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ABSTRACT 

The increased number of elderly people is growing in tandem with improvements in 

healthcare. However, the risks that go along with it have also increased, including the 

number of falls. According to several studies, elderly persons fall at least once a year. For 

elderly persons aged 65 and older, falls are the leading cause of unintentional death. Many 

elderly people in Malaysia spend the day alone at home because their family members are 

either at work or school. Therefore, to properly identify the occurrence of falls, a fall 

detection system is required. The construction of such a system to identify when an 

individual falls or loses their balance is described in this thesis. To evaluate and spot patterns 

that point to a fall incident, the system uses Kinect sensors and algorithms to track a person's 

movements and postures. Skeletons and joints are identified and retrieved, including the 

heads, shoulders, hips, and left and right ankles. The Y-coordinate values and threshold 

values are obtained by implementing the fall algorithm. To ascertain fall status, the absolute 

values of the Y-coordinate and joints are compared to the threshold value. The system also 

differentiates between falls, sitting on a chair, sitting on the floor, and also fall incident 

behind an obstruction. When a possible fall incident is detected, the system activates an 

alarm. The expected results include high accuracy in detecting falls, minimizing false 

positives, and ensuring that the system operates effectively even when there is partial body 

visibility. The system aims to provide timely alerts to caretakers or emergency responders, 

significantly reducing response times and potentially saving lives. Additionally, the solution 

is designed to be minimally intrusive, ensuring it does not disrupt the elderly's daily 

activities. 
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ABSTRAK 

Peningkatan bilangan warga emas semakin meningkat seiring dengan peningkatan dalam 

penjagaan kesihatan. Walau bagaimanapun, risiko yang menyertainya juga telah meningkat, 

termasuk bilangan kejatuhan. Menurut beberapa kajian, orang tua jatuh sekurang-kurangnya 

sekali setahun. Bagi warga emas berumur 65 tahun ke atas, jatuh adalah punca utama 

kematian yang tidak disengajakan. Ramai warga emas di Malaysia menghabiskan hari 

bersendirian di rumah kerana ahli keluarga mereka sama ada di tempat kerja atau sekolah. 

Oleh itu, untuk mengenal pasti kejadian jatuh dengan betul, sistem pengesanan jatuh 

diperlukan. Pembinaan sistem sedemikian untuk mengenal pasti apabila seseorang individu 

itu jatuh atau hilang keseimbangan diterangkan dalam tesis ini. Untuk menilai dan mengesan 

corak yang menunjukkan kejadian jatuh, sistem menggunakan penderia dan algoritma 

Kinect untuk menjejaki pergerakan dan postur seseorang. Rangka dan sendi dikenal pasti 

dan diambil, termasuk kepala, bahu, pinggul, dan buku lali kiri dan kanan. Nilai koordinat 

Y dan nilai ambang diperoleh dengan melaksanakan algoritma kejatuhan. Untuk memastikan 

status jatuh, nilai mutlak koordinat-Y dan penyambung dibandingkan dengan nilai ambang. 

Sistem ini juga membezakan antara kejadian jatuh, duduk diatas kerusi, duduk diatas lantai, 

dan juga kejadian jatuh dibelakang sesuatu pengahalang. Apabila kemungkin kejadian jatuh 

dikesan, sistem ini menghantar penggera mengaktifkan sistem penggera. Hasil yang 

dijangkakan termasuk ketepatan yang tinggi dalam mengesan jatuh, meminimumkan positif 

palsu, dan memastikan sistem beroperasi dengan berkesan walaupun penglihatan badan 

adalah separa. Sistem ini bertujuan untuk memberikan makluman tepat pada masanya 

kepada penjaga atau responden kecemasan, dengan ketara mengurangkan masa tindak balas 

dan berpotensi menyelamatkan nyawa. Selain itu, penyelesaian itu direka bentuk untuk 

mengganggu secara minimum, memastikan ia tidak mengganggu aktiviti harian warga tua. 
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INTRODUCTION 

1.1 Introduction 

This chapter aims to establish the framework and presents a brief concept of the project. It 

focuses on the overview of the project, describes the objectives, briefly the problem, the 

scope, and the results of the project. 

1.2 Background 

The rising number of senior citizens and the associated fall risks have increased the 

importance of fall detection systems in recent years. Falls are the leading cause of 

unintentional death among individuals aged 65 and older, with studies indicating that at least 

one fall occurs annually in this demographic. This has driven significant research and 

innovation in fall detection systems [1]. Over the years, various techniques, tools, and 

sensors have been explored, including gyroscopes, accelerometers, GPS modules, and 

Kinect sensors. Among these, vision-based systems like Kinect have stood out due to their 

non-intrusive nature, eliminating the need for elderly individuals to wear specialized 

equipment [2]. 

 

The Microsoft Kinect sensor has become a notable tool for fall detection due to its ability to 

accurately track human body movements and recognize skeletal joints. Unlike wearable-

based solutions, Kinect-based systems offer the convenience of remote monitoring without 
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physical contact, making them more user-friendly and comfortable for elderly users. 

Additionally, the Kinect sensor's capacity to capture both depth and colour information 

enhances the precision of fall detection algorithms [3]. 

 

The system is designed for indoor use, particularly in public hospitals and private homes. 

Past fall detection systems relied heavily on wearable sensors, which were often 

inconvenient for users. In contrast, Kinect-based systems integrate vision-based subsystems, 

utilizing libraries for camera management and computer vision techniques to process both 

depth and colour data. This approach has demonstrated impressive reliability (97.3%) and 

efficiency (80.0%) in detecting falls, making it a promising solution for real-world 

applications [4]. 

 

Moreover, the integration of Kinect sensors with emergency notification systems can 

provide immediate assistance upon detecting a fall. The Kinect's ability to collect and 

analyse data in real time allows for a rapid response, potentially reducing the severity of 

injuries caused by falls. Over time, the data collected can offer valuable insights into mobility 

patterns, supporting proactive care and long-term monitoring [2]. 

 

The Kinect sensor's unique qualities address key challenges highlighted in fall detection 

research, such as dealing with sensor imperfections and environmental interference. Its 

precise skeletal tracking minimizes false alarms and ensures consistent data, making it a 

reliable option for real-time fall detection. Furthermore, the Kinect's robust data collection 

capabilities position it as a valuable tool for developing standardized datasets and advanced 

algorithms, helping to advance the field of fall detection research [5]. 
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1.3 Problem Statement 

The detection rate's performance in real-world scenarios is one of the fall detection system's 

primary concerns. It has been demonstrated that elements including flooring surfaces, 

barriers, and lighting conditions may have an impact on fall detection systems' accuracy and 

promising outcomes. Usability and user acceptance are another difficulty. For users to adopt 

fall detection systems, they must be simple to use and not impede on normal activities. Since 

delays in detecting falls might result in serious injuries, real-time operations are also crucial 

for fall detection systems. 

 

The imperfection of the data collected, which can be brought on by a few things 

such as sensor noise, calibration mistakes, and environmental interference, is another 

significant obstacle in fall detection. Another issue is the unreliability or diversity of sensor 

systems, which can result in false alarms and inconsistent data. Additionally, there are certain 

difficulties that are common to other frameworks with data fusion needs, like choosing the 

right sensors, creating efficient data fusion algorithms, and handling missing or insufficient 

data. Furthermore, there isn't a standardized dataset for assessing fall detection systems, 

which makes contrasting various strategies challenging. Investigating novel sensor 

technologies and creating increasingly complex data fusion algorithms are important. 

1.4 Project Objective 

The project aims to achieve the following objectives: - 

1. To recreate different fall scenarios with object obstructions for the development of 

the Kinect algorithm. 
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2. To analyse the functionality of the developed system by determining the optimal 

location for the Kinect sensor in terms of distance, height, and area coverage. 

3. To develop a fall detections system based on the skeletal tracking data collected by 

the Kinect sensor with alarm notification.  

1.5 Scope of Project and Limitations 

This project focuses on developing a Kinect-based fall detection system specifically for 

elderly individuals in indoor residential settings. Utilizing the Microsoft Kinect v1 sensor, 

the system leverages its depth-sensing and skeletal tracking capabilities to monitor body 

movements and detect falls within a single-room environment. Designed for single-sensor 

implementation, the system ensures non-intrusive monitoring without the need for wearable 

devices, prioritizing user comfort. The system integrates predefined fall detection algorithms 

to provide real-time alerts to caregivers or emergency responders, enhancing safety for 

elderly individuals living alone. 

 

To maintain efficiency, the system is optimized to detect up to two elderly individuals falling 

simultaneously, allowing for effective tracking while minimizing computational complexity. 

However, since it relies on a single Kinect v1 sensor, it is not designed to monitor multiple 

rooms or overcome significant obstructions, requiring careful placement to minimize blind 

spots. The system’s effectiveness is best suited for controlled indoor environments, where 

external factors such as furniture arrangement and lighting conditions can be managed to 

optimize detection accuracy. 

 

Despite these constraints, the project establishes a functional prototype that serves as a 

foundation for future improvements. Enhancing detection accuracy, expanding coverage 
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capabilities, and refining fall classification methods remain key areas for further research 

and development. By focusing on a specific indoor residential scenario, this project 

contributes to the advancement of non-intrusive fall detection solutions for elderly 

individuals. 

 

 



6 

  

 

 

LITERATURE REVIEW 

2.1 Introduction 

            The project has involved a great deal of research and investigation. Books, articles, 

journals, websites, and other relevant sources provided data and studies for the project. The 

data was an invaluable resource for verifying if the project could be finished in the allotted 

time. The research and data collection centered on important and pertinent project-related 

subjects. 

            Section 2.2 until 2.10.3  discuss everything gained after examined a number of thesis 

and publications from journals found on the Google Scholar and Mendeley website. A few 

keywords such as "fall detection", "Kinect", "algorithms", "machine learning", and "object 

obstruction", were necessary to locate the relevant content. The fall detection system that is 

integrated with the application and sensors to identify and notify people or caretakers when 

a person has a fall was the main topic of the literature study.  

2.2 Impact of Fall Towards Elderly  

Falls can have serious effects on health and well-being, they are a major concern, 

especially for the elderly and those with specific medical conditions. Serious injuries include 

fractures, brain trauma, and even death can result from falls. In addition to the acute physical 

damage, falls can lead to diminished quality of life, a loss of independence, and an increase 

in fear of falling. There will be a significant financial impact as well because emergency 
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services, hospital stays, and long-term rehabilitation will result in higher healthcare expenses 

[4]. 

              The number of falls among older persons is on the rise due to worldwide population 

aging. The World Health Organization (WHO) reports that falls rank as the second most 

common cause of unintended or accidental injury deaths globally. Falls frequently cause a 

decline in health and functional capacity in older persons. In addition to causing physical 

harm, falls can have psychological implications like dread of falling again, which can result 

in despair, social isolation, and less physical activity. This decrease in activity feeds into a 

vicious cycle by raising the chance of additional falls [6]. 

2.3 Overview of Technologies Used in Fall Detection 

2.3.1 Wearable Devices 

Accelerometers, gyroscopes, and other body-worn motion sensors are common 

examples of these devices. They use abrupt changes in orientation or movement to identify 

falls. Smartwatches, sensors attached to belts, and specific fall detection pendants are a few 

examples. Because wearables are so portable and can track a user's movements over time, 

they can instantly warn of a fall. Some users may find them uncomfortable or bothersome, 

and wearing them continuously is necessary for them to be successful [1]. 

2.3.2 Ambient Sensors 

These systems make use of ambient sensors scattered throughout the house, such as pressure 

mats, infrared sensors, and ultrasonic sensors. They keep an eye out for environmental 

changes, like someone lying on the ground, to identify falls. It doesn't require the user to 

wear any devices and are non-intrusive [1]. Ideal for ongoing surveillance over bigger 
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regions. Installation work can be costly and intricate. The arrangement of the surroundings 

and the locations of the sensors may restrict their efficacy. 

2.3.3 Vision-Based Systems 

These devices analyze visual data to detect falls using cameras and computer vision 

algorithms. One well-known example is the Microsoft Kinect sensor, which uses bone 

tracking and depth sensing to follow movements and detect falls. can offer in-depth 

movement analysis and extensive contextual information. Ideal for discreet surveillance in 

interior spaces. privacy issues brought on by ongoing video surveillance. Obstacles and 

lighting can both have an impact on performance [2]. 

2.4 Algorithms and Techniques for Fall Detection 

2.4.1 Skeleton Features-Based Skeleton 

Analyzing skeletal characteristics is one of the main ways that the Kinect sensor is used for 

fall detection. Because the Kinect sensor can track and monitor an individual's skeletal 

structure, it offers a comprehensive dataset that can be utilized to identify falls based on 

variations in joint movements and body posture. This technique uses positioning data from 

the head, shoulders, hips, and knees among other joints in the body to identify anomalous 

patterns that point to a fall. A fall detection system that makes use of Kinect sensor-extracted 

skeletal characteristics. Figure 2.1 is a visual representation of the skeletal point of human 

body that can be detect by Kinect sensor. To remove outliers, the system uses a one-class 

classifier, which reduces unnecessary or non-fall-related movements and increases fall 

detection accuracy. This approach's primary benefit is in its capacity to precisely detect falls 

through an examination of the spatial relationships and movement patterns of various bodily 

joints [7]. 
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Figure 2.1 Skeleton provided by Microsoft Kinect v2 and points excluded from analysis 

(grey ovals) [7]. 

 

2.4.2 Machine Learning and Deep Approaches 

            Fall detection systems have been using machine learning and deep learning 

techniques more and more to improve their accuracy and dependability. These methods train 

models that can automatically identify patterns linked to falls using massive datasets. A fall 

detection system that uses information from the Kinect sensor to assess movement patterns 

and gait using deep convolutional neural networks (CNNs) as shown in the flowchart in 

figure 2.2. The system's ability to distinguish between typical activities and fall events with 

high accuracy is derived from its ability to learn intricate details from the skeletal data [8]. 
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Figure 2.2 Flowchart of a 3D matrix generation from the body joints over the frames of a 

gait cycle [8]. 

 

              Tsai and Hsu created a fall detection system that analyzes 3D skeletal data from the 

Kinect sensor using deep learning algorithms. Figure 2.3 shows the method that was 

implement by them which use a dataset of skeletal motions to train a deep neural network to 

identify the features of falls. The system achieves reliable and precise fall detection by 

utilizing the comprehensive 3D joint positions that the Kinect provides [9]. 

 

 

Figure 2.3 Deep Learning System Overview [9]. 
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2.5 Comparative Analysis of Fall Detection Approaches 

2.5.1 Survey of Fall Detection Approaches Using Kinect Technology 

2.5.1.1 Overview of Fall Detection Methods 

Numerous fall detection techniques have been investigated, utilizing diverse technologies 

and methods. These techniques can be generally divided into three categories: deep learning 

models, machine learning algorithms, and threshold-based techniques. Each of these 

categories has unique properties and uses [4]. 

2.5.1.2 Threshold-Based Methods 

Fall detection techniques that use thresholds depend on pre-established levels to recognize 

falls in relation to variables like inclination angle, acceleration, and velocity. These 

techniques are appropriate for real-time applications since they are simple and 

computationally cheap. But because they have trouble adjusting to individual variations and 

the unpredictability of fall events, their accuracy can be restricted [4]. Figure 2.4 shows the 

advantages and disadvantages of sensors used in existing fall detection system. 
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Figure 2.4 Types of sensors deployed in fall detection, with (+) indicating advantages and 

(-) indicating disadvantages[4]. 

 

2.5.1.3 Machine Learning Algorithm 

             In order to distinguish between fall and non-fall occurrences, classifiers trained on 

labeled datasets according to figure 2.5 are used in machine learning techniques to fall 

detection. K-nearest neighbors (k-NN), decision trees, and support vector machines (SVM) 

are examples of common methods. Compared to threshold-based approaches, these 

strategies are more accurate and flexible because they are able to identify intricate patterns 

in the data. However, they can be computationally demanding and require a large amount of 

labeled data for training, which could limit real-time performance [4]. 
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Figure 2.5 Hierarchy of joints provided by (a) V1, (b) V2, and (c) Azure Kinect [4] 

 

2.5.1.4 Comparative Analysis 

The various fall detection methods can be compared to see trends toward increasingly 

advanced deep learning and machine learning methods. These cutting-edge techniques, 

which improve fall detection systems by utilizing the comprehensive depth and skeleton data 

supplied by the Kinect sensor just as shown in the general flowchart in figure 2.6, which 

offer increased accuracy and resilience over conventional techniques [4]. 
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Figure 2.6 General flowchart of Kinect-based fall detection approaches [4]. 

 

2.5.2 Computer Vision-Based Methods 

2.5.2.1 Overview of Computer Vision-Based Fall Detection 

Computer vision-based fall detection methods utilize visual data to identify falls. The Kinect 

camera, with its ability to capture both RGB images and depth maps, plays a significant role 

in these methods. Techniques in this category can be divided into image-based analysis, 

depth map analysis, and hybrid approaches [2]. 

2.5.2.2 Image-Based Analysis 

              RGB images from the Kinect camera are used by image-based analytic techniques 

to identify falls. Methods including silhouette analysis, motion history images (MHI), and 

backdrop subtraction are frequently used. These techniques take advantage of the rich visual 

data that RGB photographs provide, allowing for a thorough examination of the scene and 

motions. They are, however, susceptible to variations in background clutter and lighting, 

which may compromise accuracy [2]. 
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2.5.2.3 Depth Map Analysis 

Depth map analysis is the process of detecting falls using depth maps produced by the 

infrared sensor on the Kinect. This method examines abrupt changes in elevation, motion 

patterns in the depth data, and depth gradients. Depth map analysis helps differentiate 

between falls and other activities since it is less impacted by lighting and offers precise 

distance measurements. However, accuracy may be limited by the depth sensor's low 

resolution and range, especially in bigger or more complicated surroundings [2]. 

2.5.2.4 Hybrid Techniques 

             RGB and depth data are combined in hybrid approaches to improve fall detection 

precision. These ways can get around the drawbacks of using only one form of data as 

explained in figure 2.7 by utilizing both. Better robustness and accuracy are provided by 

hybrid approaches, which can handle a larger variety of scenarios and environmental 

variables. To properly handle and integrate the data, they also add to the computational 

complexity and need for more complex algorithms [2]. 

 

Figure 2.7 The current fall detection methods classification into three device-based 

approaches: ambient based, wearable sensor-based, and vision-based approaches [2]. 
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2.5.2.5 Combined Kinect Data 

              The advantages and disadvantages of each strategy show how promising computer 

vision-based fall detection techniques can be. Even under difficult circumstances, a strong 

tool for precisely spotting falls is provided by combining depth sensing with conventional 

RGB imaging as illustrates in figure 2.8. Subsequent investigations could concentrate on 

enhancing these methods to augment their efficiency and relevance [2]. 

 

Figure 2.8 Illustration of depth image transformation: (a) colour stream; (b) depth stream; 

(c) skeleton (joint are shown in green dots); and (d) tracked skeleton and joints (similar 

joints are presented with the same colour) [2]. 

 

2.6 Object Obstruction 

            Fall detection systems face considerable hurdles when it comes to detecting falls in 

which just a portion of the body is visible. These issues include maintaining detection 

accuracy in congested situations, guaranteeing dependable performance under shifting 

lighting conditions, and effectively identifying fall events despite occlusions produced by 

objects or other environmental factors. Fall detection systems' efficacy may be jeopardized 

by misclassification or missing detections resulting from partial body visibility [10]. 
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2.6.1 Techniques for Overcoming Object Obstruction 

2.6.1.1 Pedestrian Occlusion Level Classification 

              A strategy for dealing with object blockage is to categorize the degree of occlusion 

a pedestrian encounters. Methods in this field concentrate on classifying the degree to which 

an object impedes an individual. From figure 2.9, it is evident that classification can aid in 

modifying the detection algorithms to account for occlusion and enhance overall fall 

detection accuracy even in situations where the body is only partially visible [11]. 

 

Figure 2.9 Occlusion level classification overview. (a) Read input image (b) Apply 

keypoint detection to each pedestrian instance and assess keypoint visibility to identify 

occluded keypoints (c) Correlate visible keypoints with pedestrian mask to confirm 

visibility [11]. 

2.6.1.2 Obstruction Detection 4D BIM Construction Planning 

             Methods for identifying and controlling obstacles in a 4D Building Information 

Modeling (BIM) environment have been developed for construction planning. By applying 

comparable concepts to recognize and evaluate obstacles inside the detection region, these 

techniques can be modified for fall detection, allowing for a more precise interpretation of 

body components that are only partially visible [10]. 

2.6.1.3 Real-Time Object Detection for Obstruction Scenarios 

              Algorithms for real-time object identification are made to recognize and follow 

objects in a variety of situations, including those with obstacles as provide in figure 2.10. By 
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using sophisticated neural networks capable of identifying and processing objects that are 

partially visible, these techniques enhance the system's capacity to detect falls even in 

situations where the view is partially obscured [12]. 

 

Figure 2.10 Image after data enhancement. (1) Magnifcation and brighten, (2) 

magnifcation and mirror, (3) magnifcation and darken, (4) image reduction and translation, 

(5) image reduction and translation, and (6) mirror, reduction, and translation [12]. 

 

2.6.2 Case Study: Partial Body Detection Using Kinect  

2.6.2.1 Fall Detection Base on Point Cloud 

According to figure 2.11, a fall detection system using point cloud data was developed by 

Peng et al. (2019). Because the point cloud data may record depth information, this method 

works especially well in situations where visibility is limited. It allows the system to identify 

falls by looking at the spatial arrangement of visible body components [13]. 
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 Figure 2.11 Point Cloud System Structure Diagram [13].  

 

2.6.2.2 Detecting Human Falls in Poor Lighting and Object Obstruction Conditions 

              Zi et al. (2023) suggested techniques that make use of sophisticated object detection 

and tracking algorithms to identify falls in low light and blocked environments. By 

accounting for occlusions and low visibility situations, these techniques are intended to 

improve fall detection reliability and guarantee precise detection even in difficult 

circumstances such as in figure 2.12 [14]. 

 

Figure 2.12 Example video frames from the publicly available datasets (a). Le2i and (b) 

URFD datasets [14]. 
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2.7 Integration of Fall Detection with Alerting System 

2.7.1 Smartphone-Based Online System with Alert Notification 

Fall detection system integration with smartphone-based alert notifications entails creating 

applications that, upon detection of a fall, can instantly notify emergency services or 

caretakers. Figure 2.13 proves that these solutions provide instant notification and contextual 

information about the fall occurrence by leveraging the computing power and connection of 

smartphones. Typically, the design consists of fall detection algorithms, an intuitive alarm 

configuration interface, and a robust communication protocol to guarantee timely alert 

delivery. These systems improve people's safety and freedom by making sure that assistance 

is quickly summoned in the case of a fall [15]. 

 

 

Figure 2.13 An example of the web portal data summary for a single study participant [15]. 

 

2.7.2 Fall Detection and Emergency Notification System  

In order to build a reliable alerting system, a complete fall detection and emergency 

notification system integrates sensors, detecting algorithms, and communication modules. 
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This system not only recognizes falls but also notifies authorized contacts or services in case 

of emergency. The implementation consists of setting up a communication system to 

transmit alerts by SMS, email, or automated calls; configuring sensors to accurately capture 

fall events; and designing algorithms to process the sensor data and detect falls. These kinds 

of technologies play a critical role in both delivering aid promptly and possibly lessening the 

degree of injuries sustained from falls [6]. 

2.8 Case Studies and Applications 

2.8.1 Kinect4FOG for Monitoring Parkinson’s Patients 

Figure 2.14 provides a visual representation of one noteworthy use of Kinect technology in 

healthcare is the Kinect4FOG system, which was created especially to track and enhance 

movement in Parkinson's disease patients. This system makes use of Kinect sensors to 

analyze patients' movements and gaits, giving patients and healthcare professionals 

comprehensive analysis and feedback. The system enables prompt interventions and 

individualized treatment regimens by identifying movement abnormalities that may point to 

a higher risk of falls. Kinect4FOG helps manage Parkinson's disease progression and 

improves patients' quality of life by lowering fall risk and improving mobility in patients 

under constant observation [16]. 
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Figure 2.14 System’s companion smartphone application in action [16]. 

 

2.8.2 Video Surveillance for Fall Detection 

Another important use for video surveillance systems is fall detection, especially for 

watching elderly people at home or in care facilities. With the use of sophisticated image 

processing and machine learning techniques, these systems use cameras to continuously 

monitor and analyze the surroundings in order to identify falls. The method of detecting falls 

entails identifying abrupt movements or changes in posture that point to a fall and then 

notifying emergency personnel or caretakers of the situation. This approach improves the 

safety of senior citizens by guaranteeing that falls are identified quickly and help is given 

right away, which reduces the risk of serious injuries [17]. 
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2.9 Kinect Specific Applications and Innovations 

2.9.1 Kinect in Gait Analysis and Mobility Monitoring 

Since Kinect technology can follow movement patterns and gather comprehensive skeletal 

data, it has found widespread application in gait analysis and mobility monitoring which can 

be seen in figure 2.15. The Kinect4FOG system analyzes a patient's gait and provides 

rehabilitation feedback in order to monitor and enhance mobility in individuals with 

Parkinson's disease [18]. The system can identify mobility problems and assist in 

customizing interventions to improve the patient's quality of life by utilizing Kinect sensors. 

Similar to this, KinectGaitNet recognizes gait patterns using deep convolutional neural 

networks as provided in figure 2.16, offering precise and effective gait analysis that may be 

applied to a range of healthcare applications [8]. 

 

Figure 2.15 Graphical User Interface for the developed software [16]. 

 

Figure 2.16 Overall system flowchart of the proposed framework [8]. 
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2.9.2 Posture Recognition and Human Activity Analysis 

             Identifying posture and analyzing human behavior are essential for creating fall 

detection systems that work. The figure 2.17 presents the process which resulting the 

accuracy of recognizing various postures and activities is improved by applying fuzzy and 

rough logic to posture identification, which is crucial for fall detection [5]. Additionally, in 

order to monitor different activities and identify anomalous postures that can point to a fall, 

Kinect v2's human posture recognition technology collects and analyzes skeletal data. In 

practical situations, these methods increase the dependability of fall detection systems [19]. 

 

Figure 2.17 Scheme of the fuzzy inference process [19]. 

 

2.9.3 Multi-Sensor Integration and Advanced Processing  

              Fall detection systems can be greatly improved by utilizing sophisticated processing 

techniques and integrating many sensors. For example, a system can improve fall detection 

accuracy by combining data from many sensors through dual-channel feature integration. To 
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provide accurate fall detection, this technique analyzes a variety of variables, including 

motion and skeletal data as proven in figure 2.18 [20]. It can be seen in figure 2.19, to 

improve the robustness of fall detection, time-level decision fusion classification is another 

strategy that integrates decisions taken at various time levels [21]. 

 

Figure 2.18 Human body external ellipse [20]. 

 

Figure 2.19 Results of person detection using YOLOv3 and YOLOv7. (a) Detection results 

of YOLOv3 for normal activity. (b) Detection results of YOLOv3 for fall activity. 

(c)Detection results of YOLOv7 for normal activity. (d) Detection results of YOLOv7 for 

fall activity [21]. 

 

2.9.4 Real-World Deployment and User Feedback 

              In order to enhance system performance, real-world fall detection system 

deployments involving Kinect technology require resolving pragmatic issues and obtaining 
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user input. An older person's mobility may now be tracked and analyzed with a Kinect-based 

platform, which provides important information for fall detection [3]. Furthermore, to ensure 

reliable performance and user satisfaction, a versatile fall detection framework that makes 

use of object recognition and motion analysis has been designed to handle a variety of real-

world circumstances [22]. 

2.10 Future Directions and Challenges 

2.10.1 Emerging Trend in Fall Detection 

             Fall detection technology is always changing, and a number of new developments 

are expected to improve its dependability and efficacy. The combination of machine learning 

(ML) and artificial intelligence (AI) approaches is one prominent development that enables 

more in-depth study of environmental elements and movement patterns [23]. With these 

technologies, systems may learn from enormous volumes of data, increasing their precision 

in fall detection and lowering false alarms. Furthermore, wearable technology and the 

Internet of Things (IoT) are being used more and more to build networked systems that offer 

thorough monitoring of the elderly [24]. These systems can collect information from several 

sources, providing a comprehensive picture of the health and activity levels of the user [25]. 

According to figure 2.20, it is an example of a fall detection system that applied the IoT. 

 

Figure 2.20 The FD IoT System Overview [24]. 
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2.10.2 Challenges and Limitations 

There are still a number of obstacles and restrictions in the field of fall detection, despite 

tremendous progress. Making sure detecting systems are accurate and dependable in a 

variety of settings and circumstances is one of the main problems. Occlusions, background 

noise, and lighting are only a few examples of the variables that can seriously impair the 

operation of vision-based systems like Kinect-based ones [26]. The possibility of false 

positives and false negatives, which might either fail to signal when a fall has occurred or 

induce unwarranted alarm, is another restriction. Another difficulty is privacy issues, 

particularly with systems that entail ongoing video surveillance. If users believe their privacy 

is being violated, they could be reluctant to use such services [27]. 

2.10.3 Potential Improvements and Innovations 

Several potential advancements and innovations are being investigated as solutions to these 

problems. Improving the resilience of algorithms to manage various settings as shown in 

figure 2.21 and circumstances is an essential area of emphasis. Creating increasingly 

complex machine learning models that can adjust to various situations and enhancing the 

caliber of sensor data fusion are two examples of this. Enhancing the accuracy of fall 

detection systems can also be accomplished through innovations in sensor technology, such 

as the use of additional sensors like LIDAR or higher resolution cameras. Iterative testing 

and user feedback can also be used to improve these systems and make them more end-user-

friendly. Fall detection systems must also boost user acceptability and confidence, which 

calls for privacy-preserving measures like on-device processing and data anonymization 

[28]. 
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Figure 2.21 The detection results of fall in different directions [28].
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2.11 Sensor Comparison from Previous Work Related to the Project  

Table 2.1 Comparison between sensors used in fall detection system 

No  Year  Sensor  Purpose and Specifications  Advantages  Disadvantages  

1 2023 

[29] 

Kinect sensor 

• Montion sensor. 

• Tracks motion and gestures.   

• Comprises of camera, 

infrared sensors 

• Tracks skeletal data for motion 

tracking and accurate fall 

detection. 

• Non-intrusive  

• Real-time monitoring with 

immediate alerts 

• Limited range (~4.5 

meters). 

• Needs precise placement 

or multiple devices. 

• High power consumption. 

• Raises privacy concerns. 

2 2023[30] Camera for 

Image and Video 

Capture 

• Human body movement 

tracking 

• Non-intrusive monitoring  

• High resolution and frame 

rate 

• Captures high-resolution 

visuals. 

• Records detailed environmental 

context. 

• Affordable compared to 

advanced sensors. 

 

• No depth sensing, less 

accurate for fall detection. 

• High computational 

demand for processing 

visuals. 

• Significant privacy 

concerns. 



30 

3 2021[31] Accelerometer  

Measure the acceleration and 

determine the changes in velocity 

and movement. 

• Compact and energy efficient. 

• Detects sudden motion changes 

effectively. 

• Affordable 

• Requires users to wear the 

device. 

• No environmental or 

spatial data. 

• Limited to motion-based 

detection. 

4 2024 

[32] 

Gyroscope 

Measure the angular velocity and 

provides information of rotational 

movement. 

• Measures rotational movements 

accurately. 

• Small, efficient, and wearable-

friendly. 

• Works well with 

accelerometers. 

• Requires wearables, 

potentially inconvenient. 

• Only provides rotational 

data, lacks spatial context. 

• Limited accuracy without 

additional sensors. 
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The Kinect was chosen for its non-intrusive design, eliminating the need for 

wearables. Its 3D depth sensing and skeletal tracking offer spatial and motion 

data, making it more accurate than standard cameras or motion sensors. While 

it has limitations like range and power use, its ability to monitor and analyze 

falls in real-time makes it ideal for this project.



32 

2.12 Journal Comparison from Previous Work Related to the Project 

Table 2.2 Journal comparison 

No.  Year  Title Software Hardware  Findings  

1 

2018 

An image-based 

fall detection 

system for the 

elderly [25] 

not specified Camera 

• Developed image-based fall detection system achieved high accuracy in detecting 

falls among the elderly. 

• System showed a notable reduction in false alarms compared to existing systems. 

• Findings suggest that image-based approach has potential to improve reliability and 

effectiveness of fall detection systems for the elderly. 

2 

2018 

Computer 

Vision Based 

Fall Detection 

Methods Using 

the Kinect 

Camera : A 

Survey [2] 

Computer 

vision 

algorithms  

Kinect sensor 

• Kinect-based fall detection methods show promise in accurately and reliably 

detecting falls among the elderly. 

• These methods use the Kinect camera's depth sensing capabilities to monitor 

changes in body position and posture. 

• Early detection of falls is facilitated by these techniques.  

• Challenges include occlusions (objects blocking the view), varying lighting 

conditions, the need for robust algorithms 

• Further research and development are needed to address these challenges. 
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No.  Year  Title Software Hardware  Findings  

3 

2018 

Design and 

Development of 

the Fall 

Detection 

System based on 

Point Cloud [13] 

Kinect SDK 
Kinect 

Sensor 

• No equipment needs to be worn during system operation, ensuring comfort. 

• Kinect uses point cloud images and color spectrum for human detection, 

protecting privacy. 

• The infrared camera is unaffected by external illumination. 

• The system provides continuous real-time detection of the human body for 

24 hours. 

• Detection efficiency is improved. 

4 

2018 

Fall Detection 

System for 

Elderly People 

Using IoT and 

Big Data [24] 

Contiki OS 

LSM6DS0; 

3D-axis 

accelerome

ter 

• The system was evaluated for recognizing three types of falls: forward, 

backward, and lateral falls while walking caused by a slip. 

• Recognition accuracy: 91.67% 

• Precision: 93.75% 

• Gain: 91.67% 

• The high success rate in fall detection is indicated by these metrics. 
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No.  Year  Title Software Hardware  Findings  

5 

2019 

Cell-Based Transport Path 

Obstruction Detection 

Approach for 4D BIM 

Construction Planning 

[10] 

Computer 

algorithm  
none 

• The cell-based transport path obstruction detection approach effectively 

identifies potential obstructions in construction projects. 

• Integration into 4D BIM allows for accurate visualization and simulation of 

material and equipment movement. 

• Enables better-informed decisions and improved construction planning. 

• Potential to enhance efficiency, safety, and overall success of construction 

projects. 

6 

2019 

Kinect4FOG: monitoring 

and improving mobility in 

people with Parkinson’s 

using a novel system 

incorporating the 

Microsoft Kinect v2 [16] 

Software for 

analyzing 

gait patterns, 

machine 

learning 

algorithms. 

Kinect sensor. 

• Kinect4FOG effectively monitors and improves mobility in people with 

Parkinson's disease. 

• Provides a non-invasive and cost-effective method. 

• Allows for early intervention and personalized treatment strategies. 

• Highlights potential to improve mobility and quality of life for Parkinson's 

patients. 
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No.  Year  Title Software Hardware  Findings  

7 

2019 

A skeleton features-

based fall detection 

using Microsoft Kinect 

v2 with one class-

classifier outlier removal 

[7] 

Fall detection 

algorithm  

Kinect 

sensor. 

• Skeleton features-based fall detection system using Kinect v2 achieved high 

accuracy and reduced false alarms. 

• One-class classifier used for outlier removal. 

• System focuses on unique skeletal characteristics for improved reliability. 

• Skeleton features-based approach coupled with one-class classifier 

enhances performance of fall detection systems. 

8 

2019 

Human Posture 

Recognition and Fall 

Detection Using Kinect 

V2 Camera [5] 

Kinect SDK, 

NITE SDK 

Kinect 

Sensor 

• Proposed integrated neural network fall detector application operates in 

real-time. 

• Based solely on depth maps, ensuring privacy and functioning in poor light 

conditions. 

9 

2019 

Implementation of Fall 

Detection System based 

on 3D Skeleton for Deep 

Learning Technique [9] 

Kinect SDK 
Kinect 

Sensor 

• Implemented on NVIDIA Jetson TX2 platform. 

• Tested in real demonstration environment. 

• Achieves 15 frames per second for real-time implementation. 
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No.  Year  Title Software Hardware  Findings  

10 

2019 

Kinect-Based 

Platform for 

Movement 

Monitoring and 

Fall-Detection of 

Elderly People 

[3] 

Kinect 

SDK 
Kinect Sensor 

• Developed a Kinect-based platform for monitoring movement and detecting falls in 

elderly people. 

• Platform includes a fall detection algorithm and a web application for remote 

monitoring. 

• Tested the system with 30 volunteers and achieved a 96.3% success rate in fall 

detection. 

• Found Kinect to be effective in monitoring movement and detecting falls. 

11 

2020 

Fall Detection 

Based on Dual-

Channel Feature 

Integration [20] 

Computer 

algorithm  

Accelerometer 

and gyroscope 

sensors. 

• Dual-channel feature integration approach for fall detection achieved higher accuracy 

and reliability. 

• Combining features from acceleration and angular velocity channels improved 

sensitivity in detecting falls and reduced false alarms. 

• Dual-channel feature integration is an effective strategy for enhancing fall detection 

system performance. 
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No.  Year  Title Software Hardware  Findings  

12 

2020 

A Fall Detection 

and Emergency 

Notification System 

for Elderly [6] 

Kinect 

SDK 

Kinect 

Sensor 

• System calculates and analyzes velocities of body joints and angles of body vectors to 

distinguish falls from daily activities. 

• Differentiates between three types of falls: Prone Position, Crawl Position, and Kneel 

Position. 

• Fall notification based on Q-Learning algorithm, considering contact person's 

probability of answering and level of busyness. 

13 

2020 

An Elderly Fall 

Detection System 

Using Depth 

Images [23] 

Kinect 

SDK 

Kinect 

Sensor 

• Microsoft Kinect's depth image resolution decreases as distance increases. 

• Decreased resolution makes background subtraction and depth image segmentation 

challenging. 

14 

2020 

Old man fall 

detection based on 

surveillance video 

object tracking [26] 

Object 

tracking 

and fall 

detection 

algorithm 

none 

• Fall detection system based on surveillance video object tracking effectively detects 

falls in elderly individuals. 

• Analyzes surveillance video footage and tracks movements to detect falls in real-time. 

• Shows promise in improving timely response to falls and reducing injury risk for 

elderly individuals. 
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No.  Year  Title Software Hardware  Findings  

15 

2020 

Fall detection system 

for people using video 

surveillance [17] 

Computer 

algorithm  
none 

• Video surveillance-based fall detection system effectively detects falls and 

triggers alerts in real-time. 

• Analyzes footage for specific movement patterns and behaviors associated 

with falls. 

• Accurately detects fall events, improving safety and well-being of 

individuals at risk. 

• Provides peace of mind for caregivers and family members. 

16 

2021 

A Smartphone-based 

Online System for Fall 

Detection with Alert 

Notifications and 

Contextual Information 

of Real-Life Falls [15] 

android 

6.0.1; Purple 

Robot, 

preinstalled 

sensor data 

collection 

app 

Phone; 

accelerometer 

and gyroscope 

• Smartphone-based system requires minimum 2G signal for sending alert 

notifications. 

• Preferably uses 4G-LTE for exporting sensor data. 

• Falls in locations without cellular reception won't be centrally detected for 

real-time notification. 
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No.  Year  Title Software Hardware  Findings  

17 

2022 

An objective 

method for 

pedestrian 

occlusion level 

classification 

[11] 

Computer 

algorithm  
none 

• Developed method for pedestrian occlusion level classification. 

• Effective in objectively categorizing extent of pedestrian occlusion in scenes. 

• Analyzes visual features related to visibility of body parts and degree of 

occlusion. 

• Accurately classifies occlusion levels. 

• Objective method can improve performance of pedestrian detection and tracking 

systems, especially in challenging environments. 

18 

2022 

Real-Time 

Object Detection 

for the Running 

Train Based on 

the Improved 

YOLO V4 

Neural Network 

[12] 

Improved YOLO 

V4 neural network. 

Cameras for 

capturing 

video data. 

• Real-time object detection system based on improved YOLO V4 neural network 

effective for detecting objects near running train. 

• Analyzes video data from train-mounted cameras to identify obstacles or 

hazards in real-time. 

• Deep learning techniques enhance safety and efficiency of train operations by 

providing early detection of potential hazards. 
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No.  Year  Title Software Hardware  Findings  

19 

2022 

Smart Assistive 

System for Visually 

Impaired People 

Obstruction Avoidance 

Through Object 

Detection and 

Classification [27] 

Object detection 

and classification 

algorithm  

Camera or 

sensor for 

capturing 

image or 

video data. 

• Smart assistive system for visually impaired effectively avoids obstructions 

through object detection and classification. 

• Analyzes image or video data from camera or sensor to detect and classify 

obstacles in real-time. 

• System improves mobility and safety of visually impaired individuals. 

• Provides greater independence and confidence in navigating surroundings. 

20 

2022 

Application of Fuzzy 

and Rough Logic to 

Posture Recognition in 

Fall Detection System 

[19] 

Fuzzy and rough 

logic algorithms  

Sensors or 

cameras 

for 

capturing 

posture 

data. 

• Application of fuzzy and rough logic to posture recognition in fall detection 

system improves ability to distinguish normal activities from falls. 

• Analyzing posture data using these techniques increases accuracy in 

detecting falls and reduces false alarms. 

• Incorporating fuzzy and rough logic enhances performance and reliability of 

fall detection systems. 

• Makes systems more suitable for real-world applications. 
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No.  Year  Title Software Hardware  Findings  

21 

2022 

KinectGaitNet: 

Kinect-Based 

Gait Recognition 

Using Deep 

Convolutional 

NeuralNetwork 

[8] 

Deep CNN for gait 

recognition, Kinect 

(SDK) 

Kinect 

sensor for 

capturing 

gait data. 

• KinectGaitNet achieved high accuracy in gait recognition using Kinect 

sensor data. 

• Deep CNNs used to accurately identify individuals based on unique gait 

patterns. 

• KinectGaitNet offers promising approach to gait recognition. 

• Potential applications in security, surveillance, and healthcare for reliable 

biometric identification. 

22 

2023 

Image-based fall 

detection in bus 

compartment 

scene [28] 

Image processing 

algorithms  

Cameras 

for 

capturing 

images. 

• Image-based fall detection system for bus compartments effectively detects 

falls in real-time. 

• Analyzes images from cameras installed in bus compartments. 

• Accurately detects fall events. 

• Enhances safety of bus passengers by providing timely alerts to bus drivers 

or authorities. 

 

 

 



42 

No.  Year  Title Software Hardware  Findings  

23 

2023 

A Flexible Fall 

Detection 

Framework 

Based on Object 

Detection and 

Motion Analysis 

[22] 

Object detection 

algorithm, motion 

analysis algorithm, fall 

detection algorithm  

Cameras or 

sensors for 

capturing 

video data. 

• Flexible fall detection framework based on object detection and motion 

analysis effective in detecting falls in various environments. 

• Combines techniques for improved accuracy and reliability in detecting fall 

events. 

• Suggests integrated approach enhances performance of fall detection 

systems for real-world applications. 

24 

2023 

Detecting 

Human Falls in 

Poor Lighting: 

Object Detection 

and Tracking 

Approach for 

Indoor Safety 

[14] 

Object detection 

algorithm, motion 

analysis algorithm, fall 

detection algorithm 

Cameras or 

sensors for 

capturing 

video data. 

• Object detection and tracking approach effectively detects human falls in 

poor lighting conditions. 

• Utilizes techniques to accurately detect falls in challenging lighting 

conditions. 

• Offers reliable method for enhancing indoor safety by improving fall 

detection in poorly lit areas. 
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No.  Year  Title Software Hardware  Findings  

25 

2023 

Fall Detection 

Approaches for 

Monitoring 

Elderly 

HealthCare 

Using Kinect 

Technology: A 

Survey [4] 

fall detection 

algorithms and 

techniques, 

Kinect SDK  

Kinect sensor 

for capturing 

depth and 

skeleton data. 

 

• Kinect technology widely adopted for fall detection in elderly healthcare. 

• Approaches include machine learning algorithms, rule-based systems, and 

combination methods. 

• Kinect-based systems show promising results in accuracy and efficiency. 

• Highlights potential of Kinect technology in monitoring elderly healthcare. 

26 

2024 

Fall Recognition 

Based on Time-

Level Decision 

Fusion 

Classification 

[21] 

fusion algorithm  

Accelerometer

s or 

gyroscopes for 

capturing 

motion data. 

• Time-level decision fusion classification approach improves accuracy of fall 

recognition. 

• Combines multiple classifiers at different time levels for enhanced performance. 

• System shows improved reliability in detecting falls across various scenarios. 

• Decision fusion techniques make fall recognition systems more suitable for real-

world applications. 
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The table compares various research studies on fall detection systems, highlighting their 

software, hardware, and key findings. Many studies utilize Kinect sensors (either v1 or v2) 

to track body movements, leveraging depth sensing and skeletal tracking for fall detection. 

Some research explores alternative technologies, such as accelerometers, gyroscopes, and 

image-based methods. The findings indicate that Kinect-based systems generally achieve 

high accuracy, provide real-time monitoring, and offer non-intrusive solutions for elderly 

care. 

Recent studies (2022-2024) explore advanced detection techniques, including deep learning, 

object tracking, and decision fusion algorithms, demonstrating improved performance in 

challenging scenarios. The research highlights the growing potential of Kinect technology 

and hybrid approaches for enhancing fall detection in elderly healthcare and indoor safety 

applications. 

2.13 Summary 

This chapter explored various fall detection methods, categorized into three primary 

approaches: smartphone-based systems, wearable-sensor systems, and vision-based systems. 

Each category utilizes different technologies and techniques to detect falls effectively. 

Smartphone-based systems primarily leverage built-in sensors such as accelerometers and 

gyroscopes to monitor motion and detect sudden changes indicative of a fall. Wearable-

sensor systems, on the other hand, rely on external devices like accelerometers, gyroscopes, 

and other specialized sensors attached to the user’s body to collect motion and positional 

data. Vision-based systems utilize cameras or depth sensors, such as the Kinect sensor, to 

capture RGB and depth information for visual analysis of human movement. 



45 

To develop robust and reliable fall detection systems, researchers have employed advanced 

computational techniques, including thresholding algorithms, machine learning, and deep 

learning models. Thresholding algorithms are commonly used for simple and efficient fall 

detection based on predefined criteria, such as abrupt changes in acceleration or position. 

Machine learning models enhance the system's ability to distinguish falls from non-fall 

activities by training on large datasets of motion patterns. Deep learning techniques further 

improve accuracy by extracting complex features from sensor data or images, enabling the 

system to recognize falls even under challenging conditions, such as partial occlusions or 

cluttered environments. 

This chapter highlights the strengths and limitations of each method, providing a 

comprehensive overview of the current advancements and challenges in fall detection 

research. 
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METHODOLOGY 

3.1 Introduction 

In this chapter, the implementation of a real-time fall detection system for the elderly, with 

consideration for obstructions using Kinect, was described. Section 3.2 detailed the project 

execution flow and planning; section 3.2.1 explained the flowchart outlining the system 

design, while section 3.2.2 covered project planning aspects, including the timeline and the 

duration of each task. Section 3.3 discussed the development of algorithms for fall detection, 

including handling all real-world obstacles such as barriers and lighting conditions. It also 

covered the block diagram and the project flowchart. Section 3.4 listed the software and 

hardware used, including Kinect SDK, Visual Studio, and the Kinect sensor itself. While 

section 3.5 explains the setup of the project during the testing and collecting data stage of 

the project and section 3.6 explain the Sustainable Development Goals (SDG) that correlates 

to the project. Finally, section 3.7 summarized the chapter. 

3.2 Project Design 

3.2.1 Project Execution Flow 

The goal of the project is to implement a Kinect-based fall detection system to assist in 

monitoring elderly individuals. In the first phase, research was conducted to understand 

different fall detection techniques, algorithms, and technologies, including the use of Kinect 

sensors. Existing fall detection systems were analysed to identify suitable hardware and 
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software, as well as to establish criteria for testing fall scenarios. Data was also collected to 

assess the limitations and advantages of Kinect-based systems. 

In the second phase, a fall detection algorithm was developed, focusing on identifying falls 

under normal conditions. This algorithm was rigorously tested, and upon achieving 

satisfactory results, advanced functions were incorporated. These functions included 

detecting falls with object obstructions, detecting falls in various lighting conditions, 

differentiating non-fall postures (e.g., sitting on a chair or floor), handling multiple people 

in the frame, identifying multiple fall postures, and integrating a help command for 

immediate alerting in emergencies. 

The completed system was tested extensively to ensure it could accurately detect falls under 

different conditions and scenarios. Data from these tests were collected and analysed to 

validate the results. The final system achieved the goal of developing an efficient and reliable 

Kinect-based fall detection system with advanced features. The process combined research, 

algorithm development, software testing, and analysis to provide a comprehensive fall 

detection solution. 
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Figure 3.1 PSM 1 Project Execution Flow 
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Figure 3.2 PSM 2 Project Execution Flow 
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3.2.2 Project Planning 

Table 3.1 Outline Planning 

Activity Duration (weeks) Start week End week 

PSM 1 

PSM1 project 

planning 

2 1 2 

Research on 

software and 

hardware 

4 3 6 

Research on 

Previous related 

projects 

6 6 11 

Prepare PSM 1 

report 

5 9 14 

PSM 2 

Development of fall 

detection algorithm 

6 15 20 

Troubleshoot 

system program 

2 18 19 

Improvement of 

system program 

7 19 25 

Testing project 2 25 26 

Collecting data for 

analysis 

3 24 26 

Presentation 

preparation 

2 26 27 

Prepare PSM 2 

report 

1 28 28 

 

The project outline planning provides a clear timeline and structure for the development of 

the Kinect-based fall detection system, divided into two phases: PSM1 and PSM2. In PSM1, 
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the project began with two weeks of planning, where the scope, objectives, and methodology 

were established to ensure the project had a well-defined direction. This was followed by 

four weeks of research on suitable software and hardware tools, ensuring that the necessary 

resources were identified for implementing the fall detection system. 

 

Subsequently, six weeks were dedicated to studying previous related projects. This research 

provided valuable insights into existing methodologies and helped refine the approach for 

the project. The findings, along with progress during PSM1, were compiled into a report 

over five weeks, from Week 9 to Week 14, concluding the first phase. 

 

In PSM2, the focus shifted to implementation and testing. The development of the fall 

detection algorithm began in Week 15 and lasted six weeks, forming the foundation for the 

system's functionality. Once the algorithm was developed, troubleshooting was carried out 

in Weeks 18 and 19 to identify and resolve issues in the program. This was followed by 

seven weeks of improving the system, where advanced features such as detecting falls in 

obstructed views, handling multiple users, and differentiating non-fall postures were 

integrated and refined. 

 

From Weeks 25 to 26, comprehensive testing was conducted to validate the system's 

functionality and reliability. During this period, data was also collected for analysis to assess 

the accuracy and performance of the fall detection system. In Weeks 26 and 27, the team 

prepared for the project presentation by creating slides, rehearsing, and organizing results 

for effective delivery. Finally, in Week 28, the second phase concluded with the preparation 

of the PSM2 report, documenting all aspects of the project, including methods, results, and 

conclusions. 
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This structured timeline ensured a systematic approach to the project, with each phase 

building upon the previous one. By adhering to this plan, the project was executed 

efficiently, culminating in a comprehensive and reliable fall detection system. 

3.3 System’s Algorithm 

Developing a Kinect-based fall detection system with the ability to detect falls even under 

partial body visibility and in the presence of multiple individuals was the aim of this research. 

This project was executed systematically, progressing through several phases from the 

conceptualization of the idea to the implementation and testing of the final system. Each step 

was carefully planned and executed to ensure reliable operation and comprehensive fall 

detection coverage. 

To fully develop the system, the project involved analysing various scenarios, including falls 

with partial visibility due to object obstruction, as well as movements involving multiple 

individuals in the frame. Based on these requirements, a fall detection algorithm was 

designed and implemented using Visual Studio. Subsequently, the algorithm's performance 

was tested and evaluated to ensure accuracy in detecting falls while minimizing false alarms. 

The implementation phase involved the use of the Kinect sensor to capture body joint data, 

which served as input to the algorithm. The algorithm employed advanced techniques, 

including the analysis of joint positions and motion patterns, to identify falls effectively. 

Once the algorithm was developed, the system was debugged and improved iteratively to 

resolve any errors and optimize its performance. 
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The finalized fall detection system was then simulated and tested with various scenarios to 

ensure its behaviour matched the expected outcomes without errors. This testing phase 

verified that the system could accurately detect falls under different conditions, such as 

partial body visibility or the presence of multiple people. The results confirmed that the 

system met the design requirements and performed reliably. 

This thorough and systematic approach ensured the successful development of a Kinect-

based fall detection system capable of addressing the challenges posed by real-world 

scenarios. 

3.3.1 Fall Detection Algorithm  

The provided pseudocode outlines the design and functionality of a Kinect-based fall 

detection system. This system is intended to monitor body movements in real-time and 

trigger alerts in the event of a detected fall. The structure of the code is modular, making it 

easier to implement, test, and maintain. Below is an explanation of its key components and 

flow. 

 

The positionThreshold variable is key to determining whether a potential fall has occurred. 

It is designed to track the relative movement of the subject (usually an elderly person) within 

the Kinect's field of view. Essentially, this threshold defines the acceptable range of motion 

for a person standing or moving normally. The system compares the position of the detected 

body joints to this threshold to decide whether a fall has taken place. 

 

When the system detects the user's skeletal data via the Kinect sensor, it evaluates the 

position of key joints, such as the head, torso, and legs. The positionThreshold is used as a 

reference to compare how far these joints have moved from their typical standing or walking 
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positions. A fall is generally detected when the system identifies that these joints, especially 

the torso, have dropped significantly in relation to the threshold. For example, if the torso is 

suddenly much lower than expected and is outside the predefined range, the system may 

classify this as a fall. 

 

The fall detection mechanism operates by continuously monitoring the skeletal data and 

comparing it to the set position thresholds. The program is designed to detect abnormal joint 

positions that would indicate a fall. For instance, if the subject’s torso moves below a certain 

height threshold, it might suggest that the person has collapsed to the ground, triggering a 

fall event. 

The fall detection process involves several key steps: 

1. Joint Tracking and Threshold Comparison: The Kinect sensor tracks the body's 

joints in real-time, and the system evaluates their positions relative to the 

positionThreshold. When these positions exceed or fall below the threshold values, 

the system flags this as a possible fall. 

2. Fall Alert Activation: If the system detects a fall, the fallAlertPlayer is triggered, 

playing an alert sound or visual signal to notify caregivers or other monitoring 

systems. The fallSoundTimer ensures the alert sound plays for an appropriate 

duration. 

3. State Management: To avoid false positives or repeated alerts, the system uses state 

variables such as fallState and possibleFallDetected. The fallState tracks whether the 

system is in fall detection mode or has already identified a fall. The 

possibleFallDetected variable serves as a buffer to detect instances where a fall might 

appear likely but is not confirmed, prompting continued monitoring. 
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4. Timeout Mechanisms: The fallDetectionTimeout variable ensures the system 

doesn't continuously alarm for a fall detection event without any changes. If no 

movement is detected after a certain period, the system assumes that the subject is 

no longer in a dangerous fall state and resets its detection mechanisms. 

5. Inferred and Tracked Joints 

The system also uses the inferredJointBrush and trackedJointBrush variables, which 

represent the colours for different states of joints. The Kinect sensor can track the positions 

of the user’s body joints, but some joints may be "inferred," meaning their positions are 

estimated when they are not directly visible due to obstructions or angle limitations. These 

inferred joints are shown using a different colour (such as a lighter or dimmer shade), 

allowing users to differentiate between actual, detected joints and those that are estimated. 

This is important when assessing the accuracy of the detected fall and ensuring that any 

detection is based on reliable joint positions. 

 

The MainWindow class forms the backbone of the program, encompassing all methods and 

functionality required to run the fall detection system. It begins with the initialization of 

components, including the setup of the alert sound system (fallAlertPlayer) and the timer for 

managing sound playback (fallSoundTimer). Methods such as PlayAlertSoundAsync and 

StopAlertSound control the playback of the alert sound, ensuring the system provides audible 

feedback when a fall is detected. 

The Window_Loaded method sets up the Kinect sensor, initializing its features such as 

capturing colour and skeleton frame data. The Window_Closing method ensures proper 

cleanup and shuts down the Kinect sensor gracefully when the application is closed. 

 



56 

The core functionality for processing data is implemented in the 

KinectSensor_ColorFrameReady and KinectSensor_SkeletonFrameReady methods. The 

first method handles real-time colour frame data, while the second focuses on skeleton frame 

data to analyse joint positions and movements. By utilizing these methods, the system can 

monitor body movements and determine whether a fall has occurred. 

 

Several helper methods are defined to analyse specific body positions and detect abnormal 

movements: 

• IsPersonStanding determines whether a person is in a standing position. 

• IsPersonSittingCrossedLegs detects a sitting posture with crossed legs. 

• IsLayingWithKneesUp identifies lying down with knees up. 

• IsPersonFallingDown evaluates fall conditions based on changes in joint positions 

and timestamps. 

• IsLimbPositionAbnormal checks for irregular limb positions. 

• IsHandRaisedAboveHead detects when a hand is raised above the head. 

These methods are essential for interpreting the data collected by the Kinect sensor, enabling 

the system to recognize falls and distinguish them from other movements. 

 

To provide a visual representation of the monitored movements, the program includes 

methods such as DrawBonesAndJoints, which renders bone and joint connections, and 

ConvertSkeletonPointToScreenCoordinates, which translates 3D skeleton data into 2D 

screen coordinates. Additionally, RenderClippedEdges ensures that the visualization 

accounts for any parts of the body that may be outside the camera's field of view. These 

methods enhance the system's user interface, making it easier to monitor the detection 

process. 
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The program also incorporates methods to facilitate user interaction. For example, the 

Button_Click method allows the user to capture a screenshot of the current window, while 

the ApplyTiltButton_Click method adjusts the Kinect sensor's tilt angle. Furthermore, sound-

related methods such as PlayFallAlertSound, TestSoundButton_Click, and 

StopSoundButton_Click give users control over the alert system, enabling manual testing and 

stopping of the alert sound. 

 

This pseudocode represents a well-structured approach to building a Kinect-based fall 

detection system. By combining real-time data processing, accurate movement analysis, and 

user interaction, the program aims to reliably detect falls and provide timely alerts. Its 

modular design, with clearly defined methods and variables, ensures that the system is both 

functional and maintainable. 

 

1. Initialize variables: 

- kinectSensor 

- RenderWidth = 640.0 

- RenderHeight = 480.0 

- JointThickness = 3 

- BodyCenterThickness = 10 

- ClipBoundsThickness = 10 

- centerPointBrush = Blue 

- trackedJointBrush = Green 

- inferredJointBrush = Yellow 

- trackedBonePen = Green with thickness 6 

- inferredBonePen = Gray with thickness 1 

- drawingGroup 

- imageSource 

- colorBitmap 

- initialHeadToAnkleDistance = 0 
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- positionThreshold = 0.3 

- fallAlertPlayer 

- isSoundPlaying = false 

- fallSoundTimer 

- lastHeadY = 0 

- lastShoulderCenterY = 0 

- lastHipCenterY = 0 

- lastSkeletonTimestamp = MinValue of DateTime 

- possibleFallDetected = false 

- fallDetectionTimeout = 3 seconds 

- setAColor = Green 

- setBColor = Blue 

- fallState = false 

 

2. Define MainWindow class: 

- Initialize components 

- Initialize fallAlertPlayer with alert sound file path 

- Initialize fallSoundTimer for looping sound 

- Define async method PlayAlertSoundAsync to play alert sound 

- Define method StopAlertSound to stop alert sound 

- Implement Window_Loaded method to set up Kinect sensor 

- Implement Window_Closing method to stop Kinect sensor 

- Implement KinectSensor_ColorFrameReady method to handle color frame data 

- Implement async KinectSensor_SkeletonFrameReady method to handle skeleton frame 

data 

- Define various helper methods for detecting positions and movements 

- Implement method to draw bones and joints 

- Implement method to convert SkeletonPoint to screen coordinates 

- Implement method to render clipped edges 

- Implement Button_Click method to take a snapshot of the window 

- Implement ApplyTiltButton_Click method to adjust Kinect tilt angle 

 

3. Define helper methods: 
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- IsPersonStanding to check standing position 

- IsPersonSittingCrossedLegs to check sitting position with crossed legs 

- IsLayingWithKneesUp to check lying position with knees up 

- IsPersonFallingDown to detect fall based on various conditions 

- IsLimbPositionAbnormal to check abnormal limb positions 

- IsHandRaisedAboveHead to check if hand is raised above head 

- UpdateJointPositionsUI to display joint positions 

- UpdateStatusText to update status text 

- NotifyFallEvent to trigger fall alert sound 

- DrawBonesAndJoints to render bone and joint connections 

 

4. Implement UI interaction methods: 

- PlayFallAlertSound to play alert sound 

- TestSoundButton_Click to manually trigger sound playing 

- StopSoundButton_Click to stop the alert sound 

- Button_Click to save a screenshot 

- ApplyTiltButton_Click to adjust the Kinect tilt angle 

 

Figure 3.3 Pseudocode of Fall Detection Algorithm 

 

3.3.2 Project Flowchart 

The flowchart represents the operation of the Kinect-based fall detection system, starting 

with the initialization of the Kinect sensor. This initial step ensures that the hardware is 

properly prepared to capture the required data for further processing. Once the initialization 

is complete, the system performs a critical check to determine whether the Kinect sensor is 

connected to the system. If the sensor is not connected, an error message is displayed to 

inform the user about the issue and halt the process. On the other hand, if the sensor is 

successfully connected, the system proceeds to the next stage. 
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In the subsequent step, the system enables the colour and skeleton data streams provided by 

the Kinect sensor. These streams are essential for detecting falls, as they allow the system to 

capture real-time RGB colour data and skeletal tracking information. After enabling these 

streams, the system processes the skeleton data to analyse the positions and movements of 

key joints in the human body. This analysis forms the foundation for detecting any abnormal 

movements or potential falls. 

A decision point is then reached where the system evaluates the processed data to determine 

whether a fall has occurred. If no fall is detected, the system continues to monitor the 

skeleton data without triggering any alerts, ensuring continuous surveillance. However, if a 

fall is detected, the system takes immediate action. It plays an audible alert sound to draw 

attention to the incident and displays a fall alert message on the user interface (UI). This alert 

system is designed to notify caregivers or users about the fall, enabling a swift response to 

the situation. 

 

Figure 3.4 Simple version of Project Flowchart 
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3.3.3 Project Block Diagram 

The block diagram illustrates the architecture of a real-time fall detection system for elderly 

individuals, developed using Kinect technology with an emphasis on handling obstructions. 

The system integrates various components that work together to detect falls accurately and 

provide necessary alerts. 

 

At the core of the system is the Main Application, which integrates all functionalities and 

coordinates the overall process. It acts as the control center, managing user interactions, data 

flow, and processing tasks required for fall detection. The Main Window serves as the user 

interface (UI) framework, connecting the application logic with the visual components and 

allowing users to interact with the system. It provides access to buttons for testing and 

stopping sounds, along with status updates for system activity and alerts. 

 

The UI Components consist of visual and interactive elements such as buttons (e.g., "Test 

Sound" and "Stop Sound") and status displays. These components allow users to control 

sound feedback and monitor the real-time status of the system, ensuring ease of use and 

accessibility. 

 

The Kinect Sensor is the primary hardware used for capturing data. It processes both the 

Colour Stream and Skeleton Stream to enable fall detection. The Colour Stream captures 

visual data, which is then used to display a colour image in the UI, providing a visual 

representation of the monitored area. The Skeleton Stream, on the other hand, provides 

skeletal data, including joint positions and movement patterns, which are critical for 

detecting falls. 
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The Skeleton Stream captures skeletal data by tracking the positions and orientations of key 

joints in the human body. This data is rendered in the system to display Skeleton and Joints, 

enabling a clear representation of the subject's posture and movements. The skeletal data 

undergoes Skeleton Data Processing, where algorithms analyse joint movements, body 

angles, and velocity. The processed data is fed into the Fall Detection module, which 

determines whether a fall has occurred. Advanced considerations, such as obstruction 

handling, are incorporated to enhance the system's accuracy in detecting falls in cluttered or 

occluded environments. 

 

The Sound Player is responsible for generating audio feedback. It plays a critical role in 

alerting caregivers or the user when a fall is detected. The sound functions can be tested or 

stopped using the buttons in the UI. Additionally, the Status Updates module provides real-

time feedback on the system's performance and alerts. This includes notifications for 

detected falls, system errors, or other significant events, ensuring that users and caregivers 

are informed promptly. 

 

The workflow begins with the Kinect Sensor capturing data through the Color and Skeleton 

Streams. This data is processed and visualized in the Main Window while being analyzed 

for fall detection. If a fall is detected, the system triggers an alert using the Sound Player and 

provides relevant updates in the status display. The UI Components allow users to interact 

with the system and control sound alerts. 

 

This real-time fall detection system offers a robust solution for monitoring elderly 

individuals, especially in environments with potential obstructions. By leveraging Kinect's 
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advanced capabilities and integrating intuitive UI elements, the system provides reliable and 

user-friendly support for fall prevention and emergency response. 

 

 

Figure 3.5 Project Block Diagram 

 

3.4 Hardware & Software 

3.4.1 Kinect Sensor 

Kinect sensor is a depth-sensing camera device developed by Microsoft. It was originally 

created as an accessory for the Xbox gaming console but has also found applications in other 

fields, such as robotics, healthcare, and computer vision research.  

 

 

Figure 3.6 Xbox 360 Microsoft Kinect 

 

Kinect sensor utilizes a combination of cameras and infrared sensors to capture depth 

information and track human movement. It consists of some main components: 
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1) RGB Camera 

The Kinect sensor includes a traditional RGB camera that captures color images like 

a regular camera. This camera is useful for capturing visual information and can be 

used for applications like gesture recognition or video conferencing. 

2) Depth Sensor 

The Kinect sensor employs an infrared depth sensor that projects an infrared pattern 

into the scene and measures the time it takes for the pattern to bounce back. This 

allows the sensor to calculate the distance of objects from the camera, generating a 

depth map of the environment. 

3) Infrared Projector 

The Kinect sensor emits an infrared light pattern that is invisible to the human eye. 

This pattern combined with the depth sensor, allows the sensor to accurately measure 

distances and create a detailed depth image. 

4) Microphone Array 

The Kinect sensor includes an array of microphones that capture audio from the 

surrounding environment. This enables applications to incorporate voice commands 

and perform speech recognition. 
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3.4.2 Laptop  

In this Kinect-based fall detection project, the laptop serves as the central hub for processing 

the data received from the Kinect sensor. The laptop runs the necessary software to interpret 

this data, identify key body joints, and track their movement patterns. Using this processed 

information, the laptop runs algorithms to compare the detected body positions to predefined 

thresholds, which helps determine if a fall has occurred. 

The laptop also manages the user interface, displaying the visual representation of the 

detected body joints and movements in real time. This allows caregivers or monitoring 

systems to observe the status of the person being monitored. Additionally, the laptop controls 

the alert system, playing audio or triggering other signals when a fall is detected, ensuring 

that the appropriate notifications are sent to alert caregivers or users. 

Furthermore, the laptop provides the computational power to run the complex algorithms 

needed for accurate fall detection, such as joint tracking, motion analysis, and threshold 

comparison. It handles the real-time processing and ensures that the system responds quickly 

enough to detect a fall as soon as it happens. In essence, the laptop is crucial for handling 

Figure 3.7 Sensor arrangement of Kinect 

Sensor 
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the data analysis, user interface, alert system, and overall management of the fall detection 

process. Without the laptop, the Kinect sensor would only be able to collect raw data, but it 

would not be able to process or interpret that data into actionable insights. 

 

Figure 3.8 Laptop  

 

3.4.3 Contraption  

The contraption designed to hold the Kinect sensor is an innovative solution that mimics the 

properties of common home furniture. It features adjustable height, ranging from a minimum 

of 1.20 meters to a maximum of 2.0 meters, allowing the Kinect to be positioned optimally 

for capturing body movements in various environments. This height flexibility ensures that 

the sensor can be tailored to suit different users, such as those standing or sitting, and 

accommodate various room configurations. 

By imitating the properties of home furniture, the contraption blends seamlessly into a 

typical household setting. It allows the Kinect to be discreetly placed without drawing 

attention, while still maintaining functionality. The design makes it easier to integrate the 

Kinect into a living space, ensuring it doesn't interfere with the natural flow of the room or 

obstruct the user’s movements. Additionally, the adjustable height feature makes the 
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contraption versatile enough to monitor users of different heights or varying positions, such 

as standing, sitting, or lying down. 

This setup enhances the fall detection system by ensuring the Kinect sensor is always 

positioned at the correct height for optimal tracking, leading to more accurate data collection 

and improved performance of the fall detection algorithms. It also contributes to the overall 

user experience, making the system feel more like a natural part of the home environment 

rather than an intrusive piece of technology. 

 

Figure 3.9 Contraption for the Kinect 

 

3.4.4 Microsoft Visual Studio 2019 

Microsoft Visual Studio 2019 is an integrated development environment (IDE) that provides 

tools for software development across various programming languages. It features a code 

editor, debugger, version control integration, and support for building desktop, web, mobile, 

and cloud applications. In the context of this project, Visual Studio plays a central role in 

developing and deploying the Kinect-based fall detection system. 
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• Coding and Development: Visual Studio is used to write and edit the code that 

processes Kinect sensor data and integrates it with fall detection algorithms. This 

includes developing the logic for tracking body joints and analysing their positions 

to detect a fall. 

• Debugging and Testing: Visual Studio’s debugging tools are essential for 

identifying issues in the code. By setting breakpoints and monitoring variables, 

developers can ensure that Kinect data is correctly processed and fall detection works 

as expected under various conditions. 

• User Interface Development: Visual Studio provides tools for creating a graphical 

user interface (GUI) if your project includes one. Using Windows Forms or WPF, 

developers can design interactive windows that display real-time data, alerts, and 

visual feedback. 

• Build and Deployment: After development and testing, Visual Studio is used to 

build the application into an executable and deploy it to the target system, ensuring 

compatibility with the Kinect setup and other environments. 

 

Figure 3.10 Microsoft Visual Studio Interface 
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3.5 Experimental Setup 

Proprietary connecter of Xbox 360 Microsoft Kinect is plugged into corresponding 

port on the USB adapter. End of USB adapter is plugged into laptop. Microsoft Kinect is 

then connected to power supply and tested with Kinect developer toolkit. Figure 3.11 shows 

that the Kinect sensor is positioned above and is facing towards the person. The measurement 

from the person to the Kinect sensor represents the horizontal distance between the Kinect 

sensor and the person. The vertical measurement pointing downwards from the Kinect sensor 

indicates the height at which the Kinect sensor is placed above the ground. 

 

Figure 3.11 Project Setup 

 

 

 

Figure 3.12 Kinect Horizontal View Angle 

 



70 

 

Figure 3.13 Kinect Vertical View Angle 

 

            Figure 3.13 shows the vertical field of view of Kinect sensor where the sensor can 

perceive objects within a 43-degree vertical range in front of it. Figure 3.12 shows the angle 

at which the Kinect sensor can detect motion across the horizontal plane. The sensor must 

be placed in such a way that the area where motion is to be detected falls within this 57-

degree field.  

 

Figure 3.14 Proposed Kinect placement in common and private areas. 

 



71 

Figure 3.14 shows the floor plan of a house with markings indicating the placement and field 

of view of a Kinect sensor. The Kinect sensor is placed in seven potential locations within 

the house, as indicated by the black circles. The blue cones indicate the extent of the area 

covered by the sensor's camera.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.15 Kinect view of house areas (a) Bedroom (b) Living Room (c) Driveway (d) 

Kitchen 

 

Figure 3.15 show the Kinect’s view of different areas within the house. They highlight how 

the Kinect sensor captures depth and skeletal data to monitor movements in real time. These 

visuals demonstrate how the Kinect tracks individuals in various environments, including 

spaces with obstacles like furniture or walls. This is essential for fall detection, as it shows 

how the system can detect falls even in rooms with different layouts or obstructions. The 
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figures emphasize the Kinect’s adaptability and accuracy in home settings, ensuring reliable 

performance for elderly care. 

 

3.6 Formula Used  

The following formulas were used to calculate the accuracy percentage for fall detection and 

non-fall postures: 

• Fall Detection Accuracy = 
𝑁𝑜.𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

𝑁𝑜.𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
 x 100 

 

• Fall Detection Accuracy for Non-Fall Postures = 
𝑁𝑜.𝑜𝑓 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

𝑁𝑜.𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
 x 100 

 

These formulas provided a quantitative measure of the system’s performance, ensuring an 

accurate evaluation of its ability to differentiate between falls and non-fall movements. 

 

3.7 Sustainable Development Goals (SDG) 

The Sustainable Development Goals (SDGs) that correlates with the project are SDG 3, SDG 

9, and SDG 11. The initiative fulfills SDG 3 (Good Health and Well-Being) by lowering 

injuries and enhancing safety for the elderly and those with disabilities by using Kinect 

technology to detect falls and send timely alarms. Repurposing Kinect technology is an 

inventive way to showcase innovations in health monitoring systems and assist SDG 9 

(Industry, Innovation, and Infrastructure). In addition, the project advances inclusivity and 

safety, enabling vulnerable communities to live more freely and safely, which supports 
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Sustainable Cities and Communities, SDG 11. The project encourages safer, more 

sustainable, and healthier communities through these initiatives. 

 

Figure 3.16 SDG 3, 9 and 11 icons. 

 

3.8 Summary 

This chapter presented the methodology used to implement a Kinect-based fall detection 

system for the elderly. The goal was to develop a system that utilizes the Kinect sensor and 

its SDK to monitor and detect falls in real-time. The Kinect’s colour, and skeletal data were 

processed to track the body’s movements and detect abnormal joint positions. The system 

was developed and optimized using Microsoft Visual Studio 2019, and its performance was 

evaluated in terms of accuracy, response time, and system reliability. The effectiveness of 

the fall detection algorithm was tested to ensure it met the desired outcomes and could 

function reliably in home environments with varying layouts and obstructions. 
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter examined the outcomes of implementing a real-time fall detection 

system for the elderly using the Kinect sensor, focusing on addressing real-world challenges 

and optimizing system performance. The result was analysed in different factor and 

situations from section 4.2.1 until 4.2.8 The system was designed to provide a practical, 

efficient, and non-intrusive solution for monitoring individuals and ensuring their safety. By 

leveraging the Kinect’s depth-sensing and skeletal tracking capabilities, a robust fall 

detection algorithm was developed and implemented in Visual Studio 2019, utilizing the 

Kinect Developer Toolkit v1.8 for advanced programming and integration. This approach 

allowed the system to reliably detect falls in various complex scenarios. 

4.2 Results and Analysis 

Fall detection was simulated and evaluated across diverse scenarios, including 

varying heights, different lighting conditions, and situations involving multiple individuals. 

The system’s accuracy was analysed considering factors such as falls from different heights, 

the presence of object obstructions (e.g., furniture blocking and partial body visibility), and 

the ability to distinguish falls from non-fall postures, such as sitting on a chair, sitting on the 

floor, and standing. Furthermore, the "HELP" gesture command was incorporated as an 

emergency feature, allowing users to manually trigger alerts when assistance was required. 



75 

The results demonstrated the system's adaptability and effectiveness in real-world 

applications, ensuring reliable fall detection and robust response mechanisms. 

4.2.1 Fall Detection Accuracy at Different Heights (At the distance 2.0m) 

Fall detection accuracy is observed and analyzed at various heights. Heights are tested 

starting from the lowest at 1.2 meters up to the highest at 2.0 meters, with an increment of 

0.1 meters.  

Table 4.1 Fall Detection Accuracy at Different Heights (At the distance 2.0m) 

 

 

Figure 4.1 Graph of Fall Detection Accuracy at Different Heights 
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Height of 

Kinect Sensor 

(m) 

No.of simulated 

falls scenarios 

No.of detected 

Fall scenarios 

No.of 

undetected falls 

scenarios 

Accuracy (%) 

1.20 4 4 0 100 

1.30  4 4 0 100 

1.40  4 4 0 100 

1.50  4 4 0 100 

1.60  4 4 0 100 

1.70  4 4 0 100 

1.80  4 4 0 100 

1.90  4 4 0 100 

2.00  4 4 0 100 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 
 

(h) 
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(i) 

Figure 4.2 Fall Detection at Different Heights (a) 1.2m (b) 1.3m (c) 1.4m (d) 1.5m (e) 1.6m 

(f) 1.7m (g) 1.8m (h) 1.9m (i) 2.0m 

 

The fall detection system demonstrated exceptional performance, achieving 100% accuracy 

across all tested heights between the Kinect sensor and the subject. This result validates the 

system’s functionality by confirming its ability to consistently track skeletal data and 

accurately detect falls, regardless of the subject’s distance from the sensor. The uniform 

accuracy across different heights indicates that the sensor's depth-sensing capability and fall 

detection algorithm are highly reliable, ensuring effective monitoring in various indoor 

settings. These findings reinforce the system’s practicality for real-world applications, where 

variations in sensor placement are inevitable. 

 

4.2.2 Fall Detection at Different Distances (At the height of 1.4m) 

Fall detection accuracy was observed and analysed across various distances to evaluate the 

system's performance under different spatial conditions. Distances of 1.0m, 2.0m, 3.0m, 

4.0m, and 4.5m were carefully tested to ensure the Kinect sensor's ability to track skeletal 

data and detect falls effectively at both close and moderate ranges.  
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Table 4.2 Fall Detection Accuracy at Different Distances (At the height of 1.4m) 

Distance of 

Subject from 

Kinect Sensor 

(m) 

No.of 

simulated falls 

scenarios 

No.of detected 

Fall scenarios 

No.of 

undetected falls 

scenarios 

Accuracy (%) 

1.0 (min) 4 4 0 100 

2.0 4 4 0 100 

3.0 4 4 0 100 

4.0 4 4 0 100 

4.5 (max) 4 2 2 50 

 

 

Figure 4.3 Graph of Fall Detection Accuracy at Different Distances 
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(c) 

 

(d) 

 

(e) 

Figure 4.4 Fall Detection at Different Distances (a) 1.0m (b) 2.0m (c) 3.0m (d) 4.0m (e) 

4.5m 

 

From 1.0 meter until 4.0 meter, the accuracy was the highest which is 100% while the 

farthest distance of 4.5 meters, the fall detection accuracy is the lowest, at 50%. The Kinect 

sensor struggles with accurate skeletal tracking at these distances. At close range, the limited 

field of view and potential depth perception distortions result in incomplete or inaccurate 

data. At the farthest distances, the Kinect's maximum effective view of approximately 4.5 

meters poses challenges, as there is a chance that the subject may move out of the frame. To 

address this limitation, it is suggested to incorporate multiple Kinect sensors in areas larger 

than 4.5 meters to ensure continuous tracking and improved fall detection accuracy. 

4.2.3 Fall Detection Accuracy for Different Fall Postures (At the height: 1.4m) & 

(At the distance 2.0m) 

Fall detection accuracy is observed and analysed across various possible fall scenarios and 

positions. These include forward falls, backward falls, sideward falls, and falls from sitting 
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or standing positions. The analysis ensures comprehensive evaluation of the system’s ability 

to detect falls regardless of the direction or position, highlighting the robustness and 

adaptability of the fall detection methodology in diverse real-world scenarios. 

Table 4.3 Fall Detection Accuracy for Different Fall Postures (At the height: 1.4m) & (At 

the distance 2.0m) 

Scenarios No.of 

simulated falls 

scenarios 

No.of detected 

Fall scenarios 

No.of 

undetected falls 

scenarios 

Accuracy (%) 

Fall to the left 

side 

4 4 0 100 

Fall to the right 

side 

4 4 0 100 

Fall to the front 4 4 0 100 

Fall to the back 4 4 0 100 

Fall while 

sitting 

4 4 0 100 

Kneeling 4 4 0 100 

Crawling 4 4 0 100 

 

 

Figure 4.5 Graph of Fall Detection Accuracy for Different Fall Postures 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

Figure 4.6 Different Fall Postures (a) Fall to the left side (b) Fall to the right side (c) Fall to 

the front (d) Fall to the back (e) Fall while sitting (f) Kneeling (g) Crawling 
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The fall detection system demonstrated exceptional performance across a variety of fall 

scenarios, including forward, backward, and sideward falls, as well as falls from sitting and 

standing positions. In each scenario, the system achieved 100% accuracy in detecting falls, 

showcasing its ability to effectively track and analyze skeletal data to identify different types 

of falls. The system's robustness in these diverse fall positions ensures its suitability for a 

wide range of real-world applications, particularly in environments where various fall 

directions are possible. 

4.2.4 Fall Detection Accuracy Towards Multiple People Approach (At the height: 

1.4m) & (At the distance 2.0m) 

Fall detection accuracy is assessed in scenarios involving multiple people. This approach 

evaluates the system's ability to accurately identify falls in environments where more than 

one individual is present, ensuring that the system can differentiate between the movements 

of various people and detect falls without being influenced by other individuals in the frame. 

 

Table 4.4 Fall Detection Accuracy Towards Multiple People Approach (At the height: 

1.4m) & (At the distance 2.0m) 

Scenarios No.of 

simulated falls 

scenarios 

No.of detected 

Fall scenarios 

No.of 

undetected falls 

scenarios 

Accuracy (%) 

Two people 

standing 

4 0 4 100 

One fall, one 

standing 

4 4 0 100 

Two fall 4 4 0 100 
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Figure 4.8 Graph of Fall Detection Accuracy Towards Multiple People Approach 

 

In scenarios involving multiple people, the system maintained its accuracy and 

responsiveness in detecting falls even when multiple individuals were present in the sensor’s 
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Figure 4.7 Fall Detection Towards Multiple People (a) Two People 
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relevant subject allowed the system to track movements accurately, ensuring that the fall 

detection process was not disrupted by the presence of additional individuals in the area. 

4.2.5 Fall Detection Accuracy to Differ Non-Fall Postures (At the height: 1.4m) & 

(At the distance 2.0m) 

The system's performance is tested with non-fall postures, including sitting on a chair, 

standing, and sitting on the floor. These scenarios help to ensure that the system can 

distinguish between actual falls and common everyday postures that might resemble a fall, 

such as bending or crouching. The aim is to minimize false positives by recognizing the 

difference between a fall and other stationary or semi-stationary positions. 

Table 4.5 Fall Detection Acuracy to Differ Non-Fall Postures (At the height: 1.4m) & (At 

the distance 2.0m) 

Scenarios No.of 

simulated 

scenarios 

No.of detected 

Fall scenarios 

No.of 

undetected falls 

scenarios 

Accuracy (%) 

Standing 4 0 4 100 

Sitting on a 

chair 

4 0 4 100 

Sitting on the 

floor 

4 0 4 100 

 



85 

 

Figure 4.9 Graph of Fall Detection Accuracy to Differ Non-Fall Postures 
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Figure 4.10 Non-Fall Postures (a) Standing (b) Sitting on a chair (c) Sitting on the floor 
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The system also demonstrated high accuracy in differentiating between non-fall postures, 

such as sitting on a chair, standing, and sitting on the floor. By carefully analyzing joint 

movements and applying specific thresholds, the system was able to effectively ignore non-

fall postures, minimizing false positives. Although there was a drawback on detecting an 

intentional lying down due to the sekeleton data becamemessy when the subject was falling 

down. This capability ensures that the fall detection system remains reliable, even in 

environments where users may frequently change positions. 

4.2.6 Fall Detection Accuracy with Object Obstructions (At the height: 1.4m) & (At 

the distance 2.0m) 

The accuracy of the fall detection system is also evaluated in environments with object 

obstructions, such as behind furniture or situations where the person’s body is partially 

obstructed. These conditions challenge the Kinect’s ability when skeletal data fully vanished 

from the frame, so the system’s robustness in handling partial visibility of the subject, due 

to objects in the environment, is thoroughly assessed. 

 

Table 4.6 Fall Detection Accuracy with Object Obstructions (At the height: 1.4m) & (At 

the distance 2.0m) 

Scenarios No.of 

simulated falls 

scenarios 

No.of detected 

Fall scenarios 

No.of 

undetected falls 

scenarios 

Accuracy (%) 

Behind 

furniture (chair, 

table) 

4 4 0 100 

Partial Body 1 4 4 0 100 

Partial Body 2 4 4 0 100 
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Figure 4.11 Graph of Fall Detection Accuracy with Object Obstructions 
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Figure 4.12 Obstruction Scenarios (a) Behind Furnitures 1 (b) Behind Furnitures 2 (c) 

Partial Body 1 Partial Body 2 

 

When testing with object obstructions, such as furniture blocking partial body visibility, the 

system maintained its fall detection accuracy. Despite the challenges posed by partial body 
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detect falls even when the subject was partially obscured. This feature ensures that the 

system can function effectively in real-world environments where obstructions are common. 

4.2.7 Fall Detection Accuracy with Different Lighting (At the height: 1.4m) & (At 

the distance 2.0m) 

Fall detection performance is observed under various lighting conditions, including both 

bright and low-light environments. The impact of lighting on the Kinect sensor’s ability to 

capture accurate depth and skeletal data is analyzed to determine how well the system adapts 

to changes in environmental lighting, which could otherwise affect sensor performance. 

 

Table 4.7 Fall Detection Accuracy with Different Lighting (At the height: 1.4m) & (At the 

distance 2.0m) 

Lighting No.of 

simulated falls 

scenarios 

No.of detected 

Fall scenarios 

No.of 

undetected falls 

scenarios 

Accuracy (%) 

Brightest 4 4 0 100 

Bright  4 4 0 100 

Dim 4 4 0 100 

Dark  4 4 0 100 

Darkest 4 4 0 100 
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Figure 4.13 Graph of Fall Detection Accuracy with Different Lighting 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

0

10

20

30

40

50

60

70

80

90

100

Brightest Bright Dim Dark Darkest

A
cc

u
ra

cy
 (

%
)

Lighting

(At the height: 1.4m) & (At the distance 2.0m)



90 

 

(e) 

Figure 4.14 Fall Detection in Different Lighting (a) Brightest (b) Bright (c) Dim (d) Dark 

(e) Darkest 

 

The system's performance was evaluated under different lighting conditions, ranging from 

well-lit to dimly lit environments. Despite the potential challenges posed by varying lighting, 

the Kinect sensor continued to perform reliably, maintaining high accuracy in detecting falls. 

This adaptability ensures that the system can be used effectively in different environments, 

regardless of lighting conditions. 

4.2.8 “HELP” Gesture Command 

The system is tested with the “HELP” gesture command to assess its responsiveness in 

emergency situations. This evaluation ensures that, in addition to detecting falls, the system 

can recognize when an individual requires assistance, providing a proactive alert mechanism 

that could trigger a response from caregivers or emergency personnel when needed. 
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Figure 4.15 "Help Command Detected" was displayed when a hand was raised to provide 

immediate assistance. 

 

Finally, the "HELP" gesture command was integrated into the system as an emergency 

feature. Users were able to manually trigger an alert by performing a specific gesture, 

allowing them to request assistance when needed. The system successfully recognized the 

gesture and triggered an alert, adding an important layer of safety and ensuring that users 

have a reliable means of requesting help in the event of a fall or other emergency. 

4.3 Summary 

The simulation results demonstrated that the Kinect-based fall detection system functioned 

correctly, successfully detecting falls in real-time across various scenarios. The developed 

algorithm processed skeletal tracking data efficiently, analysing joint movements to identify 

falls without any errors. The fall detection mechanism maintained high accuracy, with no 

false positives or negatives observed during testing. The system accurately differentiated 

between fall scenarios and non-fall postures, ensuring reliable performance in diverse 

environments. 

The Kinect sensor interacted seamlessly with the detection algorithm, as evidenced by 

precise skeletal tracking, real-time depth analysis, and accurate joint positioning data. The 
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notification system, triggered upon fall detection or "HELP" gesture commands, worked as 

intended, providing timely alerts to enhance user safety. 

The system's performance matched theoretical expectations, maintaining consistent 

accuracy even in challenging conditions, such as with object obstructions, varying lighting, 

and multiple people in the frame. These results confirm that the Kinect-based fall detection 

system is both robust and efficient, offering a reliable solution for real-time elderly 

monitoring and safety assurance. 

While the Kinect-based fall detection system offers promising capabilities, it is not without 

limitations. These challenges became apparent at different stages during the development of 

the project. 

 

One of the primary constraints is the effective range of the Kinect sensor, which is 

approximately 4.5 meters. This limitation was first encountered during the testing phase 

when the system failed to detect individuals positioned beyond this distance. It highlighted 

the need for careful sensor placement in larger indoor areas. To address this, experimentation 

with multiple Kinect sensors was considered to ensure comprehensive coverage, but it 

introduced additional complexity and cost, making the solution less practical for certain 

settings. 

 

Another limitation is the power consumption of the Kinect sensor. This issue arose during 

the planning and implementation stages when designing a system for continuous, 24-hour 

operation. The high energy demand posed challenges for long-term efficiency and cost-

effectiveness. Although the system functioned effectively, the energy consumption 

highlighted the need for future optimization to improve sustainability. 
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Additionally, the fall detection algorithm faced limitations in distinguishing intentional lying 

down from a fall. This issue became apparent during the data collection and algorithm testing 

phases. While the system successfully identified non-fall postures, such as sitting on a chair 

or the floor, it struggled to classify intentional lying down accurately. This presented a 

critical challenge, as unintentional lying down is a key indicator of falls. As a result, false 

negatives occurred, underscoring the need for further refinement of the algorithm to improve 

posture classification. 

 

These limitations highlight areas for improvement encountered at different stages of 

development. Extending detection range, optimizing power efficiency, and refining 

algorithms remain crucial for enhancing the system’s reliability and effectiveness. Despite 

these challenges, the Kinect-based system serves as a valuable foundation for advancing fall 

detection technology. 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

This project successfully developed a real-time fall detection system for the elderly using 

the Kinect sensor, focusing on addressing real-world challenges such as object obstructions, 

varying lighting conditions, and the presence of multiple people. The system utilized the 

Kinect’s depth-sensing and skeletal tracking capabilities, combined with a robust algorithm 

implemented in Visual Studio 2019, to detect falls accurately and in real time. The Kinect 

Developer Toolkit v1.8 provided a solid foundation for development, enabling effective 

integration with the Kinect SDK to access advanced features like skeletal tracking and depth 

analysis. The system employed threshold values and specific joint tracking data to analyse 

body movements, ensuring accurate detection even in complex scenarios. 

To meet the first objective of recreating different fall scenarios with object obstructions for 

the development of the Kinect algorithm, various fall types were tested under conditions 

where the subject’s body was partially obstructed by furniture or other objects. These 

scenarios challenged the system’s ability to accurately track skeletal data and detect falls 

despite the obstructions. The system was able to identify falls effectively even with partial 

body visibility, demonstrating its robustness in handling real-world environments where 

objects might block the Kinect’s view. The results indicated that object obstructions did not 

significantly affect fall detection performance, ensuring the system's reliability in such 

scenarios. 
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In addressing the second objective, which was to analyse the optimal location for the Kinect 

sensor (distance, height, and area coverage), the system was evaluated across different 

distances and heights, ranging from 1.2 meters to 2.0 meters in height and distances from 

1.0 meters to 4.5 meters. The results indicated that the Kinect sensor performed best within 

its optimal range and height, with a recommendation to use multiple Kinect sensors in larger 

areas to ensure continuous tracking. This setup would improve the overall fall detection 

accuracy and area coverage, especially in spaces larger than the Kinect’s maximum effective 

range of 4.5 meters. 

To meet the third objective of developing a fall detection system based on skeletal tracking 

data with alarm notifications, the system integrated an alarm feature that was triggered when 

a fall was detected. The system utilized the Kinect sensor’s skeletal tracking data, analysing 

joint movements to differentiate between falls and non-fall postures. In addition to detecting 

falls, the “HELP” gesture command was incorporated as an emergency feature, allowing 

users to trigger alerts manually when assistance was needed. The system's successful 

integration of real-time fall detection and alarm notifications provides a reliable solution for 

elderly care, offering an additional layer of safety and support. 

Although Visual Studio 2019 and Kinect Developer Toolkit v1.8 are older versions of 

development tools, they remain effective in creating a functional fall detection system. This 

Kinect-based solution offers a non-intrusive method of monitoring individuals without 

requiring wearable devices, which is particularly beneficial for seniors who may forget or be 

unwilling to wear monitoring equipment. By utilizing the advanced programming 

capabilities of Visual Studio 2019 and the Kinect SDK, the project demonstrated the 

potential for developing efficient and reliable applications. Overall, the proposed system 
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provides a robust, non-intrusive, and adaptable solution for enhancing elderly care, ensuring 

safety and support in various environments. 

5.2 Potential for Commercialization  

The "Real-Time Fall Detection for the Elderly with Obstruction Consideration 

Using Kinect" project offers a groundbreaking solution to a critical issue faced by an aging 

population. Falls are a significant health concern among the elderly, often resulting in severe 

injuries, loss of independence, or even fatalities. Current fall detection systems frequently 

fail in scenarios involving obstructions or multiple individuals in the monitored area. This 

project addresses these limitations, providing an accurate and unobtrusive fall detection 

solution with substantial commercialization potential. 

 

One of the primary factors that make this project commercially viable is its 

adaptability to various care settings, including nursing homes, hospitals, and individual 

households. With Malaysia’s aging population expected to reach 15% by 2030, there is an 

urgent demand for reliable and efficient elder care technologies. Furthermore, the global 

elderly care market is projected to grow significantly, driven by increasing life expectancy 

and an emphasis on improving quality of life for seniors. This creates a robust market 

opportunity for innovative products like this fall detection system. 

 

The system’s competitive advantage lies in its ability to function effectively even 

with partial body visibility, distinguishing it from conventional solutions that rely on 

wearable devices or simpler motion sensors. By utilizing Kinect technology and advanced 

algorithms, the system ensures high accuracy without intruding on the elderly’s daily lives. 
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This unobtrusive approach reduces user resistance and enhances adoption rates, especially 

in homes where the elderly may not be comfortable wearing monitoring devices. 

 

To facilitate commercialization, collaboration with both government and private 

entities is crucial. In Malaysia, potential partners include the Ministry of Health (MOH), 

which oversees elder care policies, and the Social Welfare Department (JKM), which 

supports initiatives aimed at improving the lives of senior citizens. Institutions like the 

Malaysian Research Accelerator for Technology and Innovation (MRANTI) could provide 

funding and resources to develop the system further and introduce it to the market. 

 

On an international level, partnerships with private companies specializing in 

healthcare technology, such as Philips Healthcare or Siemens Healthineers, could drive the 

adoption of the system in global markets. Collaboration with organizations like the World 

Health Organization (WHO) or the International Federation on Ageing (IFA) could further 

promote the system’s relevance in addressing global elder care challenges. 

 

The cost-effectiveness of Kinect hardware enhances the system’s commercial 

appeal, making it accessible to a wider demographic. Private elder care facilities and 

healthcare providers could integrate the system as part of their service offerings, creating a 

new revenue stream while improving safety for their clients. Additionally, collaboration with 

local technology companies for manufacturing and distribution would ensure a streamlined 

process from production to end-user delivery. 

 

In summary, the "Real-Time Fall Detection for the Elderly with Obstruction 

Consideration Using Kinect" project is a promising innovation with significant potential for 
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commercialization. By addressing critical gaps in existing fall detection systems, the project 

offers a valuable solution for improving elderly safety. Strategic partnerships with 

government agencies, healthcare providers, and private companies can ensure the system’s 

success in both domestic and international markets, making it a vital contribution to elder 

care technology. 

 

5.3 Future Works 

The "Real-Time Fall Detection for the Elderly with Obstruction Consideration Using 

Kinect" project lays the foundation for a cutting-edge elder care solution. However, there 

are numerous opportunities to expand and enhance its functionality through future works. 

These advancements would not only improve the system’s efficiency and usability but also 

position it as a comprehensive tool for elderly safety and healthcare monitoring. 

One significant area of improvement is the integration of the system with Internet of Things 

(IoT) technologies. By connecting the Kinect-based fall detection system to an IoT network, 

data can be transmitted in real-time to caregivers or emergency response teams. This would 

enable instant notifications in case of a fall, reducing response times and potentially saving 

lives. Furthermore, IoT integration allows the system to be paired with other smart home 

devices, creating a seamless and automated safety environment for the elderly. 

Cloud-based storage and analytics present another promising avenue for future work. By 

leveraging cloud technology, the system could store fall detection data securely and make it 

accessible to authorized caregivers and healthcare professionals. This data could be used to 

identify patterns or trends, such as repeated falls in a specific location, enabling proactive 
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measures to prevent future incidents. Additionally, cloud integration could support machine 

learning algorithms to continuously improve fall detection accuracy based on historical data. 

The Kinect’s built-in microphone offers potential for optimizing the system’s functionality. 

Future iterations of the system could use audio data to complement visual fall detection. For 

instance, the microphone could detect sounds associated with a fall, such as a loud thud or a 

cry for help, and cross-reference this with visual data to confirm an incident. This multimodal 

approach would enhance the system’s reliability, particularly in scenarios where visual data 

alone might be insufficient. 

Another critical enhancement could involve developing an advanced algorithm to 

differentiate between a fall and other activities, such as intentionally lying down on the floor. 

This distinction is crucial for reducing false alarms, which can erode user trust in the system. 

By analysing movement patterns, posture transitions, and contextual data, the algorithm 

could accurately classify events, ensuring that alerts are triggered only for genuine falls. 

Expanding the system’s capabilities to include remote monitoring is another potential future 

work. This feature would enable caregivers to monitor elderly individuals in real-time 

through a mobile app or web platform, regardless of their physical location. Remote 

monitoring could also provide caregivers with additional data, such as activity levels or time 

spent in different postures, offering a holistic view of the elderly person’s well-being. 

Lastly, incorporating features for health monitoring could make the system even more 

valuable. For example, the Kinect’s depth-sensing technology could be adapted to track 

breathing rates or detect abnormal postures indicative of health issues. Integrating these 

features would transform the fall detection system into a comprehensive health monitoring 

solution. 
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APPENDICES 

Appendix A  Gantt Chart PSM 1 & PSM 2 
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Appendix B  Project Flowchart (1) 

 

Appendix C    Project Flowchart (2) 
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Appendix D     Project Flowchart (3) 
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Appendix E  Project Flowchart (4) 

 
 

Appendix F  Simple Block Diagram  
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Appendix G   MainWindow.xaml.cs 

using System; 

using System.Globalization; 

using System.Windows; 

using System.Windows.Media; 

using System.Windows.Media.Imaging; 

using Microsoft.Kinect; 

using System.IO; 

using System.Windows.Media.Media3D; 

using System.Media; 

using System.Threading.Tasks; 

using System.Windows.Threading; 

 

namespace FallDetection 

{ 

    public partial class MainWindow : 

Window 

    { 

        private KinectSensor kinectSensor; 

        private const float RenderWidth = 

640.0f; 

        private const float RenderHeight = 

480.0f; 

        private const double JointThickness = 

3; 

        private const double 

BodyCenterThickness = 10; 

        private const double 

ClipBoundsThickness = 10; 

        private readonly Brush 

centerPointBrush = Brushes.Blue; 

        private readonly Brush 

trackedJointBrush = new 

SolidColorBrush(Color.FromArgb(255, 

68, 192, 68)); 

        private readonly Brush 

inferredJointBrush = Brushes.Yellow; 

        private readonly Pen trackedBonePen 

= new Pen(Brushes.Green, 6); 

        private readonly Pen inferredBonePen 

= new Pen(Brushes.Gray, 1); 

        private DrawingGroup 

drawingGroup; 

        private DrawingImage imageSource; 

 

        private WriteableBitmap 

colorBitmap; 

 

// Check if the person is laying down (head 

and hip positions are low, ankles are at a 

higher level) 

            bool isLaying = yHead < 

yHipCenter && yHipCenter < 

Math.Min(yAnkleLeft, yAnkleRight) - 

layingThreshold; 

 

            // Check if knees are elevated 

above the floor 

            bool kneesElevated = yKneeLeft > 

Math.Min(yAnkleLeft, yAnkleRight) + 

kneeElevatedThreshold && 

                                 yKneeRight > 

Math.Min(yAnkleLeft, yAnkleRight) + 

kneeElevatedThreshold; 

 

            return isLaying && kneesElevated; 

        } 

 

        private bool 

IsPersonFallingDown(Skeleton skeleton) 

        { 

            double yHead = 

skeleton.Joints[JointType.Head].Position.

Y; 

            double yShoulderCenter = 

skeleton.Joints[JointType.ShoulderCenter].

Position.Y; 

            double yHipCenter = 

skeleton.Joints[JointType.HipCenter].Posit

ion.Y; 

            double yAnkleLeft = 

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y; 

            double yAnkleRight = 

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y; 

 

            // Threshold factors 

            double HeightThresholdFactor = 

0.7; 

            double distanceThreshold = 0; 

 

            // Initialize head to ankle distance 

for the first time 

            if (initialHeadToAnkleDistance == 

0) 
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        private double 

initialHeadToAnkleDistance = 0; 

        private const double 

positionThreshold = 0.3; 

        private MediaPlayer fallAlertPlayer; 

        private bool isSoundPlaying = false; 

        private DispatcherTimer 

fallSoundTimer; 

        private double lastHeadY = 0; 

        private double lastShoulderCenterY = 

0; 

        private double lastHipCenterY = 0; 

        private DateTime 

lastSkeletonTimestamp = 

DateTime.MinValue; 

        private bool possibleFallDetected = 

false; 

        private readonly TimeSpan 

fallDetectionTimeout = 

TimeSpan.FromSeconds(3); // Timeout for 

possible fall state 

        private readonly Brush setAColor = 

Brushes.Green; 

        private readonly Brush setBColor = 

Brushes.Blue; 

        private bool fallState = false; // 

Persistent fall state flag 

 

 

        public MainWindow() 

        { 

            InitializeComponent(); 

 

            // Initialize SoundPlayer with the 

path to the alert sound file 

            fallAlertPlayer = new 

MediaPlayer(); 

            fallAlertPlayer.Open(new 

Uri(@"C:\Users\AMIAQ\Desktop\kinect_

project\Police Siren Sound Effect.wav", 

UriKind.Absolute)); 

 

            // Initialize DispatcherTimer for 

looping sound during fall detection 

            fallSoundTimer = new 

DispatcherTimer(); 

            fallSoundTimer.Interval = 

TimeSpan.FromSeconds(1); 

            fallSoundTimer.Tick += (s, e) => 

            { 

            { 

                initialHeadToAnkleDistance = 

yHead - Math.Min(yAnkleLeft, 

yAnkleRight); // Consider lower ankle 

position 

                distanceThreshold = 

initialHeadToAnkleDistance * 

HeightThresholdFactor; 

            } 

 

            double 

currentHeadToAnkleDistance = yHead - 

Math.Min(yAnkleLeft, yAnkleRight); 

 

            // Check if the person is standing or 

sitting with crossed legs 

            if (IsPersonStanding(skeleton) || 

IsPersonSittingCrossedLegs(skeleton)) 

            { 

                fallState = false; // Reset the fall 

state 

                return false; // No fall detected 

            } 

 

            // Check if fall detected based on 

head position and body orientation 

            bool isFall = 

Math.Abs(initialHeadToAnkleDistance - 

currentHeadToAnkleDistance) > 

distanceThreshold && 

                          yHead < 

positionThreshold && 

                          yShoulderCenter < 

positionThreshold && 

                          yHipCenter < 

positionThreshold; 

 

            if (isFall) 

            { 

                // Additional check for limbs 

(arms and legs) 

                if 

(IsLimbPositionAbnormal(skeleton)) 

                { 

                    // Update last known position 

and timestamp 

                    lastHeadY = yHead; 

                    lastShoulderCenterY = 

yShoulderCenter; 

                    lastHipCenterY = yHipCenter; 
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                fallAlertPlayer.Position = 

TimeSpan.Zero; 

                fallAlertPlayer.Play(); 

            }; 

        } 

 

 

        // Play alert sound asynchronously to 

prevent blocking 

        private async Task 

PlayAlertSoundAsync() 

        { 

            if (!isSoundPlaying) 

            { 

                fallAlertPlayer.Position = 

TimeSpan.Zero; 

                fallAlertPlayer.Play(); 

                isSoundPlaying = true; 

 

                await Task.Delay(1000); 

            } 

        } 

 

        // Stop alert sound and reset flag 

        private void StopAlertSound() 

        { 

            if (isSoundPlaying) 

            { 

                fallAlertPlayer.Stop(); 

                isSoundPlaying = false; 

            } 

        } 

 

        private void Window_Loaded(object 

sender, RoutedEventArgs e) 

        { 

            drawingGroup = new 

DrawingGroup(); 

            imageSource = new 

DrawingImage(drawingGroup); 

            SkeletonImage.Source = 

imageSource; 

 

            if 

(KinectSensor.KinectSensors.Count > 0) 

            { 

                kinectSensor = 

KinectSensor.KinectSensors[0]; 

 

                if (kinectSensor != null) 

                    lastSkeletonTimestamp = 

DateTime.Now; 

 

                    fallState = true; // Confirm fall 

                    return true; 

                } 

            } 

 

            // Update last known skeleton state 

for possible fall detection 

            lastHeadY = yHead; 

            lastShoulderCenterY = 

yShoulderCenter; 

            lastHipCenterY = yHipCenter; 

            lastSkeletonTimestamp = 

DateTime.Now; 

 

            return false; // Safe 

        } 

 

 

 

 

 

        private bool 

IsLimbPositionAbnormal(Skeleton 

skeleton) 

        { 

            // Retrieve limb joint positions 

            double yElbowLeft = 

skeleton.Joints[JointType.ElbowLeft].Posit

ion.Y; 

            double yElbowRight = 

skeleton.Joints[JointType.ElbowRight].Pos

ition.Y; 

            double yKneeLeft = 

skeleton.Joints[JointType.KneeLeft].Positi

on.Y; 

            double yKneeRight = 

skeleton.Joints[JointType.KneeRight].Posi

tion.Y; 

 

            double yAnkleLeft = 

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y; 

            double yAnkleRight = 

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y; 
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                { 

                    kinectSensor.Start(); 

 

                    

kinectSensor.ColorStream.Enable(); 

 

                    colorBitmap = new 

WriteableBitmap(kinectSensor.ColorStrea

m.FrameWidth, 

kinectSensor.ColorStream.FrameHeight, 

96.0, 96.0, PixelFormats.Bgr32, null); 

 

                    ColorImage.Source = 

colorBitmap; 

 

                    

kinectSensor.ColorFrameReady += 

KinectSensor_ColorFrameReady; 

 

                    

kinectSensor.SkeletonStream.Enable(); 

 

                    

kinectSensor.SkeletonFrameReady += 

KinectSensor_SkeletonFrameReady; 

 

                    StatusTextBlock.Text = 

"Kinect sensor connected"; 

                } 

                else 

                { 

                    StatusTextBlock.Text = "No 

Kinect sensor found"; 

                } 

            } 

            else 

            { 

                StatusTextBlock.Text = "No 

Kinect sensor found"; 

            } 

        } 

 

 

        private void Window_Closing(object 

sender, 

System.ComponentModel.CancelEventArg

s e) 

        { 

 

            if (kinectSensor != null) 

            // Check for abnormal limb 

positions (e.g., limbs significantly lower 

than the torso) 

            if (yElbowLeft < positionThreshold 

|| yElbowRight < positionThreshold || 

                yKneeLeft < positionThreshold || 

yKneeRight < positionThreshold || 

                yAnkleLeft < positionThreshold 

|| yAnkleRight < positionThreshold) 

            { 

                return true; // Abnormal position 

detected 

            } 

 

            return false; 

        } 

 

 

 

        private void 

UpdateJointPositionsUI(double headY, 

double shouldercenterY, double 

hipcenterY, double ankleleftY, double 

anklerightY) 

        { 

            HeadYText.Text = $"Head Y: 

{headY:F2}"; 

            ShoulderCenterYText.Text = 

$"ShoulderCenter Y: 

{shouldercenterY:F2}"; 

            HipCenterYText.Text = 

$"HipCenter Y: {hipcenterY:F2}"; 

            AnkleLeftYText.Text = 

$"AnkleLeft Y: {ankleleftY:F2}"; 

            AnkleRightYText.Text = 

$"AnkleRight Y: {anklerightY:F2}"; 

        } 

 

 

 

        private bool 

IsHandRaisedAboveHead(Skeleton 

skeleton) 

        { 

            // Ensure both hands and head 

joints are tracked before checking their 

positions 

            Joint head = 

skeleton.Joints[JointType.Head]; 
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            { 

                kinectSensor.Stop(); 

                kinectSensor = null; 

            } 

        } 

 

 

        private void 

KinectSensor_ColorFrameReady(object 

sender, ColorImageFrameReadyEventArgs 

e) 

        { 

            using (ColorImageFrame 

colorFrame = e.OpenColorImageFrame()) 

            { 

                if (colorFrame != null) 

                { 

                    byte[] colorData = new 

byte[colorFrame.PixelDataLength]; 

 

                    

colorFrame.CopyPixelDataTo(colorData); 

 

                    colorBitmap.WritePixels(new 

Int32Rect(0, 0, colorFrame.Width, 

colorFrame.Height), colorData, 

colorFrame.Width * 

colorFrame.BytesPerPixel, 0); 

 

                } 

            } 

        } 

 

 

        private async void 

KinectSensor_SkeletonFrameReady(object 

sender, SkeletonFrameReadyEventArgs e) 

        { 

 

            Skeleton[] skeletons = new 

Skeleton[0]; 

 

            using (SkeletonFrame 

skeletonFrame = e.OpenSkeletonFrame()) 

            { 

                if (skeletonFrame != null) 

                { 

 

            Joint handLeft = 

skeleton.Joints[JointType.HandLeft]; 

            Joint handRight = 

skeleton.Joints[JointType.HandRight]; 

 

            if (head.TrackingState == 

JointTrackingState.Tracked && 

                ((handLeft.TrackingState == 

JointTrackingState.Tracked && 

handLeft.Position.Y > head.Position.Y) || 

                 (handRight.TrackingState == 

JointTrackingState.Tracked && 

handRight.Position.Y > head.Position.Y))) 

            { 

                return true; // Hand is raised 

above head 

            } 

            return false; // Hand is not above 

head or joints not reliably tracked 

        } 

 

 

 

        private void UpdateStatusText(string 

newText) 

        { 

            if (StatusTextBlock.Text != 

newText) 

            { 

                StatusTextBlock.Text = 

newText; 

            } 

        } 

 

 

        private void PlayFallAlertSound() 

        { 

            try 

            { 

                fallAlertPlayer.Play();  // Play 

the sound asynchronously 

            } 

            catch (Exception ex) 

            { 

                StatusTextBlock.Text = "Error 

playing alert sound: " + ex.Message; 

            } 

        } 
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                    skeletons = new 

Skeleton[skeletonFrame.SkeletonArrayLen

gth]; 

                    

skeletonFrame.CopySkeletonDataTo(skele

tons); 

 

                    int fallCount = 0; // Track how 

many people are falling 

                    int trackedCount = 0; // Track 

how many people are being tracked 

                    bool helpCommandDetected = 

false; // Track if help command is detected 

                    bool anySkeletonTracked = 

false; // Track if any skeleton is tracked in 

the frame 

 

                    foreach (Skeleton skeleton in 

skeletons) 

                    { 

 

                        if (skeleton.TrackingState 

== SkeletonTrackingState.Tracked) 

                        { 

                            anySkeletonTracked = 

true; 

                            trackedCount++; 

 

                            double headY = 

skeleton.Joints[JointType.Head].Position.

Y; 

                            double shouldercenterY 

= 

skeleton.Joints[JointType.ShoulderCenter].

Position.Y; 

                            double hipcenterY = 

skeleton.Joints[JointType.HipCenter].Posit

ion.Y; 

                            double ankleleftY = 

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y; 

                            double anklerightY = 

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y; 

 

                            

UpdateJointPositionsUI(headY, 

shouldercenterY, hipcenterY, ankleleftY, 

anklerightY); 

 

        private void 

TestSoundButton_Click(object sender, 

RoutedEventArgs e) 

        { 

            PlayFallAlertSound();  // Manually 

trigger sound playing 

        } 

 

        private void 

StopSoundButton_Click(object sender, 

RoutedEventArgs e) 

        { 

            // Stop the sound 

            if (fallAlertPlayer != null) 

            { 

                fallAlertPlayer.Stop(); 

                StatusTextBlock.Text = "Sound 

stopped."; 

            } 

        } 

 

 

 

        private void NotifyFallEvent() 

        { 

            StatusTextBlock.Text = "Help 

Command Detected!! \fChecking for fall"; 

 

        } 

 

 

        private void 

DrawBonesAndJoints(Skeleton skeleton, 

DrawingContext drawingContext) 

        { 

            // Render Torso 

            DrawBone(skeleton, 

drawingContext, JointType.Head, 

JointType.ShoulderCenter); 

            DrawBone(skeleton, 

drawingContext, 

JointType.ShoulderCenter, 

JointType.Spine); 

            DrawBone(skeleton, 

drawingContext, JointType.Spine, 

JointType.HipCenter); 

            DrawBone(skeleton, 

drawingContext, 

JointType.ShoulderCenter, 

JointType.ShoulderLeft); 
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                            if 

(IsPersonFallingDown(skeleton)) 

                            { 

                                fallState = true; 

                                fallCount++; 

 

                            } 

                            else 

                            { 

                                fallState = false; 

                                UpdateStatusText("No 

person detected."); 

                                StopAlertSound(); 

                            } 

 

                            if 

(IsHandRaisedAboveHead(skeleton)) 

                            { 

                                

helpCommandDetected = true; 

                                

UpdateStatusText("Help Command 

Detected! Checking for fall."); 

                                await 

PlayAlertSoundAsync(); 

                            } 

 

                        } 

                    } 

                    if (helpCommandDetected) 

                    { 

                        UpdateStatusText("Help 

Command Detected! Checking for fall."); 

                        await 

PlayAlertSoundAsync(); 

                    } 

 

                    else if (fallCount == 0 && 

trackedCount == 1) 

                    { 

                        UpdateStatusText("Fall is 

not detected."); 

                        StopAlertSound(); 

                    } 

 

                    else if (fallCount == 1 && 

trackedCount == 1) 

                    { 

            DrawBone(skeleton, 

drawingContext, 

JointType.ShoulderCenter, 

JointType.ShoulderRight); 

            DrawBone(skeleton, 

drawingContext, JointType.HipCenter, 

JointType.HipLeft); 

            DrawBone(skeleton, 

drawingContext, JointType.HipCenter, 

JointType.HipRight); 

 

            // Left Arm 

            DrawBone(skeleton, 

drawingContext, JointType.ShoulderLeft, 

JointType.ElbowLeft); 

            DrawBone(skeleton, 

drawingContext, JointType.ElbowLeft, 

JointType.WristLeft); 

            DrawBone(skeleton, 

drawingContext, JointType.WristLeft, 

JointType.HandLeft); 

 

            // Right Arm 

            DrawBone(skeleton, 

drawingContext, JointType.ShoulderRight, 

JointType.ElbowRight); 

            DrawBone(skeleton, 

drawingContext, JointType.ElbowRight, 

JointType.WristRight); 

            DrawBone(skeleton, 

drawingContext, JointType.WristRight, 

JointType.HandRight); 

 

            // Left Leg 

            DrawBone(skeleton, 

drawingContext, JointType.HipLeft, 

JointType.KneeLeft); 

            DrawBone(skeleton, 

drawingContext, JointType.KneeLeft, 

JointType.AnkleLeft); 

            DrawBone(skeleton, 

drawingContext, JointType.AnkleLeft, 

JointType.FootLeft); 

 

            // Right Leg 

            DrawBone(skeleton, 

drawingContext, JointType.HipRight, 

JointType.KneeRight); 
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                        UpdateStatusText(" Fall 

detected."); 

                        await 

PlayAlertSoundAsync(); 

                        possibleFallDetected = true; 

// Set possible fall state 

                        lastSkeletonTimestamp = 

DateTime.Now; // Update timestamp 

                    } 

 

                    else if (fallCount == 1 && 

trackedCount > 1) 

                    { 

 

                        UpdateStatusText("One fall 

detected with multiple people in frame."); 

                        await 

PlayAlertSoundAsync(); 

                    } 

 

                    else if (fallCount > 1) 

                    { 

                        UpdateStatusText("Multiple 

falls detected."); 

                        await 

PlayAlertSoundAsync(); // Asynchronous 

sound playback 

                    } 

 

                    else if (!anySkeletonTracked) 

                    { 

                        if (fallState) 

                        { 

                            

UpdateStatusText("Possible fall detected 

(skeleton lost)."); 

                            await 

PlayAlertSoundAsync(); 

                        } 

                        else 

                        { 

                            UpdateStatusText("No 

person detected."); 

                            StopAlertSound(); 

                            fallState = false; 

                        } 

                    } 

 

            DrawBone(skeleton, 

drawingContext, JointType.KneeRight, 

JointType.AnkleRight); 

            DrawBone(skeleton, 

drawingContext, JointType.AnkleRight, 

JointType.FootRight); 

 

 

            foreach (Joint joint in 

skeleton.Joints) 

            { 

                if (joint.TrackingState == 

JointTrackingState.Tracked) 

                { 

                    Brush drawBrush = null; 

 

                    if (joint.TrackingState == 

JointTrackingState.Tracked) 

                    { 

                        drawBrush = 

trackedJointBrush; 

                    } 

                    else if (joint.TrackingState == 

JointTrackingState.Inferred) 

                    { 

                        drawBrush = 

inferredJointBrush; 

                    } 

                    if (drawBrush != null) 

                    { 

                        

drawingContext.DrawEllipse(drawBrush, 

null, 

SkeletonPointToScreen(joint.Position), 

JointThickness, JointThickness); 

                    } 

                } 

            } 

        } 

 

 

        private Point 

SkeletonPointToScreen(SkeletonPoint 

skelpoint) 

        { 

 

            DepthImagePoint depthPoint = 

kinectSensor.CoordinateMapper.MapSkele

tonPointToDepthPoint(skelpoint, 
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                    else if (trackedCount > 1 && 

fallCount == 0) 

                    { 

                        UpdateStatusText("More 

than one person detected"); 

                        StopAlertSound(); 

                    } 

 

                    else 

                    { 

                        UpdateStatusText("Fall is 

not detected."); 

                        StopAlertSound(); 

                    } 

                } 

            } 

 

 

            using (DrawingContext dc = 

drawingGroup.Open()) 

            { 

                

dc.DrawRectangle(Brushes.Transparent, 

null, new Rect(0.0, 0.0, RenderWidth, 

RenderHeight)); 

 

                if (skeletons.Length != 0) 

                { 

                    foreach (Skeleton skel in 

skeletons) 

                    { 

 

                        RenderClippedEdges(skel, 

dc, colorBitmap); 

 

                        if (skel.TrackingState == 

SkeletonTrackingState.Tracked) 

                        { 

                            

DrawBonesAndJoints(skel, dc); 

                        } 

                        else if (skel.TrackingState 

== SkeletonTrackingState.PositionOnly) 

                        { 

                            dc.DrawEllipse( 

                            centerPointBrush, 

                            null, 

                            

SkeletonPointToScreen(skel.Position), 

                            BodyCenterThickness, 

DepthImageFormat.Resolution640x480Fps

30); 

            return new Point(depthPoint.X, 

depthPoint.Y); 

        } 

 

 

        private void DrawBone(Skeleton 

skeleton, DrawingContext 

drawingContext, JointType jointType0, 

JointType jointType1) 

        { 

            Joint joint0 = 

skeleton.Joints[jointType0]; 

            Joint joint1 = 

skeleton.Joints[jointType1]; 

 

            // If can't find either of these joints, 

exit 

            if (joint0.TrackingState == 

JointTrackingState.NotTracked || 

                joint1.TrackingState == 

JointTrackingState.NotTracked) 

            { 

                return; 

            } 

 

            // Assume all drawn bones are 

inferred unless BOTH joints are tracked 

            if (joint0.TrackingState == 

JointTrackingState.Inferred && 

                joint1.TrackingState == 

JointTrackingState.Inferred) 

            { 

                return; 

            } 

 

            Pen drawPen = 

this.inferredBonePen; 

            if (joint0.TrackingState == 

JointTrackingState.Tracked && 

joint1.TrackingState == 

JointTrackingState.Tracked) 

            { 

                drawPen = trackedBonePen; 

            } 

 

            

drawingContext.DrawLine(drawPen, 
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                            BodyCenterThickness); 

                        } 

                    } 

                } 

 

                drawingGroup.ClipGeometry = 

new RectangleGeometry(new Rect(0.0, 

0.0, RenderWidth, RenderHeight)); 

 

            } 

        } 

 

 

 

        private bool 

IsPersonStanding(Skeleton skeleton) 

        { 

            double yHead = 

skeleton.Joints[JointType.Head].Position.

Y; 

            double yShoulderCenter = 

skeleton.Joints[JointType.ShoulderCenter].

Position.Y; 

            double yHipCenter = 

skeleton.Joints[JointType.HipCenter].Posit

ion.Y; 

            double yAnkleLeft = 

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y; 

            double yAnkleRight = 

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y; 

 

            double 

currentHeadToAnkleDistance = yHead - 

Math.Min(yAnkleLeft, yAnkleRight); 

 

            // Detect if the person is standing 

upright 

            return 

currentHeadToAnkleDistance > 

initialHeadToAnkleDistance * 0.9 && 

                   yHead > positionThreshold 

&& 

                   yShoulderCenter > 

positionThreshold && 

                   yHipCenter > 

positionThreshold; 

        } 

 

SkeletonPointToScreen(joint0.Position), 

SkeletonPointToScreen(joint1.Position)); 

        } 

 

 

        private static void 

RenderClippedEdges(Skeleton skeleton, 

DrawingContext drawingContext, 

WriteableBitmap colorBitmap) 

        { 

            double actualRenderWidth = 

colorBitmap.PixelWidth; 

 

 

            if 

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Bottom)) 

            { 

                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(0, RenderHeight - 

ClipBoundsThickness, actualRenderWidth, 

ClipBoundsThickness)); 

            } 

 

            if 

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Top)) 

            { 

                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(0, 0, 

actualRenderWidth, 

ClipBoundsThickness)); 

            } 

 

            if 

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Left)) 

            { 

                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(0, 0, 

ClipBoundsThickness, RenderHeight)); 

            } 
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        private bool 

IsPersonSittingCrossedLegs(Skeleton 

skeleton) 

        { 

            double yHipCenter = 

skeleton.Joints[JointType.HipCenter].Posit

ion.Y; 

            double yKneeLeft = 

skeleton.Joints[JointType.KneeLeft].Positi

on.Y; 

            double yKneeRight = 

skeleton.Joints[JointType.KneeRight].Posi

tion.Y; 

            double yAnkleLeft = 

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y; 

            double yAnkleRight = 

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y; 

 

            double crossingThreshold = 0.1; // 

Threshold for crossed-leg sitting (adjust as 

needed) 

 

            // Check if knees and ankles are at 

similar heights and hips are above them 

            return Math.Abs(yAnkleLeft - 

yAnkleRight) < crossingThreshold && 

                   Math.Abs(yKneeLeft - 

yKneeRight) < crossingThreshold && 

                   yHipCenter > 

Math.Max(yKneeLeft, yKneeRight); 

        } 

 

        private bool 

IsLayingWithKneesUp(Skeleton skeleton) 

        { 

            double yHead = 

skeleton.Joints[JointType.Head].Position.

Y; 

            double yHipCenter = 

skeleton.Joints[JointType.HipCenter].Posit

ion.Y; 

            double yKneeLeft = 

skeleton.Joints[JointType.KneeLeft].Positi

on.Y; 

            double yKneeRight = 

skeleton.Joints[JointType.KneeRight].Posi

tion.Y; 

            if 

(skeleton.ClippedEdges.HasFlag(FrameEd

ges.Right)) 

            { 

                drawingContext.DrawRectangle( 

                    Brushes.Red, 

                    null, 

                    new Rect(actualRenderWidth 

- ClipBoundsThickness, 0, 

ClipBoundsThickness, RenderHeight)); 

            } 

        } 

 

 

        private void Button_Click(object 

sender, RoutedEventArgs e) 

        { 

            RenderTargetBitmap 

renderTargetBitmap = new 

RenderTargetBitmap((int)this.ActualWidth

, (int)this.ActualHeight, 96d, 96d, 

PixelFormats.Pbgra32); 

            renderTargetBitmap.Render(this); 

 

            BitmapEncoder encoder = new 

PngBitmapEncoder(); 

            

encoder.Frames.Add(BitmapFrame.Create(

renderTargetBitmap)); 

 

            string time = 

DateTime.Now.ToString("hh'-'mm'-'ss", 

CultureInfo.CurrentUICulture.DateTimeFo

rmat); 

            string myPhotos = 

Environment.GetFolderPath(Environment.

SpecialFolder.MyPictures); 

            string path = 

Path.Combine(myPhotos, 

"KinectWindowSnapshot-" + time + 

".png"); 

 

            try 

            { 

                

Directory.CreateDirectory(Path.GetDirecto

ryName(path)); 

                using (FileStream fs = new 

FileStream(path, FileMode.Create)) 

                { 
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            double yAnkleLeft = 

skeleton.Joints[JointType.AnkleLeft].Posit

ion.Y; 

            double yAnkleRight = 

skeleton.Joints[JointType.AnkleRight].Pos

ition.Y; 

 

            double layingThreshold = 0.5; // 

Threshold for laying down (adjust as 

needed) 

            double kneeElevatedThreshold = 

0.2; // Threshold for knees not being on the 

floor 

 

                    encoder.Save(fs); 

                } 

                StatusTextBlock.Text = 

"Screenshot saved."; 

            } 

            catch (IOException) 

            { 

                StatusTextBlock.Text = "Error 

saving screenshot."; 

            } 

        } 

 

 

        private void 

ApplyTiltButton_Click(object sender, 

RoutedEventArgs e) 

        { 

            int selectedAngle = 

(int)TiltAngleSlider.Value; 

            

AdjustKinectTiltAngle(selectedAngle); 

        } 

 

 

        private void 

AdjustKinectTiltAngle(int angle) 

        { 

            if (kinectSensor != null && 

kinectSensor.IsRunning) 

            { 

                angle = Math.Max(-27, 

Math.Min(27, angle)); 

 

                try 

                { 

                    kinectSensor.ElevationAngle 

= angle; 

                    StatusTextBlock.Text = $"Tilt 

angle set to {angle} degrees."; 

                } 

                catch 

(InvalidOperationException) 

                { 

                    StatusTextBlock.Text = "Error 

adjusting tilt angle."; 

                } 

            } 

        } 

    } 

} 
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Appendix H  MainWindow.xaml 

<Window x:Class="FallDetection.MainWindow" 

        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

        Title="Fall Detection App" Height="600" Width="1000" 

        Loaded="Window_Loaded" Closing="Window_Closing" > 

 

 

    <Grid> 

        <Grid> 

 

            <Image x:Name="ColorImage" HorizontalAlignment="Stretch" 

VerticalAlignment="Stretch" Margin="113,10,285.2,52" /> 

 

            <Image x:Name="SkeletonImage" HorizontalAlignment="Stretch" 

VerticalAlignment="Stretch" Margin="112,10,285.2,52" /> 

 

            <TextBlock x:Name="StatusTextBlock" HorizontalAlignment="Left" 

Margin="734,255,0,0" TextWrapping="Wrap" Text="Status" VerticalAlignment="Top" 

FontSize="24" FontWeight="Bold" RenderTransformOrigin="1.12,-0.242" /> 

 

            <TextBlock x:Name="HeadYText" HorizontalAlignment="Left" 

TextWrapping="Wrap" VerticalAlignment="Top" Text="Head" Margin="734,59,0,0" 

FontSize="16" RenderTransformOrigin="0.6,-0.612"/> 

 

            <TextBlock x:Name="ShoulderCenterYText" HorizontalAlignment="Left" 

Margin="734,94,0,0" TextWrapping="Wrap" VerticalAlignment="Top" 

Text="Shoulder" FontSize="16" RenderTransformOrigin="-0.165,-1.862"/> 

 

            <TextBlock x:Name="HipCenterYText" HorizontalAlignment="Left" 

Margin="734,129,0,0" TextWrapping="Wrap"  VerticalAlignment="Top" Text="Hip" 

FontSize="16" RenderTransformOrigin="0.522,-1.712"/> 

 

            <TextBlock x:Name="AnkleLeftYText" HorizontalAlignment="Left" 

TextWrapping="Wrap" VerticalAlignment="Top" Text="AnkleLeft" 

Margin="734,165,0,0" FontSize="16" RenderTransformOrigin="0.502,-0.677"/> 

 

            <TextBlock x:Name="AnkleRightYText" HorizontalAlignment="Left" 

Margin="734,201,0,0" TextWrapping="Wrap" Text="AnkleRight" 

VerticalAlignment="Top" FontSize="16" RenderTransformOrigin="-0.139,0.727"/> 

 

            <Button x:Name="ScreenshotBtn" Content="Screenshot" 

HorizontalAlignment="Left" Margin="845,457,0,0" VerticalAlignment="Top" 

Width="85" Click="Button_Click" Height="26" FontSize="14" 

RenderTransformOrigin="1.308,-0.321"/> 
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            <Slider x:Name="TiltAngleSlider" Minimum="-27" Maximum="27" 

TickFrequency="1" SmallChange="1" LargeChange="5" Value="0"  

Margin="734,375,54.6,160.4" /> 

 

            <TextBlock x:Name="TiltAngleValueText" Text="{Binding 

ElementName=TiltAngleSlider, Path=Value, StringFormat='Tilt Angle: {0:F0}°'}" 

HorizontalAlignment="Left" Margin="798,410,0,0" TextWrapping="Wrap" 

VerticalAlignment="Top" FontSize="14" RenderTransformOrigin="0.367,0.476"/> 

 

            <Button x:Name="ApplyTiltButton" Content="Apply Tilt" 

HorizontalAlignment="Left" Click="ApplyTiltButton_Click" VerticalAlignment="Top" 

Margin="734,457,0,0" Height="26" Width="85" FontSize="14" 

RenderTransformOrigin="3.968,-3.336"/> 

 

            <Button x:Name="TestSoundButton" Content="Test Sound" 

Click="TestSoundButton_Click" Margin="734,509,173,29" /> 

 

            <Button x:Name="StopSoundButton" Content="Stop Sound" 

Click="StopSoundButton_Click" Margin="845,508,62,27"/> 

 

 

        </Grid> 

    </Grid> 

</Window> 

 

 

 

 




