
REAL-TIME FALL DETECTION FOR ELDERLY

WITH OBSTRUCTIONS CONSIDERATION USING

KINECT

AMIR HAZIM BIN AMIR HUSIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

REAL-TIME FALL DETECTION FOR ELDERLY

WITH OBSTRUCTIONS CONSIDERATION USING

KINECT

AMIR HAZIM BIN AMIR HUSIN

This report is submitted in partial fulfilment of the requirements for

the degree of Bachelor of Electronics Engineering Technology with

Honours

Faculty of Electronics and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2025

Tajuk Projek : Real-Time Fall Detection For Elderly With Obstructions

Consideration Using Kinect

Sesi Pengajian : 2024/2025

Saya AMIR HAZIM BIN AMIR HUSIN mengaku membenarkan laporan Projek Sarjana

Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh : 22 Januari 2025 Tarikh : 22 Januari 2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

✓

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan
menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled “Real-Time Fall Detection For Elderly With

Obstructions Consideration Using Kinect” is the result of my own research except as cited

in the references. The project report has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature :

Student Name : AMIR HAZIM BIN AMIR HUSIN

Date : 22 JANUARI 2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of

Electronics Engineering Technology with Honours.

Signature :

Supervisor Name : IZADORA BINTI MUSTAFFA

Date : 22 JANUARI 2025

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

To my beloved mother, Norizan binti Dan,

and

To my precious father, Amir Husin bin Abd Manaff,

and

To dearest grandmother, Misah binti Abdul Rahman

and

To my treasured siblings, Amir Nazrin bin Amir Husin and Ain Farisha binti Salleh

and

To my closest friend, Aiman Aliff bin Amir Ariffin

i

ABSTRACT

The increased number of elderly people is growing in tandem with improvements in

healthcare. However, the risks that go along with it have also increased, including the

number of falls. According to several studies, elderly persons fall at least once a year. For

elderly persons aged 65 and older, falls are the leading cause of unintentional death. Many

elderly people in Malaysia spend the day alone at home because their family members are

either at work or school. Therefore, to properly identify the occurrence of falls, a fall

detection system is required. The construction of such a system to identify when an

individual falls or loses their balance is described in this thesis. To evaluate and spot patterns

that point to a fall incident, the system uses Kinect sensors and algorithms to track a person's

movements and postures. Skeletons and joints are identified and retrieved, including the

heads, shoulders, hips, and left and right ankles. The Y-coordinate values and threshold

values are obtained by implementing the fall algorithm. To ascertain fall status, the absolute

values of the Y-coordinate and joints are compared to the threshold value. The system also

differentiates between falls, sitting on a chair, sitting on the floor, and also fall incident

behind an obstruction. When a possible fall incident is detected, the system activates an

alarm. The expected results include high accuracy in detecting falls, minimizing false

positives, and ensuring that the system operates effectively even when there is partial body

visibility. The system aims to provide timely alerts to caretakers or emergency responders,

significantly reducing response times and potentially saving lives. Additionally, the solution

is designed to be minimally intrusive, ensuring it does not disrupt the elderly's daily

activities.

ii

ABSTRAK

Peningkatan bilangan warga emas semakin meningkat seiring dengan peningkatan dalam

penjagaan kesihatan. Walau bagaimanapun, risiko yang menyertainya juga telah meningkat,

termasuk bilangan kejatuhan. Menurut beberapa kajian, orang tua jatuh sekurang-kurangnya

sekali setahun. Bagi warga emas berumur 65 tahun ke atas, jatuh adalah punca utama

kematian yang tidak disengajakan. Ramai warga emas di Malaysia menghabiskan hari

bersendirian di rumah kerana ahli keluarga mereka sama ada di tempat kerja atau sekolah.

Oleh itu, untuk mengenal pasti kejadian jatuh dengan betul, sistem pengesanan jatuh

diperlukan. Pembinaan sistem sedemikian untuk mengenal pasti apabila seseorang individu

itu jatuh atau hilang keseimbangan diterangkan dalam tesis ini. Untuk menilai dan mengesan

corak yang menunjukkan kejadian jatuh, sistem menggunakan penderia dan algoritma

Kinect untuk menjejaki pergerakan dan postur seseorang. Rangka dan sendi dikenal pasti

dan diambil, termasuk kepala, bahu, pinggul, dan buku lali kiri dan kanan. Nilai koordinat

Y dan nilai ambang diperoleh dengan melaksanakan algoritma kejatuhan. Untuk memastikan

status jatuh, nilai mutlak koordinat-Y dan penyambung dibandingkan dengan nilai ambang.

Sistem ini juga membezakan antara kejadian jatuh, duduk diatas kerusi, duduk diatas lantai,

dan juga kejadian jatuh dibelakang sesuatu pengahalang. Apabila kemungkin kejadian jatuh

dikesan, sistem ini menghantar penggera mengaktifkan sistem penggera. Hasil yang

dijangkakan termasuk ketepatan yang tinggi dalam mengesan jatuh, meminimumkan positif

palsu, dan memastikan sistem beroperasi dengan berkesan walaupun penglihatan badan

adalah separa. Sistem ini bertujuan untuk memberikan makluman tepat pada masanya

kepada penjaga atau responden kecemasan, dengan ketara mengurangkan masa tindak balas

dan berpotensi menyelamatkan nyawa. Selain itu, penyelesaian itu direka bentuk untuk

mengganggu secara minimum, memastikan ia tidak mengganggu aktiviti harian warga tua.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Puan

Izadora binti Mustaffa and co-supervisors, Dr Haslinah binti Mohd Nasir and Puan

Dayanasari binti Abdul Hadi, for their precious guidance, words of wisdom and patient

throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial

support which enables me to accomplish the project. Not forgetting my fellow colleague,

Aiman Aliff bin Amir Ariffin for the willingness of sharing his thoughts and ideas regarding

the project.

My highest appreciation goes to my parents, siblings, and family members for their

love and prayer during the period of my study. An honourable mention also goes to Dr

Haslinah binti Mohd Nasir for all the motivation and understanding.

Finally, I would like to thank all the staffs at the faculty, fellow colleagues and

classmates, the faculty members, as well as other individuals who are not listed here for

being co-operative and helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

REAL-TIME FALL DETECTION FOR ELDERLY WITH OBSTRUCTIONS

CONSIDERATION USING KINECT ii

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF APPENDICES xi

 INTRODUCTION 1
1.1 Introduction 1
1.2 Background 1
1.3 Problem Statement 3
1.4 Project Objective 3
1.5 Scope of Project and Limitations 4

 LITERATURE REVIEW 6
2.1 Introduction 6
2.2 Impact of Fall Towards Elderly 6
2.3 Overview of Technologies Used in Fall Detection 7

2.3.1 Wearable Devices 7
2.3.2 Ambient Sensors 7
2.3.3 Vision-Based Systems 8

2.4 Algorithms and Techniques for Fall Detection 8
2.4.1 Skeleton Features-Based Skeleton 8
2.4.2 Machine Learning and Deep Approaches 9

2.5 Comparative Analysis of Fall Detection Approaches 11
2.5.1 Survey of Fall Detection Approaches Using Kinect Technology 11

2.5.1.1 Overview of Fall Detection Methods 11
2.5.1.2 Threshold-Based Methods 11
2.5.1.3 Machine Learning Algorithm 12
2.5.1.4 Comparative Analysis 13

v

2.5.2 Computer Vision-Based Methods 14
2.5.2.1 Overview of Computer Vision-Based Fall Detection 14
2.5.2.2 Image-Based Analysis 14
2.5.2.3 Depth Map Analysis 15
2.5.2.4 Hybrid Techniques 15
2.5.2.5 Combined Kinect Data 16

2.6 Object Obstruction 16
2.6.1 Techniques for Overcoming Object Obstruction 17

2.6.1.1 Pedestrian Occlusion Level Classification 17
2.6.1.2 Obstruction Detection 4D BIM Construction Planning 17
2.6.1.3 Real-Time Object Detection for Obstruction Scenarios 17

2.6.2 Case Study: Partial Body Detection Using Kinect 18
2.6.2.1 Fall Detection Base on Point Cloud 18
2.6.2.2 Detecting Human Falls in Poor Lighting and Object

Obstruction Conditions 19
2.7 Integration of Fall Detection with Alerting System 20

2.7.1 Smartphone-Based Online System with Alert Notification 20
2.7.2 Fall Detection and Emergency Notification System 20

2.8 Case Studies and Applications 21
2.8.1 Kinect4FOG for Monitoring Parkinson’s Patients 21
2.8.2 Video Surveillance for Fall Detection 22

2.9 Kinect Specific Applications and Innovations 23
2.9.1 Kinect in Gait Analysis and Mobility Monitoring 23
2.9.2 Posture Recognition and Human Activity Analysis 24
2.9.3 Multi-Sensor Integration and Advanced Processing 24
2.9.4 Real-World Deployment and User Feedback 25

2.10 Future Directions and Challenges 26
2.10.1 Emerging Trend in Fall Detection 26
2.10.2 Challenges and Limitations 27
2.10.3 Potential Improvements and Innovations 27

2.11 Sensor Comparison from Previous Work Related to the Project 29
2.12 Journal Comparison from Previous Work Related to the Project 32
2.13 Summary 44

 METHODOLOGY 46
3.1 Introduction 46
3.2 Project Design 46

3.2.1 Project Execution Flow 46
3.2.2 Project Planning 50

3.3 System’s Algorithm 52
3.3.1 Fall Detection Algorithm 53
3.3.2 Project Flowchart 59
3.3.3 Project Block Diagram 61

3.4 Hardware & Software 63
3.4.1 Kinect Sensor 63
3.4.2 Laptop 65
3.4.3 Contraption 66
3.4.4 Microsoft Visual Studio 2019 67

vi

3.5 Experimental Setup 69
3.6 Formula Used 72
3.7 Sustainable Development Goals (SDG) 72
3.8 Summary 73

 RESULTS AND DISCUSSIONS 74
4.1 Introduction 74
4.2 Results and Analysis 74

4.2.1 Fall Detection Accuracy at Different Heights (At the distance 2.0m) 75
4.2.2 Fall Detection at Different Distances (At the height of 1.4m) 77
4.2.3 Fall Detection Accuracy for Different Fall Postures (At the height:

1.4m) & (At the distance 2.0m) 79
4.2.4 Fall Detection Accuracy Towards Multiple People Approach (At the

height: 1.4m) & (At the distance 2.0m) 82
4.2.5 Fall Detection Accuracy to Differ Non-Fall Postures (At the height:

1.4m) & (At the distance 2.0m) 84
4.2.6 Fall Detection Accuracy with Object Obstructions (At the height:

1.4m) & (At the distance 2.0m) 86
4.2.7 Fall Detection Accuracy with Different Lighting (At the height: 1.4m)

& (At the distance 2.0m) 88
4.2.8 “HELP” Gesture Command 90

4.3 Summary 91

 CONCLUSION AND RECOMMENDATIONS 94
5.1 Conclusion 94
5.2 Potential for Commercialization 96
5.3 Future Works 98

REFERENCES 100

APPENDICES 103

vii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Comparison between sensors used in fall detection system 29

Table 2.2 Journal comparison 32

Table 3.1 Outline Planning 50

Table 4.1 Fall Detection Accuracy at Different Heights (At the distance 2.0m) 75

Table 4.2 Fall Detection Accuracy at Different Distances (At the height of 1.4m) 78

Table 4.3 Fall Detection Accuracy for Different Fall Postures (At the height: 1.4m)

& (At the distance 2.0m) 80

Table 4.4 Fall Detection Accuracy Towards Multiple People Approach (At the

height: 1.4m) & (At the distance 2.0m) 82

Table 4.5 Fall Detection Acuracy to Differ Non-Fall Postures (At the height: 1.4m)

& (At the distance 2.0m) 84

Table 4.6 Fall Detection Accuracy with Object Obstructions (At the height: 1.4m)

& (At the distance 2.0m) 86

Table 4.7 Fall Detection Accuracy with Different Lighting (At the height: 1.4m) &

(At the distance 2.0m) 88

viii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 Skeleton provided by Microsoft Kinect v2 and points excluded from

analysis (grey ovals) [7]. 9

Figure 2.2 Flowchart of a 3D matrix generation from the body joints over the frames

of a gait cycle [8]. 10

Figure 2.3 Deep Learning System Overview [9]. 10

Figure 2.4 Types of sensors deployed in fall detection, with (+) indicating

advantages and (-) indicating disadvantages[4]. 12

Figure 2.5 Hierarchy of joints provided by (a) V1, (b) V2, and (c) Azure Kinect [4]

 13

Figure 2.6 General flowchart of Kinect-based fall detection approaches [4]. 14

Figure 2.7 The current fall detection methods classification into three device-based

approaches: ambient based, wearable sensor-based, and vision-based

approaches [2]. 15

Figure 2.8 Illustration of depth image transformation: (a) colour stream; (b) depth

stream; (c) skeleton (joint are shown in green dots); and (d) tracked

skeleton and joints (similar joints are presented with the same

colour) [2]. 16

Figure 2.9 Occlusion level classification overview. (a) Read input image (b) Apply

keypoint detection to each pedestrian instance and assess keypoint

visibility to identify occluded keypoints (c) Correlate visible

keypoints with pedestrian mask to confirm visibility [11]. 17

Figure 2.10 Image after data enhancement. (1) Magnifcation and brighten, (2)

magnifcation and mirror, (3) magnifcation and darken, (4) image

reduction and translation, (5) image reduction and translation, and

(6) mirror, reduction, and translation [12]. 18

Figure 2.11 Point Cloud System Structure Diagram [13]. 19

Figure 2.12 Example video frames from the publicly available datasets (a). Le2i

and (b) URFD datasets [14]. 19

Figure 2.13 An example of the web portal data summary for a single study

participant [15]. 20

Figure 2.14 System’s companion smartphone application in action [16]. 22

ix

Figure 2.15 Graphical User Interface for the developed software [16]. 23

Figure 2.16 Overall system flowchart of the proposed framework [8]. 23

Figure 2.17 Scheme of the fuzzy inference process [19]. 24

Figure 2.18 Human body external ellipse [20]. 25

Figure 2.19 Results of person detection using YOLOv3 and YOLOv7. (a) Detection

results of YOLOv3 for normal activity. (b) Detection results of

YOLOv3 for fall activity. (c)Detection results of YOLOv7 for

normal activity. (d) Detection results of YOLOv7 for fall activity

[21]. 25

Figure 2.20 The FD IoT System Overview [24]. 26

Figure 2.21 The detection results of fall in different directions [28]. 28

Figure 3.1 PSM 1 Project Execution Flow 48

Figure 3.2 PSM 2 Project Execution Flow 49

Figure 3.3 Pseudocode of Fall Detection Algorithm 59

Figure 3.4 Simple version of Project Flowchart 60

Figure 3.5 Project Block Diagram 63

Figure 3.6 Xbox 360 Microsoft Kinect 63

Figure 3.7 Sensor arrangement of Kinect Sensor 65

Figure 3.8 Laptop 66

Figure 3.9 Contraption for the Kinect 67

Figure 3.10 Microsoft Visual Studio Interface 68

Figure 3.11 Project Setup 69

Figure 3.12 Kinect Horizontal View Angle 69

Figure 3.13 Kinect Vertical View Angle 70

Figure 3.14 Proposed Kinect placement in common and private areas. 70

Figure 3.15 Kinect view of house areas (a) Bedroom (b) Living Room (c) Driveway

(d) Kitchen 71

Figure 3.16 SDG 3, 9 and 11 icons. 73

x

Figure 4.1 Graph of Fall Detection Accuracy at Different Heights 75

Figure 4.2 Fall Detection at Different Heights (a) 1.2m (b) 1.3m (c) 1.4m (d) 1.5m

(e) 1.6m (f) 1.7m (g) 1.8m (h) 1.9m (i) 2.0m 77

Figure 4.3 Graph of Fall Detection Accuracy at Different Distances 78

Figure 4.4 Fall Detection at Different Distances (a) 1.0m (b) 2.0m (c) 3.0m (d) 4.0m

(e) 4.5m 79

Figure 4.5 Graph of Fall Detection Accuracy for Different Fall Postures 80

Figure 4.6 Different Fall Postures (a) Fall to the left side (b) Fall to the right side

(c) Fall to the front (d) Fall to the back (e) Fall while sitting (f)

Kneeling (g) Crawling 81

Figure 4.7 Fall Detection Towards Multiple People (a) Two People Standing (b)

One Fall One Standing (c) Multiple Falls 83

Figure 4.8 Graph of Fall Detection Accuracy Towards Multiple People Approach 83

Figure 4.9 Graph of Fall Detection Accuracy to Differ Non-Fall Postures 85

Figure 4.10 Non-Fall Postures (a) Standing (b) Sitting on a chair (c) Sitting on the

floor 85

Figure 4.11 Graph of Fall Detection Accuracy with Object Obstructions 87

Figure 4.12 Obstruction Scenarios (a) Behind Furnitures 1 (b) Behind Furnitures 2

(c) Partial Body 1 Partial Body 2 87

Figure 4.13 Graph of Fall Detection Accuracy with Different Lighting 89

Figure 4.14 Fall Detection in Different Lighting (a) Brightest (b) Bright (c) Dim (d)

Dark (e) Darkest 90

Figure 4.15 "Help Command Detected" was displayed when a hand was raised to

provide immediate assistance. 91

xi

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Gantt Chart PSM 1 & PSM 2 103

Appendix B Project Flowchart (1) 104

Appendix C Project Flowchart (2) 104

Appendix D Project Flowchart (3) 105

Appendix E Project Flowchart (4) 106

Appendix F Simple Block Diagram 106

Appendix G MainWindow.xaml.cs 107

Appendix H MainWindow.xaml 119

1

INTRODUCTION

1.1 Introduction

This chapter aims to establish the framework and presents a brief concept of the project. It

focuses on the overview of the project, describes the objectives, briefly the problem, the

scope, and the results of the project.

1.2 Background

The rising number of senior citizens and the associated fall risks have increased the

importance of fall detection systems in recent years. Falls are the leading cause of

unintentional death among individuals aged 65 and older, with studies indicating that at least

one fall occurs annually in this demographic. This has driven significant research and

innovation in fall detection systems [1]. Over the years, various techniques, tools, and

sensors have been explored, including gyroscopes, accelerometers, GPS modules, and

Kinect sensors. Among these, vision-based systems like Kinect have stood out due to their

non-intrusive nature, eliminating the need for elderly individuals to wear specialized

equipment [2].

The Microsoft Kinect sensor has become a notable tool for fall detection due to its ability to

accurately track human body movements and recognize skeletal joints. Unlike wearable-

based solutions, Kinect-based systems offer the convenience of remote monitoring without

2

physical contact, making them more user-friendly and comfortable for elderly users.

Additionally, the Kinect sensor's capacity to capture both depth and colour information

enhances the precision of fall detection algorithms [3].

The system is designed for indoor use, particularly in public hospitals and private homes.

Past fall detection systems relied heavily on wearable sensors, which were often

inconvenient for users. In contrast, Kinect-based systems integrate vision-based subsystems,

utilizing libraries for camera management and computer vision techniques to process both

depth and colour data. This approach has demonstrated impressive reliability (97.3%) and

efficiency (80.0%) in detecting falls, making it a promising solution for real-world

applications [4].

Moreover, the integration of Kinect sensors with emergency notification systems can

provide immediate assistance upon detecting a fall. The Kinect's ability to collect and

analyse data in real time allows for a rapid response, potentially reducing the severity of

injuries caused by falls. Over time, the data collected can offer valuable insights into mobility

patterns, supporting proactive care and long-term monitoring [2].

The Kinect sensor's unique qualities address key challenges highlighted in fall detection

research, such as dealing with sensor imperfections and environmental interference. Its

precise skeletal tracking minimizes false alarms and ensures consistent data, making it a

reliable option for real-time fall detection. Furthermore, the Kinect's robust data collection

capabilities position it as a valuable tool for developing standardized datasets and advanced

algorithms, helping to advance the field of fall detection research [5].

3

1.3 Problem Statement

The detection rate's performance in real-world scenarios is one of the fall detection system's

primary concerns. It has been demonstrated that elements including flooring surfaces,

barriers, and lighting conditions may have an impact on fall detection systems' accuracy and

promising outcomes. Usability and user acceptance are another difficulty. For users to adopt

fall detection systems, they must be simple to use and not impede on normal activities. Since

delays in detecting falls might result in serious injuries, real-time operations are also crucial

for fall detection systems.

The imperfection of the data collected, which can be brought on by a few things

such as sensor noise, calibration mistakes, and environmental interference, is another

significant obstacle in fall detection. Another issue is the unreliability or diversity of sensor

systems, which can result in false alarms and inconsistent data. Additionally, there are certain

difficulties that are common to other frameworks with data fusion needs, like choosing the

right sensors, creating efficient data fusion algorithms, and handling missing or insufficient

data. Furthermore, there isn't a standardized dataset for assessing fall detection systems,

which makes contrasting various strategies challenging. Investigating novel sensor

technologies and creating increasingly complex data fusion algorithms are important.

1.4 Project Objective

The project aims to achieve the following objectives: -

1. To recreate different fall scenarios with object obstructions for the development of

the Kinect algorithm.

4

2. To analyse the functionality of the developed system by determining the optimal

location for the Kinect sensor in terms of distance, height, and area coverage.

3. To develop a fall detections system based on the skeletal tracking data collected by

the Kinect sensor with alarm notification.

1.5 Scope of Project and Limitations

This project focuses on developing a Kinect-based fall detection system specifically for

elderly individuals in indoor residential settings. Utilizing the Microsoft Kinect v1 sensor,

the system leverages its depth-sensing and skeletal tracking capabilities to monitor body

movements and detect falls within a single-room environment. Designed for single-sensor

implementation, the system ensures non-intrusive monitoring without the need for wearable

devices, prioritizing user comfort. The system integrates predefined fall detection algorithms

to provide real-time alerts to caregivers or emergency responders, enhancing safety for

elderly individuals living alone.

To maintain efficiency, the system is optimized to detect up to two elderly individuals falling

simultaneously, allowing for effective tracking while minimizing computational complexity.

However, since it relies on a single Kinect v1 sensor, it is not designed to monitor multiple

rooms or overcome significant obstructions, requiring careful placement to minimize blind

spots. The system’s effectiveness is best suited for controlled indoor environments, where

external factors such as furniture arrangement and lighting conditions can be managed to

optimize detection accuracy.

Despite these constraints, the project establishes a functional prototype that serves as a

foundation for future improvements. Enhancing detection accuracy, expanding coverage

5

capabilities, and refining fall classification methods remain key areas for further research

and development. By focusing on a specific indoor residential scenario, this project

contributes to the advancement of non-intrusive fall detection solutions for elderly

individuals.

6

LITERATURE REVIEW

2.1 Introduction

 The project has involved a great deal of research and investigation. Books, articles,

journals, websites, and other relevant sources provided data and studies for the project. The

data was an invaluable resource for verifying if the project could be finished in the allotted

time. The research and data collection centered on important and pertinent project-related

subjects.

 Section 2.2 until 2.10.3 discuss everything gained after examined a number of thesis

and publications from journals found on the Google Scholar and Mendeley website. A few

keywords such as "fall detection", "Kinect", "algorithms", "machine learning", and "object

obstruction", were necessary to locate the relevant content. The fall detection system that is

integrated with the application and sensors to identify and notify people or caretakers when

a person has a fall was the main topic of the literature study.

2.2 Impact of Fall Towards Elderly

Falls can have serious effects on health and well-being, they are a major concern,

especially for the elderly and those with specific medical conditions. Serious injuries include

fractures, brain trauma, and even death can result from falls. In addition to the acute physical

damage, falls can lead to diminished quality of life, a loss of independence, and an increase

in fear of falling. There will be a significant financial impact as well because emergency

7

services, hospital stays, and long-term rehabilitation will result in higher healthcare expenses

[4].

 The number of falls among older persons is on the rise due to worldwide population

aging. The World Health Organization (WHO) reports that falls rank as the second most

common cause of unintended or accidental injury deaths globally. Falls frequently cause a

decline in health and functional capacity in older persons. In addition to causing physical

harm, falls can have psychological implications like dread of falling again, which can result

in despair, social isolation, and less physical activity. This decrease in activity feeds into a

vicious cycle by raising the chance of additional falls [6].

2.3 Overview of Technologies Used in Fall Detection

2.3.1 Wearable Devices

Accelerometers, gyroscopes, and other body-worn motion sensors are common

examples of these devices. They use abrupt changes in orientation or movement to identify

falls. Smartwatches, sensors attached to belts, and specific fall detection pendants are a few

examples. Because wearables are so portable and can track a user's movements over time,

they can instantly warn of a fall. Some users may find them uncomfortable or bothersome,

and wearing them continuously is necessary for them to be successful [1].

2.3.2 Ambient Sensors

These systems make use of ambient sensors scattered throughout the house, such as pressure

mats, infrared sensors, and ultrasonic sensors. They keep an eye out for environmental

changes, like someone lying on the ground, to identify falls. It doesn't require the user to

wear any devices and are non-intrusive [1]. Ideal for ongoing surveillance over bigger

8

regions. Installation work can be costly and intricate. The arrangement of the surroundings

and the locations of the sensors may restrict their efficacy.

2.3.3 Vision-Based Systems

These devices analyze visual data to detect falls using cameras and computer vision

algorithms. One well-known example is the Microsoft Kinect sensor, which uses bone

tracking and depth sensing to follow movements and detect falls. can offer in-depth

movement analysis and extensive contextual information. Ideal for discreet surveillance in

interior spaces. privacy issues brought on by ongoing video surveillance. Obstacles and

lighting can both have an impact on performance [2].

2.4 Algorithms and Techniques for Fall Detection

2.4.1 Skeleton Features-Based Skeleton

Analyzing skeletal characteristics is one of the main ways that the Kinect sensor is used for

fall detection. Because the Kinect sensor can track and monitor an individual's skeletal

structure, it offers a comprehensive dataset that can be utilized to identify falls based on

variations in joint movements and body posture. This technique uses positioning data from

the head, shoulders, hips, and knees among other joints in the body to identify anomalous

patterns that point to a fall. A fall detection system that makes use of Kinect sensor-extracted

skeletal characteristics. Figure 2.1 is a visual representation of the skeletal point of human

body that can be detect by Kinect sensor. To remove outliers, the system uses a one-class

classifier, which reduces unnecessary or non-fall-related movements and increases fall

detection accuracy. This approach's primary benefit is in its capacity to precisely detect falls

through an examination of the spatial relationships and movement patterns of various bodily

joints [7].

9

Figure 2.1 Skeleton provided by Microsoft Kinect v2 and points excluded from analysis

(grey ovals) [7].

2.4.2 Machine Learning and Deep Approaches

 Fall detection systems have been using machine learning and deep learning

techniques more and more to improve their accuracy and dependability. These methods train

models that can automatically identify patterns linked to falls using massive datasets. A fall

detection system that uses information from the Kinect sensor to assess movement patterns

and gait using deep convolutional neural networks (CNNs) as shown in the flowchart in

figure 2.2. The system's ability to distinguish between typical activities and fall events with

high accuracy is derived from its ability to learn intricate details from the skeletal data [8].

10

Figure 2.2 Flowchart of a 3D matrix generation from the body joints over the frames of a

gait cycle [8].

 Tsai and Hsu created a fall detection system that analyzes 3D skeletal data from the

Kinect sensor using deep learning algorithms. Figure 2.3 shows the method that was

implement by them which use a dataset of skeletal motions to train a deep neural network to

identify the features of falls. The system achieves reliable and precise fall detection by

utilizing the comprehensive 3D joint positions that the Kinect provides [9].

Figure 2.3 Deep Learning System Overview [9].

11

2.5 Comparative Analysis of Fall Detection Approaches

2.5.1 Survey of Fall Detection Approaches Using Kinect Technology

2.5.1.1 Overview of Fall Detection Methods

Numerous fall detection techniques have been investigated, utilizing diverse technologies

and methods. These techniques can be generally divided into three categories: deep learning

models, machine learning algorithms, and threshold-based techniques. Each of these

categories has unique properties and uses [4].

2.5.1.2 Threshold-Based Methods

Fall detection techniques that use thresholds depend on pre-established levels to recognize

falls in relation to variables like inclination angle, acceleration, and velocity. These

techniques are appropriate for real-time applications since they are simple and

computationally cheap. But because they have trouble adjusting to individual variations and

the unpredictability of fall events, their accuracy can be restricted [4]. Figure 2.4 shows the

advantages and disadvantages of sensors used in existing fall detection system.

12

Figure 2.4 Types of sensors deployed in fall detection, with (+) indicating advantages and

(-) indicating disadvantages[4].

2.5.1.3 Machine Learning Algorithm

 In order to distinguish between fall and non-fall occurrences, classifiers trained on

labeled datasets according to figure 2.5 are used in machine learning techniques to fall

detection. K-nearest neighbors (k-NN), decision trees, and support vector machines (SVM)

are examples of common methods. Compared to threshold-based approaches, these

strategies are more accurate and flexible because they are able to identify intricate patterns

in the data. However, they can be computationally demanding and require a large amount of

labeled data for training, which could limit real-time performance [4].

13

Figure 2.5 Hierarchy of joints provided by (a) V1, (b) V2, and (c) Azure Kinect [4]

2.5.1.4 Comparative Analysis

The various fall detection methods can be compared to see trends toward increasingly

advanced deep learning and machine learning methods. These cutting-edge techniques,

which improve fall detection systems by utilizing the comprehensive depth and skeleton data

supplied by the Kinect sensor just as shown in the general flowchart in figure 2.6, which

offer increased accuracy and resilience over conventional techniques [4].

14

Figure 2.6 General flowchart of Kinect-based fall detection approaches [4].

2.5.2 Computer Vision-Based Methods

2.5.2.1 Overview of Computer Vision-Based Fall Detection

Computer vision-based fall detection methods utilize visual data to identify falls. The Kinect

camera, with its ability to capture both RGB images and depth maps, plays a significant role

in these methods. Techniques in this category can be divided into image-based analysis,

depth map analysis, and hybrid approaches [2].

2.5.2.2 Image-Based Analysis

 RGB images from the Kinect camera are used by image-based analytic techniques

to identify falls. Methods including silhouette analysis, motion history images (MHI), and

backdrop subtraction are frequently used. These techniques take advantage of the rich visual

data that RGB photographs provide, allowing for a thorough examination of the scene and

motions. They are, however, susceptible to variations in background clutter and lighting,

which may compromise accuracy [2].

15

2.5.2.3 Depth Map Analysis

Depth map analysis is the process of detecting falls using depth maps produced by the

infrared sensor on the Kinect. This method examines abrupt changes in elevation, motion

patterns in the depth data, and depth gradients. Depth map analysis helps differentiate

between falls and other activities since it is less impacted by lighting and offers precise

distance measurements. However, accuracy may be limited by the depth sensor's low

resolution and range, especially in bigger or more complicated surroundings [2].

2.5.2.4 Hybrid Techniques

 RGB and depth data are combined in hybrid approaches to improve fall detection

precision. These ways can get around the drawbacks of using only one form of data as

explained in figure 2.7 by utilizing both. Better robustness and accuracy are provided by

hybrid approaches, which can handle a larger variety of scenarios and environmental

variables. To properly handle and integrate the data, they also add to the computational

complexity and need for more complex algorithms [2].

Figure 2.7 The current fall detection methods classification into three device-based

approaches: ambient based, wearable sensor-based, and vision-based approaches [2].

16

2.5.2.5 Combined Kinect Data

 The advantages and disadvantages of each strategy show how promising computer

vision-based fall detection techniques can be. Even under difficult circumstances, a strong

tool for precisely spotting falls is provided by combining depth sensing with conventional

RGB imaging as illustrates in figure 2.8. Subsequent investigations could concentrate on

enhancing these methods to augment their efficiency and relevance [2].

Figure 2.8 Illustration of depth image transformation: (a) colour stream; (b) depth stream;

(c) skeleton (joint are shown in green dots); and (d) tracked skeleton and joints (similar

joints are presented with the same colour) [2].

2.6 Object Obstruction

 Fall detection systems face considerable hurdles when it comes to detecting falls in

which just a portion of the body is visible. These issues include maintaining detection

accuracy in congested situations, guaranteeing dependable performance under shifting

lighting conditions, and effectively identifying fall events despite occlusions produced by

objects or other environmental factors. Fall detection systems' efficacy may be jeopardized

by misclassification or missing detections resulting from partial body visibility [10].

17

2.6.1 Techniques for Overcoming Object Obstruction

2.6.1.1 Pedestrian Occlusion Level Classification

 A strategy for dealing with object blockage is to categorize the degree of occlusion

a pedestrian encounters. Methods in this field concentrate on classifying the degree to which

an object impedes an individual. From figure 2.9, it is evident that classification can aid in

modifying the detection algorithms to account for occlusion and enhance overall fall

detection accuracy even in situations where the body is only partially visible [11].

Figure 2.9 Occlusion level classification overview. (a) Read input image (b) Apply

keypoint detection to each pedestrian instance and assess keypoint visibility to identify

occluded keypoints (c) Correlate visible keypoints with pedestrian mask to confirm

visibility [11].

2.6.1.2 Obstruction Detection 4D BIM Construction Planning

 Methods for identifying and controlling obstacles in a 4D Building Information

Modeling (BIM) environment have been developed for construction planning. By applying

comparable concepts to recognize and evaluate obstacles inside the detection region, these

techniques can be modified for fall detection, allowing for a more precise interpretation of

body components that are only partially visible [10].

2.6.1.3 Real-Time Object Detection for Obstruction Scenarios

 Algorithms for real-time object identification are made to recognize and follow

objects in a variety of situations, including those with obstacles as provide in figure 2.10. By

18

using sophisticated neural networks capable of identifying and processing objects that are

partially visible, these techniques enhance the system's capacity to detect falls even in

situations where the view is partially obscured [12].

Figure 2.10 Image after data enhancement. (1) Magnifcation and brighten, (2)

magnifcation and mirror, (3) magnifcation and darken, (4) image reduction and translation,

(5) image reduction and translation, and (6) mirror, reduction, and translation [12].

2.6.2 Case Study: Partial Body Detection Using Kinect

2.6.2.1 Fall Detection Base on Point Cloud

According to figure 2.11, a fall detection system using point cloud data was developed by

Peng et al. (2019). Because the point cloud data may record depth information, this method

works especially well in situations where visibility is limited. It allows the system to identify

falls by looking at the spatial arrangement of visible body components [13].

19

 Figure 2.11 Point Cloud System Structure Diagram [13].

2.6.2.2 Detecting Human Falls in Poor Lighting and Object Obstruction Conditions

 Zi et al. (2023) suggested techniques that make use of sophisticated object detection

and tracking algorithms to identify falls in low light and blocked environments. By

accounting for occlusions and low visibility situations, these techniques are intended to

improve fall detection reliability and guarantee precise detection even in difficult

circumstances such as in figure 2.12 [14].

Figure 2.12 Example video frames from the publicly available datasets (a). Le2i and (b)

URFD datasets [14].

20

2.7 Integration of Fall Detection with Alerting System

2.7.1 Smartphone-Based Online System with Alert Notification

Fall detection system integration with smartphone-based alert notifications entails creating

applications that, upon detection of a fall, can instantly notify emergency services or

caretakers. Figure 2.13 proves that these solutions provide instant notification and contextual

information about the fall occurrence by leveraging the computing power and connection of

smartphones. Typically, the design consists of fall detection algorithms, an intuitive alarm

configuration interface, and a robust communication protocol to guarantee timely alert

delivery. These systems improve people's safety and freedom by making sure that assistance

is quickly summoned in the case of a fall [15].

Figure 2.13 An example of the web portal data summary for a single study participant [15].

2.7.2 Fall Detection and Emergency Notification System

In order to build a reliable alerting system, a complete fall detection and emergency

notification system integrates sensors, detecting algorithms, and communication modules.

21

This system not only recognizes falls but also notifies authorized contacts or services in case

of emergency. The implementation consists of setting up a communication system to

transmit alerts by SMS, email, or automated calls; configuring sensors to accurately capture

fall events; and designing algorithms to process the sensor data and detect falls. These kinds

of technologies play a critical role in both delivering aid promptly and possibly lessening the

degree of injuries sustained from falls [6].

2.8 Case Studies and Applications

2.8.1 Kinect4FOG for Monitoring Parkinson’s Patients

Figure 2.14 provides a visual representation of one noteworthy use of Kinect technology in

healthcare is the Kinect4FOG system, which was created especially to track and enhance

movement in Parkinson's disease patients. This system makes use of Kinect sensors to

analyze patients' movements and gaits, giving patients and healthcare professionals

comprehensive analysis and feedback. The system enables prompt interventions and

individualized treatment regimens by identifying movement abnormalities that may point to

a higher risk of falls. Kinect4FOG helps manage Parkinson's disease progression and

improves patients' quality of life by lowering fall risk and improving mobility in patients

under constant observation [16].

22

Figure 2.14 System’s companion smartphone application in action [16].

2.8.2 Video Surveillance for Fall Detection

Another important use for video surveillance systems is fall detection, especially for

watching elderly people at home or in care facilities. With the use of sophisticated image

processing and machine learning techniques, these systems use cameras to continuously

monitor and analyze the surroundings in order to identify falls. The method of detecting falls

entails identifying abrupt movements or changes in posture that point to a fall and then

notifying emergency personnel or caretakers of the situation. This approach improves the

safety of senior citizens by guaranteeing that falls are identified quickly and help is given

right away, which reduces the risk of serious injuries [17].

23

2.9 Kinect Specific Applications and Innovations

2.9.1 Kinect in Gait Analysis and Mobility Monitoring

Since Kinect technology can follow movement patterns and gather comprehensive skeletal

data, it has found widespread application in gait analysis and mobility monitoring which can

be seen in figure 2.15. The Kinect4FOG system analyzes a patient's gait and provides

rehabilitation feedback in order to monitor and enhance mobility in individuals with

Parkinson's disease [18]. The system can identify mobility problems and assist in

customizing interventions to improve the patient's quality of life by utilizing Kinect sensors.

Similar to this, KinectGaitNet recognizes gait patterns using deep convolutional neural

networks as provided in figure 2.16, offering precise and effective gait analysis that may be

applied to a range of healthcare applications [8].

Figure 2.15 Graphical User Interface for the developed software [16].

Figure 2.16 Overall system flowchart of the proposed framework [8].

24

2.9.2 Posture Recognition and Human Activity Analysis

 Identifying posture and analyzing human behavior are essential for creating fall

detection systems that work. The figure 2.17 presents the process which resulting the

accuracy of recognizing various postures and activities is improved by applying fuzzy and

rough logic to posture identification, which is crucial for fall detection [5]. Additionally, in

order to monitor different activities and identify anomalous postures that can point to a fall,

Kinect v2's human posture recognition technology collects and analyzes skeletal data. In

practical situations, these methods increase the dependability of fall detection systems [19].

Figure 2.17 Scheme of the fuzzy inference process [19].

2.9.3 Multi-Sensor Integration and Advanced Processing

 Fall detection systems can be greatly improved by utilizing sophisticated processing

techniques and integrating many sensors. For example, a system can improve fall detection

accuracy by combining data from many sensors through dual-channel feature integration. To

25

provide accurate fall detection, this technique analyzes a variety of variables, including

motion and skeletal data as proven in figure 2.18 [20]. It can be seen in figure 2.19, to

improve the robustness of fall detection, time-level decision fusion classification is another

strategy that integrates decisions taken at various time levels [21].

Figure 2.18 Human body external ellipse [20].

Figure 2.19 Results of person detection using YOLOv3 and YOLOv7. (a) Detection results

of YOLOv3 for normal activity. (b) Detection results of YOLOv3 for fall activity.

(c)Detection results of YOLOv7 for normal activity. (d) Detection results of YOLOv7 for

fall activity [21].

2.9.4 Real-World Deployment and User Feedback

 In order to enhance system performance, real-world fall detection system

deployments involving Kinect technology require resolving pragmatic issues and obtaining

26

user input. An older person's mobility may now be tracked and analyzed with a Kinect-based

platform, which provides important information for fall detection [3]. Furthermore, to ensure

reliable performance and user satisfaction, a versatile fall detection framework that makes

use of object recognition and motion analysis has been designed to handle a variety of real-

world circumstances [22].

2.10 Future Directions and Challenges

2.10.1 Emerging Trend in Fall Detection

 Fall detection technology is always changing, and a number of new developments

are expected to improve its dependability and efficacy. The combination of machine learning

(ML) and artificial intelligence (AI) approaches is one prominent development that enables

more in-depth study of environmental elements and movement patterns [23]. With these

technologies, systems may learn from enormous volumes of data, increasing their precision

in fall detection and lowering false alarms. Furthermore, wearable technology and the

Internet of Things (IoT) are being used more and more to build networked systems that offer

thorough monitoring of the elderly [24]. These systems can collect information from several

sources, providing a comprehensive picture of the health and activity levels of the user [25].

According to figure 2.20, it is an example of a fall detection system that applied the IoT.

Figure 2.20 The FD IoT System Overview [24].

27

2.10.2 Challenges and Limitations

There are still a number of obstacles and restrictions in the field of fall detection, despite

tremendous progress. Making sure detecting systems are accurate and dependable in a

variety of settings and circumstances is one of the main problems. Occlusions, background

noise, and lighting are only a few examples of the variables that can seriously impair the

operation of vision-based systems like Kinect-based ones [26]. The possibility of false

positives and false negatives, which might either fail to signal when a fall has occurred or

induce unwarranted alarm, is another restriction. Another difficulty is privacy issues,

particularly with systems that entail ongoing video surveillance. If users believe their privacy

is being violated, they could be reluctant to use such services [27].

2.10.3 Potential Improvements and Innovations

Several potential advancements and innovations are being investigated as solutions to these

problems. Improving the resilience of algorithms to manage various settings as shown in

figure 2.21 and circumstances is an essential area of emphasis. Creating increasingly

complex machine learning models that can adjust to various situations and enhancing the

caliber of sensor data fusion are two examples of this. Enhancing the accuracy of fall

detection systems can also be accomplished through innovations in sensor technology, such

as the use of additional sensors like LIDAR or higher resolution cameras. Iterative testing

and user feedback can also be used to improve these systems and make them more end-user-

friendly. Fall detection systems must also boost user acceptability and confidence, which

calls for privacy-preserving measures like on-device processing and data anonymization

[28].

28

Figure 2.21 The detection results of fall in different directions [28].

29

2.11 Sensor Comparison from Previous Work Related to the Project

Table 2.1 Comparison between sensors used in fall detection system

No Year Sensor Purpose and Specifications Advantages Disadvantages

1 2023

[29]

Kinect sensor

• Montion sensor.

• Tracks motion and gestures.

• Comprises of camera,

infrared sensors

• Tracks skeletal data for motion

tracking and accurate fall

detection.

• Non-intrusive

• Real-time monitoring with

immediate alerts

• Limited range (~4.5

meters).

• Needs precise placement

or multiple devices.

• High power consumption.

• Raises privacy concerns.

2 2023[30] Camera for

Image and Video

Capture

• Human body movement

tracking

• Non-intrusive monitoring

• High resolution and frame

rate

• Captures high-resolution

visuals.

• Records detailed environmental

context.

• Affordable compared to

advanced sensors.

• No depth sensing, less

accurate for fall detection.

• High computational

demand for processing

visuals.

• Significant privacy

concerns.

30

3 2021[31] Accelerometer

Measure the acceleration and

determine the changes in velocity

and movement.

• Compact and energy efficient.

• Detects sudden motion changes

effectively.

• Affordable

• Requires users to wear the

device.

• No environmental or

spatial data.

• Limited to motion-based

detection.

4 2024

[32]

Gyroscope

Measure the angular velocity and

provides information of rotational

movement.

• Measures rotational movements

accurately.

• Small, efficient, and wearable-

friendly.

• Works well with

accelerometers.

• Requires wearables,

potentially inconvenient.

• Only provides rotational

data, lacks spatial context.

• Limited accuracy without

additional sensors.

31

The Kinect was chosen for its non-intrusive design, eliminating the need for

wearables. Its 3D depth sensing and skeletal tracking offer spatial and motion

data, making it more accurate than standard cameras or motion sensors. While

it has limitations like range and power use, its ability to monitor and analyze

falls in real-time makes it ideal for this project.

32

2.12 Journal Comparison from Previous Work Related to the Project

Table 2.2 Journal comparison

No. Year Title Software Hardware Findings

1

2018

An image-based

fall detection

system for the

elderly [25]

not specified Camera

• Developed image-based fall detection system achieved high accuracy in detecting

falls among the elderly.

• System showed a notable reduction in false alarms compared to existing systems.

• Findings suggest that image-based approach has potential to improve reliability and

effectiveness of fall detection systems for the elderly.

2

2018

Computer

Vision Based

Fall Detection

Methods Using

the Kinect

Camera : A

Survey [2]

Computer

vision

algorithms

Kinect sensor

• Kinect-based fall detection methods show promise in accurately and reliably

detecting falls among the elderly.

• These methods use the Kinect camera's depth sensing capabilities to monitor

changes in body position and posture.

• Early detection of falls is facilitated by these techniques.

• Challenges include occlusions (objects blocking the view), varying lighting

conditions, the need for robust algorithms

• Further research and development are needed to address these challenges.

33

No. Year Title Software Hardware Findings

3

2018

Design and

Development of

the Fall

Detection

System based on

Point Cloud [13]

Kinect SDK
Kinect

Sensor

• No equipment needs to be worn during system operation, ensuring comfort.

• Kinect uses point cloud images and color spectrum for human detection,

protecting privacy.

• The infrared camera is unaffected by external illumination.

• The system provides continuous real-time detection of the human body for

24 hours.

• Detection efficiency is improved.

4

2018

Fall Detection

System for

Elderly People

Using IoT and

Big Data [24]

Contiki OS

LSM6DS0;

3D-axis

accelerome

ter

• The system was evaluated for recognizing three types of falls: forward,

backward, and lateral falls while walking caused by a slip.

• Recognition accuracy: 91.67%

• Precision: 93.75%

• Gain: 91.67%

• The high success rate in fall detection is indicated by these metrics.

34

No. Year Title Software Hardware Findings

5

2019

Cell-Based Transport Path

Obstruction Detection

Approach for 4D BIM

Construction Planning

[10]

Computer

algorithm
none

• The cell-based transport path obstruction detection approach effectively

identifies potential obstructions in construction projects.

• Integration into 4D BIM allows for accurate visualization and simulation of

material and equipment movement.

• Enables better-informed decisions and improved construction planning.

• Potential to enhance efficiency, safety, and overall success of construction

projects.

6

2019

Kinect4FOG: monitoring

and improving mobility in

people with Parkinson’s

using a novel system

incorporating the

Microsoft Kinect v2 [16]

Software for

analyzing

gait patterns,

machine

learning

algorithms.

Kinect sensor.

• Kinect4FOG effectively monitors and improves mobility in people with

Parkinson's disease.

• Provides a non-invasive and cost-effective method.

• Allows for early intervention and personalized treatment strategies.

• Highlights potential to improve mobility and quality of life for Parkinson's

patients.

35

No. Year Title Software Hardware Findings

7

2019

A skeleton features-

based fall detection

using Microsoft Kinect

v2 with one class-

classifier outlier removal

[7]

Fall detection

algorithm

Kinect

sensor.

• Skeleton features-based fall detection system using Kinect v2 achieved high

accuracy and reduced false alarms.

• One-class classifier used for outlier removal.

• System focuses on unique skeletal characteristics for improved reliability.

• Skeleton features-based approach coupled with one-class classifier

enhances performance of fall detection systems.

8

2019

Human Posture

Recognition and Fall

Detection Using Kinect

V2 Camera [5]

Kinect SDK,

NITE SDK

Kinect

Sensor

• Proposed integrated neural network fall detector application operates in

real-time.

• Based solely on depth maps, ensuring privacy and functioning in poor light

conditions.

9

2019

Implementation of Fall

Detection System based

on 3D Skeleton for Deep

Learning Technique [9]

Kinect SDK
Kinect

Sensor

• Implemented on NVIDIA Jetson TX2 platform.

• Tested in real demonstration environment.

• Achieves 15 frames per second for real-time implementation.

36

No. Year Title Software Hardware Findings

10

2019

Kinect-Based

Platform for

Movement

Monitoring and

Fall-Detection of

Elderly People

[3]

Kinect

SDK
Kinect Sensor

• Developed a Kinect-based platform for monitoring movement and detecting falls in

elderly people.

• Platform includes a fall detection algorithm and a web application for remote

monitoring.

• Tested the system with 30 volunteers and achieved a 96.3% success rate in fall

detection.

• Found Kinect to be effective in monitoring movement and detecting falls.

11

2020

Fall Detection

Based on Dual-

Channel Feature

Integration [20]

Computer

algorithm

Accelerometer

and gyroscope

sensors.

• Dual-channel feature integration approach for fall detection achieved higher accuracy

and reliability.

• Combining features from acceleration and angular velocity channels improved

sensitivity in detecting falls and reduced false alarms.

• Dual-channel feature integration is an effective strategy for enhancing fall detection

system performance.

37

No. Year Title Software Hardware Findings

12

2020

A Fall Detection

and Emergency

Notification System

for Elderly [6]

Kinect

SDK

Kinect

Sensor

• System calculates and analyzes velocities of body joints and angles of body vectors to

distinguish falls from daily activities.

• Differentiates between three types of falls: Prone Position, Crawl Position, and Kneel

Position.

• Fall notification based on Q-Learning algorithm, considering contact person's

probability of answering and level of busyness.

13

2020

An Elderly Fall

Detection System

Using Depth

Images [23]

Kinect

SDK

Kinect

Sensor

• Microsoft Kinect's depth image resolution decreases as distance increases.

• Decreased resolution makes background subtraction and depth image segmentation

challenging.

14

2020

Old man fall

detection based on

surveillance video

object tracking [26]

Object

tracking

and fall

detection

algorithm

none

• Fall detection system based on surveillance video object tracking effectively detects

falls in elderly individuals.

• Analyzes surveillance video footage and tracks movements to detect falls in real-time.

• Shows promise in improving timely response to falls and reducing injury risk for

elderly individuals.

38

No. Year Title Software Hardware Findings

15

2020

Fall detection system

for people using video

surveillance [17]

Computer

algorithm
none

• Video surveillance-based fall detection system effectively detects falls and

triggers alerts in real-time.

• Analyzes footage for specific movement patterns and behaviors associated

with falls.

• Accurately detects fall events, improving safety and well-being of

individuals at risk.

• Provides peace of mind for caregivers and family members.

16

2021

A Smartphone-based

Online System for Fall

Detection with Alert

Notifications and

Contextual Information

of Real-Life Falls [15]

android

6.0.1; Purple

Robot,

preinstalled

sensor data

collection

app

Phone;

accelerometer

and gyroscope

• Smartphone-based system requires minimum 2G signal for sending alert

notifications.

• Preferably uses 4G-LTE for exporting sensor data.

• Falls in locations without cellular reception won't be centrally detected for

real-time notification.

39

No. Year Title Software Hardware Findings

17

2022

An objective

method for

pedestrian

occlusion level

classification

[11]

Computer

algorithm
none

• Developed method for pedestrian occlusion level classification.

• Effective in objectively categorizing extent of pedestrian occlusion in scenes.

• Analyzes visual features related to visibility of body parts and degree of

occlusion.

• Accurately classifies occlusion levels.

• Objective method can improve performance of pedestrian detection and tracking

systems, especially in challenging environments.

18

2022

Real-Time

Object Detection

for the Running

Train Based on

the Improved

YOLO V4

Neural Network

[12]

Improved YOLO

V4 neural network.

Cameras for

capturing

video data.

• Real-time object detection system based on improved YOLO V4 neural network

effective for detecting objects near running train.

• Analyzes video data from train-mounted cameras to identify obstacles or

hazards in real-time.

• Deep learning techniques enhance safety and efficiency of train operations by

providing early detection of potential hazards.

40

No. Year Title Software Hardware Findings

19

2022

Smart Assistive

System for Visually

Impaired People

Obstruction Avoidance

Through Object

Detection and

Classification [27]

Object detection

and classification

algorithm

Camera or

sensor for

capturing

image or

video data.

• Smart assistive system for visually impaired effectively avoids obstructions

through object detection and classification.

• Analyzes image or video data from camera or sensor to detect and classify

obstacles in real-time.

• System improves mobility and safety of visually impaired individuals.

• Provides greater independence and confidence in navigating surroundings.

20

2022

Application of Fuzzy

and Rough Logic to

Posture Recognition in

Fall Detection System

[19]

Fuzzy and rough

logic algorithms

Sensors or

cameras

for

capturing

posture

data.

• Application of fuzzy and rough logic to posture recognition in fall detection

system improves ability to distinguish normal activities from falls.

• Analyzing posture data using these techniques increases accuracy in

detecting falls and reduces false alarms.

• Incorporating fuzzy and rough logic enhances performance and reliability of

fall detection systems.

• Makes systems more suitable for real-world applications.

41

No. Year Title Software Hardware Findings

21

2022

KinectGaitNet:

Kinect-Based

Gait Recognition

Using Deep

Convolutional

NeuralNetwork

[8]

Deep CNN for gait

recognition, Kinect

(SDK)

Kinect

sensor for

capturing

gait data.

• KinectGaitNet achieved high accuracy in gait recognition using Kinect

sensor data.

• Deep CNNs used to accurately identify individuals based on unique gait

patterns.

• KinectGaitNet offers promising approach to gait recognition.

• Potential applications in security, surveillance, and healthcare for reliable

biometric identification.

22

2023

Image-based fall

detection in bus

compartment

scene [28]

Image processing

algorithms

Cameras

for

capturing

images.

• Image-based fall detection system for bus compartments effectively detects

falls in real-time.

• Analyzes images from cameras installed in bus compartments.

• Accurately detects fall events.

• Enhances safety of bus passengers by providing timely alerts to bus drivers

or authorities.

42

No. Year Title Software Hardware Findings

23

2023

A Flexible Fall

Detection

Framework

Based on Object

Detection and

Motion Analysis

[22]

Object detection

algorithm, motion

analysis algorithm, fall

detection algorithm

Cameras or

sensors for

capturing

video data.

• Flexible fall detection framework based on object detection and motion

analysis effective in detecting falls in various environments.

• Combines techniques for improved accuracy and reliability in detecting fall

events.

• Suggests integrated approach enhances performance of fall detection

systems for real-world applications.

24

2023

Detecting

Human Falls in

Poor Lighting:

Object Detection

and Tracking

Approach for

Indoor Safety

[14]

Object detection

algorithm, motion

analysis algorithm, fall

detection algorithm

Cameras or

sensors for

capturing

video data.

• Object detection and tracking approach effectively detects human falls in

poor lighting conditions.

• Utilizes techniques to accurately detect falls in challenging lighting

conditions.

• Offers reliable method for enhancing indoor safety by improving fall

detection in poorly lit areas.

43

No. Year Title Software Hardware Findings

25

2023

Fall Detection

Approaches for

Monitoring

Elderly

HealthCare

Using Kinect

Technology: A

Survey [4]

fall detection

algorithms and

techniques,

Kinect SDK

Kinect sensor

for capturing

depth and

skeleton data.

• Kinect technology widely adopted for fall detection in elderly healthcare.

• Approaches include machine learning algorithms, rule-based systems, and

combination methods.

• Kinect-based systems show promising results in accuracy and efficiency.

• Highlights potential of Kinect technology in monitoring elderly healthcare.

26

2024

Fall Recognition

Based on Time-

Level Decision

Fusion

Classification

[21]

fusion algorithm

Accelerometer

s or

gyroscopes for

capturing

motion data.

• Time-level decision fusion classification approach improves accuracy of fall

recognition.

• Combines multiple classifiers at different time levels for enhanced performance.

• System shows improved reliability in detecting falls across various scenarios.

• Decision fusion techniques make fall recognition systems more suitable for real-

world applications.

44

The table compares various research studies on fall detection systems, highlighting their

software, hardware, and key findings. Many studies utilize Kinect sensors (either v1 or v2)

to track body movements, leveraging depth sensing and skeletal tracking for fall detection.

Some research explores alternative technologies, such as accelerometers, gyroscopes, and

image-based methods. The findings indicate that Kinect-based systems generally achieve

high accuracy, provide real-time monitoring, and offer non-intrusive solutions for elderly

care.

Recent studies (2022-2024) explore advanced detection techniques, including deep learning,

object tracking, and decision fusion algorithms, demonstrating improved performance in

challenging scenarios. The research highlights the growing potential of Kinect technology

and hybrid approaches for enhancing fall detection in elderly healthcare and indoor safety

applications.

2.13 Summary

This chapter explored various fall detection methods, categorized into three primary

approaches: smartphone-based systems, wearable-sensor systems, and vision-based systems.

Each category utilizes different technologies and techniques to detect falls effectively.

Smartphone-based systems primarily leverage built-in sensors such as accelerometers and

gyroscopes to monitor motion and detect sudden changes indicative of a fall. Wearable-

sensor systems, on the other hand, rely on external devices like accelerometers, gyroscopes,

and other specialized sensors attached to the user’s body to collect motion and positional

data. Vision-based systems utilize cameras or depth sensors, such as the Kinect sensor, to

capture RGB and depth information for visual analysis of human movement.

45

To develop robust and reliable fall detection systems, researchers have employed advanced

computational techniques, including thresholding algorithms, machine learning, and deep

learning models. Thresholding algorithms are commonly used for simple and efficient fall

detection based on predefined criteria, such as abrupt changes in acceleration or position.

Machine learning models enhance the system's ability to distinguish falls from non-fall

activities by training on large datasets of motion patterns. Deep learning techniques further

improve accuracy by extracting complex features from sensor data or images, enabling the

system to recognize falls even under challenging conditions, such as partial occlusions or

cluttered environments.

This chapter highlights the strengths and limitations of each method, providing a

comprehensive overview of the current advancements and challenges in fall detection

research.

46

METHODOLOGY

3.1 Introduction

In this chapter, the implementation of a real-time fall detection system for the elderly, with

consideration for obstructions using Kinect, was described. Section 3.2 detailed the project

execution flow and planning; section 3.2.1 explained the flowchart outlining the system

design, while section 3.2.2 covered project planning aspects, including the timeline and the

duration of each task. Section 3.3 discussed the development of algorithms for fall detection,

including handling all real-world obstacles such as barriers and lighting conditions. It also

covered the block diagram and the project flowchart. Section 3.4 listed the software and

hardware used, including Kinect SDK, Visual Studio, and the Kinect sensor itself. While

section 3.5 explains the setup of the project during the testing and collecting data stage of

the project and section 3.6 explain the Sustainable Development Goals (SDG) that correlates

to the project. Finally, section 3.7 summarized the chapter.

3.2 Project Design

3.2.1 Project Execution Flow

The goal of the project is to implement a Kinect-based fall detection system to assist in

monitoring elderly individuals. In the first phase, research was conducted to understand

different fall detection techniques, algorithms, and technologies, including the use of Kinect

sensors. Existing fall detection systems were analysed to identify suitable hardware and

47

software, as well as to establish criteria for testing fall scenarios. Data was also collected to

assess the limitations and advantages of Kinect-based systems.

In the second phase, a fall detection algorithm was developed, focusing on identifying falls

under normal conditions. This algorithm was rigorously tested, and upon achieving

satisfactory results, advanced functions were incorporated. These functions included

detecting falls with object obstructions, detecting falls in various lighting conditions,

differentiating non-fall postures (e.g., sitting on a chair or floor), handling multiple people

in the frame, identifying multiple fall postures, and integrating a help command for

immediate alerting in emergencies.

The completed system was tested extensively to ensure it could accurately detect falls under

different conditions and scenarios. Data from these tests were collected and analysed to

validate the results. The final system achieved the goal of developing an efficient and reliable

Kinect-based fall detection system with advanced features. The process combined research,

algorithm development, software testing, and analysis to provide a comprehensive fall

detection solution.

48

Figure 3.1 PSM 1 Project Execution Flow

49

Figure 3.2 PSM 2 Project Execution Flow

50

3.2.2 Project Planning

Table 3.1 Outline Planning

Activity Duration (weeks) Start week End week

PSM 1

PSM1 project

planning

2 1 2

Research on

software and

hardware

4 3 6

Research on

Previous related

projects

6 6 11

Prepare PSM 1

report

5 9 14

PSM 2

Development of fall

detection algorithm

6 15 20

Troubleshoot

system program

2 18 19

Improvement of

system program

7 19 25

Testing project 2 25 26

Collecting data for

analysis

3 24 26

Presentation

preparation

2 26 27

Prepare PSM 2

report

1 28 28

The project outline planning provides a clear timeline and structure for the development of

the Kinect-based fall detection system, divided into two phases: PSM1 and PSM2. In PSM1,

51

the project began with two weeks of planning, where the scope, objectives, and methodology

were established to ensure the project had a well-defined direction. This was followed by

four weeks of research on suitable software and hardware tools, ensuring that the necessary

resources were identified for implementing the fall detection system.

Subsequently, six weeks were dedicated to studying previous related projects. This research

provided valuable insights into existing methodologies and helped refine the approach for

the project. The findings, along with progress during PSM1, were compiled into a report

over five weeks, from Week 9 to Week 14, concluding the first phase.

In PSM2, the focus shifted to implementation and testing. The development of the fall

detection algorithm began in Week 15 and lasted six weeks, forming the foundation for the

system's functionality. Once the algorithm was developed, troubleshooting was carried out

in Weeks 18 and 19 to identify and resolve issues in the program. This was followed by

seven weeks of improving the system, where advanced features such as detecting falls in

obstructed views, handling multiple users, and differentiating non-fall postures were

integrated and refined.

From Weeks 25 to 26, comprehensive testing was conducted to validate the system's

functionality and reliability. During this period, data was also collected for analysis to assess

the accuracy and performance of the fall detection system. In Weeks 26 and 27, the team

prepared for the project presentation by creating slides, rehearsing, and organizing results

for effective delivery. Finally, in Week 28, the second phase concluded with the preparation

of the PSM2 report, documenting all aspects of the project, including methods, results, and

conclusions.

52

This structured timeline ensured a systematic approach to the project, with each phase

building upon the previous one. By adhering to this plan, the project was executed

efficiently, culminating in a comprehensive and reliable fall detection system.

3.3 System’s Algorithm

Developing a Kinect-based fall detection system with the ability to detect falls even under

partial body visibility and in the presence of multiple individuals was the aim of this research.

This project was executed systematically, progressing through several phases from the

conceptualization of the idea to the implementation and testing of the final system. Each step

was carefully planned and executed to ensure reliable operation and comprehensive fall

detection coverage.

To fully develop the system, the project involved analysing various scenarios, including falls

with partial visibility due to object obstruction, as well as movements involving multiple

individuals in the frame. Based on these requirements, a fall detection algorithm was

designed and implemented using Visual Studio. Subsequently, the algorithm's performance

was tested and evaluated to ensure accuracy in detecting falls while minimizing false alarms.

The implementation phase involved the use of the Kinect sensor to capture body joint data,

which served as input to the algorithm. The algorithm employed advanced techniques,

including the analysis of joint positions and motion patterns, to identify falls effectively.

Once the algorithm was developed, the system was debugged and improved iteratively to

resolve any errors and optimize its performance.

53

The finalized fall detection system was then simulated and tested with various scenarios to

ensure its behaviour matched the expected outcomes without errors. This testing phase

verified that the system could accurately detect falls under different conditions, such as

partial body visibility or the presence of multiple people. The results confirmed that the

system met the design requirements and performed reliably.

This thorough and systematic approach ensured the successful development of a Kinect-

based fall detection system capable of addressing the challenges posed by real-world

scenarios.

3.3.1 Fall Detection Algorithm

The provided pseudocode outlines the design and functionality of a Kinect-based fall

detection system. This system is intended to monitor body movements in real-time and

trigger alerts in the event of a detected fall. The structure of the code is modular, making it

easier to implement, test, and maintain. Below is an explanation of its key components and

flow.

The positionThreshold variable is key to determining whether a potential fall has occurred.

It is designed to track the relative movement of the subject (usually an elderly person) within

the Kinect's field of view. Essentially, this threshold defines the acceptable range of motion

for a person standing or moving normally. The system compares the position of the detected

body joints to this threshold to decide whether a fall has taken place.

When the system detects the user's skeletal data via the Kinect sensor, it evaluates the

position of key joints, such as the head, torso, and legs. The positionThreshold is used as a

reference to compare how far these joints have moved from their typical standing or walking

54

positions. A fall is generally detected when the system identifies that these joints, especially

the torso, have dropped significantly in relation to the threshold. For example, if the torso is

suddenly much lower than expected and is outside the predefined range, the system may

classify this as a fall.

The fall detection mechanism operates by continuously monitoring the skeletal data and

comparing it to the set position thresholds. The program is designed to detect abnormal joint

positions that would indicate a fall. For instance, if the subject’s torso moves below a certain

height threshold, it might suggest that the person has collapsed to the ground, triggering a

fall event.

The fall detection process involves several key steps:

1. Joint Tracking and Threshold Comparison: The Kinect sensor tracks the body's

joints in real-time, and the system evaluates their positions relative to the

positionThreshold. When these positions exceed or fall below the threshold values,

the system flags this as a possible fall.

2. Fall Alert Activation: If the system detects a fall, the fallAlertPlayer is triggered,

playing an alert sound or visual signal to notify caregivers or other monitoring

systems. The fallSoundTimer ensures the alert sound plays for an appropriate

duration.

3. State Management: To avoid false positives or repeated alerts, the system uses state

variables such as fallState and possibleFallDetected. The fallState tracks whether the

system is in fall detection mode or has already identified a fall. The

possibleFallDetected variable serves as a buffer to detect instances where a fall might

appear likely but is not confirmed, prompting continued monitoring.

55

4. Timeout Mechanisms: The fallDetectionTimeout variable ensures the system

doesn't continuously alarm for a fall detection event without any changes. If no

movement is detected after a certain period, the system assumes that the subject is

no longer in a dangerous fall state and resets its detection mechanisms.

5. Inferred and Tracked Joints

The system also uses the inferredJointBrush and trackedJointBrush variables, which

represent the colours for different states of joints. The Kinect sensor can track the positions

of the user’s body joints, but some joints may be "inferred," meaning their positions are

estimated when they are not directly visible due to obstructions or angle limitations. These

inferred joints are shown using a different colour (such as a lighter or dimmer shade),

allowing users to differentiate between actual, detected joints and those that are estimated.

This is important when assessing the accuracy of the detected fall and ensuring that any

detection is based on reliable joint positions.

The MainWindow class forms the backbone of the program, encompassing all methods and

functionality required to run the fall detection system. It begins with the initialization of

components, including the setup of the alert sound system (fallAlertPlayer) and the timer for

managing sound playback (fallSoundTimer). Methods such as PlayAlertSoundAsync and

StopAlertSound control the playback of the alert sound, ensuring the system provides audible

feedback when a fall is detected.

The Window_Loaded method sets up the Kinect sensor, initializing its features such as

capturing colour and skeleton frame data. The Window_Closing method ensures proper

cleanup and shuts down the Kinect sensor gracefully when the application is closed.

56

The core functionality for processing data is implemented in the

KinectSensor_ColorFrameReady and KinectSensor_SkeletonFrameReady methods. The

first method handles real-time colour frame data, while the second focuses on skeleton frame

data to analyse joint positions and movements. By utilizing these methods, the system can

monitor body movements and determine whether a fall has occurred.

Several helper methods are defined to analyse specific body positions and detect abnormal

movements:

• IsPersonStanding determines whether a person is in a standing position.

• IsPersonSittingCrossedLegs detects a sitting posture with crossed legs.

• IsLayingWithKneesUp identifies lying down with knees up.

• IsPersonFallingDown evaluates fall conditions based on changes in joint positions

and timestamps.

• IsLimbPositionAbnormal checks for irregular limb positions.

• IsHandRaisedAboveHead detects when a hand is raised above the head.

These methods are essential for interpreting the data collected by the Kinect sensor, enabling

the system to recognize falls and distinguish them from other movements.

To provide a visual representation of the monitored movements, the program includes

methods such as DrawBonesAndJoints, which renders bone and joint connections, and

ConvertSkeletonPointToScreenCoordinates, which translates 3D skeleton data into 2D

screen coordinates. Additionally, RenderClippedEdges ensures that the visualization

accounts for any parts of the body that may be outside the camera's field of view. These

methods enhance the system's user interface, making it easier to monitor the detection

process.

57

The program also incorporates methods to facilitate user interaction. For example, the

Button_Click method allows the user to capture a screenshot of the current window, while

the ApplyTiltButton_Click method adjusts the Kinect sensor's tilt angle. Furthermore, sound-

related methods such as PlayFallAlertSound, TestSoundButton_Click, and

StopSoundButton_Click give users control over the alert system, enabling manual testing and

stopping of the alert sound.

This pseudocode represents a well-structured approach to building a Kinect-based fall

detection system. By combining real-time data processing, accurate movement analysis, and

user interaction, the program aims to reliably detect falls and provide timely alerts. Its

modular design, with clearly defined methods and variables, ensures that the system is both

functional and maintainable.

1. Initialize variables:

- kinectSensor

- RenderWidth = 640.0

- RenderHeight = 480.0

- JointThickness = 3

- BodyCenterThickness = 10

- ClipBoundsThickness = 10

- centerPointBrush = Blue

- trackedJointBrush = Green

- inferredJointBrush = Yellow

- trackedBonePen = Green with thickness 6

- inferredBonePen = Gray with thickness 1

- drawingGroup

- imageSource

- colorBitmap

- initialHeadToAnkleDistance = 0

58

- positionThreshold = 0.3

- fallAlertPlayer

- isSoundPlaying = false

- fallSoundTimer

- lastHeadY = 0

- lastShoulderCenterY = 0

- lastHipCenterY = 0

- lastSkeletonTimestamp = MinValue of DateTime

- possibleFallDetected = false

- fallDetectionTimeout = 3 seconds

- setAColor = Green

- setBColor = Blue

- fallState = false

2. Define MainWindow class:

- Initialize components

- Initialize fallAlertPlayer with alert sound file path

- Initialize fallSoundTimer for looping sound

- Define async method PlayAlertSoundAsync to play alert sound

- Define method StopAlertSound to stop alert sound

- Implement Window_Loaded method to set up Kinect sensor

- Implement Window_Closing method to stop Kinect sensor

- Implement KinectSensor_ColorFrameReady method to handle color frame data

- Implement async KinectSensor_SkeletonFrameReady method to handle skeleton frame

data

- Define various helper methods for detecting positions and movements

- Implement method to draw bones and joints

- Implement method to convert SkeletonPoint to screen coordinates

- Implement method to render clipped edges

- Implement Button_Click method to take a snapshot of the window

- Implement ApplyTiltButton_Click method to adjust Kinect tilt angle

3. Define helper methods:

59

- IsPersonStanding to check standing position

- IsPersonSittingCrossedLegs to check sitting position with crossed legs

- IsLayingWithKneesUp to check lying position with knees up

- IsPersonFallingDown to detect fall based on various conditions

- IsLimbPositionAbnormal to check abnormal limb positions

- IsHandRaisedAboveHead to check if hand is raised above head

- UpdateJointPositionsUI to display joint positions

- UpdateStatusText to update status text

- NotifyFallEvent to trigger fall alert sound

- DrawBonesAndJoints to render bone and joint connections

4. Implement UI interaction methods:

- PlayFallAlertSound to play alert sound

- TestSoundButton_Click to manually trigger sound playing

- StopSoundButton_Click to stop the alert sound

- Button_Click to save a screenshot

- ApplyTiltButton_Click to adjust the Kinect tilt angle

Figure 3.3 Pseudocode of Fall Detection Algorithm

3.3.2 Project Flowchart

The flowchart represents the operation of the Kinect-based fall detection system, starting

with the initialization of the Kinect sensor. This initial step ensures that the hardware is

properly prepared to capture the required data for further processing. Once the initialization

is complete, the system performs a critical check to determine whether the Kinect sensor is

connected to the system. If the sensor is not connected, an error message is displayed to

inform the user about the issue and halt the process. On the other hand, if the sensor is

successfully connected, the system proceeds to the next stage.

60

In the subsequent step, the system enables the colour and skeleton data streams provided by

the Kinect sensor. These streams are essential for detecting falls, as they allow the system to

capture real-time RGB colour data and skeletal tracking information. After enabling these

streams, the system processes the skeleton data to analyse the positions and movements of

key joints in the human body. This analysis forms the foundation for detecting any abnormal

movements or potential falls.

A decision point is then reached where the system evaluates the processed data to determine

whether a fall has occurred. If no fall is detected, the system continues to monitor the

skeleton data without triggering any alerts, ensuring continuous surveillance. However, if a

fall is detected, the system takes immediate action. It plays an audible alert sound to draw

attention to the incident and displays a fall alert message on the user interface (UI). This alert

system is designed to notify caregivers or users about the fall, enabling a swift response to

the situation.

Figure 3.4 Simple version of Project Flowchart

61

3.3.3 Project Block Diagram

The block diagram illustrates the architecture of a real-time fall detection system for elderly

individuals, developed using Kinect technology with an emphasis on handling obstructions.

The system integrates various components that work together to detect falls accurately and

provide necessary alerts.

At the core of the system is the Main Application, which integrates all functionalities and

coordinates the overall process. It acts as the control center, managing user interactions, data

flow, and processing tasks required for fall detection. The Main Window serves as the user

interface (UI) framework, connecting the application logic with the visual components and

allowing users to interact with the system. It provides access to buttons for testing and

stopping sounds, along with status updates for system activity and alerts.

The UI Components consist of visual and interactive elements such as buttons (e.g., "Test

Sound" and "Stop Sound") and status displays. These components allow users to control

sound feedback and monitor the real-time status of the system, ensuring ease of use and

accessibility.

The Kinect Sensor is the primary hardware used for capturing data. It processes both the

Colour Stream and Skeleton Stream to enable fall detection. The Colour Stream captures

visual data, which is then used to display a colour image in the UI, providing a visual

representation of the monitored area. The Skeleton Stream, on the other hand, provides

skeletal data, including joint positions and movement patterns, which are critical for

detecting falls.

62

The Skeleton Stream captures skeletal data by tracking the positions and orientations of key

joints in the human body. This data is rendered in the system to display Skeleton and Joints,

enabling a clear representation of the subject's posture and movements. The skeletal data

undergoes Skeleton Data Processing, where algorithms analyse joint movements, body

angles, and velocity. The processed data is fed into the Fall Detection module, which

determines whether a fall has occurred. Advanced considerations, such as obstruction

handling, are incorporated to enhance the system's accuracy in detecting falls in cluttered or

occluded environments.

The Sound Player is responsible for generating audio feedback. It plays a critical role in

alerting caregivers or the user when a fall is detected. The sound functions can be tested or

stopped using the buttons in the UI. Additionally, the Status Updates module provides real-

time feedback on the system's performance and alerts. This includes notifications for

detected falls, system errors, or other significant events, ensuring that users and caregivers

are informed promptly.

The workflow begins with the Kinect Sensor capturing data through the Color and Skeleton

Streams. This data is processed and visualized in the Main Window while being analyzed

for fall detection. If a fall is detected, the system triggers an alert using the Sound Player and

provides relevant updates in the status display. The UI Components allow users to interact

with the system and control sound alerts.

This real-time fall detection system offers a robust solution for monitoring elderly

individuals, especially in environments with potential obstructions. By leveraging Kinect's

63

advanced capabilities and integrating intuitive UI elements, the system provides reliable and

user-friendly support for fall prevention and emergency response.

Figure 3.5 Project Block Diagram

3.4 Hardware & Software

3.4.1 Kinect Sensor

Kinect sensor is a depth-sensing camera device developed by Microsoft. It was originally

created as an accessory for the Xbox gaming console but has also found applications in other

fields, such as robotics, healthcare, and computer vision research.

Figure 3.6 Xbox 360 Microsoft Kinect

Kinect sensor utilizes a combination of cameras and infrared sensors to capture depth

information and track human movement. It consists of some main components:

64

1) RGB Camera

The Kinect sensor includes a traditional RGB camera that captures color images like

a regular camera. This camera is useful for capturing visual information and can be

used for applications like gesture recognition or video conferencing.

2) Depth Sensor

The Kinect sensor employs an infrared depth sensor that projects an infrared pattern

into the scene and measures the time it takes for the pattern to bounce back. This

allows the sensor to calculate the distance of objects from the camera, generating a

depth map of the environment.

3) Infrared Projector

The Kinect sensor emits an infrared light pattern that is invisible to the human eye.

This pattern combined with the depth sensor, allows the sensor to accurately measure

distances and create a detailed depth image.

4) Microphone Array

The Kinect sensor includes an array of microphones that capture audio from the

surrounding environment. This enables applications to incorporate voice commands

and perform speech recognition.

65

3.4.2 Laptop

In this Kinect-based fall detection project, the laptop serves as the central hub for processing

the data received from the Kinect sensor. The laptop runs the necessary software to interpret

this data, identify key body joints, and track their movement patterns. Using this processed

information, the laptop runs algorithms to compare the detected body positions to predefined

thresholds, which helps determine if a fall has occurred.

The laptop also manages the user interface, displaying the visual representation of the

detected body joints and movements in real time. This allows caregivers or monitoring

systems to observe the status of the person being monitored. Additionally, the laptop controls

the alert system, playing audio or triggering other signals when a fall is detected, ensuring

that the appropriate notifications are sent to alert caregivers or users.

Furthermore, the laptop provides the computational power to run the complex algorithms

needed for accurate fall detection, such as joint tracking, motion analysis, and threshold

comparison. It handles the real-time processing and ensures that the system responds quickly

enough to detect a fall as soon as it happens. In essence, the laptop is crucial for handling

Figure 3.7 Sensor arrangement of Kinect

Sensor

66

the data analysis, user interface, alert system, and overall management of the fall detection

process. Without the laptop, the Kinect sensor would only be able to collect raw data, but it

would not be able to process or interpret that data into actionable insights.

Figure 3.8 Laptop

3.4.3 Contraption

The contraption designed to hold the Kinect sensor is an innovative solution that mimics the

properties of common home furniture. It features adjustable height, ranging from a minimum

of 1.20 meters to a maximum of 2.0 meters, allowing the Kinect to be positioned optimally

for capturing body movements in various environments. This height flexibility ensures that

the sensor can be tailored to suit different users, such as those standing or sitting, and

accommodate various room configurations.

By imitating the properties of home furniture, the contraption blends seamlessly into a

typical household setting. It allows the Kinect to be discreetly placed without drawing

attention, while still maintaining functionality. The design makes it easier to integrate the

Kinect into a living space, ensuring it doesn't interfere with the natural flow of the room or

obstruct the user’s movements. Additionally, the adjustable height feature makes the

67

contraption versatile enough to monitor users of different heights or varying positions, such

as standing, sitting, or lying down.

This setup enhances the fall detection system by ensuring the Kinect sensor is always

positioned at the correct height for optimal tracking, leading to more accurate data collection

and improved performance of the fall detection algorithms. It also contributes to the overall

user experience, making the system feel more like a natural part of the home environment

rather than an intrusive piece of technology.

Figure 3.9 Contraption for the Kinect

3.4.4 Microsoft Visual Studio 2019

Microsoft Visual Studio 2019 is an integrated development environment (IDE) that provides

tools for software development across various programming languages. It features a code

editor, debugger, version control integration, and support for building desktop, web, mobile,

and cloud applications. In the context of this project, Visual Studio plays a central role in

developing and deploying the Kinect-based fall detection system.

68

• Coding and Development: Visual Studio is used to write and edit the code that

processes Kinect sensor data and integrates it with fall detection algorithms. This

includes developing the logic for tracking body joints and analysing their positions

to detect a fall.

• Debugging and Testing: Visual Studio’s debugging tools are essential for

identifying issues in the code. By setting breakpoints and monitoring variables,

developers can ensure that Kinect data is correctly processed and fall detection works

as expected under various conditions.

• User Interface Development: Visual Studio provides tools for creating a graphical

user interface (GUI) if your project includes one. Using Windows Forms or WPF,

developers can design interactive windows that display real-time data, alerts, and

visual feedback.

• Build and Deployment: After development and testing, Visual Studio is used to

build the application into an executable and deploy it to the target system, ensuring

compatibility with the Kinect setup and other environments.

Figure 3.10 Microsoft Visual Studio Interface

69

3.5 Experimental Setup

Proprietary connecter of Xbox 360 Microsoft Kinect is plugged into corresponding

port on the USB adapter. End of USB adapter is plugged into laptop. Microsoft Kinect is

then connected to power supply and tested with Kinect developer toolkit. Figure 3.11 shows

that the Kinect sensor is positioned above and is facing towards the person. The measurement

from the person to the Kinect sensor represents the horizontal distance between the Kinect

sensor and the person. The vertical measurement pointing downwards from the Kinect sensor

indicates the height at which the Kinect sensor is placed above the ground.

Figure 3.11 Project Setup

Figure 3.12 Kinect Horizontal View Angle

70

Figure 3.13 Kinect Vertical View Angle

 Figure 3.13 shows the vertical field of view of Kinect sensor where the sensor can

perceive objects within a 43-degree vertical range in front of it. Figure 3.12 shows the angle

at which the Kinect sensor can detect motion across the horizontal plane. The sensor must

be placed in such a way that the area where motion is to be detected falls within this 57-

degree field.

Figure 3.14 Proposed Kinect placement in common and private areas.

71

Figure 3.14 shows the floor plan of a house with markings indicating the placement and field

of view of a Kinect sensor. The Kinect sensor is placed in seven potential locations within

the house, as indicated by the black circles. The blue cones indicate the extent of the area

covered by the sensor's camera.

(a)

(b)

(c)

(d)

Figure 3.15 Kinect view of house areas (a) Bedroom (b) Living Room (c) Driveway (d)

Kitchen

Figure 3.15 show the Kinect’s view of different areas within the house. They highlight how

the Kinect sensor captures depth and skeletal data to monitor movements in real time. These

visuals demonstrate how the Kinect tracks individuals in various environments, including

spaces with obstacles like furniture or walls. This is essential for fall detection, as it shows

how the system can detect falls even in rooms with different layouts or obstructions. The

72

figures emphasize the Kinect’s adaptability and accuracy in home settings, ensuring reliable

performance for elderly care.

3.6 Formula Used

The following formulas were used to calculate the accuracy percentage for fall detection and

non-fall postures:

• Fall Detection Accuracy =
𝑁𝑜.𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

𝑁𝑜.𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
 x 100

• Fall Detection Accuracy for Non-Fall Postures =
𝑁𝑜.𝑜𝑓 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

𝑁𝑜.𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
 x 100

These formulas provided a quantitative measure of the system’s performance, ensuring an

accurate evaluation of its ability to differentiate between falls and non-fall movements.

3.7 Sustainable Development Goals (SDG)

The Sustainable Development Goals (SDGs) that correlates with the project are SDG 3, SDG

9, and SDG 11. The initiative fulfills SDG 3 (Good Health and Well-Being) by lowering

injuries and enhancing safety for the elderly and those with disabilities by using Kinect

technology to detect falls and send timely alarms. Repurposing Kinect technology is an

inventive way to showcase innovations in health monitoring systems and assist SDG 9

(Industry, Innovation, and Infrastructure). In addition, the project advances inclusivity and

safety, enabling vulnerable communities to live more freely and safely, which supports

73

Sustainable Cities and Communities, SDG 11. The project encourages safer, more

sustainable, and healthier communities through these initiatives.

Figure 3.16 SDG 3, 9 and 11 icons.

3.8 Summary

This chapter presented the methodology used to implement a Kinect-based fall detection

system for the elderly. The goal was to develop a system that utilizes the Kinect sensor and

its SDK to monitor and detect falls in real-time. The Kinect’s colour, and skeletal data were

processed to track the body’s movements and detect abnormal joint positions. The system

was developed and optimized using Microsoft Visual Studio 2019, and its performance was

evaluated in terms of accuracy, response time, and system reliability. The effectiveness of

the fall detection algorithm was tested to ensure it met the desired outcomes and could

function reliably in home environments with varying layouts and obstructions.

74

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter examined the outcomes of implementing a real-time fall detection

system for the elderly using the Kinect sensor, focusing on addressing real-world challenges

and optimizing system performance. The result was analysed in different factor and

situations from section 4.2.1 until 4.2.8 The system was designed to provide a practical,

efficient, and non-intrusive solution for monitoring individuals and ensuring their safety. By

leveraging the Kinect’s depth-sensing and skeletal tracking capabilities, a robust fall

detection algorithm was developed and implemented in Visual Studio 2019, utilizing the

Kinect Developer Toolkit v1.8 for advanced programming and integration. This approach

allowed the system to reliably detect falls in various complex scenarios.

4.2 Results and Analysis

Fall detection was simulated and evaluated across diverse scenarios, including

varying heights, different lighting conditions, and situations involving multiple individuals.

The system’s accuracy was analysed considering factors such as falls from different heights,

the presence of object obstructions (e.g., furniture blocking and partial body visibility), and

the ability to distinguish falls from non-fall postures, such as sitting on a chair, sitting on the

floor, and standing. Furthermore, the "HELP" gesture command was incorporated as an

emergency feature, allowing users to manually trigger alerts when assistance was required.

75

The results demonstrated the system's adaptability and effectiveness in real-world

applications, ensuring reliable fall detection and robust response mechanisms.

4.2.1 Fall Detection Accuracy at Different Heights (At the distance 2.0m)

Fall detection accuracy is observed and analyzed at various heights. Heights are tested

starting from the lowest at 1.2 meters up to the highest at 2.0 meters, with an increment of

0.1 meters.

Table 4.1 Fall Detection Accuracy at Different Heights (At the distance 2.0m)

Figure 4.1 Graph of Fall Detection Accuracy at Different Heights

0

20

40

60

80

100

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

A
cc

u
ra

cy
 (

%
)

Height of Kinect Sensor (m)

At the distance: 2.0 m

Height of

Kinect Sensor

(m)

No.of simulated

falls scenarios

No.of detected

Fall scenarios

No.of

undetected falls

scenarios

Accuracy (%)

1.20 4 4 0 100

1.30 4 4 0 100

1.40 4 4 0 100

1.50 4 4 0 100

1.60 4 4 0 100

1.70 4 4 0 100

1.80 4 4 0 100

1.90 4 4 0 100

2.00 4 4 0 100

76

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

77

(i)

Figure 4.2 Fall Detection at Different Heights (a) 1.2m (b) 1.3m (c) 1.4m (d) 1.5m (e) 1.6m

(f) 1.7m (g) 1.8m (h) 1.9m (i) 2.0m

The fall detection system demonstrated exceptional performance, achieving 100% accuracy

across all tested heights between the Kinect sensor and the subject. This result validates the

system’s functionality by confirming its ability to consistently track skeletal data and

accurately detect falls, regardless of the subject’s distance from the sensor. The uniform

accuracy across different heights indicates that the sensor's depth-sensing capability and fall

detection algorithm are highly reliable, ensuring effective monitoring in various indoor

settings. These findings reinforce the system’s practicality for real-world applications, where

variations in sensor placement are inevitable.

4.2.2 Fall Detection at Different Distances (At the height of 1.4m)

Fall detection accuracy was observed and analysed across various distances to evaluate the

system's performance under different spatial conditions. Distances of 1.0m, 2.0m, 3.0m,

4.0m, and 4.5m were carefully tested to ensure the Kinect sensor's ability to track skeletal

data and detect falls effectively at both close and moderate ranges.

78

Table 4.2 Fall Detection Accuracy at Different Distances (At the height of 1.4m)

Distance of

Subject from

Kinect Sensor

(m)

No.of

simulated falls

scenarios

No.of detected

Fall scenarios

No.of

undetected falls

scenarios

Accuracy (%)

1.0 (min) 4 4 0 100

2.0 4 4 0 100

3.0 4 4 0 100

4.0 4 4 0 100

4.5 (max) 4 2 2 50

Figure 4.3 Graph of Fall Detection Accuracy at Different Distances

(a)

(b)

0

20

40

60

80

100

1.0 (min) 2 3 4 4.5 (max)

A
cc

u
ra

cy
 (

%
)

Distance of Subject from Kinect Sensor (m)

At the height: 1.4m

79

(c)

(d)

(e)

Figure 4.4 Fall Detection at Different Distances (a) 1.0m (b) 2.0m (c) 3.0m (d) 4.0m (e)

4.5m

From 1.0 meter until 4.0 meter, the accuracy was the highest which is 100% while the

farthest distance of 4.5 meters, the fall detection accuracy is the lowest, at 50%. The Kinect

sensor struggles with accurate skeletal tracking at these distances. At close range, the limited

field of view and potential depth perception distortions result in incomplete or inaccurate

data. At the farthest distances, the Kinect's maximum effective view of approximately 4.5

meters poses challenges, as there is a chance that the subject may move out of the frame. To

address this limitation, it is suggested to incorporate multiple Kinect sensors in areas larger

than 4.5 meters to ensure continuous tracking and improved fall detection accuracy.

4.2.3 Fall Detection Accuracy for Different Fall Postures (At the height: 1.4m) &

(At the distance 2.0m)

Fall detection accuracy is observed and analysed across various possible fall scenarios and

positions. These include forward falls, backward falls, sideward falls, and falls from sitting

80

or standing positions. The analysis ensures comprehensive evaluation of the system’s ability

to detect falls regardless of the direction or position, highlighting the robustness and

adaptability of the fall detection methodology in diverse real-world scenarios.

Table 4.3 Fall Detection Accuracy for Different Fall Postures (At the height: 1.4m) & (At

the distance 2.0m)

Scenarios No.of

simulated falls

scenarios

No.of detected

Fall scenarios

No.of

undetected falls

scenarios

Accuracy (%)

Fall to the left

side

4 4 0 100

Fall to the right

side

4 4 0 100

Fall to the front 4 4 0 100

Fall to the back 4 4 0 100

Fall while

sitting

4 4 0 100

Kneeling 4 4 0 100

Crawling 4 4 0 100

Figure 4.5 Graph of Fall Detection Accuracy for Different Fall Postures

0

10

20

30

40

50

60

70

80

90

100

Fall to the
left side

Fall to the
right side

Fall to the
front

Fall to the
back

Fall while
sitting

Kneeling Crawling

A
cc

u
ra

cy
 (

%
)

Scenarios

(At the height: 1.4m) & (At the distance 2.0m)

81

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.6 Different Fall Postures (a) Fall to the left side (b) Fall to the right side (c) Fall to

the front (d) Fall to the back (e) Fall while sitting (f) Kneeling (g) Crawling

82

The fall detection system demonstrated exceptional performance across a variety of fall

scenarios, including forward, backward, and sideward falls, as well as falls from sitting and

standing positions. In each scenario, the system achieved 100% accuracy in detecting falls,

showcasing its ability to effectively track and analyze skeletal data to identify different types

of falls. The system's robustness in these diverse fall positions ensures its suitability for a

wide range of real-world applications, particularly in environments where various fall

directions are possible.

4.2.4 Fall Detection Accuracy Towards Multiple People Approach (At the height:

1.4m) & (At the distance 2.0m)

Fall detection accuracy is assessed in scenarios involving multiple people. This approach

evaluates the system's ability to accurately identify falls in environments where more than

one individual is present, ensuring that the system can differentiate between the movements

of various people and detect falls without being influenced by other individuals in the frame.

Table 4.4 Fall Detection Accuracy Towards Multiple People Approach (At the height:

1.4m) & (At the distance 2.0m)

Scenarios No.of

simulated falls

scenarios

No.of detected

Fall scenarios

No.of

undetected falls

scenarios

Accuracy (%)

Two people

standing

4 0 4 100

One fall, one

standing

4 4 0 100

Two fall 4 4 0 100

83

Figure 4.8 Graph of Fall Detection Accuracy Towards Multiple People Approach

In scenarios involving multiple people, the system maintained its accuracy and

responsiveness in detecting falls even when multiple individuals were present in the sensor’s

field of view. The Kinect's ability to distinguish between different people and focus on the

0

10

20

30

40

50

60

70

80

90

100

Two people standing One fall, one standing Two fall

A
cc

u
ra

cy
 (

%
)

Scenarios

(At the height: 1.4m) & (At the distance 2.0m)

(a)

(b)

(c)

Figure 4.7 Fall Detection Towards Multiple People (a) Two People

Standing (b) One Fall One Standing (c) Multiple Falls

84

relevant subject allowed the system to track movements accurately, ensuring that the fall

detection process was not disrupted by the presence of additional individuals in the area.

4.2.5 Fall Detection Accuracy to Differ Non-Fall Postures (At the height: 1.4m) &

(At the distance 2.0m)

The system's performance is tested with non-fall postures, including sitting on a chair,

standing, and sitting on the floor. These scenarios help to ensure that the system can

distinguish between actual falls and common everyday postures that might resemble a fall,

such as bending or crouching. The aim is to minimize false positives by recognizing the

difference between a fall and other stationary or semi-stationary positions.

Table 4.5 Fall Detection Acuracy to Differ Non-Fall Postures (At the height: 1.4m) & (At

the distance 2.0m)

Scenarios No.of

simulated

scenarios

No.of detected

Fall scenarios

No.of

undetected falls

scenarios

Accuracy (%)

Standing 4 0 4 100

Sitting on a

chair

4 0 4 100

Sitting on the

floor

4 0 4 100

85

Figure 4.9 Graph of Fall Detection Accuracy to Differ Non-Fall Postures

(a)

(b)

(c)

Figure 4.10 Non-Fall Postures (a) Standing (b) Sitting on a chair (c) Sitting on the floor

0

10

20

30

40

50

60

70

80

90

100

Standing Sitting on a chair Sitting on the floor

A
cc

u
ra

cy
 (

%
)

Scenarios

(At the height: 1.4m) & (At the distance 2.0m)

86

The system also demonstrated high accuracy in differentiating between non-fall postures,

such as sitting on a chair, standing, and sitting on the floor. By carefully analyzing joint

movements and applying specific thresholds, the system was able to effectively ignore non-

fall postures, minimizing false positives. Although there was a drawback on detecting an

intentional lying down due to the sekeleton data becamemessy when the subject was falling

down. This capability ensures that the fall detection system remains reliable, even in

environments where users may frequently change positions.

4.2.6 Fall Detection Accuracy with Object Obstructions (At the height: 1.4m) & (At

the distance 2.0m)

The accuracy of the fall detection system is also evaluated in environments with object

obstructions, such as behind furniture or situations where the person’s body is partially

obstructed. These conditions challenge the Kinect’s ability when skeletal data fully vanished

from the frame, so the system’s robustness in handling partial visibility of the subject, due

to objects in the environment, is thoroughly assessed.

Table 4.6 Fall Detection Accuracy with Object Obstructions (At the height: 1.4m) & (At

the distance 2.0m)

Scenarios No.of

simulated falls

scenarios

No.of detected

Fall scenarios

No.of

undetected falls

scenarios

Accuracy (%)

Behind

furniture (chair,

table)

4 4 0 100

Partial Body 1 4 4 0 100

Partial Body 2 4 4 0 100

87

Figure 4.11 Graph of Fall Detection Accuracy with Object Obstructions

(a)

(b)

(c)

(d)

Figure 4.12 Obstruction Scenarios (a) Behind Furnitures 1 (b) Behind Furnitures 2 (c)

Partial Body 1 Partial Body 2

When testing with object obstructions, such as furniture blocking partial body visibility, the

system maintained its fall detection accuracy. Despite the challenges posed by partial body

visibility, the Kinect's depth-sensing and skeletal tracking features allowed it to accurately

0

10

20

30

40

50

60

70

80

90

100

Behind furniture (chair,
table)

Partial Body 1 Partial Body 2

A
cc

u
ra

cy
 (

%
)

Scenarios

(At the height: 1.4m) & (At the distance 2.0m)

88

detect falls even when the subject was partially obscured. This feature ensures that the

system can function effectively in real-world environments where obstructions are common.

4.2.7 Fall Detection Accuracy with Different Lighting (At the height: 1.4m) & (At

the distance 2.0m)

Fall detection performance is observed under various lighting conditions, including both

bright and low-light environments. The impact of lighting on the Kinect sensor’s ability to

capture accurate depth and skeletal data is analyzed to determine how well the system adapts

to changes in environmental lighting, which could otherwise affect sensor performance.

Table 4.7 Fall Detection Accuracy with Different Lighting (At the height: 1.4m) & (At the

distance 2.0m)

Lighting No.of

simulated falls

scenarios

No.of detected

Fall scenarios

No.of

undetected falls

scenarios

Accuracy (%)

Brightest 4 4 0 100

Bright 4 4 0 100

Dim 4 4 0 100

Dark 4 4 0 100

Darkest 4 4 0 100

89

Figure 4.13 Graph of Fall Detection Accuracy with Different Lighting

(a)

(b)

(c)

(d)

0

10

20

30

40

50

60

70

80

90

100

Brightest Bright Dim Dark Darkest

A
cc

u
ra

cy
 (

%
)

Lighting

(At the height: 1.4m) & (At the distance 2.0m)

90

(e)

Figure 4.14 Fall Detection in Different Lighting (a) Brightest (b) Bright (c) Dim (d) Dark

(e) Darkest

The system's performance was evaluated under different lighting conditions, ranging from

well-lit to dimly lit environments. Despite the potential challenges posed by varying lighting,

the Kinect sensor continued to perform reliably, maintaining high accuracy in detecting falls.

This adaptability ensures that the system can be used effectively in different environments,

regardless of lighting conditions.

4.2.8 “HELP” Gesture Command

The system is tested with the “HELP” gesture command to assess its responsiveness in

emergency situations. This evaluation ensures that, in addition to detecting falls, the system

can recognize when an individual requires assistance, providing a proactive alert mechanism

that could trigger a response from caregivers or emergency personnel when needed.

91

Figure 4.15 "Help Command Detected" was displayed when a hand was raised to provide

immediate assistance.

Finally, the "HELP" gesture command was integrated into the system as an emergency

feature. Users were able to manually trigger an alert by performing a specific gesture,

allowing them to request assistance when needed. The system successfully recognized the

gesture and triggered an alert, adding an important layer of safety and ensuring that users

have a reliable means of requesting help in the event of a fall or other emergency.

4.3 Summary

The simulation results demonstrated that the Kinect-based fall detection system functioned

correctly, successfully detecting falls in real-time across various scenarios. The developed

algorithm processed skeletal tracking data efficiently, analysing joint movements to identify

falls without any errors. The fall detection mechanism maintained high accuracy, with no

false positives or negatives observed during testing. The system accurately differentiated

between fall scenarios and non-fall postures, ensuring reliable performance in diverse

environments.

The Kinect sensor interacted seamlessly with the detection algorithm, as evidenced by

precise skeletal tracking, real-time depth analysis, and accurate joint positioning data. The

92

notification system, triggered upon fall detection or "HELP" gesture commands, worked as

intended, providing timely alerts to enhance user safety.

The system's performance matched theoretical expectations, maintaining consistent

accuracy even in challenging conditions, such as with object obstructions, varying lighting,

and multiple people in the frame. These results confirm that the Kinect-based fall detection

system is both robust and efficient, offering a reliable solution for real-time elderly

monitoring and safety assurance.

While the Kinect-based fall detection system offers promising capabilities, it is not without

limitations. These challenges became apparent at different stages during the development of

the project.

One of the primary constraints is the effective range of the Kinect sensor, which is

approximately 4.5 meters. This limitation was first encountered during the testing phase

when the system failed to detect individuals positioned beyond this distance. It highlighted

the need for careful sensor placement in larger indoor areas. To address this, experimentation

with multiple Kinect sensors was considered to ensure comprehensive coverage, but it

introduced additional complexity and cost, making the solution less practical for certain

settings.

Another limitation is the power consumption of the Kinect sensor. This issue arose during

the planning and implementation stages when designing a system for continuous, 24-hour

operation. The high energy demand posed challenges for long-term efficiency and cost-

effectiveness. Although the system functioned effectively, the energy consumption

highlighted the need for future optimization to improve sustainability.

93

Additionally, the fall detection algorithm faced limitations in distinguishing intentional lying

down from a fall. This issue became apparent during the data collection and algorithm testing

phases. While the system successfully identified non-fall postures, such as sitting on a chair

or the floor, it struggled to classify intentional lying down accurately. This presented a

critical challenge, as unintentional lying down is a key indicator of falls. As a result, false

negatives occurred, underscoring the need for further refinement of the algorithm to improve

posture classification.

These limitations highlight areas for improvement encountered at different stages of

development. Extending detection range, optimizing power efficiency, and refining

algorithms remain crucial for enhancing the system’s reliability and effectiveness. Despite

these challenges, the Kinect-based system serves as a valuable foundation for advancing fall

detection technology.

94

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This project successfully developed a real-time fall detection system for the elderly using

the Kinect sensor, focusing on addressing real-world challenges such as object obstructions,

varying lighting conditions, and the presence of multiple people. The system utilized the

Kinect’s depth-sensing and skeletal tracking capabilities, combined with a robust algorithm

implemented in Visual Studio 2019, to detect falls accurately and in real time. The Kinect

Developer Toolkit v1.8 provided a solid foundation for development, enabling effective

integration with the Kinect SDK to access advanced features like skeletal tracking and depth

analysis. The system employed threshold values and specific joint tracking data to analyse

body movements, ensuring accurate detection even in complex scenarios.

To meet the first objective of recreating different fall scenarios with object obstructions for

the development of the Kinect algorithm, various fall types were tested under conditions

where the subject’s body was partially obstructed by furniture or other objects. These

scenarios challenged the system’s ability to accurately track skeletal data and detect falls

despite the obstructions. The system was able to identify falls effectively even with partial

body visibility, demonstrating its robustness in handling real-world environments where

objects might block the Kinect’s view. The results indicated that object obstructions did not

significantly affect fall detection performance, ensuring the system's reliability in such

scenarios.

95

In addressing the second objective, which was to analyse the optimal location for the Kinect

sensor (distance, height, and area coverage), the system was evaluated across different

distances and heights, ranging from 1.2 meters to 2.0 meters in height and distances from

1.0 meters to 4.5 meters. The results indicated that the Kinect sensor performed best within

its optimal range and height, with a recommendation to use multiple Kinect sensors in larger

areas to ensure continuous tracking. This setup would improve the overall fall detection

accuracy and area coverage, especially in spaces larger than the Kinect’s maximum effective

range of 4.5 meters.

To meet the third objective of developing a fall detection system based on skeletal tracking

data with alarm notifications, the system integrated an alarm feature that was triggered when

a fall was detected. The system utilized the Kinect sensor’s skeletal tracking data, analysing

joint movements to differentiate between falls and non-fall postures. In addition to detecting

falls, the “HELP” gesture command was incorporated as an emergency feature, allowing

users to trigger alerts manually when assistance was needed. The system's successful

integration of real-time fall detection and alarm notifications provides a reliable solution for

elderly care, offering an additional layer of safety and support.

Although Visual Studio 2019 and Kinect Developer Toolkit v1.8 are older versions of

development tools, they remain effective in creating a functional fall detection system. This

Kinect-based solution offers a non-intrusive method of monitoring individuals without

requiring wearable devices, which is particularly beneficial for seniors who may forget or be

unwilling to wear monitoring equipment. By utilizing the advanced programming

capabilities of Visual Studio 2019 and the Kinect SDK, the project demonstrated the

potential for developing efficient and reliable applications. Overall, the proposed system

96

provides a robust, non-intrusive, and adaptable solution for enhancing elderly care, ensuring

safety and support in various environments.

5.2 Potential for Commercialization

The "Real-Time Fall Detection for the Elderly with Obstruction Consideration

Using Kinect" project offers a groundbreaking solution to a critical issue faced by an aging

population. Falls are a significant health concern among the elderly, often resulting in severe

injuries, loss of independence, or even fatalities. Current fall detection systems frequently

fail in scenarios involving obstructions or multiple individuals in the monitored area. This

project addresses these limitations, providing an accurate and unobtrusive fall detection

solution with substantial commercialization potential.

One of the primary factors that make this project commercially viable is its

adaptability to various care settings, including nursing homes, hospitals, and individual

households. With Malaysia’s aging population expected to reach 15% by 2030, there is an

urgent demand for reliable and efficient elder care technologies. Furthermore, the global

elderly care market is projected to grow significantly, driven by increasing life expectancy

and an emphasis on improving quality of life for seniors. This creates a robust market

opportunity for innovative products like this fall detection system.

The system’s competitive advantage lies in its ability to function effectively even

with partial body visibility, distinguishing it from conventional solutions that rely on

wearable devices or simpler motion sensors. By utilizing Kinect technology and advanced

algorithms, the system ensures high accuracy without intruding on the elderly’s daily lives.

97

This unobtrusive approach reduces user resistance and enhances adoption rates, especially

in homes where the elderly may not be comfortable wearing monitoring devices.

To facilitate commercialization, collaboration with both government and private

entities is crucial. In Malaysia, potential partners include the Ministry of Health (MOH),

which oversees elder care policies, and the Social Welfare Department (JKM), which

supports initiatives aimed at improving the lives of senior citizens. Institutions like the

Malaysian Research Accelerator for Technology and Innovation (MRANTI) could provide

funding and resources to develop the system further and introduce it to the market.

On an international level, partnerships with private companies specializing in

healthcare technology, such as Philips Healthcare or Siemens Healthineers, could drive the

adoption of the system in global markets. Collaboration with organizations like the World

Health Organization (WHO) or the International Federation on Ageing (IFA) could further

promote the system’s relevance in addressing global elder care challenges.

The cost-effectiveness of Kinect hardware enhances the system’s commercial

appeal, making it accessible to a wider demographic. Private elder care facilities and

healthcare providers could integrate the system as part of their service offerings, creating a

new revenue stream while improving safety for their clients. Additionally, collaboration with

local technology companies for manufacturing and distribution would ensure a streamlined

process from production to end-user delivery.

In summary, the "Real-Time Fall Detection for the Elderly with Obstruction

Consideration Using Kinect" project is a promising innovation with significant potential for

98

commercialization. By addressing critical gaps in existing fall detection systems, the project

offers a valuable solution for improving elderly safety. Strategic partnerships with

government agencies, healthcare providers, and private companies can ensure the system’s

success in both domestic and international markets, making it a vital contribution to elder

care technology.

5.3 Future Works

The "Real-Time Fall Detection for the Elderly with Obstruction Consideration Using

Kinect" project lays the foundation for a cutting-edge elder care solution. However, there

are numerous opportunities to expand and enhance its functionality through future works.

These advancements would not only improve the system’s efficiency and usability but also

position it as a comprehensive tool for elderly safety and healthcare monitoring.

One significant area of improvement is the integration of the system with Internet of Things

(IoT) technologies. By connecting the Kinect-based fall detection system to an IoT network,

data can be transmitted in real-time to caregivers or emergency response teams. This would

enable instant notifications in case of a fall, reducing response times and potentially saving

lives. Furthermore, IoT integration allows the system to be paired with other smart home

devices, creating a seamless and automated safety environment for the elderly.

Cloud-based storage and analytics present another promising avenue for future work. By

leveraging cloud technology, the system could store fall detection data securely and make it

accessible to authorized caregivers and healthcare professionals. This data could be used to

identify patterns or trends, such as repeated falls in a specific location, enabling proactive

99

measures to prevent future incidents. Additionally, cloud integration could support machine

learning algorithms to continuously improve fall detection accuracy based on historical data.

The Kinect’s built-in microphone offers potential for optimizing the system’s functionality.

Future iterations of the system could use audio data to complement visual fall detection. For

instance, the microphone could detect sounds associated with a fall, such as a loud thud or a

cry for help, and cross-reference this with visual data to confirm an incident. This multimodal

approach would enhance the system’s reliability, particularly in scenarios where visual data

alone might be insufficient.

Another critical enhancement could involve developing an advanced algorithm to

differentiate between a fall and other activities, such as intentionally lying down on the floor.

This distinction is crucial for reducing false alarms, which can erode user trust in the system.

By analysing movement patterns, posture transitions, and contextual data, the algorithm

could accurately classify events, ensuring that alerts are triggered only for genuine falls.

Expanding the system’s capabilities to include remote monitoring is another potential future

work. This feature would enable caregivers to monitor elderly individuals in real-time

through a mobile app or web platform, regardless of their physical location. Remote

monitoring could also provide caregivers with additional data, such as activity levels or time

spent in different postures, offering a holistic view of the elderly person’s well-being.

Lastly, incorporating features for health monitoring could make the system even more

valuable. For example, the Kinect’s depth-sensing technology could be adapted to track

breathing rates or detect abnormal postures indicative of health issues. Integrating these

features would transform the fall detection system into a comprehensive health monitoring

solution.

100

REFERENCES

[1] F. Hijaz, N. Afzal, T. Ahmad, and O. Hasan, “Survey of fall detection and

daily activity monitoring techniques,” in 2010 International Conference on

Information and Emerging Technologies, ICIET 2010, 2010. doi:

10.1109/ICIET.2010.5625702.

[2] S. K. Jarray, “Computer Vision Based Fall Detection Methods Using the

Kinect Camera : A Survey,” International Journal of Computer Science and

Information Technology, vol. 10, no. 5, pp. 73–92, Oct. 2018, doi:

10.5121/ijcsit.2018.10507.

[3] J. Barabas, T. Bednar, and M. Vychlopen, “Kinect-based platform for

movement monitoring and fall-detection of elderly people,” in 2019

Proceedings of the 12th International Conference on Measurement,

MEASUREMENT 2019, 2019. doi:

10.23919/measurement47340.2019.8780004.

[4] M. Fayad et al., “Fall Detection Approaches for Monitoring Elderly

HealthCare Using Kinect Technology: A Survey,” Sep. 01, 2023,

Multidisciplinary Digital Publishing Institute (MDPI). doi:

10.3390/app131810352.

[5] Y. Xu, J. Chen, Q. Yang, and Q. Guo, “Human posture recognition and fall

detection using kinect V2 camera,” in Chinese Control Conference, CCC,

2019. doi: 10.23919/ChiCC.2019.8865732.

[6] T. Kalinga, C. Sirithunge, A. G. Buddhika, P. Jayasekara, and I. Perera, “A

Fall Detection and Emergency Notification System for Elderly,” in 2020 6th

International Conference on Control, Automation and Robotics, ICCAR

2020, 2020. doi: 10.1109/ICCAR49639.2020.9108003.

[7] O. S. Seredin, A. V. Kopylov, S. C. Huang, and D. S. Rodionov, “A skeleton

features-based fall detection using Microsoft Kinect v2 with one class-

classifier outlier removal,” in International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2019.

doi: 10.5194/isprs-archives-XLII-2-W12-189-2019.

[8] A. S. M. Hossain Bari and M. L. Gavrilova, “KinectGaitNet: Kinect-Based

Gait Recognition Using Deep Convolutional Neural Network,” Sensors, vol.

22, no. 7, Apr. 2022, doi: 10.3390/s22072631.

[9] T. H. Tsai and C. W. Hsu, “Implementation of Fall Detection System Based

on 3D Skeleton for Deep Learning Technique,” IEEE Access, vol. 7, 2019,

doi: 10.1109/ACCESS.2019.2947518.

[10] Q. Wang, Z. Guo, K. Mintah, Q. Li, T. Mei, and P. Li, “Cell-Based Transport

Path Obstruction Detection Approach for 4D BIM Construction Planning,” J

Constr Eng Manag, vol. 145, no. 3, 2019, doi: 10.1061/(asce)co.1943-

7862.0001583.

[11] S. Gilroy, M. Glavin, E. Jones, and D. Mullins, “An objective method for

pedestrian occlusion level classification,” Pattern Recognit Lett, vol. 164,

2022, doi: 10.1016/j.patrec.2022.10.028.

[12] Y. Liu, M. Gao, H. Zong, X. Wang, and J. Li, “Real-Time Object Detection

for the Running Train Based on the Improved YOLO V4 Neural Network,” J

Adv Transp, vol. 2022, 2022, doi: 10.1155/2022/4377953.

101

[13] Y. Peng, J. Peng, J. Li, P. Yan, and B. Hu, “Design and Development of the

Fall Detection System based on Point Cloud,” in Procedia Computer Science,

2019. doi: 10.1016/j.procs.2019.01.253.

[14] X. Zi, K. Chaturvedi, A. Braytee, J. Li, and M. Prasad, “Detecting Human

Falls in Poor Lighting: Object Detection and Tracking Approach for Indoor

Safety,” Electronics (Switzerland), vol. 12, no. 5, 2023, doi:

10.3390/electronics12051259.

[15] Y. Harari, N. Shawen, C. K. Mummidisetty, M. V. Albert, K. P. Kording, and

A. Jayaraman, “A smartphone-based online system for fall detection with

alert notifications and contextual information of real-life falls,” J Neuroeng

Rehabil, vol. 18, no. 1, 2021, doi: 10.1186/s12984-021-00918-z.

[16] A. Amini, K. Banitsas, and W. R. Young, “Kinect4FOG: monitoring and

improving mobility in people with Parkinson’s using a novel system

incorporating the Microsoft Kinect v2,” Disabil Rehabil Assist Technol, vol.

14, no. 6, pp. 566–573, Aug. 2019, doi: 10.1080/17483107.2018.1467975.

[17] C. A. Q. Burgos, D. F. Q. Benavidez, E. R. Omen, and J. L. N. Semanate,

“Fall detection system for people using video surveillance,” Ingeniare, vol.

28, no. 4, pp. 684–693, 2020, doi: 10.4067/S0718-33052020000400684.

[18] A. Amini, K. Banitsas, and W. R. Young, “Kinect4FOG: monitoring and

improving mobility in people with Parkinson’s using a novel system

incorporating the Microsoft Kinect v2,” Disabil Rehabil Assist Technol, vol.

14, no. 6, pp. 566–573, Aug. 2019, doi: 10.1080/17483107.2018.1467975.

[19] B. Pȩkala, T. Mroczek, D. Gil, and M. Kepski, “Application of Fuzzy and

Rough Logic to Posture Recognition in Fall Detection System,” Sensors, vol.

22, no. 4, Feb. 2022, doi: 10.3390/s22041602.

[20] B. H. Wang, J. Yu, K. Wang, X. Y. Bao, and K. M. Mao, “Fall Detection

Based on Dual-Channel Feature Integration,” IEEE Access, vol. 8, 2020, doi:

10.1109/ACCESS.2020.2999503.

[21] J. Kim, B. Kim, and H. Lee, “Fall Recognition Based on Time-Level

Decision Fusion Classification,” Applied Sciences, vol. 14, no. 2, 2024, doi:

10.3390/app14020709.

[22] D. Ros and R. Dai, “A Flexible Fall Detection Framework Based on Object

Detection and Motion Analysis,” in 5th International Conference on Artificial

Intelligence in Information and Communication, ICAIIC 2023, Institute of

Electrical and Electronics Engineers Inc., 2023, pp. 63–68. doi:

10.1109/ICAIIC57133.2023.10066990.

[23] M. Bundele, H. Sharma, M. Gupta, and P. S. Sisodia, “An Elderly Fall

Detection System using Depth Images,” in 2020 5th IEEE International

Conference on Recent Advances and Innovations in Engineering, ICRAIE

2020 - Proceeding, 2020. doi: 10.1109/ICRAIE51050.2020.9358330.

[24] D. Yacchirema, J. S. De Puga, C. Palau, and M. Esteve, “Fall detection

system for elderly people using IoT and Big Data,” in Procedia Computer

Science, 2018. doi: 10.1016/j.procs.2018.04.110.

[25] K. L. Lu and E. T. H. Chu, “An image-based fall detection system for the

elderly,” Applied Sciences (Switzerland), vol. 8, no. 10, 2018, doi:

10.3390/app8101995.

[26] Z. Qiu, X. Liang, Q. Chen, X. Huang, and Y. Wang, “Old man fall detection

based on surveillance video object tracking,” in Communications in

Computer and Information Science, 2020. doi: 10.1007/978-981-15-2767-

8_15.

102

[27] U. Masud, T. Saeed, H. M. Malaikah, F. U. Islam, and G. Abbas, “Smart

Assistive System for Visually Impaired People Obstruction Avoidance

Through Object Detection and Classification,” IEEE Access, vol. 10, 2022,

doi: 10.1109/ACCESS.2022.3146320.

[28] X. Zhang, J. Ji, L. Wang, Z. He, and S. Liu, “Image-based fall detection in

bus compartment scene,” IET Image Process, vol. 17, no. 4, 2023, doi:

10.1049/ipr2.12705.

[29] M. Fayad et al., “Fall Detection Approaches for Monitoring Elderly

HealthCare Using Kinect Technology: A Survey,” Sep. 01, 2023,

Multidisciplinary Digital Publishing Institute (MDPI). doi:

10.3390/app131810352.

[30] X. Zhang, J. Ji, L. Wang, Z. He, and S. Liu, “Image-based fall detection in

bus compartment scene,” IET Image Process, vol. 17, no. 4, 2023, doi:

10.1049/ipr2.12705.

[31] Y. Harari, N. Shawen, C. K. Mummidisetty, M. V. Albert, K. P. Kording, and

A. Jayaraman, “A smartphone-based online system for fall detection with

alert notifications and contextual information of real-life falls,” J Neuroeng

Rehabil, vol. 18, no. 1, 2021, doi: 10.1186/s12984-021-00918-z.

[32] J. Kim, B. Kim, and H. Lee, “Fall Recognition Based on Time-Level

Decision Fusion Classification,” Applied Sciences, vol. 14, no. 2, 2024, doi:

10.3390/app14020709.

103

APPENDICES

Appendix A Gantt Chart PSM 1 & PSM 2

104

Appendix B Project Flowchart (1)

Appendix C Project Flowchart (2)

105

Appendix D Project Flowchart (3)

106

Appendix E Project Flowchart (4)

Appendix F Simple Block Diagram

107

Appendix G MainWindow.xaml.cs

using System;

using System.Globalization;

using System.Windows;

using System.Windows.Media;

using System.Windows.Media.Imaging;

using Microsoft.Kinect;

using System.IO;

using System.Windows.Media.Media3D;

using System.Media;

using System.Threading.Tasks;

using System.Windows.Threading;

namespace FallDetection

{

 public partial class MainWindow :

Window

 {

 private KinectSensor kinectSensor;

 private const float RenderWidth =

640.0f;

 private const float RenderHeight =

480.0f;

 private const double JointThickness =

3;

 private const double

BodyCenterThickness = 10;

 private const double

ClipBoundsThickness = 10;

 private readonly Brush

centerPointBrush = Brushes.Blue;

 private readonly Brush

trackedJointBrush = new

SolidColorBrush(Color.FromArgb(255,

68, 192, 68));

 private readonly Brush

inferredJointBrush = Brushes.Yellow;

 private readonly Pen trackedBonePen

= new Pen(Brushes.Green, 6);

 private readonly Pen inferredBonePen

= new Pen(Brushes.Gray, 1);

 private DrawingGroup

drawingGroup;

 private DrawingImage imageSource;

 private WriteableBitmap

colorBitmap;

// Check if the person is laying down (head

and hip positions are low, ankles are at a

higher level)

 bool isLaying = yHead <

yHipCenter && yHipCenter <

Math.Min(yAnkleLeft, yAnkleRight) -

layingThreshold;

 // Check if knees are elevated

above the floor

 bool kneesElevated = yKneeLeft >

Math.Min(yAnkleLeft, yAnkleRight) +

kneeElevatedThreshold &&

 yKneeRight >

Math.Min(yAnkleLeft, yAnkleRight) +

kneeElevatedThreshold;

 return isLaying && kneesElevated;

 }

 private bool

IsPersonFallingDown(Skeleton skeleton)

 {

 double yHead =

skeleton.Joints[JointType.Head].Position.

Y;

 double yShoulderCenter =

skeleton.Joints[JointType.ShoulderCenter].

Position.Y;

 double yHipCenter =

skeleton.Joints[JointType.HipCenter].Posit

ion.Y;

 double yAnkleLeft =

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y;

 double yAnkleRight =

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y;

 // Threshold factors

 double HeightThresholdFactor =

0.7;

 double distanceThreshold = 0;

 // Initialize head to ankle distance

for the first time

 if (initialHeadToAnkleDistance ==

0)

108

 private double

initialHeadToAnkleDistance = 0;

 private const double

positionThreshold = 0.3;

 private MediaPlayer fallAlertPlayer;

 private bool isSoundPlaying = false;

 private DispatcherTimer

fallSoundTimer;

 private double lastHeadY = 0;

 private double lastShoulderCenterY =

0;

 private double lastHipCenterY = 0;

 private DateTime

lastSkeletonTimestamp =

DateTime.MinValue;

 private bool possibleFallDetected =

false;

 private readonly TimeSpan

fallDetectionTimeout =

TimeSpan.FromSeconds(3); // Timeout for

possible fall state

 private readonly Brush setAColor =

Brushes.Green;

 private readonly Brush setBColor =

Brushes.Blue;

 private bool fallState = false; //

Persistent fall state flag

 public MainWindow()

 {

 InitializeComponent();

 // Initialize SoundPlayer with the

path to the alert sound file

 fallAlertPlayer = new

MediaPlayer();

 fallAlertPlayer.Open(new

Uri(@"C:\Users\AMIAQ\Desktop\kinect_

project\Police Siren Sound Effect.wav",

UriKind.Absolute));

 // Initialize DispatcherTimer for

looping sound during fall detection

 fallSoundTimer = new

DispatcherTimer();

 fallSoundTimer.Interval =

TimeSpan.FromSeconds(1);

 fallSoundTimer.Tick += (s, e) =>

 {

 {

 initialHeadToAnkleDistance =

yHead - Math.Min(yAnkleLeft,

yAnkleRight); // Consider lower ankle

position

 distanceThreshold =

initialHeadToAnkleDistance *

HeightThresholdFactor;

 }

 double

currentHeadToAnkleDistance = yHead -

Math.Min(yAnkleLeft, yAnkleRight);

 // Check if the person is standing or

sitting with crossed legs

 if (IsPersonStanding(skeleton) ||

IsPersonSittingCrossedLegs(skeleton))

 {

 fallState = false; // Reset the fall

state

 return false; // No fall detected

 }

 // Check if fall detected based on

head position and body orientation

 bool isFall =

Math.Abs(initialHeadToAnkleDistance -

currentHeadToAnkleDistance) >

distanceThreshold &&

 yHead <

positionThreshold &&

 yShoulderCenter <

positionThreshold &&

 yHipCenter <

positionThreshold;

 if (isFall)

 {

 // Additional check for limbs

(arms and legs)

 if

(IsLimbPositionAbnormal(skeleton))

 {

 // Update last known position

and timestamp

 lastHeadY = yHead;

 lastShoulderCenterY =

yShoulderCenter;

 lastHipCenterY = yHipCenter;

109

 fallAlertPlayer.Position =

TimeSpan.Zero;

 fallAlertPlayer.Play();

 };

 }

 // Play alert sound asynchronously to

prevent blocking

 private async Task

PlayAlertSoundAsync()

 {

 if (!isSoundPlaying)

 {

 fallAlertPlayer.Position =

TimeSpan.Zero;

 fallAlertPlayer.Play();

 isSoundPlaying = true;

 await Task.Delay(1000);

 }

 }

 // Stop alert sound and reset flag

 private void StopAlertSound()

 {

 if (isSoundPlaying)

 {

 fallAlertPlayer.Stop();

 isSoundPlaying = false;

 }

 }

 private void Window_Loaded(object

sender, RoutedEventArgs e)

 {

 drawingGroup = new

DrawingGroup();

 imageSource = new

DrawingImage(drawingGroup);

 SkeletonImage.Source =

imageSource;

 if

(KinectSensor.KinectSensors.Count > 0)

 {

 kinectSensor =

KinectSensor.KinectSensors[0];

 if (kinectSensor != null)

 lastSkeletonTimestamp =

DateTime.Now;

 fallState = true; // Confirm fall

 return true;

 }

 }

 // Update last known skeleton state

for possible fall detection

 lastHeadY = yHead;

 lastShoulderCenterY =

yShoulderCenter;

 lastHipCenterY = yHipCenter;

 lastSkeletonTimestamp =

DateTime.Now;

 return false; // Safe

 }

 private bool

IsLimbPositionAbnormal(Skeleton

skeleton)

 {

 // Retrieve limb joint positions

 double yElbowLeft =

skeleton.Joints[JointType.ElbowLeft].Posit

ion.Y;

 double yElbowRight =

skeleton.Joints[JointType.ElbowRight].Pos

ition.Y;

 double yKneeLeft =

skeleton.Joints[JointType.KneeLeft].Positi

on.Y;

 double yKneeRight =

skeleton.Joints[JointType.KneeRight].Posi

tion.Y;

 double yAnkleLeft =

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y;

 double yAnkleRight =

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y;

110

 {

 kinectSensor.Start();

kinectSensor.ColorStream.Enable();

 colorBitmap = new

WriteableBitmap(kinectSensor.ColorStrea

m.FrameWidth,

kinectSensor.ColorStream.FrameHeight,

96.0, 96.0, PixelFormats.Bgr32, null);

 ColorImage.Source =

colorBitmap;

kinectSensor.ColorFrameReady +=

KinectSensor_ColorFrameReady;

kinectSensor.SkeletonStream.Enable();

kinectSensor.SkeletonFrameReady +=

KinectSensor_SkeletonFrameReady;

 StatusTextBlock.Text =

"Kinect sensor connected";

 }

 else

 {

 StatusTextBlock.Text = "No

Kinect sensor found";

 }

 }

 else

 {

 StatusTextBlock.Text = "No

Kinect sensor found";

 }

 }

 private void Window_Closing(object

sender,

System.ComponentModel.CancelEventArg

s e)

 {

 if (kinectSensor != null)

 // Check for abnormal limb

positions (e.g., limbs significantly lower

than the torso)

 if (yElbowLeft < positionThreshold

|| yElbowRight < positionThreshold ||

 yKneeLeft < positionThreshold ||

yKneeRight < positionThreshold ||

 yAnkleLeft < positionThreshold

|| yAnkleRight < positionThreshold)

 {

 return true; // Abnormal position

detected

 }

 return false;

 }

 private void

UpdateJointPositionsUI(double headY,

double shouldercenterY, double

hipcenterY, double ankleleftY, double

anklerightY)

 {

 HeadYText.Text = $"Head Y:

{headY:F2}";

 ShoulderCenterYText.Text =

$"ShoulderCenter Y:

{shouldercenterY:F2}";

 HipCenterYText.Text =

$"HipCenter Y: {hipcenterY:F2}";

 AnkleLeftYText.Text =

$"AnkleLeft Y: {ankleleftY:F2}";

 AnkleRightYText.Text =

$"AnkleRight Y: {anklerightY:F2}";

 }

 private bool

IsHandRaisedAboveHead(Skeleton

skeleton)

 {

 // Ensure both hands and head

joints are tracked before checking their

positions

 Joint head =

skeleton.Joints[JointType.Head];

111

 {

 kinectSensor.Stop();

 kinectSensor = null;

 }

 }

 private void

KinectSensor_ColorFrameReady(object

sender, ColorImageFrameReadyEventArgs

e)

 {

 using (ColorImageFrame

colorFrame = e.OpenColorImageFrame())

 {

 if (colorFrame != null)

 {

 byte[] colorData = new

byte[colorFrame.PixelDataLength];

colorFrame.CopyPixelDataTo(colorData);

 colorBitmap.WritePixels(new

Int32Rect(0, 0, colorFrame.Width,

colorFrame.Height), colorData,

colorFrame.Width *

colorFrame.BytesPerPixel, 0);

 }

 }

 }

 private async void

KinectSensor_SkeletonFrameReady(object

sender, SkeletonFrameReadyEventArgs e)

 {

 Skeleton[] skeletons = new

Skeleton[0];

 using (SkeletonFrame

skeletonFrame = e.OpenSkeletonFrame())

 {

 if (skeletonFrame != null)

 {

 Joint handLeft =

skeleton.Joints[JointType.HandLeft];

 Joint handRight =

skeleton.Joints[JointType.HandRight];

 if (head.TrackingState ==

JointTrackingState.Tracked &&

 ((handLeft.TrackingState ==

JointTrackingState.Tracked &&

handLeft.Position.Y > head.Position.Y) ||

 (handRight.TrackingState ==

JointTrackingState.Tracked &&

handRight.Position.Y > head.Position.Y)))

 {

 return true; // Hand is raised

above head

 }

 return false; // Hand is not above

head or joints not reliably tracked

 }

 private void UpdateStatusText(string

newText)

 {

 if (StatusTextBlock.Text !=

newText)

 {

 StatusTextBlock.Text =

newText;

 }

 }

 private void PlayFallAlertSound()

 {

 try

 {

 fallAlertPlayer.Play(); // Play

the sound asynchronously

 }

 catch (Exception ex)

 {

 StatusTextBlock.Text = "Error

playing alert sound: " + ex.Message;

 }

 }

112

 skeletons = new

Skeleton[skeletonFrame.SkeletonArrayLen

gth];

skeletonFrame.CopySkeletonDataTo(skele

tons);

 int fallCount = 0; // Track how

many people are falling

 int trackedCount = 0; // Track

how many people are being tracked

 bool helpCommandDetected =

false; // Track if help command is detected

 bool anySkeletonTracked =

false; // Track if any skeleton is tracked in

the frame

 foreach (Skeleton skeleton in

skeletons)

 {

 if (skeleton.TrackingState

== SkeletonTrackingState.Tracked)

 {

 anySkeletonTracked =

true;

 trackedCount++;

 double headY =

skeleton.Joints[JointType.Head].Position.

Y;

 double shouldercenterY

=

skeleton.Joints[JointType.ShoulderCenter].

Position.Y;

 double hipcenterY =

skeleton.Joints[JointType.HipCenter].Posit

ion.Y;

 double ankleleftY =

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y;

 double anklerightY =

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y;

UpdateJointPositionsUI(headY,

shouldercenterY, hipcenterY, ankleleftY,

anklerightY);

 private void

TestSoundButton_Click(object sender,

RoutedEventArgs e)

 {

 PlayFallAlertSound(); // Manually

trigger sound playing

 }

 private void

StopSoundButton_Click(object sender,

RoutedEventArgs e)

 {

 // Stop the sound

 if (fallAlertPlayer != null)

 {

 fallAlertPlayer.Stop();

 StatusTextBlock.Text = "Sound

stopped.";

 }

 }

 private void NotifyFallEvent()

 {

 StatusTextBlock.Text = "Help

Command Detected!! \fChecking for fall";

 }

 private void

DrawBonesAndJoints(Skeleton skeleton,

DrawingContext drawingContext)

 {

 // Render Torso

 DrawBone(skeleton,

drawingContext, JointType.Head,

JointType.ShoulderCenter);

 DrawBone(skeleton,

drawingContext,

JointType.ShoulderCenter,

JointType.Spine);

 DrawBone(skeleton,

drawingContext, JointType.Spine,

JointType.HipCenter);

 DrawBone(skeleton,

drawingContext,

JointType.ShoulderCenter,

JointType.ShoulderLeft);

113

 if

(IsPersonFallingDown(skeleton))

 {

 fallState = true;

 fallCount++;

 }

 else

 {

 fallState = false;

 UpdateStatusText("No

person detected.");

 StopAlertSound();

 }

 if

(IsHandRaisedAboveHead(skeleton))

 {

helpCommandDetected = true;

UpdateStatusText("Help Command

Detected! Checking for fall.");

 await

PlayAlertSoundAsync();

 }

 }

 }

 if (helpCommandDetected)

 {

 UpdateStatusText("Help

Command Detected! Checking for fall.");

 await

PlayAlertSoundAsync();

 }

 else if (fallCount == 0 &&

trackedCount == 1)

 {

 UpdateStatusText("Fall is

not detected.");

 StopAlertSound();

 }

 else if (fallCount == 1 &&

trackedCount == 1)

 {

 DrawBone(skeleton,

drawingContext,

JointType.ShoulderCenter,

JointType.ShoulderRight);

 DrawBone(skeleton,

drawingContext, JointType.HipCenter,

JointType.HipLeft);

 DrawBone(skeleton,

drawingContext, JointType.HipCenter,

JointType.HipRight);

 // Left Arm

 DrawBone(skeleton,

drawingContext, JointType.ShoulderLeft,

JointType.ElbowLeft);

 DrawBone(skeleton,

drawingContext, JointType.ElbowLeft,

JointType.WristLeft);

 DrawBone(skeleton,

drawingContext, JointType.WristLeft,

JointType.HandLeft);

 // Right Arm

 DrawBone(skeleton,

drawingContext, JointType.ShoulderRight,

JointType.ElbowRight);

 DrawBone(skeleton,

drawingContext, JointType.ElbowRight,

JointType.WristRight);

 DrawBone(skeleton,

drawingContext, JointType.WristRight,

JointType.HandRight);

 // Left Leg

 DrawBone(skeleton,

drawingContext, JointType.HipLeft,

JointType.KneeLeft);

 DrawBone(skeleton,

drawingContext, JointType.KneeLeft,

JointType.AnkleLeft);

 DrawBone(skeleton,

drawingContext, JointType.AnkleLeft,

JointType.FootLeft);

 // Right Leg

 DrawBone(skeleton,

drawingContext, JointType.HipRight,

JointType.KneeRight);

114

 UpdateStatusText(" Fall

detected.");

 await

PlayAlertSoundAsync();

 possibleFallDetected = true;

// Set possible fall state

 lastSkeletonTimestamp =

DateTime.Now; // Update timestamp

 }

 else if (fallCount == 1 &&

trackedCount > 1)

 {

 UpdateStatusText("One fall

detected with multiple people in frame.");

 await

PlayAlertSoundAsync();

 }

 else if (fallCount > 1)

 {

 UpdateStatusText("Multiple

falls detected.");

 await

PlayAlertSoundAsync(); // Asynchronous

sound playback

 }

 else if (!anySkeletonTracked)

 {

 if (fallState)

 {

UpdateStatusText("Possible fall detected

(skeleton lost).");

 await

PlayAlertSoundAsync();

 }

 else

 {

 UpdateStatusText("No

person detected.");

 StopAlertSound();

 fallState = false;

 }

 }

 DrawBone(skeleton,

drawingContext, JointType.KneeRight,

JointType.AnkleRight);

 DrawBone(skeleton,

drawingContext, JointType.AnkleRight,

JointType.FootRight);

 foreach (Joint joint in

skeleton.Joints)

 {

 if (joint.TrackingState ==

JointTrackingState.Tracked)

 {

 Brush drawBrush = null;

 if (joint.TrackingState ==

JointTrackingState.Tracked)

 {

 drawBrush =

trackedJointBrush;

 }

 else if (joint.TrackingState ==

JointTrackingState.Inferred)

 {

 drawBrush =

inferredJointBrush;

 }

 if (drawBrush != null)

 {

drawingContext.DrawEllipse(drawBrush,

null,

SkeletonPointToScreen(joint.Position),

JointThickness, JointThickness);

 }

 }

 }

 }

 private Point

SkeletonPointToScreen(SkeletonPoint

skelpoint)

 {

 DepthImagePoint depthPoint =

kinectSensor.CoordinateMapper.MapSkele

tonPointToDepthPoint(skelpoint,

115

 else if (trackedCount > 1 &&

fallCount == 0)

 {

 UpdateStatusText("More

than one person detected");

 StopAlertSound();

 }

 else

 {

 UpdateStatusText("Fall is

not detected.");

 StopAlertSound();

 }

 }

 }

 using (DrawingContext dc =

drawingGroup.Open())

 {

dc.DrawRectangle(Brushes.Transparent,

null, new Rect(0.0, 0.0, RenderWidth,

RenderHeight));

 if (skeletons.Length != 0)

 {

 foreach (Skeleton skel in

skeletons)

 {

 RenderClippedEdges(skel,

dc, colorBitmap);

 if (skel.TrackingState ==

SkeletonTrackingState.Tracked)

 {

DrawBonesAndJoints(skel, dc);

 }

 else if (skel.TrackingState

== SkeletonTrackingState.PositionOnly)

 {

 dc.DrawEllipse(

 centerPointBrush,

 null,

SkeletonPointToScreen(skel.Position),

 BodyCenterThickness,

DepthImageFormat.Resolution640x480Fps

30);

 return new Point(depthPoint.X,

depthPoint.Y);

 }

 private void DrawBone(Skeleton

skeleton, DrawingContext

drawingContext, JointType jointType0,

JointType jointType1)

 {

 Joint joint0 =

skeleton.Joints[jointType0];

 Joint joint1 =

skeleton.Joints[jointType1];

 // If can't find either of these joints,

exit

 if (joint0.TrackingState ==

JointTrackingState.NotTracked ||

 joint1.TrackingState ==

JointTrackingState.NotTracked)

 {

 return;

 }

 // Assume all drawn bones are

inferred unless BOTH joints are tracked

 if (joint0.TrackingState ==

JointTrackingState.Inferred &&

 joint1.TrackingState ==

JointTrackingState.Inferred)

 {

 return;

 }

 Pen drawPen =

this.inferredBonePen;

 if (joint0.TrackingState ==

JointTrackingState.Tracked &&

joint1.TrackingState ==

JointTrackingState.Tracked)

 {

 drawPen = trackedBonePen;

 }

drawingContext.DrawLine(drawPen,

116

 BodyCenterThickness);

 }

 }

 }

 drawingGroup.ClipGeometry =

new RectangleGeometry(new Rect(0.0,

0.0, RenderWidth, RenderHeight));

 }

 }

 private bool

IsPersonStanding(Skeleton skeleton)

 {

 double yHead =

skeleton.Joints[JointType.Head].Position.

Y;

 double yShoulderCenter =

skeleton.Joints[JointType.ShoulderCenter].

Position.Y;

 double yHipCenter =

skeleton.Joints[JointType.HipCenter].Posit

ion.Y;

 double yAnkleLeft =

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y;

 double yAnkleRight =

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y;

 double

currentHeadToAnkleDistance = yHead -

Math.Min(yAnkleLeft, yAnkleRight);

 // Detect if the person is standing

upright

 return

currentHeadToAnkleDistance >

initialHeadToAnkleDistance * 0.9 &&

 yHead > positionThreshold

&&

 yShoulderCenter >

positionThreshold &&

 yHipCenter >

positionThreshold;

 }

SkeletonPointToScreen(joint0.Position),

SkeletonPointToScreen(joint1.Position));

 }

 private static void

RenderClippedEdges(Skeleton skeleton,

DrawingContext drawingContext,

WriteableBitmap colorBitmap)

 {

 double actualRenderWidth =

colorBitmap.PixelWidth;

 if

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Bottom))

 {

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(0, RenderHeight -

ClipBoundsThickness, actualRenderWidth,

ClipBoundsThickness));

 }

 if

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Top))

 {

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(0, 0,

actualRenderWidth,

ClipBoundsThickness));

 }

 if

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Left))

 {

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(0, 0,

ClipBoundsThickness, RenderHeight));

 }

117

 private bool

IsPersonSittingCrossedLegs(Skeleton

skeleton)

 {

 double yHipCenter =

skeleton.Joints[JointType.HipCenter].Posit

ion.Y;

 double yKneeLeft =

skeleton.Joints[JointType.KneeLeft].Positi

on.Y;

 double yKneeRight =

skeleton.Joints[JointType.KneeRight].Posi

tion.Y;

 double yAnkleLeft =

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y;

 double yAnkleRight =

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y;

 double crossingThreshold = 0.1; //

Threshold for crossed-leg sitting (adjust as

needed)

 // Check if knees and ankles are at

similar heights and hips are above them

 return Math.Abs(yAnkleLeft -

yAnkleRight) < crossingThreshold &&

 Math.Abs(yKneeLeft -

yKneeRight) < crossingThreshold &&

 yHipCenter >

Math.Max(yKneeLeft, yKneeRight);

 }

 private bool

IsLayingWithKneesUp(Skeleton skeleton)

 {

 double yHead =

skeleton.Joints[JointType.Head].Position.

Y;

 double yHipCenter =

skeleton.Joints[JointType.HipCenter].Posit

ion.Y;

 double yKneeLeft =

skeleton.Joints[JointType.KneeLeft].Positi

on.Y;

 double yKneeRight =

skeleton.Joints[JointType.KneeRight].Posi

tion.Y;

 if

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Right))

 {

 drawingContext.DrawRectangle(

 Brushes.Red,

 null,

 new Rect(actualRenderWidth

- ClipBoundsThickness, 0,

ClipBoundsThickness, RenderHeight));

 }

 }

 private void Button_Click(object

sender, RoutedEventArgs e)

 {

 RenderTargetBitmap

renderTargetBitmap = new

RenderTargetBitmap((int)this.ActualWidth

, (int)this.ActualHeight, 96d, 96d,

PixelFormats.Pbgra32);

 renderTargetBitmap.Render(this);

 BitmapEncoder encoder = new

PngBitmapEncoder();

encoder.Frames.Add(BitmapFrame.Create(

renderTargetBitmap));

 string time =

DateTime.Now.ToString("hh'-'mm'-'ss",

CultureInfo.CurrentUICulture.DateTimeFo

rmat);

 string myPhotos =

Environment.GetFolderPath(Environment.

SpecialFolder.MyPictures);

 string path =

Path.Combine(myPhotos,

"KinectWindowSnapshot-" + time +

".png");

 try

 {

Directory.CreateDirectory(Path.GetDirecto

ryName(path));

 using (FileStream fs = new

FileStream(path, FileMode.Create))

 {

118

 double yAnkleLeft =

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y;

 double yAnkleRight =

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y;

 double layingThreshold = 0.5; //

Threshold for laying down (adjust as

needed)

 double kneeElevatedThreshold =

0.2; // Threshold for knees not being on the

floor

 encoder.Save(fs);

 }

 StatusTextBlock.Text =

"Screenshot saved.";

 }

 catch (IOException)

 {

 StatusTextBlock.Text = "Error

saving screenshot.";

 }

 }

 private void

ApplyTiltButton_Click(object sender,

RoutedEventArgs e)

 {

 int selectedAngle =

(int)TiltAngleSlider.Value;

AdjustKinectTiltAngle(selectedAngle);

 }

 private void

AdjustKinectTiltAngle(int angle)

 {

 if (kinectSensor != null &&

kinectSensor.IsRunning)

 {

 angle = Math.Max(-27,

Math.Min(27, angle));

 try

 {

 kinectSensor.ElevationAngle

= angle;

 StatusTextBlock.Text = $"Tilt

angle set to {angle} degrees.";

 }

 catch

(InvalidOperationException)

 {

 StatusTextBlock.Text = "Error

adjusting tilt angle.";

 }

 }

 }

 }

}

119

Appendix H MainWindow.xaml

<Window x:Class="FallDetection.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="Fall Detection App" Height="600" Width="1000"

 Loaded="Window_Loaded" Closing="Window_Closing" >

 <Grid>

 <Grid>

 <Image x:Name="ColorImage" HorizontalAlignment="Stretch"

VerticalAlignment="Stretch" Margin="113,10,285.2,52" />

 <Image x:Name="SkeletonImage" HorizontalAlignment="Stretch"

VerticalAlignment="Stretch" Margin="112,10,285.2,52" />

 <TextBlock x:Name="StatusTextBlock" HorizontalAlignment="Left"

Margin="734,255,0,0" TextWrapping="Wrap" Text="Status" VerticalAlignment="Top"

FontSize="24" FontWeight="Bold" RenderTransformOrigin="1.12,-0.242" />

 <TextBlock x:Name="HeadYText" HorizontalAlignment="Left"

TextWrapping="Wrap" VerticalAlignment="Top" Text="Head" Margin="734,59,0,0"

FontSize="16" RenderTransformOrigin="0.6,-0.612"/>

 <TextBlock x:Name="ShoulderCenterYText" HorizontalAlignment="Left"

Margin="734,94,0,0" TextWrapping="Wrap" VerticalAlignment="Top"

Text="Shoulder" FontSize="16" RenderTransformOrigin="-0.165,-1.862"/>

 <TextBlock x:Name="HipCenterYText" HorizontalAlignment="Left"

Margin="734,129,0,0" TextWrapping="Wrap" VerticalAlignment="Top" Text="Hip"

FontSize="16" RenderTransformOrigin="0.522,-1.712"/>

 <TextBlock x:Name="AnkleLeftYText" HorizontalAlignment="Left"

TextWrapping="Wrap" VerticalAlignment="Top" Text="AnkleLeft"

Margin="734,165,0,0" FontSize="16" RenderTransformOrigin="0.502,-0.677"/>

 <TextBlock x:Name="AnkleRightYText" HorizontalAlignment="Left"

Margin="734,201,0,0" TextWrapping="Wrap" Text="AnkleRight"

VerticalAlignment="Top" FontSize="16" RenderTransformOrigin="-0.139,0.727"/>

 <Button x:Name="ScreenshotBtn" Content="Screenshot"

HorizontalAlignment="Left" Margin="845,457,0,0" VerticalAlignment="Top"

Width="85" Click="Button_Click" Height="26" FontSize="14"

RenderTransformOrigin="1.308,-0.321"/>

120

 <Slider x:Name="TiltAngleSlider" Minimum="-27" Maximum="27"

TickFrequency="1" SmallChange="1" LargeChange="5" Value="0"

Margin="734,375,54.6,160.4" />

 <TextBlock x:Name="TiltAngleValueText" Text="{Binding

ElementName=TiltAngleSlider, Path=Value, StringFormat='Tilt Angle: {0:F0}°'}"

HorizontalAlignment="Left" Margin="798,410,0,0" TextWrapping="Wrap"

VerticalAlignment="Top" FontSize="14" RenderTransformOrigin="0.367,0.476"/>

 <Button x:Name="ApplyTiltButton" Content="Apply Tilt"

HorizontalAlignment="Left" Click="ApplyTiltButton_Click" VerticalAlignment="Top"

Margin="734,457,0,0" Height="26" Width="85" FontSize="14"

RenderTransformOrigin="3.968,-3.336"/>

 <Button x:Name="TestSoundButton" Content="Test Sound"

Click="TestSoundButton_Click" Margin="734,509,173,29" />

 <Button x:Name="StopSoundButton" Content="Stop Sound"

Click="StopSoundButton_Click" Margin="845,508,62,27"/>

 </Grid>

 </Grid>

</Window>

