivity (S) is the amount of rain (usually in mm) required to make the gauge
 "tipping" or moving.
- Catchment Area (A) is the surface area of the measuring device that catches rain (usually in cm² or m²).

3.4.8 Servo Motor

Servo motors are precise actuators that regulate position, speed, and torque in a range of applications. A servo's essential components are a DC or AC motor, a control circuit, and a feedback mechanism, such as a potentiometer. There are several types of servo motors on the market.

Table 3.8 Comparison of Servo

Type of servo	Voltage	Angle	Function	Price
SG90	4.8v-6v	0° - 180°	lifting light	Low
			objects	
MG996R	4.8v-7.2v	0° - 180°	lifting	Medium
			medium-	expensive
MALA	YSIA		heavy objects	
DS3218	4.8v-6.8v	0° - 270°	lifting heavy	Expensive
TEKN	Š		objects	

Figure 3.15 Servo Motor SG90

In this project I chose a servo as in figure 3.15, which is a sg90 servo motor because for this project the things that need to be moved using this servo are a buzzer and an ESP32 cam, each weighing less than 10g. So, this servo is very suitable for this project.

3.4.9 Voltage Regulator

A voltage regulator is an electronic component that keeps the electrical voltage constant despite changes in the load or power source. It guarantees that electrical equipment receives the necessary and safe voltage to perform correctly, whether fixed (linear) or variable (switching).

Table 3.9 Comparison of Voltage Regulator

Type	Voltage	Efficiency	Lcd
LM2596	4v-40v	High	Yes
LM7805	7v-35v	Low	No
AMS1117	6v-15v	Low	No

Figure 3.16 Voltage Regulator LM2596

Table 3.9 shows the difference in types of voltage regulators. For this smart flood alarm system project, a voltage regulator like Figure 3.16 uses an LM2596 voltage regulator because this voltage regulator has many advantages compared to other voltage regulators, including the LM2596 has an LCD to display the input and output voltage coming out of the battery. In addition, the LM2596 can lower the voltage that is compatible with the ESP8266, which is 5v.

3.4.10 ESP32 CAM

ESP32-CAM is a microcontroller module that includes an ESP32 microprocessor and an OV2640 camera. It is compatible with Wi-Fi and Bluetooth, making it ideal for surveillance, facial recognition, and video streaming applications.

This ESP32 CAM was chosen for this project because this ESP32CAM can monitor via the cam directly which is connected to the web server.

3.4.11 Acrylic Perspex

Acrylic's strength, adaptability, and beautiful look make it suitable for a variety of applications, including signs, displays, windows, and protective coverings. It is readily cut, mounded, and shaped, making it a popular choice for both commercial and DIY applications.

Table 3.10 Comparison of Material

Type	Material	Formability	Durability
Acrylic	Transparent,	Easy to shape, cut,	Very durable
(Perspex)	strong plastic	bend, and engrave.	
	material.		

Wooden	Made from	It can be cut, but	Durable but can be
Board	wood.	harder to shape	affected by moisture
		precisely.	and weather.
Cardboard	Laminated	It is easy to cut and	Less durable,
	paper or	fold but lacks	
	lightweight	durability.	
MALAYSI	board.		

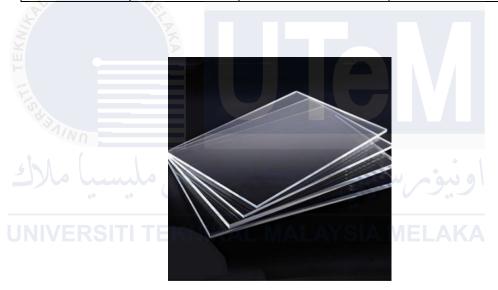


Figure 3.18Acrylic Perspex

There are 3 materials chosen to make the prototype for this smart flood alarm system project. The differences in terms of material, formability and durability found in table 3.10 have shown that acrylic Perspex material as in figure 3.18 is the most suitable material to use for making prototypes because it is easy to shape and durable.

3.4.12 Lithium Battery 3.7v

Batteries are the most important energy source in this project because with the right energy source, data can be sent accurately and correctly. There are several types of batteries available on the market, including lithium batteries, AA batteries, AAA batteries and others. Table 3.11 below shows several types of batteries with their actual differences.

Table 3.11 Comparison of Batteries

Type	Voltage	Capacity	Chemistry
Lithium Battery	3.7V	3500mAh	Lithium-ion
AA Battery	1.5V	1800mAh	Alkaline
AAA Battery	1.5V	1000mAh	Alkaline

Figure 3.19 Lithium Battery

Based on the differences in table 3.11. Lithium Battery is the most suitable battery for this project because of its large voltage and capacity, suitable for controlling microcontrollers and other inputs and outputs. When the voltage is high, it can be reduced using a voltage regulator. In addition, the battery can also be recharged using charging.

3.5 Project Software Selection

In the development of an IoT-based smart flood alarm system using the NodeMCU ESP8266 ESP-12E, selecting the appropriate software tools is crucial for efficient project development and implementation. This section will outline the software tools and platforms chosen for this project, along with the rationale behind their selection.

3.5.1 Arduino IDE

Arduino IDE is one of the most crucial tools to write and send code to Arduino microcontroller boards and other connected peripherals or modules such as NodeMCU ESP8266 ESP 12E. This is where programming software for microcontrollers, which will foster the coupling of circuit design and embedded codes come into play; programming, compiling, and uploading sets of instructions to these microcontrollers is made easy to make [38]. The Arduino IDE is software for creating a basic platform for users where basic tools are also provided for them along with other additional tools feasible for the experts. It can accommodate a large and different sized group of microcontrollers with a variety of Arduino boards and similar devices like ESP8266 used.

Figure 3.20 Arduino IDE [38].

Figure 3.20 shows the Application of Arduino IDE. On the nature and benefits side of things, the first benefit of Arduino IDE is that it is friendly and the fact that Arduino IDE is friendly is good for beginners. A large Community Base means that there are extensive communities that support it, this can come in the form of many tutorials, forums, and resources for the large community of users of various software. Scalability and Swiss army knife: designed to accommodate almost any microcontroller while being supported by a wide library. Arduino's integrated development environment is a crucial factor in the usage of an IoT-based smart Flood Alarm System by NodeMCU ESP8266 ESP-12E and other microcontrollers. Furthermore, the availability of many users in the community and different guides and tutorials make it suitable for both beginners and advanced users within IoT and embedded system programming domains because of its simplicity and functionality.

3.5.2 ThingSpeak

ThingSpeak is an IoT platform that enables the user in a certain way to view real-time data concerning ThingSpeak or call an app based on the rules as such that ThingSpeak attains. This is because LoRa improves IoT applications from the instruments, which, earlier, receive data from the integrated sensors or, which received data also, and to apologize for the assembly data in addition to recognizing the received data. [39]. This should also be about explaining and further extend this ThingSpeak yet proceed to demonstrate how this is done also in this too as well as show how this ThingSpeak can integrate with NodeMCU ESP8266 Smart Flood Alarm System. This is well suitable in IoT activities particularly for the schools, those who are somewhat interested in IoT, and the small-minded petty businesses in IoT since it is incredibly easy to run as seen above coupled with power as pointed above. Another product which was created under MathWorks was considered in the

same way as the announcement to develop and release this product and MATLAB to support the compatibility of Analytical and Visualization toolbox.

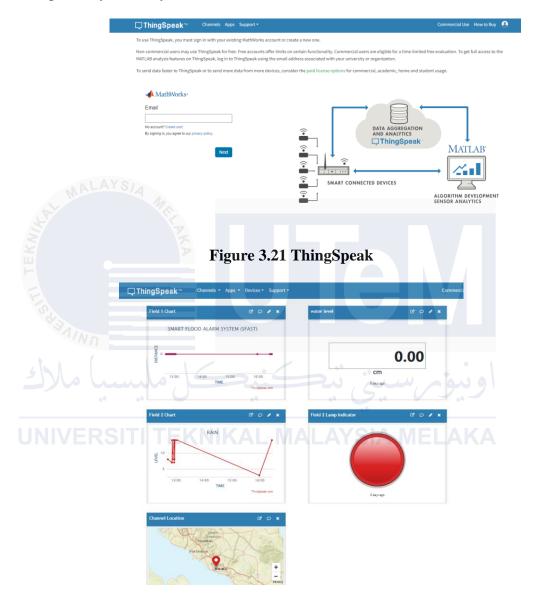


Figure 3.22 Function of ThingSpeak

Figure 3.22 shows the display for the project development of an IoT-based smart flood alarm system by using NodeMCU Esp8266 Esp12-E. Where the display will produce a graph of the water level and real time. Then the water level will be updated every 15 seconds. The second display is always showing the water level. The third display is the average rainfall that is calculated and converted into a graph and the data will be saved. The

fourth display is a lamp indicator intended to show a warning when the water level is at a dangerous level. The fifth display is the location. The location where this project is installed, with this location it will be easier to monitor.

3.5.3 Web Server

The web server is used for the ESP32 CAM to access the camera through the web server. Live view can be seen through the web server and then the servo motor to move the camera can also be moved using the web server. Figure 3.23 shows the web server that is

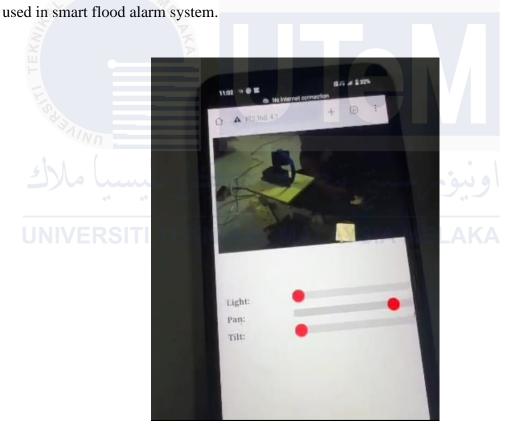


Figure 3.23 Web Server

3.5.4 Fritzing

Fritzing is a valuable tool for designing a Smart Flood Alarm System that utilizes components like the ESP12E, ultrasonic sensor, magnetic hall sensor, servo motor, buzzer, LED, and LCD. It allows developers to create a clear and efficient prototype of the circuit. Fritzing provides an intuitive platform for visualizing, designing, and documenting the circuit, making the development of this flood alarm system more streamlined and error-free.

Figure 3.24 Fritzing

CHAPTER 4

4.1 Introduction

In this chapter, we will present the results of the development and testing of an IoT-based smart flood alarm system using NodeMCU ESP8266 ESP12-E. The results are analyzed to evaluate system performance, reliability and effectiveness in detecting flood conditions. Upon the conclusion of the project, it underwent testing. Successful achievement was noted in the wireless communication and transmission of data between NodeMCU ESP12e, Ultrasonic sensor, tipping rain gauge. The sensed data were displayed through the ThingSpeak application and concurrently recorded in the database developed within

ThingSpeak application. This prototype underwent testing in distinct locations, and the ensuing results are deliberated upon in the subsequent sections.

4.2 Software Part

The software component of the IoT-based smart flood alarm system is critical to its operation, as it integrates sensor data collecting, processing, and communication with IoT platforms. This section covers the software architecture, development environment, coding, and integration with Wi-Fi and IoT systems.

4.2.1 Coding for ESP12e

The ultrasonic sensor is used to measure the water level distance. For this prototype, the distance used is in cm units. Estimate the depth of the river to be 35cm. If the distance between the river level is 0-10cm, the green LED light will light up to indicate the normal level. If the river level distance is 10-20 cm, the yellow LED will light up to indicate the alert level. If the distance between the river level exceeds 20cm, the red LED light will light up, the buzzer will sound, and the servo motor starts to move 180 degrees. The buzzer and red LED are connected once using pin D8. The river water level will be displayed on the i2C LCD, and the data will be uploaded to ThingSpeak.

To calculate the actual average rainfall, based on a report that has been studied with an area of Malacca measuring 1650 square km. In the Jasin dam area with an average rainfall of 100mm per day, floods can occur. So, for this prototype, the estimated value is as follows which will be explained on the coding, the magnetic sensor will detect the movement of the magnetic field where every time the movement contains rainwater as much as 0.20 mm of water is needed to move the rain gauge. So, every time the movement will be multiplied by 0.20mm. The data will be sent to the ThingSpeak application. The data will be updated every

24 hours, every 24 hours the data will start with 0mm. For this coding every 2 minutes the data will be reset to take new data every 2 minutes. Appendix A coding for first part for measure the water level and average of the rain.

4.2.2 Coding for ESP32-CAM

This code is designed to control an ESP32-CAM module with a Pan-Tilt system using two servo motors for horizontal (pan) and vertical (tilt) movement. It connects the ESP32-CAM to a WiFi network and starts a camera server accessible through a web browser using its IP address. The servo motors are controlled via input from the Serial Monitor using commands like PAN or TILT followed by an angle (0° to 180°). The ESP32-CAM's camera is initialized with specific settings to capture images or stream video. This code is ideal for projects requiring surveillance with dynamic camera angle adjustments. Appendix B coding for second part for esp32-cam.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPENDIX A

```
//IOT
  #include <Wire.h>
  #include <ESP8266WiFi.h>
  #include <ThingSpeak.h>
  // WiFi credentials
  const char *ssid = "Abe_domak21";
  const char *password = "faiz2222";
  // ThingSpeak credentials
  unsigned long channel = 2383083;
  const char *apiKey = "GRVULX5TJQKTSEVF";
  const char *server = "api.thingspeak.com";
  // WiFi client
  WiFiClient client;
  //led
LiquidCrystal_I2C lcd(0x27, 16, 2); // 0x27 adalah alamat I2C standar
  //servo
  #include <Servo.h> // Library Servo
  #define SERVO_PIN D3
  Servo myServo;
  // ULTRA
  #define TRIG_PIN D5 // D5
  #define ECHO_PIN D0 // D6
```

```
// MG
#define RAIN_PIN D4
volatile int rainCount = 0;
unsigned long lastResetTime = 0; // Variabel untuk menyimpan waktu terakhir reset
const unsigned long resetInterval = 120000; // Interval reset dalam milidetik (2 menit)
// LED.
#define LED_GREEN D6
#define LED_YELLOW D7
#define LED_RED D8
void IRAM_ATTR rainInterrupt()
 rainCount++;
void setup()
 // Inisialisasi koneksi WiFi
WiFi.begin(ssid, password);
Serial.print("Connecting to WiFi");
while (WiFi.status() != WL_CONNECTED) {
 delay(10);
 Serial.print(":");
 Serial.println();
Serial.println("WiFi connected");
 // Inisialisasi ThingSpeak
ThingSpeak.begin(client);
```

```
// ULTRA
 pinMode(TRIG_PIN, OUTPUT);
 pinMode(ECHO_PIN, INPUT);
// MG
pinMode(RAIN_PIN, INPUT);
 attachInterrupt(digitalPinToInterrupt(RAIN_PIN), rainInterrupt, FALLING);
 // LED
 pinMode(LED_GREEN, OUTPUT);
 pinMode(LED_YELLOW, OUTPUT);
 pinMode(LED_RED, OUTPUT);
 // Servo
 myServo.attach(SERVO_PIN);
 myServo.write(0); // Posisi awal servo di 0 derajat
FINISIALISASI SeriaLEKNIKAL MALAYSIA MEL
 Serial.begin(115200);
}
void loop()
 // Inisialisasi LCD
 lcd.init();
 lcd.backlight();
 lcd.clear();
// MG
 static int lastRainCount = 0;
 if (millis() - lastResetTime >= resetInterval)
```

```
// Reset rainfall setiap 2 menit
lastResetTime = millis();
rainCount = 0;
Serial.println("Rainfall reset to 0.");
if (rainCount != lastRainCount)
lastRainCount = rainCount;
float rainfall = lastRainCount * 0.7;
Serial.print("Rainfall: ");
Serial.print(rainfall);
Serial.println(" mm/h");
// ULTRA
long duration;
float distance;
digitalWrite(TRIG_PIN, LOW);
delayMicroseconds(2);
digitalWrite(TRIG_PIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIG_PIN, LOW);
duration = pulseIn(ECHO_PIN, HIGH);
// Hitung jarak (kecepatan suara adalah 34300 cm/s)
distance = (duration * 0.0343) / 2;
// Balikkan jarak untuk ditampilkan
float invertedDistance = 35.0 - distance; // Misalkan batas maksimum adalah 20 cm
if (invertedDistance < 0)
```

```
{
          invertedDistance = 0; // Jangan biarkan nilai negatif
         }
         // Tampilkan jarak terbalik di Serial Monitor
         Serial.print("Inverted Distance: ");
         Serial.print(invertedDistance);
         Serial.println(" cm");
         // Menampilkan water level di baris atas LCD
         lcd.setCursor(0, 0); // Baris pertama, kolom pertama
         lcd.print("level: ");
         lcd.print(invertedDistance);
         (cd.setCursor(12, 0); // Baris pertama, kolom pertama
         lcd.print("cm");
         lcd.setCursor(0, 1); // Baris kedua, kolom pertama
UNIV(cd.print("rain: "); EKNIKAL MALAYSIA ME
         lcd.print(rainfall);
         lcd.setCursor(12, 1); // Baris pertama, kolom pertama
         lcd.print("mm/h");
         // Kontrol LED berdasarkan invertedDistance
         if (invertedDistance >= 0 && invertedDistance <= 10)
          digitalWrite(LED_GREEN, HIGH);
          digitalWrite(LED_YELLOW, LOW);
          digitalWrite(LED_RED, LOW);
         else if (invertedDistance > 10 && invertedDistance <= 20)
```

```
digitalWrite(LED_GREEN, LOW);
  digitalWrite(LED_YELLOW, HIGH);
  digitalWrite(LED_RED, LOW);
 }
 else if (invertedDistance > 20 && invertedDistance <= 35)
  digitalWrite(LED_GREEN, LOW);
  digitalWrite(LED_YELLOW, LOW);
  digitalWrite(LED_RED, HIGH);
  // Servo bergerak ke sudut 180 derajat
  for (int angle = 0; angle <= 180; angle += 1) {
   myServo.write(angle); // Servo bergerak dari 0 hingga 180 derajat
   delay(15);
                   // Waktu jeda untuk pergerakan servo
  for (int angle = 180; angle >= 0; angle -= 1)
   myServo.write(angle); // Servo bergerak kembali dari 180 hingga 0 derajat
 {
  // Jika tidak ada dalam rentang, matikan semua LED
  digitalWrite(LED_GREEN, LOW);
  digitalWrite(LED_YELLOW, LOW);
  digitalWrite(LED_RED, LOW);
 }
 int Z = ThingSpeak.writeField(channel, 1, invertedDistance, apiKey); // Mengirim jarak ke field
 int Y = ThingSpeak.writeField(channel, 2, rainfall, apiKey); // Mengirim hitungan magnet ke
field 2
}
```

APPENDIX B

```
#include <WiFi.h>
#include <esp camera.h>
#include <ESP32Servo.h>
#define SERVO_PAN_PIN 14
#define SERVO_TILT_PIN 15
Servo servoPan;
Servo servoTitt;
const char* ssid = "Your_SSID";
const char* password = "Your_PASSWORD";
#define PWDN_GPIO_NUM_-1
#define RESET GPIO NUM -1
#define XCLK_GPIO_NUM_0
#define SIOD_GPIO_NUM 26
#define SICC_GPIO_NUM_27
#define Y9_GPIO_NUM
#define Y8_GPIO_NUM__34
#define Y7_GPIO_NUM 39
#define Y6_GPIO_NUM 36
#define P5 GP10 NUM E2KNIKAL MALAYSIA MELAKA
#define Y4_GPIO_NUM
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 5
#define VSYNC_GPIO_NUM 25
#define HREF_GPIO_NUM 23
#define PCLK_GPIO_NUM 22
void startCameraServer();
void setup(){
 Serial.begin(115200);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
```

```
Serial.print("/");
SeriaLprintln("WiFi connected");
SeriaLprintln(WiFiJlocalIP());
// Setup servo motor
servoPan.attach(SERVO_PAN_PIN);
servoTilt.attach(SERVO_TILT_PIN);
// Tetapkan sudut permulaan
servoPan.write(90);
servoTilt.write(90);
// Setup kamera
camera_config_t config_
config.ledc_channel = LEDC_CHANNEL_0;
config.ledc_timer=LEDC_TIMER_0;
config.pin_d0 = Y2_GP(O_NUM;
config.pin_d1 = Y3_GPIO_NUM;
config.pin_d2 = Y4_GPIO_NUM;
config.pin_d3 = Y5_GPIO_NUM;
config.pin_d4 = Y6_GPIO_NUM;
config.pin_d5 = Y7_GPIO_NUM;
config.pin_d6 = Y8_GPIO_NUM;
config.pin_d7 = Y9_GPIO_NUM;
config.pin_xclk = XCLK_GPIO_NUM;
config.pin_pclk = PCLK_GPIO_NUM;
config.pin_vsync = VSYNC_GPIO_NUM;
config.pin href = HREF GPIO NUM;
config.pin sscb sda = SIOD GPIO NUM;
config.pin_sscb_sct = SIOC_GPIO_NUM;
config.pin_pwdn = PWDN_GPIO_NUM;
config.pin reset = RESET GPIO NUM;
config.xclk_freq_hz = 200000000;
```

```
config.pixel_format = PIXFORMAT_JPEG;
if(psramFound()) {
 config.frame_size = FRAMESIZE_UXGA;
 config.jpeg_quality = 10;
 config.fb_count = 2;
} clse {
 config.frame_size = FRAMESIZE_SVGA;
 config.jpeg_quality = 12;
 config.fb_count = 1;
esp_err_t err = esp_camera_init(&config);
if (err != ESP_OK) {
 Serial.printt("Camera init failed with error 0x%x", err);
 return;
startCameraServet();
SeriaLprintln("Camera Ready! Use 'http://" + WiFi.localIP().toString() + "' to connect");
void toop() {
// Kawatan servo untuk pan-tilit dengan serial input
if (Serial.available() > 0) {
 String command = Serial.readStringUntil("\n");
 if (command.startsWith("PAN")) {
  int angle = command.substring(3).toInt();
  angle = constrain(angle, 0, 180);
  servoPan.write(angle);
  Serial.println("Pan: " + String(angle));
 } else if (command.startsWith("TILT")) {
  int angle = command.substring(4).toInt();
  angle = constrain(angle, 0, 180);
```

```
servoTitt.write(angle);
SerioLprintIn("Titt: " + String(angle));
}

void startCameraServer() {

// Kod pelayan kamera di sini (boleh rujuk tibrary ESP32-CAM)

1
```

4.3 Hardware Part for ESP12e

The hardware component of the IoT-based smart flood alarm system is critical to its functioning since it contains all the physical components that detect water levels and sound alerts. This section describes the hardware architecture, component selection, circuit alerts. This section describes the hardware architecture, component selection, circuit design, and assembly instructions. Figure 4.1 shows the circuit of the project.

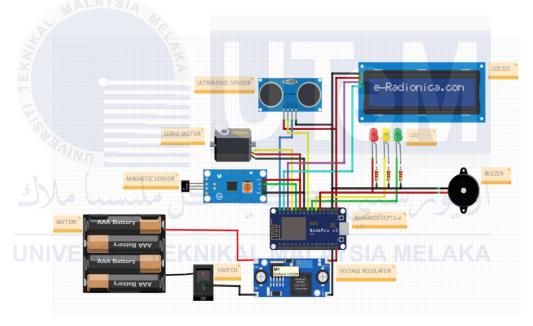


Figure 4.1 Circuit for Smart Flood Alarm System

4.4 Hardware Part for ESP32-CAM

The figure 4.2 shows the ESP32-CAM connected to two servo motors configured for pan-tilt motion, enabling the camera module to move. Servo Motor 1 controls horizontal movement (pan), allowing the camera to rotate left and right, while Servo Motor 2 controls vertical movement (tilt), enabling the camera to move up and down. This setup provides full flexibility for the ESP32-CAM to monitor its surroundings. In a water level monitoring project, the ESP32-CAM streams video or captures images via a web server, allowing remote

monitoring through a web browser. The servos are controlled using PWM signals programmed on the ESP32-CAM, enabling the camera's angle to be adjusted for specific areas based on user commands or automated settings

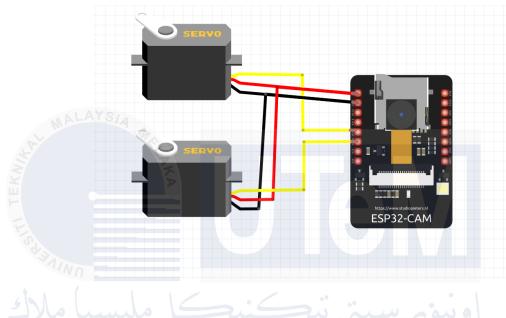


Figure 4.2 Circuit for ESP32-CAM Monitoring

4.5 Result for ESP12e

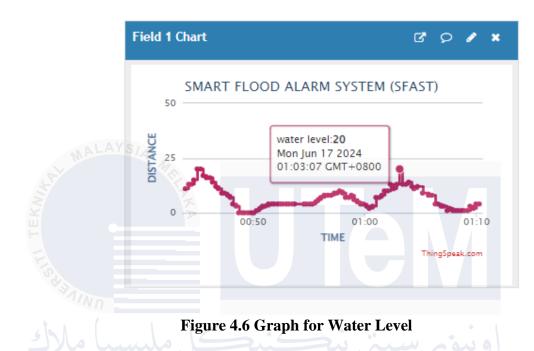
This section describes the results of designing and testing an IoT-based smart flood alarm system with the NodeMCU ESP8266 ESP12-E. The system's functionality, dependability, and efficacy in detecting flood conditions and sending out timely notifications are used to assess the outcomes. The data obtained from the water level sensor, the alarm system's responsiveness, and the interaction with the IoT platform are all covered in depth.

4.5.1 Water Level

When the rainwater level exceeds 30cm, the red LED lights up and will be displayed on the I2C LCD and the same data will be sent to Figure 4.3 below, the estimated depth of the river water level is 30cm. The closer the water level is to the sensor, the greater the displayed value. ThingSpeak takes 15 seconds to read data. All data taken will be 15 seconds late.

Figure 4.3 Result 1 for Water Level

When the rainwater level exceeds 10cm to 20cm, the yellow LED will light up and will be displayed on the I2C LCD and the same data will be sent to Figure 4.4 below, the estimated depth of the river water level is 14cm. The closer the water level is to the sensor, the greater the displayed value. ThingSpeak takes 15 seconds to read the data.


Figure 4.4 Result 2 for Water Level

When the rainwater level is less than 10cm, the green LED will light up and will be displayed on the I2C LCD and the same data will be sent to Figure 4.5 below, the estimated depth of the river water level is 0cm. The closer the water level is to the sensor, the greater the displayed value. ThingSpeak takes 15 seconds to read the data.

Figure 4.5 Result 3 for Water Level

The graph below shows the height of the water level read by the sensor and then sent directly to ThingSpeak. Each point on the graph takes 15 seconds for ThingSpeak to update the data.

4.5.2 Average of rain

Figure 4.7 shows the average rainfall data taken. For this prototype, the LED indicator used in this part is not coded with ESP, but in ThingSpeak it is possible to set a value for the LED to light up. As in the picture below. When the average rainfall reading is 0mm to 1mm, the green LED will light up to indicate a drizzle is taking place.

Figure 4.7 Result 1 for Rainfall

Figure 4.8 shows the average rainfall data taken. When the average rainfall reading is 1mm to 2mm, the yellow LED will light up to indicate moderate rainfall is occurring.

Figure 4.8 Result 2 for Rainfall

Figure 4.9 shows the average rainfall data taken. When the average rainfall reading exceeds 2mm, the red LED will light up to indicate heavy rain is occurring.

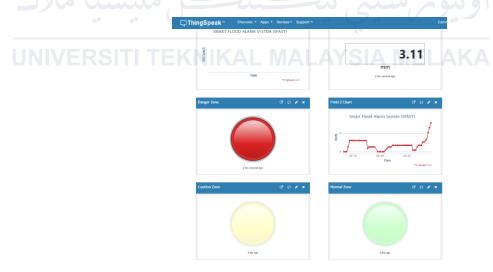
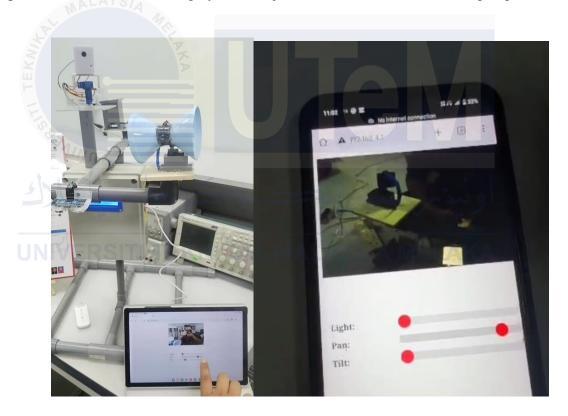



Figure 4.9 Result 3 for Rainfall

4.6 Result for ESP32-CAM

The figure 4.10 shows a user interface on a mobile browser connected to an ESP32-CAM module, displaying a live video feed streamed from the camera via a local WiFi network. Below the video, there are slider controls labeled Light, Pan, and Tilt. The "Light" slider likely adjusts the brightness of an LED connected to the ESP32-CAM, while the "Pan" and "Tilt" sliders control the horizontal and vertical movement of servo motors attached to a pan-tilt mechanism, allowing dynamic adjustment of the camera's viewing angle.

Figure 4.10 ESP32-CAM Monitoring

4.7 Prototype

A prototype is an initial model or trial version of a product, system, or idea developed for testing and evaluation purposes. It is used to identify weaknesses, test functionality, and gather feedback before creating the final, complete version. Prototypes help speed up development and ensure the product meets user requirements. Figure 4.11 shows the prototype for this smart flood alarm system project that uses a PVC box container to place electronic components such as batteries, microcontrollers, voltage regulators and other connections. This PVC box serves to protect the components from being exposed to water that will cause a short circuit.

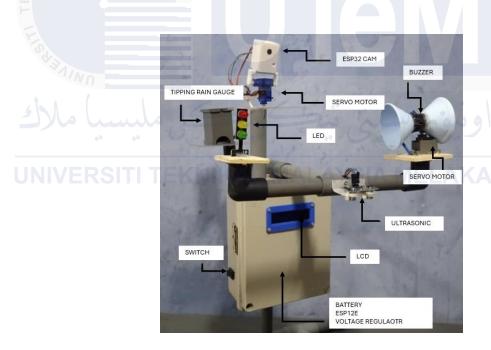


Figure 4.11 Prototype

Based on figure 4.11. ESP32-CAM, a camera module that can capture videos and send data to other devices via Wi-Fi. It's commonly used for surveillance or visual analysis applications. In this project the function is to create a surrounding monitor to see the water level. Tipping rain gauge, a device to measure rainfall. It works by collecting rainwater in a funnel that tips when a certain amount of water is collected, sending a signal to record the

rain measurement. Servo motors are used to move the ESP32 cam and buzzer. The purpose of moving the buzzer using a servo motor is to send a 360-degree sound wave. In addition, the purpose of moving the ESP32 cam is to record live videos more widely. LED lights used as indicators. For example, green for normal status, yellow for warnings, and red for emergencies. Buzzer component that produces sound, typically used for alerts or emergency notifications. Ultrasonic is to measure the distance of the water level that has been set and is divided into three parts, namely normal, warning and danger. The LCD is to display the amount of rain and the amount of water level detected by the sensor. The switch connected from the battery to the voltage regulator is used as an on/off microcontroller.

اونیورسینی تیکنیکل ملیسیا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 5

5.1 Conclusion

The goal of creating an IoT-based smart flood alarm system using NodeMCU ESP8266 ESP-12E is to improve flood monitoring capabilities, deliver timely warnings, and allow for better data visualization and analysis. The system focuses on real-time flood monitoring by continuously measuring water levels and accurately measuring distances using the HC-SR04 ultrasonic sensor. The buzzer provides timely alerts for growing water levels. ThingSpeak IoT data visualization and analysis in the cloud improves the system when integrated with it by combining all data into one location.

1

5.2 Recommendation of the Future

To improve the future IoT based smart flood alarm system. Given the right implementation of the AI and machine learning for analysis, chances of obtaining an actual improved flood warning system based on IoT in the future are possible. With the help of the meteorological data received from other stations, the occurrence of possible flood events can be estimated due to previous records made for the previous floods. Furthermore, it would be beneficial to include more connection points which can possibly employ 5G for better performance regarding sensors and cloud services. Creation of an application for monitoring and control on the portable device will assist users get prompt notification and real time data. Last but not the least, the incorporation of solar-powered sensors, therefore, are as sustainable relevant as they are important when there is a power blackout.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

REFERENCES

- [1] 2022 Jabatan Pengairan dan Saliran Malaysia and Laporan, "Laporan Banjir Tahunan 2011/2012," pp. 1–104, 2012.
- [2] StatsMalaysia, MyCensus(2020), and DOSM, "Dosm: Melaka Negeri Bersejarah," pp. 1–10, 2020.
- [3] B. Terkini, "Hujan cecah 100mm antara punca banjir di Melaka," pp. 1–7, 2023.
- [4] U. Aras and A. Data, "Data Aras Air Sungai," pp. 6-7, 2024.
- [5] D. I. Jawa and D. I. Jawa, "Data Hujan Tahunan," pp. 15–16.
- [6] J. Adi, S. Nordin, M. Mohammad Tahir, S. Azali, H. Diana, and G. Fionna, "Pengaruh monsun terhadap bahaya banjir: kajian kes dataran banjir beaufort, sabah," *J. Kinabalu*, vol. 26, no. 2, pp. 165–182, 2020.
- [7] K. A. Raza and W. Monnet, "Moving objects detection and direction-finding with HC-SR04 ultrasonic linear array," *Proc. 5th Int. Eng. Conf. IEC 2019*, pp. 153–158, 2019, doi: 10.1109/IEC47844.2019.8950639.
- [8] B. G. Aggiustatutto, "DIY Arduino Rain Gauge Introduction: DIY Arduino Rain Gauge Step 1: How It Works," pp. 1–10.
- [9] A. Khan et al., "Flood monitoring and warning system: Het-sens a proposed model,"

- 2020 2nd Int. Conf. Comput. Inf. Sci. ICCIS 2020, no. 4, 2020, doi: 10.1109/ICCIS49240.2020.9257693.
- [10] A. R. Rajput, D. B. Kumbhar, H. J. Joshi, N. M. Dhawale, R. H. Joshi, and S. S. Patil, "Flood Level Control and Management UsingRajput, Aditya R. Kumbhar, Dinesh B. Joshi, Hrushikesh J. Dhawale, Nandkishor M. Joshi, Rewa H. Patil, Shweta S. Instrumentation and Control," 2021 Int. Conf. Comput. Commun. Green Eng. CCGE 2021, pp. 1–5, 2021, doi: 10.1109/CCGE50943.2021.9776471.
- [11] J. Bhuvana and T. P. Siva Shankar, "Early Flood Detection and Environment Monitoring System," *Int. Interdiscip. Humanit. Conf. Sustain. IIHC* 2022 *Proc.*, pp. 1418–1422, 2022, doi: 10.1109/IIHC55949.2022.10060568.
- [12] J. W. Simatupang and T. A. Arrazaq, "Design Implementation of Flood Early Warning System for Residential Monitoring," *Proceeding 2023 Int. Conf. Radar, Antenna, Microwave, Electron. Telecommun. Empower. Glob. Prog. Innov. Electron. Telecommun. Solut. a Sustain. Futur. ICRAMET* 2023, pp. 158–163, 2023, doi: 10.1109/ICRAMET60171.2023.10366589.
- [13] R. M. D. Charaan, J. Shobana, P. Krishnamoorthy, B. A. Princy, R. J. Abinaya, and K. Murugesan, "Enhancement of IoT based Flood Detection and Prevention using Arduino UNO with WiFi Module," 2023 9th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2023, pp. 2290–2294, 2023, doi: 10.1109/ICACCS57279.2023.10112673.
- [14] Z. A. Zainal and F. Ahmad, "Smart Flood Monitoring System via IoT Platform for Early Warning of Road Closures Against Flood Events," vol. 5, no. 1, pp. 389–396, 2024.
- [15] S. Binti Zahir *et al.*, "Smart IoT Flood Monitoring System," *J. Phys. Conf. Ser.*, vol. 1339, no. 1, p. 012043, Dec. 2019, doi: 10.1088/1742-6596/1339/1/012043.
- [16] H. F. A. Sufa, M. I. Yusof, and M. A. A. Sani, "Flood Monitoring and Warning System With Iot," *Mjit*, vol. 3, no. 2, 2019.
- [17] N. A. Z. M. Noar and M. M. Kamal, "The development of smart flood monitoring system using ultrasonic sensor with blynk applications," 2017 IEEE Int. Conf. Smart

- *Instrumentation, Meas. Appl. ICSIMA 2017*, vol. 2017-Novem, no. November, pp. 1–6, 2017, doi: 10.1109/ICSIMA.2017.8312009.
- [18] B. M. Shankar, T. J. John, S. Karthick, B. Pattanaik, M. Pattnaik, and S. Karthikeyan, "Internet of Things based Smart Flood forecasting and Early Warning System," *Proc. 5th Int. Conf. Comput. Methodol. Commun. ICCMC 2021*, no. Iccmc, pp. 443–447, 2021, doi: 10.1109/ICCMC51019.2021.9418331.
- [19] M. E. Deowan, "Smart Early Flood Monitoring System Using IoT".
- [20] M. Karthika, R. Mohan Das, E. J. D'Cunha, A. A. Dar, G. P. Kumar, and A. Kumar, "Solar Fed Flood Alert System Using Arduino," 3rd IEEE Int. Conf. Technol. Eng. Manag. Soc. Impact using Mark. Entrep. Talent. TEMSMET 2023, 2023, doi: 10.1109/TEMSMET56707.2023.10150080.
- [21] T. Opasworakun, "Water Level Monitoring and Flood Alerting by Applying IoT," pp. 11–14, 2024.
- [22] S. A. Ali, F. Ashfaq, E. Nisar, and U. Azmat, "A Prototype for Flood Warning and Management System using Mobile Networks," 2019.
- [23] A. R. Rajput, D. B. Kumbhar, H. J. Joshi, N. M. Dhawale, R. H. Joshi, and S. S. Patil, "Flood Level Control and Management Using Instrumentation and Control," *2021 Int. Conf. Comput. Commun. Green Eng. CCGE 2021*, pp. 1–5, 2021, doi: 10.1109/CCGE50943.2021.9776471.
- [24] M. Ragnoli, V. Stornelli, D. Del Tosto, G. Barile, A. Leoni, and G. Ferri, "Flood monitoring: a LoRa based case-study in the city of L'Aquila," *PRIME 2022 17th Int. Conf. Ph.D Res. Microelectron. Electron. Proc.*, pp. 57–60, 2022, doi: 10.1109/PRIME55000.2022.9816747.
- [25] G. Nitish Satya Sai, K. S. Manikanta, S. G. Arjula, R. Sudheer, B. N. Rao, and S. N. Gamidi, "Flood Prediction System using IoT and LoRa Technologies," 2021 IEEE Bombay Sect. Signat. Conf. IBSSC 2021, 2021, doi: 10.1109/IBSSC53889.2021.9673453.

- [26] R. Ismail, W. S. Suhaili, and R. K. Patchmuthu, "IoT Based Water Quality Monitoring in Relation to Flood and Drought in Brunei Darussalam," 2023 13th Int. Conf. Inf. Technol. Asia, CITA 2023, pp. 54–59, 2023, doi: 10.1109/CITA58204.2023.10262743.
- [27] A. Prafanto and E. Budiman, "A Water Level Detection: IoT Platform Based on Wireless Sensor Network," *Proc. 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018*, pp. 46–49, 2018, doi: 10.1109/EIConCIT.2018.8878559.
- [28] T. M. Thekkil and N. Prabakaran, "Real-time WSN based early flood detection and control monitoring system," 2017 Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2017, vol. 2018-Janua, pp. 1709–1713, 2017, doi: 10.1109/ICICICT1.2017.8342828.
- [29] N. A. Z. M. Noar and M. M. Kamal, "The development of smart flood monitoring system using ultrasonic sensor with blynk applications," 2017 IEEE Int. Conf. Smart Instrumentation, Meas. Appl. ICSIMA 2017, vol. 2017-Novem, no. August, pp. 1–6, 2017, doi: 10.1109/ICSIMA.2017.8312009.
- [30] A. Al Dahoud and M. Fezari, "NodeMCU V3 For Fast IoT Application Development," *Notes*, no. October, p. 5, 2018.
- [31] Handson Technology, "Handson Technology User Guide HC-SR04 Ultrasonic Sensor Module User Guide User Guide: Ultrasonic Sensor V2.0," pp. 1–10, 2024.
- [32] Cytron Technologies Sdn. Bhd., "HCSR04 User's Manual," no. 408, pp. 1–38, 2013.
- [33] Zaini Miftach, "Light Emitting Diode," pp. 53–54, 2018.
- [34] Damascus, "412 ARDUINO LED TRAFFIC LIGHTS MODULE Description: Features:," p. 412.
- [35] "buzzer," p. 2023, 2023.
- [36] F. Sensorkit and X. Wiki, "KY-024 Linear magnetic Hall Sensor Pinout Code example Arduino Code example Raspberry Pi," p. 1397.

- [37] Handson Technology, "I2C Serial Interface 1602 LCD Module," *User Guid.*, pp. 1–8, 2021.
- [38] M. Fezari and A. Al Dahoud, "Integrated Development Environment' IDE' For Arduino," no. October, 2018.
- [39] Hans-Petter Halvorsen, "ThingSpeaks," pp. 1–26, 2017.

APPENDICES

		_							_					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
week														
Task														
BDP Briefing														
Learn how to make a report														
Choose a title and submit a proposal														
Draf and submit a literature review														
Email week logbook at Epsm														
(TASK1)														
Draf and submit Chapter 1 and														
Chapter 2														
Draf and submit Chapter 3														
Draf Chapter 4 and Chapter 5														
Email week logbook at Epsm														
(TASK2)														
Presentation														

week Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Claim form														
Calibration Sensor	K	Δ		M	ΔΙ			S,	Δ	M		ΔK	Δ	
Prototype Project														
Email week logbook at Epsm														
(TASK1)														
Test Project														
Draf and submit Poster														
Update Report														
Email week logbook at Epsm														
(TASK2)														
Presentation														