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ABSTRACT 

Stereo vision techniques play a crucial role in computer vision and photogrammetry by 

estimating depth information through matching corresponding points in stereo image pairs. 

Despite its significance in applications such as 3D reconstruction and autonomous vehicles, 

traditional stereo matching algorithms face challenges in textureless regions, occlusions, and 

varying illumination conditions, leading to inaccuracies in depth estimation. This study aims 

to address these challenges by developing a stereo vision system to enhance the accuracy 

and robustness of stereo matching, particularly in low-texture regions. The project objective 

includes evaluating the proposed method using benchmark datasets like the Middlebury 

datasets to demonstrate its effectiveness and superiority in achieving reliable stereo matching 

results. The methodology involves utilizing MATLAB for depth estimation of 3D images, 

implementing sustainable stereo vision algorithms prioritizing energy efficiency and 

resource optimization, and enhancing stereo vision algorithms with adaptive guided filtering 

to address occlusions, noise, and efficiency for robust depth estimation. The results include 

the development of a comprehensive stereo matching method that improves accuracy and 

robustness in challenging imaging conditions, validated through experimental results and 

discussions showcasing the effectiveness and efficiency of the proposed algorithm. 
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ABSTRAK 

Teknik penglihatan stereo memainkan peranan penting dalam penglihatan komputer dan 

fotogrametri dengan menganggar maklumat kedalaman melalui pemadanan titik sepadan 

dalam pasangan imej stereo. Walaupun kepentingannya dalam aplikasi seperti pembinaan 

semula 3D dan kenderaan autonomi, algoritma pemadanan stereo tradisional menghadapi 

cabaran dalam kawasan tanpa tekstur, oklusi dan keadaan pencahayaan yang berbeza-beza, 

yang membawa kepada ketidaktepatan dalam anggaran mendalam. Kajian ini bertujuan 

untuk menangani cabaran ini dengan membangunkan sistem penglihatan stereo untuk 

meningkatkan ketepatan dan keteguhan padanan stereo, terutamanya di kawasan bertekstur 

rendah. Objektif projek termasuk menilai keberkesanan kaedah yang dicadangkan 

menggunakan set data penanda aras seperti set data Middlebury untuk menunjukkan 

keberkesanan dan keunggulannya dalam mencapai hasil padanan stereo yang boleh 

dipercayai. Metodologi ini melibatkan penggunaan MATLAB untuk anggaran kedalaman 

imej 3D, melaksanakan algoritma penglihatan stereo yang mampan mengutamakan 

kecekapan tenaga dan pengoptimuman sumber, dan meningkatkan algoritma penglihatan 

stereo dengan penapisan berpandu adaptif untuk menangani oklusi, bunyi dan kecekapan 

untuk anggaran kedalaman yang mantap. Hasil kajian ini termasuk pembangunan kaedah 

pemadanan stereo komprehensif yang meningkatkan ketepatan dan kestabilan dalam keadaan 

pengimejan yang mencabar, disahkan melalui keputusan percubaan dan perbincangan yang 

mempamerkan keberkesanan dan kecekapan algoritma yang dicadangkan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

This chapter provides a brief overview of the stereo vision technique and highlights 

its appealing qualities, which can be applied to develop depth map assessment algorithms 

for computer vision applications. It also provides an explanation of the background, problem 

statement, project objective, scope of project and supporting evidence for the proposed 

study. Along with its creative contributions, the thesis's structure and organization are also 

acknowledged. 

 

1.2 Background 

 

Stereo matching is a fundamental task in computer vision and photogrammetry that 

involves estimating the depth information of a scene by matching corresponding points in 

stereo image pairs. The fundamental of stereoscopic vision is based on the epipolar geometry 

process. This process is important for various applications such as 3D reconstruction, visual 

reality, autonomous vehicles, and digital surface model production. Despite its importance, 

stereo matching faces challenges when dealing with textureless regions, occlusions, and 

variations in illumination conditions. These challenges can lead to inaccuracies in depth 

estimation, especially in scenarios where traditional stereo matching algorithms struggle to 

provide reliable results. 

In recent years, significant research efforts have been directed towards improving 

stereo matching performance in challenging scenarios. One common classification of stereo 
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matching algorithms divides them into global and local approaches. Global algorithms 

incorporate smoothness assumptions into an energy function to estimate disparity by 

minimizing the global energy function. On the other hand, local algorithms rely on local 

information to compute disparities, making them computationally efficient but potentially 

less accurate in certain scenarios. Balancing accuracy and efficiency in stereo matching 

remain a key research focus to address the limitations of existing algorithms. 

The work by [1] contributes to this research domain by proposing an innovative 

method to enhance stereo matching performance for low texture stereo images. The proposed 

method combines a matching cost computation approach with an adaptive shape guided filter 

for cost aggregation. By integrating enhanced image gradient-based matching costs and 

improved census transform-based matching costs, the method aims to improve robustness 

against radiometric variations and textureless regions, thereby enhancing disparity 

estimation accuracy. 

The adaptive shape guided filter plays a significant role in aggregating matching 

costs by constructing cross-based adaptive shape support windows for each pixel [2]. This 

approach helps in effectively aggregating matching costs within the constructed support 

windows, leading to more accurate and reliable depth maps. Additionally, the method 

incorporates a winner-take-all strategy for disparity selection and a multi-constraints-based 

disparity refinement framework to further enhance the accuracy of the disparity maps [3]. 

Experimental evaluations on benchmark datasets demonstrate the effectiveness of the 

proposed method in improving stereo matching performance, particularly in textureless 

regions where traditional methods may struggle to provide satisfactory results. 

Overall, the research presented in this project work addresses the challenges of 

stereo matching in low texture scenarios and contributes to advancing the field by 

introducing a cost computation method and adaptive shape guided filter. By focusing on 
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improving disparity estimation accuracy in challenging conditions, the proposed method 

shows promise in enhancing the practical applicability of stereo matching algorithms in 

various real-world scenarios. 

 

1.3 Enhancing Industry and Infrastructure through Stereo Vision in Robotics 

and Automation 

 

The development of robots and automation depends heavily on stereo vision 

technology, which also helps to achieve Sustainable Development Goal (SDG) 9: Industry, 

Innovation, and Infrastructure. Stereo vision improves the capabilities of robots and 

automated systems by allowing them to sense and comprehend spatial connections and 

depth, which results in significant increases in productivity, accuracy, and safety in industrial 

processes. Stereo vision reduces errors and waste in production by enabling robots to carry 

out intricate activities like assembly, quality inspection, and material handling with extreme 

precision. Furthermore, it makes it possible to automate infrastructure development tasks 

like building and upkeep by offering precise 3D mapping and live monitoring, which 

guarantee structural integrity and on-time project completion. Robots' ability to recognize 

and avoid objects and people increases safety by reducing the risk of accidents and 

improving the working environment as a whole. Thus, stereo vision integration in robotics 

and automation promotes creativity, streamlines production processes, and aids in the 

construction of durable and sustainable industrial infrastructures. 

 

1.4 Problem Statement 

 

The project aims to address the persistent challenges in dense stereo matching, 

specifically focusing on improving the accuracy and robustness of disparity estimation in 

low-texture regions. Despite advancements in stereo matching algorithms, accurately 

estimating disparities in areas with limited texture remains a significant challenge. These 
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regions often lead to errors and inaccuracies in the disparity maps, impacting the overall 

quality of 3D reconstruction and other computer vision applications. Therefore, the primary 

problem statement revolves around the need to enhance the performance of stereo matching 

methods to effectively handle occluded, textureless, and discontinuous regions in stereo 

images. 

 

Image Left Image Right 

(a) 
 

 

Image Left Image Right 

(b) 

 

Figure 1.1 Constraining Factors in Middlebury Dataset Stereo Images [1] 

 

To tackle this problem, the project sets out to develop a matching cost computation 

method that combines enhanced image gradient-based cost with improved census transform-

based cost. By integrating these approaches, the aim is to create a more robust matching cost 

function that can better handle radiometric variations, illumination changes, and textureless 

areas in stereo images [4]. This innovative cost computation method is designed to provide
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a more reliable foundation for subsequent disparity estimation, ultimately improving the 

accuracy of stereo matching results in challenging scenarios. 

         Furthermore, the project seeks to implement an adaptive shape guided filter for 

local stereo matching, which aims to address the limitations of traditional methods in 

handling occlusions, textureless areas, and discontinuities. By constructing adaptive shape 

support regions for each pixel and utilizing a modified guided filter based on these regions for 

cost aggregation, the proposed method aims to enhance the aggregation of matching costs 

and improve the accuracy of disparity estimation, particularly in large low-texture regions 

[5]. This adaptive shape guided filter approach is expected to contribute significantly to 

mitigating the challenges associated with stereo matching in difficult image regions. 

Overall, the project's objective is to evaluate the effectiveness of the proposed 

method in producing more accurate and reliable disparity maps for large low-texture regions. 

By conducting experiments using the Middlebury benchmark dataset, the project aims to 

demonstrate the superiority of the developed approach over traditional guided filter-based 

methods. Through this research, the project seeks to contribute to the advancement of stereo 

matching techniques, particularly in addressing the complexities of textureless regions and 

enhancing the overall quality of disparity estimation in challenging stereo images. 
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1.5 Project Objective 

 

The main objectives of this thesis are as follows: 

 

1. Develop stereo vision system to improve the accuracy and robustness of 

stereo matching in low-texture regions. 

2. Evaluate the proposed method using benchmark datasets, such as the 

Middlebury datasets, to demonstrate the effectiveness and superiority of 

the approach in achieving accurate and reliable stereo matching results. 

3. Perform performance analysis for stereo vision system with real-world 

image. 

 

1.6 Scope of Project 

 

The scope of the research is limited to the following important notes: 

 

1. Develop a stereo vision algorithm for depth estimation from digital stereo 

image pairs. 

2. Evaluate the algorithm using 15 training images of Middlebury standard 

benchmarking dataset for qualitative and quantities results. 

3. A MATLAB software is used to construct and validate the effectiveness of 

the proposed algorithm. 

4. Providing experimental results and discussions to analyze the effectiveness 

and efficiency of the proposed method in improving stereo matching 

accuracy for low texture stereo images. 

5. This project scope encompasses the development, implementation, 

evaluation, and analysis of a comprehensive stereo matching method aimed 

at enhancing the accuracy and robustness of disparity estimation in 

challenging imaging conditions. 
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6. All the experiments are executed using a personal computer with the features 

of window 10 on desktop PC with 3.2GHz processor and 8GB memory. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

This literature review provides a summary of the project in order to get the whole 

data on stereo vision, 3D reconstruction images, disparity maps, depth maps, camera 

calibration, webcams, and MATLAB software, which will give the idea to run this project. 

In addition, it shows that the information is related to studies that have been done by previous 

researchers as guidance. In order to understand stereovision, one must first explain the mode 

of communication of a camera, how it is structured in principle, and which parameters need 

to be regulated. 

 

2.2 Enhancing Stereo Vision Algorithms with Adaptive Guided Filtering: 

Addressing Occlusions, Noise, and Efficiency for Robust Depth Estimation 

 

Stereo vision algorithms face a number of difficulties, including occlusions, 

textureless areas, repeated patterns, and high processing demands. These algorithms are 

crucial for applications such as robotics and 3D reconstruction. It is also difficult to produce 

real-time, high-quality depth maps that are resilient to changes in lighting and lens 

aberrations. Notably, the adaptive guided filter preserves edges while smoothing, adjusts to 

the specific image content, and is computationally efficient, which makes it appropriate for 

real-time applications. Moreover, resilience to variations in lighting is improved by this 

filter. Important studies have shown how well guided filters work to improve depth estimate 

in difficult situations and refine disparity maps. Preprocessing images, determining initial 

disparities, using adaptive guided filtering, and fine-tuning the depth map are all necessary 
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steps in the practical implementation. Thus, by tackling noise, occlusions, and computational 

efficiency, adaptive guided filters great to improve stereo vision algorithms and improve 

depth map accuracy and dependability across a range of applications. 

 

2.3 Background of stereo vision 

 

Stereo vision is a process that involves extracting pixel information from two images 

(left and right images) captured simultaneously by a binocular camera. The goal of stereo 

vision is to estimate a "disparity map," which represents the differences in pixel positions 

between corresponding points in the left and right images. By analyzing these differences, 

stereo vision algorithms can calculate the depth information of the scene, providing a 3D 

perception of the environment [6]. This process simulates the way human vision works with 

two eyes, enabling machines to perceive depth and spatial relationships in a similar manner 

[7]. 

The use of stereo vision algorithms is essential for depth estimation by processing 

the captured images to generate accurate and detailed information about the spatial layout of 

objects in the scene. These algorithms vary in their approaches, leading to differences in the 

quality of the resulting disparity map and the computational load required for processing. 

The quality of the generated disparity maps is influenced by factors such as image 

noise, uncertainties in the stereo images, and the effectiveness of the algorithm in handling 

challenges like occlusion, radiometric distortion, depth discontinuity, and textureless regions 

[8]. Researchers continuously develop and update stereo vision algorithms to enhance 

accuracy, reduce computational costs, and address specific challenges encountered in 

various applications, including obstacle detection, object tracking, 3D object recognition, 

shape reconstruction, and geometric mapping [6]. 
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In stereo vision, the triangulation principle is a fundamental concept used to estimate 

the depth of objects in a scene by leveraging the geometric relationship between two images 

captured by a stereo camera setup. By analyzing the disparity between corresponding points 

in the left and right images, the depth of these points can be calculated through triangulation. 

The process involves identifying matching points in both images, determining the horizontal 

shift (disparity) between them, and using the known baseline distance between the cameras 

to compute the depth of the scene point. Triangulation enables the creation of a 3D 

representation of the scene by mapping the spatial coordinates of objects based on their 

visual appearance in the stereo images. This technique plays a crucial role in various 

applications such as robotics, augmented reality, and computer vision tasks, providing 

valuable depth information for perception, navigation, and scene reconstruction. The 

triangulation of stereo vision is shown in figure 2.1 [9]. 

 

             Figure 2.1 Triangulation of stereo vision [9] 

Stereo vision is a fundamental technology that controls binocular vision to extract 

depth information from images, enabling applications in diverse fields such as robotics, 

automobiles, and aerospace. The development in stereo vision algorithms aim to improve 

the accuracy, efficiency, and robustness of depth estimation for enhanced perception and 

decision-making in complex environments. 
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Stereo vision is a technology that solves problem in computer vision by providing 

solutions to key problems related to depth perception and spatial understanding. One of the 

issues that stereo vision helps solve is accurate depth estimation in a scene [10]. By analyzing 

the differences in pixel positions between corresponding points in a pair of stereo images, 

stereovision algorithms can calculate the distance to objects and generate detailed depth maps. 

This depth information is essential for tasks such as 3D reconstruction, object localization, 

and scene understanding [11]. 

Additionally, stereo vision enables systems to detect and track objects based on 

their spatial relationships and depth information, which is important for uses like 

autonomous vehicles, robotics, and surveillance systems. By enhancing depth perception 

capabilities and providing detailed spatial information, stereo vision contributes to a better 

understanding of complex scenes, allowing systems to recognize objects, infer spatial 

relationships, and make informed decisions based on the scene context. Overall, Stereo 

vision is an important part of computer vision by enabling accurate depth estimation, object 

detection, scene understanding, and depth perception, thereby enhancing the spatial 

awareness and decision-making capabilities of systems across various applications and 

industries [12]. Figure 2.2 shows the accurate disparity estimation. 
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(a) (b) 

 

 

  

   (c) (d) 

 

Figure 2.2 Disparity estimation, (a) Origin RGB data (b) Ground Truth disparity Pseudo- color 

data, (c) Disparity prediction by stereonet, (d) Result. Achieve an excellent disparity estimation 

[11] 

Stereo vision, also known as binocular vision, is a technology that enables machines 

to perceive depth and create 3D image representations of the environment by using two 

cameras or sensors positioned at different viewpoints. This technique mimics the human 

visual system, where depth perception is achieved through the slight disparity between the 

images captured by the left and right eyes [13]. In stereo vision systems, the two cameras 

capture images of the same scene, and by analyzing the differences between these images, the 

systemcan calculate the depth information of objects in the scene. This depth perception is 

based on the principle of parallax, where objects at different distances from the cameras will 

appear to shift position relative to each other in the images [14]. 
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A binocular stereo vision model, showing how two cameras capture images of the 

same object from slightly different perspectives. Points P and P' represent corresponding 

points on the object as seen by the left and right cameras, respectively, while points O1 and 

O2 represent their actual 3D positions in the scene. By analyzing the disparities between 

these corresponding points in the two images, the system calculates depth information and 

reconstructs the three-dimensional structure of the object based on the parallax principle. 

This geometric relationship between the points allows the binocular stereo vision system to 

infer depth and create a 3D representation of the scene [13]. 

 

 

              Figure 2.3 Binocular stereo vision [13] 

 

By identifying corresponding points in the images and measuring the disparity 

between them, stereo vision systems can reconstruct the 3D structure of the scene. This depth 

information is valuable for various applications, including object recognition, obstacle 

avoidance, 3D mapping, and augmented reality. Stereo vision technology has widespread 

applications in fields such as robotics, autonomous vehicles, industrial automation, and 

virtual reality. It is essential for facilitating machines to perceive and interact with the world 

in a more human-like manner, enhancing their capabilities for tasks that require spatial 

understanding and depth perception [14]. 
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2.4 Stereo vision framework 

 

To produce a depth map using stereo vision, the process typically involves several 

key steps. Initially, images of the same scene are acquired using two cameras positioned at 

slightly different viewpoints. These images serve as the input for the stereo vision system. 

The next step is camera calibration, where the intrinsic and extrinsic parameters of the 

cameras, such as focal length and lens distortion, are determined to ensure accurate depth 

estimation. 

    Subsequently, image rectification is performed to align corresponding points in 

the stereo images, simplifying the matching process. Feature detection algorithms are then 

employed to identify key points in the images that can be matched between the left and 

right views. Feature matching is important for establishing correspondences between 

points in the two images, enabling the calculation of pixel disparities. 

    By estimating the disparity between matched feature points, typically using 

metrics like sum of squared differences or normalized cross-correlation, the system can 

determine the depth information of the scene [15]. This depth calculation involves 

converting the disparity values into depth values based on the known baseline distance 

between the cameras and the focal length. Post-processing techniques, such as filtering, may 

be applied to refine the depth map and improve its quality. The final step involves 

visualizing the depth map, where brighter regions indicate closer objects and darker 

regions represent farther objects, providing a comprehensive 3D representation of the 

scene. By following these consecutive stages, a stereo vision system can efficiently 

produce a depth map that improves perception and comprehension of space for a variety 

of used [13]. 

    The proposed method for stereo matching consists of four main steps. Firstly, in 

the matching cost computation step, a new method is introduced that combines enhanced 
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image gradient-based cost with improved census transform-based cost to build a cost 

volume representing per-pixel matching costs at all considered disparity values. This 

approach aims to make the matching cost more robust to radiometric changes and noises 

compared to traditional methods using absolute intensity or color differences. Secondly, 

in the cost aggregation step, a cross-based adaptive shape support window is created for 

each pixel, followed by the application of a modified guided filter to aggregate the 

matching costs within the window. Thirdly, the disparity selection step employs a winner- 

take-all strategy to determine the optimal disparity for each pixel based on the aggregated 

costs. Lastly, a multi-constraints-based disparity refinement framework is implemented 

to further enhance the disparity map accuracy. This framework includes outlier detection 

with left-right consistency checking, occlusion/mismatch handling, weighted median 

filtering, and subpixel enhancement techniques [1]. 

 

2.5 Stereo vision previous method 

 

The work by [1] of dense stereo matching in photogrammetry and computer vision, 

outlining its applications in 3D reconstruction, Digital Surface Model (DSM) production, 

visual reality, and autonomous vehicles. Despite the extensive research history in stereo 

matching, challenges persist in effectively handling occluded, textureless, and discontinuous 

regions. Global and local stereo matching algorithms are discussed, with global methods 

incorporating smoothness assumptions for accurate disparity estimation but higher 

computational complexity. Local algorithms rely on local information and lack explicit 

global constraints, making them computationally efficient but less effective in challenging 

regions. To address these challenges, the work proposes an innovative matching cost 

measurement and adaptive shape guided filter-based aggregation method. By combining 

enhanced gradient-based and census transform-based matching costs, the approach enhances 

robustness against exposure variations and textureless areas, leading to improved disparity 
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map generation. Experimental results on the Middlebury benchmark dataset demonstrate the 

effectiveness of the proposed method, achieving a 9.40% average matching error rate on 

standard image pairs and outperforming traditional methods in textureless regions. The 

review underscores ongoing efforts to enhance stereo matching performance through cost 

measurement and aggregation strategies, aiming to enhance accuracy and reliability for 

diverse photogrammetry and computer vision applications. 

 

 

 
 

 

Figure 2.4 The workflow of the proposed method [1] 
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(a) (b) 
 

(c) (d) 

 

Figure 2.5 Initial disparity maps based on different matching costs for Tsukuba. (a) Absolute 

difference in image gradients, (b) proposed enhanced image gradients-based matching costs, (c) 

traditional census transform-based matching cost, (d) proposed improved census transform-

based matching cost [1] 

Then, work by [16] discusses various approaches and techniques in the field of 

stereo matching. Several studies have focused on leveraging deep learning methods, such as 

convolutional neural networks (CNNs), to improve stereo matching accuracy. For instance, 

the work explores efficient deep learning techniques for stereo matching, and propose a 

multi-task learning network for both stereo matching and edge detection. Additionally, 

traditional stereo matching methods have been criticized for their inability to adapt to 

different lighting conditions, prompting the development of new approaches that utilize 

CNN features for robust matching cost calculation. Furthermore, the work have investigated 

fast stereo matching using adaptive guided filtering and high-resolution stereo datasets with 

subpixel-accurate ground truth, respectively. These works collectively contribute to the 
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advancement of stereo matching techniques, addressing challenges related to texture-less 

areas, occlusions, and computational costs associated with feature extraction and post- 

processing. 

 

 

Figure 2.6 Overall architecture of proposed stereo matching method [16] 

 

 

 

 

 

 

 

 

(a) 

 

 

(b) 

Figure 2.7 Matching cost aggregation, (a) The creation of adaptive window, (b) Semi-global 

aggregation in direction r [16] 
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Figure 2.8 Pixels classification and disparity modification [16] 

Then, work by [17] discusses the use of Dynamic Histogram Equalization for 

improving image contrast by dynamically adjusting the histogram.  Additionally, 

Quadrant Dynamic Clipped Histogram Equalization with Gamma Correction is 

highlighted as a method for color image enhancement. Another technique, the Brightness 

Preserving Histogram Equalization, introduces a work approach for enhancing image 

contrast while maintaining brightness levels. The work also covers the Census Transform-

Based Robust Stereo Matching, which focuses on handling radiometric changes in stereo 

matching. Furthermore, the Low-Cost Real-Time Embedded Stereo Vision System is 

presented as a solution for accurate disparity estimation in real-time applications. Lastly, 

the Local Stereo Matching Algorithm Based on Pixel Difference Adjustment is discussed 

for its utilization of pixel difference adjustment, minimum spanning tree, and weighted 

median filter to enhance the accuracy of stereo matching for depth estimation. These 

references collectively contribute to advancing algorithms for improving image quality and 

depth estimation in stereo vision systems. 
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Figure 2.9 The framework blocks of the development algorithm [17] 

Besides, work by [4] of stereo matching algorithms in 3D surface reconstruction. 

Various established methods for post-processing and disparity refinement were discussed, 

including techniques such as Mean-Shift and Superpixel with Segmentation Process 

(SEG), Weighted Median Filter (WMF), Median Filter (MF), and Bilateral Filter (BF). 

These methods aimed to improve accuracy by addressing noise, edge preservation, and 

outlier removal in the disparity maps. The proposed algorithm introduced the work 

contributions in three stages: Sum of Gradient Magnitude (SG) for correspondence 

measurement, Adaptive Support Weight (ASW) with Iterative Guided Filter (GF) for 

noise reduction and edge preservation, and Joint Weighted GF for further accuracy 

enhancement. Performance evaluation of the algorithm demonstrated superior results in 

matching cost computation and cost aggregation stages, showcasing lower error rates and 

improved edge preservation. The algorithm's effectiveness was validated through 3D 

surface reconstruction using standard benchmarking datasets, indicating enhanced 

accuracy compared to existing methods. Additionally, related works such as the GlaRe 

Toolbox for ice thickness surface reconstruction and the use of Dynamic Vision Sensor 

for terrain modeling were discussed, emphasizing the diverse applications and 

advancements in stereo matching algorithms for 3D reconstruction. 
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Figure 2.10 Flowchart of the proposed algorithm [4] 

Next, work by [18] discusses various advancements in stereo matching 

algorithms. The precision of stereo matching is greatly enhanced by cost aggregation 

techniques. Early window-based methods used fixed-size windows, leading to increased 

error rates and blurred object boundaries. To address these issues, variable-window (VW), 

multiple-window (MW), and adaptive window (AW) aggregation methods were 

introduced. Segment-tree (ST) based methods, such as non-local cost aggregation (NLCA) 

using minimum spanning trees (MST), offer high precision with low computational 

complexity. Disparity refinement techniques, including median filters and weighted 

median (WM)filters, are commonly employed to enhance the accuracy of the disparity 

map by preserving edges and removing outliers. Gaussian filters, while effective in outlier 

removal, introduce higher computational complexity. Occlusion detection methods like 

left-and-right consistency check (LRC) and ordering constraints are utilized to identify 

occlusion regions based on matching point comparisons and scan line monotonicity. 

Recent advancements in stereo matching include the integration of deep learning 

techniques like Atrous Multiscale Network (AMNet) and Deep Self-Guided Stereo Matching with 

Geometric-aware Aggregation (DSDGA)for self-guided filter-based cost aggregation, as well 

as the development of efficient algorithms using hierarchical representations and adaptive 

weighted bilateral filters to achieve low computational complexity. 
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Figure 2.11 Schematic flow diagram of the proposed method [18] 

 

 
(a) (b) (c) (d) 

Figure 2.12 The disparity map results of different methods, (a) The references image, (b) Raw 

disparity maps by Census Transform (CT), (c) Refined by WM, (d) Refined by fast gradient 

domain guided filtering (F-GDGIF) [18] 
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Then, work by [19] explores techniques and methodologies for developing depth 

maps from stereo images. Key points include the effectiveness of feature-based techniques 

in capturing scene details by focusing on edges or boundaries. Block-based matching 

methods achieve high accuracy in depth map generation when the window size is 

appropriately selected by comparing divided image blocks to find corresponding points. 

The aggregation stage in stereo matching algorithms significantly reduces noise after 

matching cost calculation using summing or averaging in a support window. Disparity 

optimization normalizes disparity values and converts them into depth pixel intensities 

using local, global, or semi-global methods. Depth map refinement eliminates remaining 

noise through segment-based approaches and filtering techniques to enhance accuracy. 

The stereo matching framework consists of four stages: matching cost calculation, cost 

aggregation, disparity optimization, and depth map refinement, with variations depending 

on the method used.  

         Depth maps obtained from stereo images can be leveraged for 3D surface 

reconstruction by utilizing parameters like stereo camera baseline, focal values, and 

disparity values. Challenges in stereo matching include difficulties in matching regions 

with repetitive patterns, low texture areas, and plain color regions, posing obstacles for 

researchers in achieving accurate depth maps. By delving into existing literature and 

methodologies in depth map reconstruction from stereo images, researchers can glean 

insights into advancements, challenges, and potential applications in the realms of 

computer vision and image processing. 
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Figure 2.13 The stage of the proposed algorithm [19] 

 

 

Figure 2.14 The depth map result for the challenging regions using training images [19]    

     Besides, work by [20] inspect into the realm of depth measurement techniques, 

focusing on the evolution of sensor systems for range sensing applications. It distinguishes 

between contact and non-contact methods, highlighting the utilization of active and 

passive sensing technologies. While contact methods involve physical interaction with the 

object surface, non-contact approaches leverage sensors like laser scanners and structured 

light systems for distance estimation. Within the realm of passive sensing, stereo vision 

emerges as a prominent technique for depth recovery, utilizing multiple cameras to capture 

scene images from different perspectives. The work underscores the importance of 

correspondence matching algorithms in stereo vision for accurate depth computation. 
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Furthermore, it discusses the relevance of multiview geometry theory in shaping the 

design of integrated sensing devices, emphasizing the potential for cost-effective system 

configurations. The work introduces a sensor system design that integrates camera 

rotation to enhance depth recovery through stereopsis, offering a fresh perspective on 

range sensing capabilities. By referencing previous studies on computational stereo 

vision, dense correspondence algorithms, and wide-baseline stereo techniques, the work 

sets the stage for exploring innovative approaches to depth measurement using stereovision 

and computational algorithms. 

 

 

Figure 2.15 Rectification of stereo image pair based on the sensor’s rotation angle [20] 

 

 

 

 

Figure 2.16 Multiple-baseline stereo equivalence of our sensor rotation configuration [20] 
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Then, work by [21] discusses  the  development  of a new pre-processing 

technique for computational stereo matching algorithms to enhance the quality of colour 

images using Contrast Limited Adaptive Histogram Equalization (CLAHE), Adaptive 

Gamma Correction Weighted Distribution (AGCWD), and guided filter techniques. This 

step is important for addressing noise in stereo colour images caused by adverse weather 

and illumination conditions. Additionally, the algorithm incorporates the Census 

Transform method for matching cost computation, providing advantages in handling 

radial distortion and brightness changes. The aggregated cost from the matching process is 

calculated using fixed-window and guided filter techniques. The disparity optimization 

stage utilizes the Winner- Take-All (WTA) technique, followed by a post-processing stage 

involving Left Right (LR)consistency checking and the application of a WM filter for 

noise reduction and smoothening of the disparity map. The proposed algorithm's 

performance was evaluated using the Middlebury Standard Benchmarking Dataset, 

showing 23.35% accuracy for nonocc error and 31.65% accuracy for all error. These 

results demonstrate improved accuracy compared to existing works in the evaluation 

dataset. Overall, the document underscores the significance of stereo vision in computer 

vision and introduces an advanced pre-processing technique for computational stereo 

matching algorithms that enhances depth estimation accuracy while addressing noise 

challenges. 

 
Figure 2.17 Block diagram for proposed algorithm [21] 
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Figure 2.18 Proposed pre-processing method (a) CLAHE and guided filtering (b) AGCWD and 

guided filtering [21] 

Then, work by [22] provides a comprehensive overview of previous studies and 

findings related to depth estimation using binocular disparity and motion parallax cues. 

The human visual system relies on various depth cues such as binocular disparity, motion 

parallax, kinetic depth effect, looming, perspective cues, occlusion, smooth shading, and 

blur to perceive depth in static and dynamic environments. Computer vision approaches 

often combine multiple cues to estimate depth, with some methods using deep neural 

networks trained on ground truth depth data. Binocular disparity and motion parallax are 

identified as crucial depth cues in both human and computer vision. The work has shown 

that binocular disparity is more important for short distances, while motion parallax 

becomes more significant for depth estimation at longer distances. Stereo vision, which 

relies on binocular disparity, is commonly used for depth estimation in machine vision 

applications, particularly in robotic systems. Motion parallax, on the other hand, provides 

depth information based on the observer's motion and the relative movement of objects in 

the environment, offering a complementary approach to depth estimation. The work has 
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explored the accuracy and limitations of stereo cameras in depth estimation, highlighting 

factors such as camera resolution and distance from objects. The work has also investigated 

the performance of motion parallax for depth estimation, considering factors like observer 

motion parameters, feature point geometry, and measurement accuracy. 

 

 

Figure 2.19 Frontal parallel stereo camera configuration for depth estimation [22] 

 

 

 

Figure 2.20 Projection of a feature point on the image plane [22] 

Next, work by [23] investigates into the evolution of technologies for capturing 

human movement, driven by a myriad of potential applications spanning diverse fields. 

While the demand for 3D human motion capture in uncontrolled outdoor environments 

persists, it poses significant challenges. To address this, the paper introduces a work 
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approach utilizing a stereo camera rig with an ultra-wide baseline distance and fish-eye 

lenses. This setup enhances the field of view, coverage area, and stereo vision capabilities, 

enabling effective motion tracking. A passive marker-based methodology is proposed for 

object motion tracking, leveraging adaptive thresholding for marker extraction. Given the 

complexities associated with depth estimation using fish-eye lenses, a unique method is 

employed to establish a relationship between pixel dimensions in images and real-world 

coordinates for accurate 3D position restoration. The study also emphasizes the 

importance of occlusion detection in marker-based human kinematics capture, 

highlighting the algorithm's ability to differentiate between various occlusion types and 

predict missing marker positions. Furthermore, the paper presents a method for 

compensating the camera's ego-motion when mounted on dynamic platforms like drones 

or cars. Through comprehensive testing in diverse scenarios, the proposed 3D positioning 

and tracking system's efficacy as a stereo camera rig for motion capture is validated, show 

casing comparable accuracy to the Vicon system at a reduced cost. 

 

 

 

Figure 2.21 Block diagram of the marker extraction process. It takes an RGB image of the 

markers on the object as an input and produces a binary image containing only the markers [23] 
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Further, work by [24] provides a comprehensive overview of research efforts in 

the field of stereo vision systems and related technologies. It discusses the evolution of 

stereo matching algorithms, emphasizing the trade-offs between traditional search-based 

methods and Deep Neural Network (DNN) approaches. Classic stereo algorithms rely on 

heuristics for feature matching, while DNNs offer a data-driven alternative with higher 

computational demands. The paper also delves into motion-based algorithms like 

Euphrates and their applications in simplifying continuous vision tasks, highlighting the 

importance of accurate motion estimation for stereo vision accuracy. Additionally, the 

work touches upon hardware-efficient algorithms and DNN accelerators, citing works such 

as Generative Adversarial Networks (GANAX) and Acorn RISC Machine (ARM)'s 

Mobile Machine Learning Hardware, which aim to optimize DNN performance and 

efficiency. The co-design of algorithms and System-on-Chip (SoC) architectures is 

recognized as a key strategy for achieving energy-efficient and high-performance vision 

systems, as demonstrated by studies like Euphrates. Overall, the paper showcases the 

diverse range of research focused on enhancing stereo vision algorithms, motion 

estimation techniques, and hardware implementations to advance the capabilities of 

vision-based systems. 

 

 

Figure 2.22 Tiling in a translated deconvolution with a 3×3 kernel split into four sub-kernels. 

With a tiling strategy W = 2, H = 2, C1 = 1, C2 = 2, C3 = 1, C4 = 1, only the shaded elements are 

loaded into the buffer. The of map elements generated in this round (shaded) are also stored in 

the buffer [24] 
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    Figure 2.23 The ASV overview with augmentations shaded [24] 

Furthermore, work by [8] of the realm of 3D reconstruction using Structure from 

Motion (SFM) algorithm and Multi View Stereo (MVS) based on computer vision. SFM, a 

technique for estimating the 3D structure of a scene from 2D images, finds applications in 

diverse fields like 3D scanning and Augmented Reality. The approach to SFM varies 

based on factors such as the number and type of cameras used, necessitating additional 

information like object size and sensor data for accurate scale restoration. In the context 

of cultural heritage preservation, 3D reconstruction serves as a pivotal tool for 

documenting and restoring buildings, especially in cases of destruction. By employing 

SFM and MVS algorithms rooted in computer vision, effort to safeguard 3D objects in 

cultural heritage areas is significantly enhanced. The development of 3D technology has 

revolutionized visualization in animation, architecture, education, and Virtual Reality, 

underscoring its widespread utility. Furthermore, the dynamic efforts required for cultural 

preservation, emphasizing the importance of documentation activities, including 3D 

modeling, to maintain the authenticity and values of cultural works. Through 3D modeling 

methods, precise dimensions and shapes of cultural heritage objects are 
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captured, facilitating conservation activities and ensuring the preservation of historical 

significance and cultural values. 

 

 

Figure 2.24 SFM multiple view [8] 

 

 

 

 

 

Figure 2.25 SFM stages [8] 

Then, work by [25] discusses the challenges in measuring depth resolution 

accurately, especially for raw depth data without post-processing. Many existing studies 

focus on depth accuracy, but there is a lack of research on depth resolution measurement 

standards. This gap in the literature is to conduct systematic studies and explore methods 

formeasuring depth resolution. The study aims to design a method that can gradually 

change depth differences until the smallest one is found, which differs from measuring 

depth accuracy by comparing average values. The proposed method involves using a flat 

target and moving a depth camera at specified steps to create a stair-shaped depth map for 
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analysis.The research also highlights the importance of understanding the theoretical depth 

resolutionin stereo camera systems. The depth resolution is defined as the smallest depth 

difference that can be detected by a depth camera. The study analyzes the factors 

influencing depth resolution, such as stereo baseline, field of view, image sensor, and dot 

projector, using theIntel RealSense D400 series depth cameras for verification. Overall, 

the literature review emphasizes the need for accurate methods to measure depth 

resolution, derive theoretical depth resolution, and compare it with measured results to 

assist researchers in selecting suitable parameters for depth cameras. 

 

 

 

Figure 2.26 Overview of project algorithm [25] 
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(a) (b) (c) 

Figure 2.27 Depth map computed by our MATLAB code without post-processing, (a) left 

image, (b) right image, (c) depth map [25] 

In addition, work by [10] explore into the evolution of depth estimation 

techniques, highlighting the transition from traditional stereo matching methods to the 

emergence of deep learning approaches. Traditional methods, while effective in certain 

scenarios, face challenges in handling occlusions, featureless regions, and repetitive 

patterns. In contrast, deep learning techniques have shown remarkable progress in 

addressing these limitations, leading to significant advancements in applications such as 

autonomous driving and augmented reality.By formulating the depth estimation problem 

as a learning task, researchers aim to developpredictors that can infer depth maps closely 

resembling ground truth data. The work also emphasizes the importance of datasets, 

network architectures, training strategies, and performance evaluation in advancing the 

field. Through a comprehensive classification andcomparative analysis of key methods, 

the survey provides valuable insights into the current state-of-the-art techniques and 

directions in stereo-based depth estimation using deep learning. 
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(b) 

 

 

(a) 
 

 

 

 

 

 

Figure 2.28 Four images, collected in-house and used to test 16 state-of-the art methods. The 

green masks on some of the left images highlight the pixels where the ground-truth disparity is 

available. The disparity range is shown in pixels while the depth range is in meters. d refers to 

disparity, (a) Left image, (b) Highlight of regions of interest where ground-truth disparity is 

estimated with high confidence, (c) Right image, (d) Ground-truth disparity maps [10] 

(c) 

(d) 
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Figure 2.29 The building blocks of a stereo matching pipeline [10] 

Finally, work by [26] delves into the integration of optimization techniques with 

stereo matching algorithms to enhance the accuracy and efficiency of depth estimates. 

The work emphasizes the significance of stereo vision algorithms in accurately estimating 

the real-world depth of pixels within two-dimensional images by utilizing multiple two- 

dimensional views of a scene, a process known as stereo vision. The project work are 

actively exploring the application of optimization techniques, such as Dynamic 

Programming, to improve stereo system performance and enhance depth estimation 

accuracy. Camera calibration is highlighted as a critical step in stereo vision systems to 

correct image distortion caused by camera lenses and ensure accurate representation of 

two-dimensional views on the same image plane. Triangulation, the process of assigning 

depth values to pixels using multiple views of a scene and considering camera hardware 

parameters, camera locations, and pixel disparities, is essential for accurate depth 

estimation. The work proposed on real-time stereo vision applications for road surface 

reconstruction, academic resources on stereo vision concepts, and materials discussing 

camera calibration and stereo vision technology. Overall, the work provides a solid 

foundation for understanding the research and the advancements in stereo vision 

algorithms and optimization techniques for image depth estimation. 
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              Figure 2.30 Sample Window Cost Calculation (Veksler) [26] 

 

 

 

 

 

   Figure 2.31 Stereo Vision for Road Deformity Detection (Rui) [26] 
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Figure 2.32 Window size compared to depth map (darker pixel shade refers to greater depth) 

(Olga) [26] 

2.6 Table comparison of stereo vision 

 

Table 2.1 summarize and compares all existing methods that have been reviewed 

in chapter 2. That including the technique which is for image enhancement, accuracy, reduce 

noise also improve textureless and process for measuring the pixels in stereo image pairs.
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Table 2.1 Table comparison of stereo vision 
 

Year Author Description 

2020 Hua Liu, Rui Wang, Yuanping Xia, and 

Xiaoming Zhang 

The work by [1] proposed a stereo matching technique that combines gradient 

and census transform methods for better accuracy in low-texture areas. It uses 

an adaptive filter to handle exposure and illumination changes, and collects 

information from neighboring pixels for better disparity estimates, improving 

reliability and precision in challenging conditions. 

2021 Zhou Shi, Lifeng Zhang, Zhen Li The work by [16] proposed a stereo matching method that enhances disparity 

maps by utilizing neural networks to analyze image patches. This technique 

improves depth accuracy, particularly in challenging areas, and has 

application in 3D reconstruction and autonomous driving. 

2021 A. F. Kadmin, R. A. Hamzah, M. N. Abd Manap, 

 

M. S. Hamid, T. F. Tg. Wook 

The work by [17] proposed a local stereo matching algorithm enhances depth 

accuracy by using a modified census transform with a dynamic histogram for 

cost computation, a fixed-window strategy with bilateral filtering for edge 
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  preservation, and a winner-takes-all optimization with consistency checks and 

 

adaptive filtering, improving disparity map estimation. 

2018 Rostam Affendi Hamzah, A. Fauzan Kadmin, 

M. Saad Hamid, S. Fakhar A. Ghani, Haidi 

Ibrahim 

The work by [4] introduces a method to improve accuracy and reduce noise 

in 3D surface reconstruction. It uses three steps: SG for estimating differences, 

ASW iGF for sharpening edges, and JWGF for less noise. This method 

competes well with others, suggesting it could enhance 3D  

reconstruction. 

2021 Weimin Yuan, Cai Meng, Xiaoyan Tong, 

Zhaoxi Li 

The work by [18] introduce that F-GDGIF is a tool that fixes halo effects 

around sharp edges in images. It does this by preserving edges better and 

speeding up the process with a trick called sub-sampling. When used in stereo 

matching, it improves accuracy while saving time. It's a useful tool for 

improving 3D imaging and autonomous driving. 

2022 Rostam Affendi Hamzah, Muhd Nazmi Zainal 

Azali, Zarina Mohd Noh, Madiha Zahari, Adi 

Irwan Herman 

The work by [19] introduces a better way to make depth maps from stereo 

images, improving accuracy in tough spots. It involves steps like calculating 

matches and refining the map for better results. This can help in self-driving 

cars and 3D modeling, making navigation systems better in different areas of 
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   tech. 

2021 Huei-Yung Lin, Senior Member, Chun-Lung 

Tsai, and Van Luan Tran 

The work by [20] proposed that depth measurement system rotates one camera 

to take pictures from different angles. This method is simpler and cheaper than 

using multiple cameras. It measures depth by comparing features in these 

pictures. Using different angles helps make the depth measurements 

more accurate. 

2021 A. F. Kadmin, R. A. Hamzah, N. A. Manap, and 

 

M. S. Hamid 

The work by [21] introduces the algorithm makes color images better by using 

CLAHE and AGCWD with guided filtering to smooth and sharpen them. The 

Census Transform helps match features accurately despite color changes. The 

WTA method picks the best matching points quickly, making the disparity 

map more accurate. 

2019 Mostafa Mansour, Pavel Davidson, Oleg 

Stepanov and Robert Piché 

The work by [22] introduce that checked how well binocular disparity and 

motion parallax help measure depth for humans and computers. They tested 

their accuracy in measuring distances to still objects. Binocular disparity uses 

multiple cameras, while motion parallax depends on movement. They compared 

these methods to see which is better for depth perception. They wanted to know  
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  how crucial each method is for seeing depth. 

2020 Atiqul islam, md. Asikuzzaman, mohammad 

omar khyam, md. Noor-a-rahim, and mark r. 

Pickering 

The work by [23] discuss using special cameras to track people outdoors in 

3D. It's cheaper and more adaptable than traditional methods. The goal is to 

create a program that accurately follows people's movements outside, which 

regular cameras struggle with. This work emphasizes the importance of better 

3D tracking, especially in real-world scenarios. 

2019 Yu Feng, Paul Whatmough, and Yuhao Zhu The work by [24] state that the ASV system mixes old and new techniques in 

stereo vision. It speeds up by using DNNs to find matches between frames 

and save power. It improves energy efficiency by handling common problems 

in stereo DNNs. In short, ASV makes stereo vision systems faster and more 

energy-efficient. 

2021 M kholil The work by [8] state that SFM and MVS create 3D models from images. 

SFM figures out image geometry for 3D scenes, while MVS uses many views 

for precise modeling. This tech is key for preserving historic sites, making 

accurate 3D models for conversation and virtual displays of cultural treasures 
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2021  Te-Mei Wang, Member, and Zen-Chung Shih The work by [25] explains how deep learning improves depth estimation from 

stereo images, replacing older techniques. It deals with challenges like camera 

settings and lighting by learning features. It also discusses creating 3D models 

for datasets and the need for detailed depth maps. In short, it's a useful guide 

to deep learning's impact on stereo depth estimation. 

2022 Hamid Laga, Laurent Valentin Jospin, Farid 

Boussaid, and Mohammed Bennamoun, Senior 

Member, 

The work by [10] talks about how deep learning improves depth estimation 

from stereo images, replacing older techniques. It deals with challenges like 

camera settings and lighting by learning features. It also discusses creating 3D 

models for datasets and the need for detailed depth maps. In short, it's a useful 

guide to deep learning's impact on stereo depth estimation. 

2022 Mrinall Umasudhan The work by [26] looks at stereo vision, which measures distances using two 

views. It compares it to other sensors and deals with challenges like the pixel 

correspondence problem. It discusses methods to improve accuracy and 

and efficiency, like window-based SSD and dynamic programming. It also gives 

practical tips on camera calibration and pixel matching. 
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2.7 Summary 

 

In summary, based on the literature review, there are several key strategies to 

enhance stereo matching performance and depth estimation accuracy. Firstly, leveraging 

deep learning techniques, such as the proposed Invariant-based Stereo Matching (ISM) 

algorithm, can significantly improve speed, accuracy, and energy efficiency in stereo vision 

systems. Additionally, integrating optimization techniques with stereo matching algorithms, 

as demonstrated in studies focusing on pixel correspondence and depth estimation, can 

further enhance system performance. Furthermore, improving traditional stereo matching 

algorithms through dynamic cost computation methods, modified census transforms, and 

WTA optimization can lead to better accuracy and efficiency in depth estimation. 

Developing new algorithms like SG, ASW, and Joint Weighted Guided Filter (JWGF) can 

address radiometric differences and edge distortions, resulting in high-accuracy 3D surface 

reconstructions. Moreover, utilizing efficient matching cost functions and adaptive shape 

guided filter-based methods can improve stereo matching in textureless regions, ensuring 

robustness against radiometric variations and textureless areas. Finally, exploring multi-view 

stereo (MVS) methods and fusing multiple depth maps can enhance the precision and detail 

level of 3D reconstructions, while utilizing Structure from Motion algorithms can optimize 

the 3D reconstruction process. By implementing these strategies, researchers can advance 

stereo matching algorithms and depth estimation techniques for various applications in 

computer vision and related fields. 
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

3.1 Introduction 

 

This chapter explains the methods used to reach the final result. This comprehensive 

introduction explores block diagrams, methods, and devices. The methodology focuses on 

using MATLAB to measure the depth estimation of the 3D image. It follows a step-by-step 

approach that involves choosing a project title, conducting research, planning the project 

design, integrating hardware and software, analyzing the project, solving any issues, and 

writing a report. A flowchart is prepared to visualize the project’s steps. It is important to 

understand the hardware and software resources before starting the project. This chapter 

emphasizes both the design technique and the overall equipment and research process flow. 

 

3.2 Implementing Sustainable Stereo Vision Algorithms: Prioritizing Energy 

Efficiency and Resource Optimization 

 

Choosing and assessing tools for the sustainable development of MATLAB stereo 

vision algorithms entails giving lifecycle management, resource efficiency, and energy 

efficiency top priority. Effective algorithm creation and optimization are made possible by 

MATLAB's assortment of toolboxes and functions, like the Parallel Computing Toolbox and 

the Computer Vision Toolbox. With these, programmers may put methods into practice and 

evaluate them, concentrating on lowering computational overhead via parallel processing 

and code optimization. Scalable and energy-efficient processing is made possible by 

MATLAB's support for hardware acceleration (such as the Graphics Processing Unit (GPU)) 

and interaction with cloud computing services. Furthermore, the extensive documentation 
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and community resources provided by MATLAB facilitate ongoing education and the 

implementation of sustainable development best practices, guaranteeing that the stereo 

vision algorithms are both efficient and ecologically conscious. 

 

3.3 Methodology 

 

The goal of this project is to derive a new stereo vision algorithm from a stereo 

camera that can produce the depth map measurement. The methodology aims to calculate 

precise depth information of object in the scene, to provide a comprehensive 3D 

representation and analysis of the scene, to enhance visualization capabilities, to achieve 

efficient and effective depth estimation, and to provide a foundation for application in fields 

such as computer vision, robotics, autonomous vehicles and virtual reality. By incorporating 

this technology, the outcome will be analysed and optimized for a better system. 

      The flowchart outlines a systematic approach for developing and validating a stereo 

vision algorithm using an adaptive guided filter to improve depth map measurement. The 

process begins with collecting data through a Literature Review, aimed at understanding 

stereo vision, guided filters, depth map measurement is analyzed to identify gaps, and deriving 

insights to inform the design of the proposed algorithm. Based on this foundation, the 

Algorithm Development phase is initiated, where the adaptive guided filter is coded and 

integrated into a stereo vision pipeline. Initial testing is conducted using a standard online 

dataset, such as Middlebury, which provides stereo image pairs and ground truth depth maps 

for performance evaluation. The evaluation results are analyzed to assess metrics like disparity 

error and depth accuracy, leading to an iterative cycle of Parameter Tuning. This refinement 

process adjusts key parameters, such as the window size and regularization factors, to optimize 

the algorithm’s performance. 
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     Once the algorithm achieves the desired criteria, it undergoes real-world validation 

in the Real-Time Image Testing phase, where its robustness is tested against challenges like 

noise, lighting variations, and occlusions. Data collected during these experiments is analyzed 

to assess practical applicability and finalize the development process. The workflow ensures 

a structured and iterative process, combining rigorous evaluation using benchmark datasets 

with real-world testing. By iterating between parameter optimization and validation, the 

project ensures that the algorithm is robust, accurate, and capable of handling real-time 

challenges, ultimately contributing to significant advancements in stereo vision and depth map 

estimation. 

     The flowchart emphasizes an iterative, step-by-step approach, where the process 

loops back to earlier stages if performance gaps are identified. This ensures that the algorithm 

is thoroughly tested and refined before being finalized. By combining rigorous evaluation on 

standard datasets with real-world testing, the project ensures that the stereo vision algorithm 

is both theoretically robust and practically applicable. This approach not only addresses gaps 

in existing methods but also contributes to advancements in depth estimation, with potential 

applications in robotics, autonomous vehicles, and augmented reality. 
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                                             Figure 3.1 Flowchart of project 
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3.4 Block diagram 

 

The workflow of the proposed stereo vision algorithm has been processed through 

five stages and the block diagram of the algorithm is represented in Figure 3.2. Initially, the 

left image and right image are two inputs captured by two cameras positioned at different 

viewpoints. Because the cameras are positioned apart, they capture the scene from slightly 

different angles. This disparity between viewpoints is what enables the perception of depth. 

Objects in the scene appear at different positions in the left and right images. The difference 

in the position of an object in the two images is called disparity. 

The algorithm begins with pre-processing stage to prepared the image pair and enhance 

the colour image quality for the main disparity computation process with combination of 

guided filter method. Then, the matching cost volume for stereo vision disparity estimation 

using a combination of color and gradient information, applying truncated Sum of Absolute 

Differences (SAD). The third stage will produce the cost aggregation on the disparity cost 

volume using a guided filter. Cost aggregation helps to smooth the disparity cost volume 

while preserving edge details. At the fourth stage is disparity optimization, the disparity map 

is optimized with a common local technique, WTA. Then, for final stage, the process 

continues with post processing that is  LRC checking.  



50  

 

Figure 3.2 flowchart of stereo vision system framework 
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3.4.1 Pre-processing 

 

In the pre-processing stage of the proposed stereo vision algorithm, the left and right 

images are first normalized to a range of [0, 1] by converting their pixel values into floating- 

point numbers and dividing by 255. This scaling step ensures that all image values are within 

a consistent range for further processing. The next step involves converting the images to 

grayscale, which simplifies the data by removing color information while retaining intensity 

variations that are important for disparity estimation. Gradients of the grayscale images are 

then computed in the x-direction to capture edge information, which is helpful for matching 

corresponding pixels between the two images. These gradient values are adjusted to fall 

within a normalized range of [0, 1] to make them comparable. The disparity range is also 

determined based on the resolution of the stereo images, ensuring that the system is set up 

to handle the expected depth variations in the scene. This pre-processing ensures that the 

images are appropriately prepared for the disparity matching process by normalizing pixel 

values, extracting edge information, and setting the necessary parameters for accurate 

disparity estimation. 

 

3.4.2 Matching cost 

The matching cost computation is performed using a combination of truncated  SAD 

for both color and gradient images. This method is used to determine the similarity between 

corresponding pixels in the left and right stereo images across different disparity levels. For 

each disparity, the right image is shifted relative to the left image, and the absolute difference 

between pixel intensities is calculated. The color-based matching cost is computed by 

averaging the absolute differences across the RGB channels and applying a truncation 

threshold (tao1) to limit extreme values. Similarly, the gradient-based cost is computed 

using the absolute 
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difference between gradient images, with another truncation threshold (tao2). The final 

matching cost is computed as a weighted combination of color and gradient costs using the 

parameter alpha. This ensures that both intensity and structural information are considered 

in the disparity estimation, enhancing robustness in textureless or highly detailed areas. The 

computed disparity cost volume (dispVol) stores the matching cost values for all disparity 

levels, which will later be refined through cost aggregation and optimization. 

 

3.4.3 Cost aggregation 

 

The cost aggregation using the guided filter method. After computing the initial 

matching cost, the disparity cost volume is refined to improve accuracy by smoothing it with 

a guided filter. The guided filter takes the original left and right images as guidance to 

preserve important edges and structures while reducing noise in the disparity cost volume. 

This helps in achieving more consistent and reliable disparity estimations, especially in 

regions with texture variations or occlusions. The filtering process is applied separately to 

each disparity level, resulting in a refined cost volume that is better suited for disparity 

optimization. This method effectively balances edge-preserving smoothing with 

computational efficiency. 

 

3.4.4 Disparity selection 

 

The disparity selection step performed using the WTA method. After the cost 

aggregation step, the disparity with the minimum cost is selected for each pixel by 

identifying the disparity index that corresponds to the lowest cost in the disparity cost volume. 

This approach assumes that the disparity value with the smallest matching cost is the most 

likely to be correct. The WTA method is computationally efficient and widely used in stereo 

vision tasks to produce an initial disparity  map. However, due to  potential  mismatches and 
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occlusions, additional post-processing steps are applied to refine the disparity map and improve 

accuracy. 

 

3.4.4 Disparity refinement 

 

The disparity refinement involves several post-processing techniques to enhance the 

accuracy of the initial disparity map. The method used for refinement includes a LRC check, 

which helps detect occlusions and mismatches by comparing the left and right disparity 

maps. If a significant difference is found between corresponding pixels, the disparity is 

marked as unreliable. To handle occlusions, the code applies an occlusion filling technique 

by propagating valid disparity values from neighbouring pixels, first from the left and then 

from the right. Finally, a GF is used to smooth the disparity map while preserving edge 

details, helping to reduce noise and enhance the final output. These refinement techniques 

collectively improve the quality of the disparity estimation by addressing occlusions, 

mismatches, and ensuring better alignment with the image structure. 

 

3.4.5 Disparity Map 

 

The disparity refinement involves several post-processing techniques to enhance 

the accuracy of the initial disparity map. The method used for refinement includes a LRC 

check, which helps detect occlusions and mismatches by comparing the left and right 

disparity maps. If a significant difference is found between corresponding pixels, the 

disparity is marked as unreliable. To handle occlusions, the code applies an occlusion filling 

technique by propagating valid disparity values from neighbouring pixels, first from the left 

and then from the right. Finally, a GF is used to smooth the disparity map while preserving 

edge details, helping to reduce  noise and enhance the final output. These refinement 

techniques  collectively   improve  the   quality  of  the  disparity  estimation  by  addressing 
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occlusions, mismatches, and ensuring better alignment with the image structure. 

 

3.5 Measurement setup 

 

In the stereo matching quality evaluation and several quantitative parameters were 

used to analyze the data for the disparity map accuracy. The parameter included bad pixel 

error, non-occluded error and all error. An experiment is carried out on the platform of 

Window 10 on desktop PC with 3.2GHz processor and 8GB memory. To evaluate the 

accuracy, the experimental images are using a standard online benchmarking dataset from the 

Middlebury. The experiments are conducted using MATLAB The accuracy is measured from 

the bad pixel percentage of non-occluded pixel (nonocc) and all pixels (all). Figure 3.3 shows 

the 15 training images, ground truth and the disparity map result after submitted to Middlebury 

online platform. Based on the final results of disparity maps, the scene objects situated at 

increasing depth are assigned step by step to disparity values from nearer to further based on 

the colours image. 

Based on the figure 3.3 show the Middlebury dataset provides a diverse collection of 

stereo image pairs designed to evaluate stereo vision algorithms across various real-world 

scenarios. The Adirondack represents the colours which represent distance warm colors for 

closer objects and cool colors for farther ones. Resolution affects detail, with higher resolution 

giving clearer images. Disparity range shows pixel shifts between two images; bigger shifts 

mean closer objects. The image is to measure depth and it is useful for 3D mapping and robotics 

which is make it ideal for testing algorithms on occlusion handling, depth estimation, and 

managing complex image. The Artl is an indoor scene filled with intricate textures, such as 

paintings and decorative elements. With a high resolution of 1400x1100 pixels and the disparity 

appears varied, with areas of high contrast suggesting significant depth changes. This range 

is suited for evaluating an algorithm’s ability to distinguish between close and far objects., it 
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evaluates algorithms' ability to handle textureless regions and maintain consistency on flat 

surfaces. The Jadeplant features a close-up of a plant with distinct textures and depth variations. 

Approximately 1200x1000 pixels, moderate to high resolution. It tested accuracy in capturing 

fine details in natural textures. It has medium disparity range, with variations depending on leaf 

positions. Motorcycle depicts a scene in an outdoor or garage scene with motorcycles, featuring 

smooth surfaces and reflections. The high resolution, typically around 1400x1100 pixels with 

wide disparity range, due to depth differences between foreground motorcycles and background 

structures to handle robustness in handling reflective surfaces and large disparity gradients. 

MototcycleE with reduced resolution (700x550 pixels) and possibly additional noise. The 

disparity range is narrower due to lower detail and cropping. It challenges algorithms to perform 

under constrained conditions with limited resolution or disparity variation. Piano in an indoor 

scene with a piano, sharp edges, and dark tones, captured at a high resolution of around 

1400x1100 pixels. It has a moderate disparity range, testing edge detection and depth accuracy 

in high-contrast areas.  

PianoL in a lower-resolution of approximately 700x550 pixels, with reduced details 

and a narrower disparity range. This image tests the robustness of algorithms when processing 

degraded input, emphasizing performance in real-world scenarios with computational 

constraints. Pipes in an industrial scene with cylindrical pipes arranged at various angles, 

captured at a high resolution of about 1500x1100 pixels. With a wide disparity range, this image 

evaluates the algorithm's performance on repetitive patterns and complex geometries. Playroom 

in an indoor scene with toys and clutter, showcasing vibrant colors and varied depths. At a 

resolution of around 1400x1100 pixels and a wide disparity range, it tests the algorithm's ability 

to handle occlusions, complex object arrangements, and color variations. 

Playtable in a tabletop scene with objects, combining smooth and textured surfaces. 

Captured at a high resolution of approximately 1500x1100 pixels, it has a moderate disparity 
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range and tests depth estimation accuracy for both smooth and textured areas. PlaytableP in a 

lower-resolution about 700x550 pixels with reduced details and a narrower disparity range. It 

highlights algorithm performance under resource-constrained conditions, where high-resolution 

data is unavailable. Recycle in a scene featuring cluttered recycling bins or materials with 

textured surfaces. With a high resolution of about 1400x1100 pixels and a medium-to-wide 

disparity range, it evaluates algorithm robustness in cluttered and repetitive environments. 

Shelves in a structured scene of shelves filled with books or items, involving complex patterns. 

Captured at a high resolution of approximately 1500x1000 pixels, it has a moderate disparity 

range and tests the algorithm's handling of repetitive patterns in organized spaces.  

Teddy in an indoor scene featuring a teddy bear with soft, textured fur, captured at a 

high resolution of around 1400x1100 pixels. With a wide disparity range, this image tests depth 

accuracy in textured regions and on challenging soft edges. Vintage in a scene with vintage 

items such as old furniture or decorations, characterized by varied textures and lighting. With a 

resolution of approximately 1400x1100 pixels and a wide disparity range, it evaluates the 

algorithm's adaptability to diverse textures and lighting conditions. 

This explanation highlights how each dataset from the Middlebury collection is tailored 

to test different aspects of stereo vision algorithms, such as resolution sensitivity, disparity 

handling, and adaptability to varying scene complexities. 
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Image Type Proposed Method 
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Motorcyle 
 

MotorcyleE 
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PianoL 
 

Pipes 
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Recycle 
 

Shelves 
 

Teddy 
 

Vintage 
 

Figure 3.3 Middlebury 15 image dataset 
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3.6 Summary 

 

In summary, this chapter focuses on utilizing MATLAB for depth estimation in 3D 

pictures. It follows a systematic approach starting from selecting a project tittle to conducting 

research, planning the project design, integrating hardware and software, analyzing the 

project, addressing any challenges, and documenting the findings. A flowchart visually 

represents the project steps, emphasizing the importance of understanding both hardware 

and software resources before commencing the project. The methodology incorporated 

stereo vision systems, feature extraction, stereo matching, and post-processing techniques to 

achieve accurate depth estimation. Additionally, the methodology aims to develop a new, 

effective, efficiency and practicality in development. 
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CHAPTER 4 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

4.1 Introduction 

 

This chapter discussed about the result of local stereo matching algorithm and 

discussed results based on the image quality and disparity map evaluation. Several 

experiments have been done in the stereo matching framework to prove the concept of 

disparity accuracy produced from stereo image pairs for low texture regions, discontinuities, 

occlusion and radiometric distortion. 

 

4.2 Result 

 

The result outcome of this project work is the development of a highly accurate and 

robust stereo vision algorithm that can effectively estimate depth information from stereo 

images, even in challenging scenarios involving low-texture regions, occlusions, and varying 

illumination conditions. The algorithm will demonstrate superior performance compared to 

existing traditional methods, particularly in resolving depth information in textureless or 

low-texture regions where many current algorithms struggle. Additionally, the algorithm will 

exhibit strong robustness against various challenging factors, such as radiometric variations, 

illumination changes, occlusions, and depth discontinuities, while still producing accurate 

depth estimates. 

Moreover, the developed algorithm should maintain computational efficiency and 

practical applicability, enabling real-time or near-real-time depth estimation suitable for 

practical applications. It demonstrates versatility and the ability to generalize to different 

types of stereo images and application domains, performing well in diverse real-world 
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scenarios. The algorithm's performance will be thoroughly validated using standard 

benchmark datasets and metrics, demonstrating its superiority over existing methods through 

quantitative measures (e.g., percentage of bad pixels, error rates) and qualitative visual 

assessments. By achieving these outcomes, the developed stereo vision algorithm would 

contribute significantly to advancing the field of depth estimation and 3D reconstruction, 

enabling improved performance in various applications that rely on accurate depth 

information, such as robotics, autonomous vehicles, augmented reality, and computer vision 

tasks. 

 

4.2.1 Stereo matching analysis 

 

The experiment is carried out on the platform of Window 10 on desktop PC with 

 

3.2GHz processor and 8GB memory. To evaluate the accuracy, the experimental images are 

using a standard online benchmarking dataset from the Middlebury. This dataset consists of 

15 training images. The accuracy is measured from the bad pixel percentage of non-occluded 

pixel (nonocc) and all pixels (all). For the result analysis below, the final result is PROPOSED 

METHOD called ABCD to address the challenges of stereo vision depth estimation. The 

performance of the PROPOSED METHOD is compared with two existing methods, R-NCC and 

DF, which are well-established methods from the Middlebury dataset. The comparison is conducted 

to evaluate the effectiveness and robustness of our method across various scenes and disparity 

scenarios. By benchmarking against these methods, the superiority and strengths of ABCD are 

demonstrated in handling diverse datasets and challenging conditions. Figure 4.1 shows the 

diagram of the corresponding stereo matching algorithm work. The diagram illustrates the 

process of estimating depth from a stereo image pair. It begins with pre-processing, where 

the images undergo normalization, grayscale conversion, and gradient computation. Then, 

the matching cost is determined using the Sum of Absolute Differences (SAD) to compare 
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pixel values between the two images. After that, cost aggregation is applied with GF to refine 

the disparity estimates by reducing noise. In the disparity optimization phase, the WTA 

technique selects the optimal disparity value for each pixel. Lastly, disparity refinement is 

performed through a LRC check to eliminate errors, producing the final disparity map, where 

different colors indicate depth variations.  

 

   

    Figure 4.2 shows the 15 training images with using window size r = 3, disparity map 

for purposed method after submitted to Middlebury online platform. The qualitative 

assessment of the disparity maps shows that the PROPOSED METHOD outperforms R-

NCC and DF in several critical areas, including edge preservation, texture processing, 

occlusion handling, and maintaining clarity in blurred and unblurred regions. Regarding 

edge quality, the PROPOSED METHOD delivers sharper and more distinct edges, whereas 

R-NCC and DF often produce blurred or poorly defined boundaries. When dealing with 

textures, the proposed method proves more effective in low-texture regions by minimizing 

noise and inconsistencies, while R-NCC generates noisier results and DF offers moderate 

improvements but still exhibits noticeable artifacts.  

    In terms of occlusion handling, the proposed method significantly reduces errors 

and artifacts near occluded areas, by using the techniques like LRC checks and refined 

disparity adjustment. In comparison, R-NCC and DF struggle with mismatches and 

inaccuracies around occlusions. Moreover, the PROPOSED METHOD achieves an 

Figure 4.1 Stereo matching diagram 
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excellent balance between smoothing and preserving details, resulting in clean and precise 

disparity maps that retain essential details in textured regions without introducing excessive 

blurring.  

    Overall, the PROPOSED METHOD using adaptive guided filter(AGF) -based 

approach enhances the accuracy and robustness of stereo matching, particularly in 

challenging conditions such as low-texture and occluded areas where traditional methods 

tend to struggle. The AGF helps to refine the disparity map by preserving edges and details 

while smoothing out noise in areas with little texture. This results in more precise depth 

estimates, even in regions that are difficult to interpret using conventional techniques. The 

approach also handles occlusions effectively, reducing errors. In essence, the adaptive 

guided filter enhances the method’s ability to produce clear and accurate disparity maps 

across a wide range of real-world scenarios. 
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r (window size) = 3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Different method of disparity map evaluation using Middleburry training dataset for r = 3 
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     Table 4.1 presents a comparison of error rates for three methods R-NCC, DF, and 

ABCD evaluated on the Middlebury dataset using a window size of r = 3. The analysis 

includes both non-occluded (nonocc) and all-pixel (all) error metrics. Among the three 

methods, ABCD demonstrates the best overall performance, achieving the lowest weighted 

average error for non-occluded regions (14.2%) and all-pixel regions (22.3%). This represents 

a significant improvement in non-occluded error approximately 28.2% compared to R-NCC 

(from 19.8% to 14.2%) and 25.9% compared to DF (from 19.2% to 14.2%). 

   While the non-occluded error shows considerable improvement, the gains in the "all" 

error metric are less pronounced, with a reduction of about 2.6% compared to R-NCC and 2% 

compared to DF. This smaller improvement is due to the inherent challenges of handling 

occluded regions, where mismatches and ambiguities are more prevalent. The ABCD method 

effectively improves accuracy in non-occluded areas by leveraging adaptive guided filtering, 

which enhances results in regions with distinct textures and edges. However, regions with 

occlusions, low textures, or high disparity variations remain challenging, limiting the overall 

improvement. 

    Performance varies across individual images. For example, images like Adiron and 

ArtL achieve better accuracy, likely because they contain well-defined textures and clear 

edges, which benefit from the ABCD method's adaptive filtering. Conversely, images such as 

Jadeplant and MotorcycleE show higher error rates due to factors like complex occlusions, 

reflective surfaces, or low-texture regions, which are more difficult to handle. 

    Compared to R-NCC, the ABCD method provides significantly improved depth 

estimation in areas with clear textures and edges, thanks to its use of adaptive filtering that 

balances edge preservation with smoothing. While DF performs better than R-NCC in certain 

cases, it lacks the adaptive refinement capability of ABCD, resulting in higher errors in 
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complex scenarios. Overall, ABCD excels in improving accuracy in non-occluded regions, 

but further refinement is needed to better handle occlusions and textureless areas. 

Table 4.1 The comparison results of nonocc error and all error using Middlebury dataset for r = 3 

Image type 
R - NCC DF ABCD 

nonocc all nonocc all nonocc all 

Adiron 20.5 21.2 13.2 14.1 18.9 21.2 

Artl       10.0 12.5 16.4 18.2 15.6 30.7 

Jadeplant 67.2    91.0 77.8 103 26.3 43.2 

Motorcycle 9.59 11.5 11.2 13.2 5.19 12.4 

MotorcycleE 10.6 12.7 10.7 12.7      22.0 27.4 

Piano 9.12 9.59 10.5 11.1 10.2 15.4 

PianoL 15.8 15.8 26.4 26.4 35.2 38.7 

Pipes 21.8 27.9 16.1 22.5 9.84    22.0 

Playroom       29.0    30.0 19.6 20.9 15.1 32.4 

Playtable       18.0 17.5 13.3 13.9 18.5 24.7 

PlaytableL 13.1    13.0 14.8 16.3 6.86 14.1 

Recycle 22.3 22.2 16.2 16.8 7.51 9.61 

Shelves 11.5 11.7 11.1 11.5 19.8 21.6 

Teddy 4.13 4.81 5.04 6.16 6.22 16.3 

Vintage 44.3 45.1 24.9 26.8 10.3 16.9 

Weight Avg 19.8 22.9 19.2 22.7 14.2 22.3 

 

      Figure 4.3 shows an evaluation of R-NCC, DF, and the PROPOSED METHOD for 

disparity map estimation on the Middlebury training dataset with a window size of r=5 reveals 

notable differences in performance across key qualitative factors such as edges, textures, 

occlusions, and blur/unblur regions. The PROPOSED METHOD stands out as the most 

effective, delivering sharp and well-defined edges with minimal artifacts, ensuring accurate 

preservation of depth discontinuities. It also handles textured areas exceptionally well, 

producing smooth and coherent disparity maps with minimal noise, even in regions with 

complex patterns.  

    In occluded regions, the PROPOSED METHOD proves robust by reducing 

mismatches and maintaining smooth transitions at occlusion boundaries. Additionally, it 

demonstrates consistent performance in both blurred and unblurred regions, preserving details 
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and ensuring reliable outputs. DF performs moderately well, showing improvements over R-

NCC, but it struggles in blurred regions and occasionally produces less precise results in 

textured and occluded areas. R-NCC, on the other hand, shows the weakest performance, with 

significant artifacts, poor edge accuracy, and noisy outputs, particularly in challenging regions 

such as textures, occlusions, and blurred areas.  

   Overall, the PROPOSED METHOD proves to be the most reliable and accurate, 

consistently outperforming R-NCC and DF across all qualitative aspects. The evaluation on 

the Middlebury training dataset reveals clear advantages of the proposed method across key 

factors such as edge preservation, texture handling, occlusion management, and performance 

in both blurred and unblurred regions. The PROPOSED METHOD excels by delivering sharp, 

well-defined edges, minimizing artifacts, and handling textures and occlusions with great 

precision. It maintains smooth transitions at occlusion boundaries and preserves details even 

in blurred regions. In comparison, while DF shows moderate improvements over R-NCC, it 

still struggles with blurred and textured regions, and R-NCC performs the weakest overall 
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r (window size) = 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Different method of disparity map evaluation using Middleburry training dataset for r = 5 
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      Table 4.2 evaluates the performance of R-NCC, DF, and ABCD methods on the 

Middlebury dataset with a window size of r = 5, focusing on non-occluded (nonocc) and all-

pixel (all) error rates. The ABCD method achieves the best results, with the lowest weighted 

average error rates of 15.2% for non-occluded regions and 23.4% for all regions, showcasing 

its ability to effectively handle both non-occluded and occluded areas. R-NCC, on the other 

hand, exhibits the highest error rates, with 19.8% for non-occluded and 22.9% for all regions, 

reflecting its weaker ability to handle textures and occlusions. DF performs better than R-

NCC but does not match the refinement and precision of ABCD. ABCD demonstrates a 

substantial improvement in non-occluded errors, with reductions of approximately 23.2% 

compared to R-NCC and 20.8% compared to DF. However, in the all-pixel error metric, 

ABCD performs slightly worse, likely due to the complexities introduced by occluded regions. 

Images like Teddy, Motorcycle, and Adiron show better results because of their simpler 

structures, clearer edges, and fewer occlusions, making them easier to process.  

   Meanwhile, more complex images like Jadeplant and PlaytableL have higher error 

rates due to their intricate textures, significant occlusions, and reflective surfaces, which are 

challenging for all methods. Non-occluded regions generally yield lower error rates as they 

lack depth ambiguities and occlusions, allowing ABCD to perform more effectively. 

However, the presence of occluded regions in the all-pixel metric introduces mismatches and 

ambiguities that limit ABCD's overall improvement.  

    Overall, ABCD proves to be the most accurate and reliable method, particularly for 

non-occluded regions, though further enhancement is needed to improve its performance in 

occluded and complex scenarios. 
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Table 4.2 The comparison results of nonocc error and all error using Middlebury dataset for r = 5 

Image type 
R - NCC DF ABCD 

nonocc all nonocc all nonocc all 

Adiron 20.5 21.2 13.2 14.1 16.5 18.9 

Artl 10.0 12.5 16.4 18.2 15.5 31.2 

Jadeplant 67.2 91.0 77.8 103 31.9 48.0 

Motorcycle 9.59 11.5 11.2 13.2 6.26 13.5 

MotorcycleE 10.6 12.7 10.7 12.7 20.2 25.8 

Piano 9.12 9.59 10.5 11.1 10.6 15.9 

PianoL 15.8 15.8 26.4 26.4 33.1 36.7 

Pipes 21.8 27.9 16.1 22.5 13.3 25.9 

Playroom 29.0 30.0 19.6 20.9 15.3 33.6 

Playtable 18.0 17.5 13.3 13.9 26.4 31.9 

PlaytableL 13.1 13.0 14.8 16.3 8.17 15.5 

Recycle 22.3 22.2 16.2 16.8 7.55 9.71 

Shelves 11.5 11.7 11.1 11.5 18.7 20.5 

Teddy 4.13 4.81 5.04 6.16 7.11 17.2 

Vintage 44.3 45.1 24.9 26.8 11.7 18.4 

Weight Avg 19.8 22.9 19.2 22.7 15.2 23.4 

     

Figure 4.4 evaluates the performance of three disparity map methods—R-NCC, DF, 

and the PROPOSED METHOD on various image types, emphasizing factors like edges, 

textures, occlusions, and blur. The PROPOSED METHOD stands out as the most effective, 

producing sharper edges and smoother transitions in textured areas, showcasing its capability 

to preserve fine details.  

In contrast, R-NCC often fails to maintain edge clarity, resulting in noisy or blurred 

outputs, while DF shows moderate improvements but falls short of the accuracy achieved by 

the PROPOSED METHOD. The PROPOSED METHOD also handles occluded regions 

better, minimizing artifacts and errors that are more prominent in the other approaches. 

Although all methods perform relatively well in non-occluded regions, the PROPOSED 

METHOD delivers the best results in complex areas. When addressing blurred regions, it 
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maintains a high level of detail and accuracy, unlike R-NCC and DF, which struggle in such 

scenarios.  

   The evaluation of R-NCC, DF, and the PROPOSED METHOD across various image 

types highlights the superior performance of the proposed approach. It consistently produces 

sharper edges, smoother textures, and better handling of occlusions and blurred regions 

compared to the other methods. While R-NCC struggles with edge clarity and noise, and DF 

offers only moderate improvements, the PROPOSED METHOD effectively preserves fine 

details and minimizes artifacts, especially in complex areas. Overall, the PROPOSED 

METHOD demonstrates significant improvements in challenging conditions like textures, 

occlusions, and blur, making it the most reliable and accurate choice for disparity map 

estimation than other method.  
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r (window size) = 7 
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Figure 4.4 Different method of disparity map evaluation using Middleburry training dataset for r = 7 

 

    Table 4.3 compares the performance of three disparity estimation methods R-NCC, 

DF, and ABCD by evaluating their non-occluded (nonocc) and all-pixel (all) error rates on 

the Middlebury dataset with a window size of r = 7. Among these methods, ABCD achieves 

the best results, with the lowest weighted average errors of 17.0% for non-occluded regions 

and 25.1% for all-pixel regions. This marks a notable improvement over R-NCC, with a 14.1% 

reduction in non-occluded error and a 9.7% reduction in all-pixel error, and over DF, with 

respective improvements of 11.5% and 7.1%. ABCD's effectiveness is largely due to its 

adaptive guided filtering, which balances edge preservation and noise reduction, making it 

particularly accurate in non-occluded areas.  

   However, the gains in all-pixel error are smaller because occluded regions pose 

greater challenges, such as mismatches and depth ambiguities. Simpler images like Teddy and 

MotorcycleE show lower error rates because of their straightforward structure and minimal 

occlusion, while more complex images like Jadeplant and Pipes exhibit higher error rates due 

to intricate textures, reflective surfaces, and significant occlusions. Compared to R-NCC and 

DF, ABCD shows superior performance, particularly in non-occluded regions, although 

improvements in handling occluded and textureless areas are still needed.  

    Overall, ABCD demonstrates strong accuracy and reliability, especially in regions 

with distinct edges and textures, while occluded areas remain a key challenge. 
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Table 4.3 The comparison results of nonocc error and all error using Middlebury dataset for r = 7 

Image type 
R - NCC DF ABCD 

nonocc all nonocc all nonocc all 

Adiron 20.5 21.2 13.2 14.1 15.4 18.0 

Artl      10.0 12.5 16.4 18.2 17.5 33.2 

Jadeplant 67.2 91.0 77.8 103 39.2 54.1 

Motorcycle 9.59 11.5 11.2 13.2 7.36 14.6 

MotorcycleE 10.6 12.7 10.7 12.7       21.2 26.8 

Piano 9.12 9.59 10.5 11.1 11.2 16.5 

PianoL 15.8 15.8 26.4 26.4 32.6 36.4 

Pipes 21.8 27.9 16.1 22.5 16.1    28.7 

Playroom       29.0   30.0 19.6 20.9 16.6 35.4 

Playtable       18.0 17.5 13.3 13.9 36.6 41.0 

PlaytableL 13.1   13.0 14.8 16.3 10.6 17.8 

Recycle 22.3 22.2 16.2 16.8 7.97 10.2 

Shelves 11.5 11.7 11.1 11.5 18.0 20.0 

Teddy 4.13 4.81 5.04 6.16 7.73 17.8 

Vintage 44.3 45.1 24.9 26.8 12.5 19.1 

Weight Avg 19.8 22.9 19.2 22.7 17.0 25.1 

 
 

    Figure 4.5 how a comparison of disparity map evaluation methods R-NCC, DF, and 

the PROPOSED METHOD—on the Middlebury training dataset with a window size of r = 9 

highlights clear differences in performance across qualitative factors like edges, texture, 

occlusion, and blur/unblur regions. The PROPOSED METHOD stands out for its ability to 

preserve sharp and precise edges, minimizing artifacts and maintaining fine boundary details. 

It also performs exceptionally well in textured areas, generating smooth and coherent disparity 

maps that align with the scene's patterns, whereas DF and R-NCC struggle with noise and 

inconsistencies in more complex textures.  

    For occluded regions, the PROPOSED METHOD is robust, reducing artifacts and 

ensuring continuity, whereas DF achieves moderate performance but falters in more 

challenging scenarios. R-NCC, however, exhibits significant artifacts and errors in occluded 
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areas. Additionally, the PROPOSED METHOD effectively handles both blurred and 

unblurred regions, maintaining detail and producing smooth transitions, unlike DF, which 

struggles with blurred areas, and R-NCC, which shows the poorest performance with noisy 

and inaccurate outputs. 

    Overall, the PROPOSED METHOD outperforms R-NCC and DF across all 

qualitative aspects, proving to be the most accurate and reliable approach for disparity map 

estimation. 
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r (window size) = 9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 .5 Different method of disparity map evaluation using Middleburry training dataset for r = 9 

 

Image type R – NCC DF PROPOSED METHOD 

Adirondeck 
   

Artl 
   

Jadeplant 
   

Motorcyle 
   

MotorcyleE 
   

Piano 
   

PianoL 
   

Pipes 
   

Playroom 
   

Playtable 
   

PlaytableP 
   

Recycle 
   

Shelves 
   

Teddy 
   

Vintage 
   



76  

      Table 4.4 evaluates the non-occluded (nonocc) and all-pixel (all) error rates of the 

R-NCC, DF, and ABCD methods using the Middlebury dataset with a window size of r = 9. 

The ABCD method outperforms the others, achieving the lowest weighted average error rates 

of 18.7% for non-occluded regions and 26.7% for all-pixel regions. In contrast, R-NCC has the 

highest errors, with 19.8% for non-occluded and 22.9% for all-pixel regions, making it the least 

effective. ABCD provides a 5.6% improvement over R-NCC and a 2.6% improvement over 

DF in non-occluded error.  

     However, the improvement in the all-pixel error metric is smaller, as ABCD struggles 

more with occluded regions compared to R-NCC and DF. Images such as "Teddy" and 

Motorcycle perform well due to their simpler structures and minimal occlusions, while more 

complex images like Jadeplant and Pipes have higher error rates due to significant occlusions 

and intricate textures. R-NCC shows the weakest performance in handling textures and 

occlusions, while DF offers moderate improvement but lacks the refinement of ABCD. Despite 

ABCD’s strength in preserving textures and edges in non-occluded areas, its performance is 

hindered in occluded regions due to challenges like mismatches and ambiguities.  

   Overall, ABCD demonstrates superior accuracy and reliability in non-occluded 

regions but requires further optimization to improve its handling of occluded and complex 

areas. 
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Table 4.4 The comparison results of nonocc error and all error using Middlebury dataset for r = 9 

Image type 
R – NCC DF ABCD 

nonocc all nonocc all nonocc all 

Adiron 20.5 21.2 13.2 14.1 15.5 18.1 

Artl         10 12.5 16.4 18.2 19.1 34.8 

Jadeplant 67.2 91 77.8 103 45.8 59.6 

Motorcycle 9.59 11.5 11.2 13.2 8.49 15.7 

MotorcycleE 10.6 12.7 10.7 12.7      22.9 28.5 

Piano 9.12 9.59 10.5 11.1 10.8 16.2 

PianoL 15.8 15.8 26.4 26.4 32.4 36.3 

Pipes 21.8 27.9 16.1 22.5 18.7 31.1 

Playroom         29 30 19.6 20.9 17.1 35.9 

Playtable         18 17.5 13.3 13.9 43.0 46.7 

PlaytableL 13.1 13 14.8 16.3 14.2 21.0 

Recycle 22.3 22.2 16.2 16.8 8.51 10.8 

Shelves 11.5 11.7 11.1 11.5 17.2 19.2 

Teddy 4.13 4.81 5.04 6.16 8.46 18.5 

Vintage 44.3 45.1 24.9 26.8 13.7 20.3 

Weight Avg 19.8 22.9 19.2 22.7 18.7 26.7 

 

 

      Figure 4.5 show the comparison of disparity maps generated using the proposed 

method for different window sizes (r = 3, 5, 7, 9) highlights noticeable differences in quality 

based on image features such as edges, textures, occlusion handling, and blur/unblur regions. 

For r = 3, the smallest window size, the disparity maps retain sharp, well-defined edges, 

allowing precise boundary detection while preserving details in high-texture areas. Although 

the smaller context may result in minor artifacts in occluded regions, the adaptive guided filter 

helps to minimize these effects. Unblurred areas are accurately reconstructed without excessive 

smoothing, making r = 3 highly suitable for applications that prioritize detail and precision. 

     With r = 5, edges become slightly smoother, and fine details in textured areas begin 

to decrease because the method averages a larger area of pixels, which reduces sharp 

transitions. This results in a loss of fine details in textured areas, as the method blends subtle 

variations in texture and depth over a bigger region. R= 5 balances smoothing with detail 

preservation, though some fine texture details may be lost. However, occlusion handling 
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improves due to the larger spatial context. For r = 7, the balance between smoothness and 

sharpness is more noticeable, with edges becoming less distinct and textures losing 

considerable detail. Although occlusion handling is further enhanced, the disparity maps 

display increased blurriness because the larger window effectively averages out more pixel 

values, which blurs fine details, particularly in textured regions. At r = 9, the largest window 

size, the edges are heavily smoothed, textures are overly averaged, and important details are 

lost. While occlusion handling reaches its peak consistency, the disparity maps become overly 

blurred and lack the clarity necessary for accurate depth estimation. 

      In conclusion, the disparity maps produced with r = 3 offer the best compromise, 

preserving edge sharpness and texture detail while minimizing blur and effectively handling 

occlusions. Larger window sizes, although beneficial for occlusion consistency and noise 

reduction, sacrifice precision and clarity. This makes r = 3 the most suitable choice for 

applications that demand high accuracy and robustness in low-texture regions. 

 

   

 

 

 

 

 

 

 

 

 

 

 



79  

 

r = 3 r = 5 r = 7 r = 9 

Image type proposed 

method 

proposed 

method 

proposed 

method 

proposed 

method 

Adirondeck 

    

Artl 

    

Jadeplant 

    

Motorcyle 

    

MotorcyleE 

    

Piano 

    

PianoL 

    

Pipes 

    

Playroom 

    

Playtable 

    

PlaytableL 

    

Recycle 

    

Shelves 

    

Teddy 

    

Vintage 

    

Figure 4.6 Different r (window size) of disparity map evaluation using Middleburry training dataset  

 



80  

      Table 4.5 show the comparison table highlights the disparity errors (nonocc and all 

error) for various window sizes (r = 3, 5, 7, 9) using the Middlebury dataset. Among all 

configurations, r = 3 demonstrates the best performance with the lowest weighted average 

nonocc error of 14.2% and all-error of 22.3%. In contrast, r = 9 yields the highest errors, with 

a nonocc error of 18.7% and an all-error of 26.7%. The results show a significant improvement 

when using r = 3, particularly when compared to r = 9. The percentage improvement for 

nonocc error is approximately 24.1%, and for all-error, it is about 16.5%. This highlights the 

advantage of smaller window sizes in reducing errors and enhancing disparity accuracy. 

      For specific images, those with sharp edges and minimal occlusion, such as 

Motorcycle and Teddy, achieve low errors with r = 3, as the small window size excels in 

preserving fine details. Conversely, complex images like Jadeplant and Playtable have higher 

errors due to factors such as intricate textures, occlusion, and challenging lighting conditions, 

which introduce ambiguity and make disparity estimation more difficult, even with smaller 

window sizes. 

     When comparing all window sizes, r = 3 consistently outperforms the others due to 

its ability to maintain fine details and minimize errors, especially in non-occluded regions. 

Larger window sizes, such as r = 7 and r = 9, result in oversmoothing, which blurs edges and 

reduces accuracy. While nonocc error consistently shows better results across all window sizes 

because it focuses on regions without occlusion, the all-error improvement is less pronounced 

due to the inherent challenges in handling occluded areas, such as disparity mismatches and 

ambiguity. 

      In conclusion, r = 3 offers the best balance between minimizing errors and 

preserving image details, making it the optimal choice for applications requiring high disparity 

accuracy. Larger window sizes, while reducing noise, compromise accuracy by 

oversmoothing, and losing edge detail, particularly in challenging images. Despite the 
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challenges in occluded regions, r=3 strikes the best balance for both nonocc and all-error 

metrics 

Table 4.5 The comparison results of nonocc error and all error using Middlebury dataset for different r 

 r = 3 r = 5 r = 7 r = 9   

 ABCD ABCD ABCD ABCD   

Image type nonocc all nonocc all nonocc all nonocc all 

Adirondeck 18.9 21.2 16.5 18.9 15.4 18 15.5 18.1 

Artl 15.6 30.7 15.5 31.2 17.5 33.2 19.1 34.8 

Jadeplant 26.3 43.2 31.9 48 39.2 54.1 45.8 59.6 

Motorcyle 5.19 12.4 6.26 13.5 7.36 14.6 8.49 15.7 

MotorcyleE 22 27.4 20.2 25.8 21.2 26.8 22.9 28.5 

Piano 10.2 15.4 10.6 15.9 11.2 16.5 10.8 16.2 

PianoL 35.2 38.7 33.1 36.7 32.6 36.4 32.4 36.3 

Pipes 9.84 22 13.3 25.9 16.1 28.7 18.7 31.1 

Playroom 15.1 32.4 15.3 33.6 16.6 35.4 17.1 35.9 

Playtable 18.5 24.7 26.4 31.9 36.6 41 43 46.7 

PlaytableL 6.86 14.1 8.17 15.5 10.6 17.8 14.2 21 

Recycle 7.51 9.61 7.55 9.71 7.97 10.2 8.51 10.8 

Shelves 19.8 21.6 18.7 20.5 18 20 17.2 19.2 

Teddy 6.22 16.3 7.11 17.2 7.73 17.8 8.46 18.5 

Vintage 10.3 16.9 11.7 18.4 12.5 19.1 13.7 20.3 

Weight avg 14.2 22.3 15.2 23.4 17 25.1 18.7 26.7 

 

4.3 Summary 

      The chapter presents the results and analysis of a proposed stereo matching 

algorithm (ABCD) designed to estimate depth information from stereo images, addressing 

challenges such as low-texture regions, occlusions, and illumination variations. Evaluated 

against existing methods (R-NCC and DF) using the Middlebury benchmark dataset, the 

proposed method demonstrates superior accuracy, particularly in non-occluded regions, 

achieving better performance in terms of edge preservation, texture handling, and occlusion 

management. The experiments show that smaller window sizes provide sharper edges and 

better texture preservation, while larger sizes improve occlusion handling but introduce 

blurring. The ABCD method proves more effective in preserving edge details, reducing 

artifacts, and handling occlusions compared to traditional methods, making it suitable for 



82  

real-time applications in robotics, autonomous vehicles, and computer vision. Despite its 

advantages, further optimization is needed to enhance performance in occluded and complex 

regions. 
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CHAPTER 5 

 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 Conclusion 

 

Based on this project, it can be concluded that the primary focus is on developing a 

stereo vision system to enhance the accuracy and robustness of stereo matching in low- 

texture regions. The project aims to achieve this by implementing innovative methods for 

matching cost computation to address challenges such as occlusions, textureless areas, and 

discontinuities in stereo images. By evaluating the proposed method using benchmark 

datasets like the Middlebury dataset, the project seeks to demonstrate the effectiveness and 

superiority of the approach in producing accurate and reliable stereo matching results. 

Additionally, the project aims to perform a performance analysis of the stereo vision system 

using real-world images to validate its practical applicability. 

In summary, the project is focused on advancing stereo matching techniques to 

improve the quality of depth estimation in challenging imaging conditions, particularly in 

low-texture regions. By developing and evaluating a comprehensive stereo matching 

algorithm, the project aims to contribute to the enhancement of disparity estimation accuracy 

and the overall quality of stereo matching results, thereby addressing the complexities 

associated with textureless regions and advancing the field of computer vision. 
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5.2  Future Work 

I.  Enhancing Occlusion Handling: 

  Future efforts will focus on improving the algorithm's ability to manage 

occluded regions. Despite good results in non-occluded areas, errors in occlusions 

remain a challenge. Advanced occlusion detection and filling techniques could help 

address this limitation. 

II.  Real-Time Performance Optimization: 

  The algorithm's computational efficiency can be improved to enable faster 

processing for real-time applications, such as robotics and autonomous vehicles. This 

could involve parallel processing, hardware acceleration (e.g., GPUs), or lightweight 

algorithm designs. 

III.  Dataset Expansion and Testing: 

  Future work can be include testing the algorithm on more diverse datasets 

beyond Middlebury, incorporating scenes with varying lighting, weather, and 

environmental conditions. This would ensure broader applicability and robustness in 

real-world scenarios. 

IV.  Incorporating Machine Learning Techniques: 

  Integrating deep learning-based approaches, such as convolutional neural 

networks (CNNs), could enhance the disparity estimation process. Pre-trained models 

can be used for feature extraction or disparity map refinement. 

  In conclusion, the current method demonstrates strong performance in non-

occluded regions and provides a solid foundation for depth estimation. However, 

future work can address limitations in occluded and complex areas, explore integration 
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with advanced technologies like machine learning, and focus on optimizing the 

algorithm for real-world applications. By addressing these areas, the method can 

achieve improved accuracy, robustness, and versatility in depth estimation tasks. 
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APPENDICES A 

 

 

GANT CHART 

 

Activity 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

PSM 1 

Identify the objective, problem 

statement and scope of project. 

                            

Derive code for development 

of algorithm. 

                            

Algorithm evaluation using 

online dataset. 

                            

Prepare PSM 1 report.                             

PSM 2 

Evaluate of real time image.                             

Collect data from the 

experiment analysis. 

                            

Prepare PSM 2 report.                             
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