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ABSTRACT

This project aims to develop and implement a Memory Built-In Self-Test (MBIST)

controller in an FPGA device using the Improved March AZ1 algorithm. MBIST is

essential for testing memory components within a System-on-Chip (SoC) to ensure they

are free of faults. The numbers of test operations increases and results in a higher

complexity to detect more faults in the test and will increases the cost and hardware area

overhead. The March AZ algorithm was selected for its efficiency in detecting various

memory fault models. To overcome more faults in the test, the numbers of test operations

increases and results in a higher complexity. The project is proposed to improve the March

AZ algorithm’s fault coverage as the March AZ1 algorithm while maintaining its

complexity is equal to the complexity of 13N. The March AZ1 algorithm is improved by

rearranging the test sequences of the March AZ algorithm.Extensive testing on fault-free

and fault-injected memory models will be demonstrate the controller's effectiveness in

detecting a wide range of memory faults, validating its reliability. The project is

successfully implement an effective MBIST solution in FPGA, providing a valuable tool

for ensuring memory reliability in SoCs. Future work could be focus on further optimizing

the MBIST controller and adapting the algorithm for different memory technologies.
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ABSTRAK

Projek ini bertujuan untuk membangunkan dan melaksanakan pengawal Ujian Kendiri

Terbina Dalam Memori (MBIST) dalam peranti FPGA menggunakan algoritma AZ1 Mac

yang Diperbaiki. MBIST adalah penting untuk menguji komponen memori dalam System-

on-Chip (SoC) untuk memastikan ia bebas daripada kerosakan. Bilangan operasi ujian

meningkat dan menghasilkan kerumitan yang lebih tinggi untuk mengesan lebih banyak

kerosakan dalam ujian dan akan meningkatkan kos dan overhed kawasan perkakasan.

Algoritma AZ Mac dipilih untuk kecekapannya dalam mengesan pelbagai model

kerosakan memori. Untuk mengatasi lebih banyak kesilapan dalam ujian, bilangan operasi

ujian meningkat dan menghasilkan kerumitan yang lebih tinggi. Projek ini dicadangkan

untuk menambah baik liputan kesalahan algoritma AZ Mac kerana algoritma AZ1 Mac

sambil mengekalkan kerumitannya adalah sama dengan kerumitan 13N. Algoritma AZ1

Mac dipertingkatkan dengan menyusun semula urutan ujian algoritma AZ Mac. Pengujian

meluas pada model ingatan bebas kesalahan dan disuntik kesalahan akan menunjukkan

keberkesanan pengawal dalam mengesan pelbagai kesalahan memori, mengesahkan

kebolehpercayaannya. Projek ini berjaya melaksanakan penyelesaian MBIST yang

berkesan dalam FPGA, menyediakan alat yang berharga untuk memastikan

kebolehpercayaan memori dalam SoC. Kerja masa depan boleh difokuskan untuk

mengoptimumkan lagi pengawal MBIST dan menyesuaikan algoritma untuk teknologi

memori yang berbeza.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Memory built-in self-test (MBIST) is a method for testing embedded memories on chips

that is quite popular since it is a short testing time at a low cost [1]. Because of its ability

to self-test and self-check test replies, an expensive external tester is not necessary.

Furthermore, it has the ability to run numerous tests concurrently on various memory

blocks. Its fault coverage (FC) and test method complexity are the key determinants of its

efficiency. The amount of test operations carried out on N memory cells is represented

by the test complexity. The longer the test, the more difficult it is, consequently, the

chip test's overall duration and production costs rise. MBIST is a widely used technique

because it is has a short testing time at a low cost [1].

March test algorithms are a family of memory test algorithms used to detect the faults in

memory cells. The name "March" comes from the way these algorithms "march" through

the memory addresses, performing write and read operations in a systematic manner.

They are designed to detect various fault models such as stuck-at faults, transition faults,

coupling faults, and neighborhood pattern sensitive faults [2].

The March AZ2 algorithm and March AZ1 algorithms is the new test algorithms. The

March AZ2 algorithm's test sequence was simplified to ⇕ (w0); ⇓ (w0, r0); ⇑ (r0,

w1, w1, r1); ⇑ (r1, w0); ⇓ (r0, w1, w1, r1); ⇑ (r1) while the March AZ1 algorithm’s test

sequences was simplified to ⇕ (w0); ⇓ (w1); ⇑ (w1, r1, r1, w0); ⇑ (w0, r0); ⇑ (r0,

w1, w1, r1); ⇑ (r1). For March AZ2 algorithm have a fault coverage (FC) of 83.3%
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(detect 30 out of 36 possible fault) with 14N complexity but f or March AZ1

algorithm have a fault coverage (FC) of 80.6% (detect 29 out of 36 possible fault) with

13N complexity [1]. Therefore, this project is proposed with a motivation to

improve the March AZ1 to match the March AZ2 fault coverage while maintaining its

complexity lower or same to 14N [1].
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1.2 Problem Statement

The most use of algorithm are the March algorithms test. By using the March algorithms,

the costs and chip area overhead can be reduced with a lower complexity. To detect more

faults in the test, the numbers of test operations increases and results in a higher

complexity. This will also increases the cost and hardware area overhead [2]. Many 10N

and 14N complexity test algorithms are available to produce memory testing within

low testing time but most of them have poor coverage of many faults such as Write

Disturb Fault (WDF), Data retention fault (DRF) and their coupling faults. So, the

March AZ1 algorithms were used to provide an excellent fault coverage while having the

complexity at 13N. However, March AZ1 algorithms have a slightly lower Transition

Coupling Fault (CFtr) which is 5/8 (62.5%). Therefore, this project focuses on improving

the March AZ1 algorithm’s fault coverage while maintain the same complexity of 13N

[2].
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1.3 Project Objective

The proposed project embarks on the following objectives:

I. To develop an improved March AZ1 test algorithm to match the March

AZ2 test algorithm fault coverage while maintaining its complexity lower

than March AZ2 test algorithm.

II. To implement a Memory BIST controller in FPGA using the improved

March AZ1 as the test algorithm.

III. To evaluate the fault coverage and complexity of the improved March AZ1

algorithm through tests and analysis.

1.4 Scope of Project

In order the achieve the project objectives mentioned in Section 1.3, the

following works are involved.

I. The March AZ1 was improved by rearranging the test sequences to

provide the higher fault coverage as the March AZ1 algorithm which is

with the same complexity of 13N.

II. The March AZ1 algorithm and improved March AZ1 algorithm were

applied as the UDA in the MBIST controller. The MBIST insertion

process was done using Siemens Tessent MemoryBIST software as the

tool. The MBIST insertion was targeted for a 1 kB SRAM as the memory

model to be tested.

III. The improved March AZ1 algorithm were simulate in the QuestaSim

software on both fault-free and fault-injected model. The waveform was

captured as the result.
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IV. The generated MBIST circuit was implemented in FPGA development

board by using Altera Quartus Design software, which synthesize the

design before fitting it into the FPGA configuration and generating the

bitstream file to be programmed in the FPGA.

V. The tests using the implemented MBIST in FPGA was conducted on a

fault-free memory model to validate its functionality

The proposed project functionality evaluation was done by examining the outputs

produced from the FPGA experimental tests that will be captured and displayed by

the integrated SignalTap logic analyzer.

1.5 Report Outline

This report consists of 5 chapters. Chapter 2 reviews on the semiconductor

memories that used in the System-on-Chip (SoC) designs, memory fault models,

Memory Built-In Self Test (MBIST), MBIST test algorithms and the existing test

algorithms.Chapter 3 reviews on the project design, project planning and project

development for the report. Chapter 3 also reviews about the improved March AZ1

algorithm and the software and hardware used in this project. Chapter 4 reviews

about the test results for the fault-free memory models and fault-injected memory

models of improved March AZ1 algorithm. Chapter 4 also mention about the test

on the Altera Quartus using FPGA and the limitation for this project. Chapter 5

states the summary for this project for each objective listed.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter comprehensive reviews about the memories used in SoC, the on-chip

memory testing using MBIST, and the existing test algorithms. Section 2.2 review on the

semiconductor memories while Section 2.3 describe about the memory fault models.

Section 2.4 describes about the Memory Built-In Self Test (MBIST) while section 2.4.

Next, section 2.5 review about the MBIST test algorithm while section 2.6 reviews about

the existing test algorithms.

2.2 Semiconductor Memories

Figure 2.1 Types of memories

Embedded memories in System-on-Chip (SoC) designs refer to memory components

that are integrated directly onto the same silicon die as the other components of the

system. These memories serve as crucial storage elements for data and instructions

within the SoC, enabling various functions and applications to operate efficiently [3].

Random Access Memory (RAM) is a volatile memory type, meaning its contents are
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lost when the power is turned off. It is used to temporarily store data and program

instructions that the Central Processing Unit (CPU) needs to access quickly during

the execution of programs [3]. RAM is characterized by its fast read and write speeds,

making it ideal for tasks that require frequent data access and manipulation. ROM is a

non-volatile memory type, meaning its contents are retained even when the power is

turned off. It is used to store permanent or semi- permanent data and program

instructions that are not expected to change frequently during the operation of the system

[3].

There were some types of Embedded Memories which is Static Random-Access

Memory (SRAM), Dynamic Random-Access Memory (DRAM) and Non-Volatile

Memories. SRAM is often used for cache memory within SoCs due to its fast access

times and low power consumption. It provides high-speed access to frequently accessed

data, enhancing the overall performance of the system. DRAM is used for main memory

in SoCs, providing larger storage capacity compared to SRAM but with slightly slower

access times. It serves as the primary storage for program instructions and data during

the execution of applications. SoCs may also include non-volatile memory components

like Flash memory or Electrically Erasable Programmable Read-Only Memory

(EEPROM) for storing firmware, boot code, or configuration data that needs to persist

across power cycles [4].

The embedded memories are typically integrated directly onto the SoC die using

specialized manufacturing processes. This integration reduces the need for external

memory chips, saving board space and reducing power consumption. Interconnect

structures within the SoC connect the embedded memories to the CPU, peripherals, and

other components, enabling data transfer and access [5].

Given the critical role of embedded memories in SoCs, thorough testing and
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verification processes are essential to ensure their reliability and functionality [5].

Techniques like Memory Built-In Self-Test (MBIST) are commonly employed to enable

memories to test themselves for faults and defects autonomously. Advanced verification

methodologies, including simulation, emulation, and formal verification, are used to

validate memory designs and ensure they meet performance, power, and reliability

requirements [6].

In summary, embedded memories are essential components of SoCs, providing

storage for data and instructions and influencing the overall performance, power

consumption, and security of the system. Designing, integrating, and testing embedded

memories require careful consideration of various factors to ensure the reliability,

functionality, and security of SoCs in diverse applications [6].
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2.3 Memory fault models

Faults in digital systems are broadly categorized into static and dynamic faults, each

representing different types of malfunctions that can occur in a system [7]. Static faults

are those where the failure mode is constant and does not change over time [7]. Examples

include stuck-at faults, where a signal line is permanently stuck at a logical high (1) or

low (0) value, and open faults, where a circuit line is disconnected and thus always reads

as an undefined state. These faults are relatively straightforward to detect with static test

patterns that do not rely on changing conditions. Static faults typically result from

physical defects in the hardware, such as manufacturing imperfections, and are often

identified through direct inspection or simple test algorithms [8].

In contrast, dynamic faults occur under specific conditions or sequences of operations,

making them more challenging to detect [5]. Dynamic faults are often influenced by

factors like operational timing, environmental conditions, and the specific usage pattern

of the device. Detecting these faults requires more sophisticated testing methodologies

that involve sequences of operations, varying conditions, and timing analysis. Dynamic

faults are critical to identify because they can lead to intermittent and unpredictable

system failures, which are harder to diagnose, and fix compared to static fault [5].

This project focuses on the detection of static faults, which are faults that remain

constant and do not change over time. These include common issues like stuck-at faults,

where a signal line is permanently fixed at a logical high or low value, and open faults,

where a circuit line is disconnected and consistently reads as an undefined state. By

employing specific test algorithms designed to identify these static faults, the project

aims to ensure the reliability and correctness of hardware systems, addressing critical

defects that can result from manufacturing imperfections and other static conditions.
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There are many type of static fault which are [5]:

1. Stuck-at Fault (SAF): A stuck-at fault occurs when a signal line or node in a

digital circuit is consistently stuck at either a logic high ('1') or a logic low ('0')

state. This fault remains persistent regardless of the input or operation. SAFs are

typically caused by defects in the manufacturing process, such as material

impurities or physical damage, and are relatively straightforward to detect using

test patterns that attempt to force the line to both states and then verify its

response.

2. Transition Fault (TF): Transition faults manifest as failures in the transition of a

digital signal from one logic state to another within the expected timeframe.

There are two types: rising transition faults (0 to 1) and falling transition faults

(1 to 0). These faults can occur due to various reasons, including timing

violations, signal integrity issues, or manufacturing irregularities. Detecting

TFs involves applying test patterns that aim to induce transitions and verifying

if they occur as expected.

3. Read Disturb Fault (RDF): RDFs arise in non-volatile memory devices when

the act of reading data repeatedly from a memory cell disturbs the contents of

nearby cells. This disturbance can result in unintended changes in adjacent

memory locations. RDFs are particularly relevant in flash memory

technologies and can degrade device reliability over time due to wear-out

mechanisms.

4. Inversion Read Fault (IRF): IRF occurs when reading a memory cell results in

the incorrect inversion of the stored data. For instance, reading a '1' might

return a '0' and vice versa. This fault can be caused by various factors,
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including transistor leakage or cross-coupling effects, and can lead to data

integrity issues in memory systems.

5. Deceptive Read Disturb Fault (DRDF): DRDFs occur when reading a memory

cell disturbs the data in neighboring cells temporarily, leading to incorrect

readouts during specific read operations. Unlike RDFs, which cause permanent

changes, DRDFs only affect the read operation temporarily and may not be

immediately detectable after the read operation.

6. Write Disturb Fault (WDF): WDFs arise when writing data to a memory cell

inadvertently alters the contents of nearby cells due to electrical interference or

coupling effects. These faults can occur in various memory technologies,

including DRAM and flash memory, and can lead to data corruption or

integrity issues if left undetected.

7. Transition Coupling Fault (CFtr): Occurs when a transition in one memory cell

triggers an unintended transition in a neighboring cell.

8. Deceptive Read Destructive Fault (CFdrd): Involves a read operation that

disturbs the data in a neighboring cell, leading to incorrect readouts and

potentially permanent data corruption.

9. Write Destructive Fault (CFwd): Arises when writing data to one memory cell

inadvertently alters the contents of another cell. CFs require comprehensive

testing strategies to detect interactions between memory cells and mitigate their

impact on system reliabily.
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2.4 Memory Built-In Self Test (MBIST)

MBIST is a design technique used in integrated circuits (ICs) to ensure the reliability and

functionality of embedded memories, such as SRAM (Static Random-Access Memory)

or DRAM (Dynamic Random-Access Memory). In MBIST, the memory is equipped

with circuitry that allows it to test itself for faults and defects without requiring external

test equipment. This self-testing capability is crucial for detecting and diagnosing faults

that may occur during the operation of the device, such as manufacturing defects, aging-

related issues, or environmental factors [8].

Figure 2.2 Flowchart of MBIST



13

MBIST typically involves generating test patterns and applying them to the memory

array, then comparing the expected results with the actual results to identify any

discrepancies [9]. It helps in identifying faults such as stuck-at faults(where a bit is

always at a high or low logic level), transition faults (where a bit fails to switch its

value), and coupling faults (where adjacent bits interfere with each other)[9]. Overall,

MBIST plays a critical role in ensuring the reliability and quality of memory components

in modern integrated circuits.

The principle of working of MBIST involves several key steps [10]:

1. Test Pattern Generation: The MBIST controller generates a set of test patterns designed

to thoroughly exercise the memory array. These patterns are carefully crafted to detect

various types of faults, including stuck-at faults, transition faults, and coupling faults.

2. Test Pattern Application: The generated test patterns are applied to the memory array

by configuring the memory's address and data input/output paths accordingly. The

memory controller coordinates this process to ensure that each test pattern is applied

correctly.

3. Data Comparison: As the test patterns are applied, the memory controller compares the

expected output data (based on the test patterns) with the actual output data obtained from

the memory array. Any discrepancies between the expected and actual data indicate

potential faults or defects within the memory.

4. Fault Identification: When discrepancies are detected, the MBIST controller identifies

the specific locations within the memory array where faults may be present. This

information is crucial for diagnosing the root causes of the faults.

5. Reporting: The results of the MBIST self-test are typically logged and reported to

higher- level system components. This information allows system-level firmware or



14

software to make informed decisions about the operational status and reliability of the

memory.

Siemens Tessent MemoryBIST software streamlines MBIST generation by automating

the creation of tailored MBIST structures for specific memory architectures and test

requirements [11]. Designers input parameters such as memory size, organization, and

desired fault coverage levels, and the software utilizes sophisticated algorithms to

generate the necessary MBIST logic, including test pattern generators, response analyzers,

and control circuitry. This automated process ensures efficient integration of MBIST into

the semiconductor design, enhancing memory testing capabilities while minimizing

development time and effort, ultimately improving product quality and reliability [12].

There were some type of algorithm such as non-linear algorithm, linear algorithm and

classical test algorithm. For non-linear algorithm, a non-linear algorithm is a

computational process where the relationship between input size and computation time or

resource usage is not proportional or directly scalable, often involving complexities higher

than linear, such as quadratic, polynomial, or exponential [13]. Unlike linear algorithms,

which exhibit a straight-line growth pattern as inputs increase, non-linear algorithms may

involve nested loops, recursive calls, or combinatorial processes, leading to growth rates

that escalate rapidly with larger inputs. These algorithms are essential for solving complex

problems in fields like optimization, graph theory, and artificial intelligence, where

interactions among elements do not follow a simple, direct pattern and require more

sophisticated approaches to manage [13].

Next, a linear algorithm is a computational process in which the time or resources

required to complete the task increase directly in proportion to the size of the input [14].

This means that if the input size doubles, the computation time or resource usage also

doubles, resulting in a predictable and manageable growth pattern [14]. Linear algorithms
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are characterized by their simplicity and efficiency, making them ideal for tasks such as

searching, traversing a list, or performing basic arithmetic operations where each step

involves a constant amount of work relative to the input size. This predictability and

scalability make linear algorithms fundamental in computer science for handling

straightforward problem efficiently[14].

2.5 MBIST test algorithms

A classical test algorithm refers to a traditional, well-established method used for

assessing the functionality, performance, or reliability of a system or component, often in

hardware and software testing [15]. These algorithms follow a predefined sequence of

operations designed to systematically evaluate various aspects of the subject under test,

such as correctness, efficiency, and fault tolerance [15]. Examples include the binary

search for testing sorted arrays, the bubble sort for sorting algorithms, and the basic

memory test algorithms like MATS (Modified Algorithmic Test Sequence) and the March

test for memory fault detection. Classical test algorithms are foundational in ensuring the

integrity and performance of systems, leveraging their simplicity and robustness to

provide reliable testing results [15].

The March test algorithms are a family of memory testing algorithms commonly used

to test the functionality and reliability of memory components, particularly SRAM

(Static Random-Access Memory) [16]. These algorithms systematically walk through

memory cells in a specific order, performing read, write, and compare operations. They

are designed to detect various types of faults, including stuck-at faults, transition faults,

and coupling faults. The name "March" is derived from the initials of its creator, IBM

engineer R.H. "Bob" March [17].

The March algorithm is a systematic method used for testing and detecting faults in
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Random Access Memory (RAM) [18]. It operates by executing a series of read and write

operations on each memory cell in a specific sequence, often traversing the memory in

both forward and backward directions [18]. This bidirectional approach helps identify

various types of faults such as stuck-at faults, transition faults, coupling faults, and

address decoder faults [18]. By meticulously marching through the memory, the

algorithm ensures comprehensive fault coverage while maintaining efficiency in the

number of operations performed [18].

Designed to be efficient and thorough, March algorithms balance the trade-off between

testing time and fault detection capability. An example is the March C- algorithm, which

uses a sequence of write, read, and compare operations in both ascending and descending

address orders to uncover faults. This methodical process ensures that each cell is tested

multiple times under different conditions, enhancing the likelihood of detecting any

present faults. Overall, the March algorithm's structured approach and bidirectional

testing make it a robust tool for ensuring memory reliability [16].

In a checkerboard pattern, the 1s and 0s are written into different memory locations

within the cell array. In order to place each nearby cell in a separate group, the algorithm

splits the cells into two alternating groups. The checkerboard pattern is mostly utilized to

activate failures brought on by SAF, leakage, and cell-to-cell shorts [19].
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2.6 Review on existing test algorithms

The table outlines various test algorithms used for detecting faults in integrated circuits,

focusing on their complexity and fault coverage. Basic algorithms like March C- and

March CL provide foundational fault detection with complexities of 10N and 12N,

respectively, offering comprehensive coverage for stuck-at faults (SAF) and transition

faults (TF)[12]. These algorithms use a series of read and write operations to identify

faults, with March CL extending its sequences to include additional read operations for

improved fault detection [20].

More advanced algorithms, such as PMOVI and March RAW1, increase the

complexity to 13N, incorporating sequences that alternate between reading and writing

operations [21]. These algorithms extend fault detection to include data retention faults

(DRF) and coupling faults (CF), providing more robust fault coverage. March LR and

March SR further enhance this approach with a complexity of 14N, focusing on

detecting linear read and write errors [22]. The Modified March SR algorithm improves

this by increasing coverage for write disturb faults (WDF) and coupling faults through

modified read/write sequences [23].

The most comprehensive algorithms, including March AZ1, March AZ2, March- sift,

March-ee, March MSS, March LV, March CS, March SS, and March RAW, feature

higher complexities ranging from 14N to 26N [24]. These algorithms offer extensive

sequences designed to detect a broad spectrum of faults, including subtle and complex

ones like coupling faults and write disturb faults [24]. Algorithms like March MSS and

March SS, with complexities of 18N and 22N, respectively, provide exhaustive

read/write operations to ensure thorough fault detection across all major fault types [24].

March RAW, with the highest complexity of 26N, incorporates the most detailed

sequences to achieve complete fault coverage, ensuring the highest reliability by
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detecting even the most challenging faults [24].

In the domain of memory testing, achieving an optimal balance between test

complexity and fault coverage (FC) is essential. Simpler algorithms like March C and

March C- offer quick and efficient tests with low complexity (10N-11N), but they fall

short in detecting more complex faults, providing only basic fault coverage [25].

Algorithms like March CL and March SR improve on this by including double read

operations, enabling partial detection of certain faults like DRDF and CFdrds with

moderate complexity (12N-14N) [22]. However, they still miss other fault types such as

Write Disturb Faults (WDF) and Write Coupling Faults (CFwds). More complex

algorithms such as March-sift and March-ee, despite having higher complexities (17N-

18N), show limitations due to redundancy in their sequences and lack of specific

operations required to detect all fault types comprehensively [26].

March AZ1 and March AZ2 are preferred because they strike a balance between fault

coverage and test complexity, making them efficient and effective for practical memory

testing [24]. Both algorithms offer high fault coverage comparable to more complex tests

but maintain moderate complexity, avoiding excessive resource and time demands [24].

March AZ1 uses a sequence focused on efficient fault detection through repeated write

and read operations, while March AZ2 adjusts the order slightly to achieve similar

results. Both algorithms are designed to handle a wide range of faults effectively,

making them suitable for general-purpose memory testing where comprehensive fault

detection is necessary without incurring prohibitive complexity [24].
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Table 2.1 shows the examples of test algorithms with their complexity and test operation

sequences while Table 2.2 shows the examples of test algorithms with the complexity and

fault coverage. The RDF and IRF FC are represented by SAF coverage since they have

similar detection requirement [1].

Table 2.1 Example of several March test algorithm with their sequences
Test Algorithm Test Complexity Test Operation Sequences

March C- [26] 10N ⇕ (w0); ⇑ (r0, w1);⇑ (r1, w0); ⇓ (r0,w1); ⇓

(r1, w0);⇕ (r0)

March CL [27] 12N ⇕ (w0); ⇑ (r0, w1);⇕ (r1); ⇑ (r1, w0);⇓ (r0,

w1); ⇕ (r1);⇓ (r1, w0); ⇕ (r0)

PMOVI [28] 13N ⇕ (w0); ⇑ (r0, w1,r1); ⇑ (r1, w0, r0);⇓ (r0,

w1, r1); ⇓ (r1,w0, r0);

March RAW1

[29]

13N ⇕ (w0); ⇕ (w0, r0);⇕ (r0); ⇕ (w1, r1);⇕ (r1);

⇕ (w1, r1);⇕ (r1); ⇕ (w0, r0);⇕ (r0)

March LR [30] 14N ⇕ (w0); ⇓ (r0, w1); ⇑ (r1, w0, r0, w1);⇑ (r1,

w0); ⇑ (r0, w1, r1, w0); ⇑ (r0)

March SR [31] 14N ⇕ (w0); ⇑ (r0, w1, r1, w0); ⇑ (r0, r0); ⇑

(w1); ⇓ (r1, w0, r0, w1); ⇓ (r1, r1)

Modified

March SR [32]

14N ⇕ (w0); ⇑ (r0, w0, r0, w1); ⇑ (r1, r1); ⇑

(w1); ⇓ (r1, w0, r0, w0); ⇓ (r0, r0)

March C+ [33] 14N ⇕ (w0); ⇑ (r0, w1, r1); ⇑ (r1, w0, r0); ⇓ (r0,

w1, r1); ⇓ (r1, w0, r0); ⇕ (r0)

March AZ1 [34] 13N ⇕ (w0); ⇓ (w1); ⇑ (w1, r1, r1, w0); ⇑ (w0, r0);

⇑ (r0, w1, w1, r1); ⇑ (r1);
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Test Algorithm Test Complexity Test Operation Sequences

March AZ2 [34] 14N ⇕ (w0); ⇓ (w0, r0); ⇑ (r0, w1, w1, r1); ⇑ (r1,

w0); ⇓ (r0, w1, w1, r1); ⇑ (r1);

March-sift [35] 17N ⇕ (w0); ⇑ (r0, w1); ⇓ (r1, w0, r0); ⇑ (r0, w1);

⇑ (r1, w0); ⇓ (r0, w0, r0); ⇑ (r0, w1, r1); ⇕ (r0)

March-ee [36] 18N ⇑ (w0); ⇑ (r0, w1, r1); ⇑ (r1, w0, r0); ⇑ (r0,

w1); ⇓ ( r1, w0, r0); ⇑ (r0, w0); ⇓ (r0, w1, r1);

⇑ (r1)

March MSS [37 18N ⇕ (w0); ⇑ (r0, r0, w1, w1); ⇑ (r1, r1, w0, w0);

⇓ (r0, r0, w1, w1); ⇓ (r1, r1, w0, w0); ⇕ (r0)

March LV [38] 18N ⇕ (w0); ⇑ (r0, w1, w1, r1); ⇑ (r1, w0, w0, r0);

⇓ (r0, r0, w1, r1); ⇓ (r1, r1, w0, r0); ⇓ (r0)

March CS [39] 20N ⇕ (w0); ⇑ (w0, r0, w1, r1); ⇕ (w1); ⇑ (w1, r1,

w0, r0); ⇓ (w0, r0, w1, r1); ⇓ (w1, r1, w0, r0);

⇕ (w0, r0)

March SS [40] 22N ⇕ (w0); ⇑ (r0, r0, w0, r0, w1); ⇑ (r1, r1, w1, r1,

w0); ⇓ (r0, r0, w0, r0, w1); ⇓ (r1, r1, w1, r1,

w0); ⇕ (w0);

March RAW [29] 26N ⇕ (w0); ⇑ (r0, w0, r0, r0, w1, r1); ⇑ (r1, w1, r1,

r1, w0, r0); ⇓ (r0, w0, r0, r0, w1, r1); ⇓ (r1, w1,

r1, r1, w0, r0); ⇕ (r0)
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Table 2.2 Example of several March test algorithms with their fault coverage
Test

Algorithm

Test

Complexity

SAF TF DRDF WDF CFtr CFdrd CFwd

March C-

[26]

10N 100% 100% - - 100% - -

March CL

[27]

12N 100% 100% 50% - 100% 25% -

PMOVI [28] 13N 100% 100% 100% - 100% 75% -

March

RAW1 [29]

13N 100% 100% 100% 100% 50% 75% 50%

March LR

[30]

14N 100% 100% - - 100% - -

March SR

[31]

14N 100% 100% 100% - 100% 50% -

Modified

March SR

[32]

14N 100% 100% 100% 100% 50% 62.5% 50%

March C+

[33]

14N 100% 100% 100% - 100% 100% -

March AZ1

[34]

13N 100% 100% 100% 100% 62.5% 75% 75%

March AZ2

[34]

14N 100% 100% 100% 100% 75% 75% 75%

March-sift

[35]

17N 100% 100% 100% 50% 75% 62.5% 25%
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Test

Algorithm

Test

Complexity

SAF TF DRDF WDF CFtr CFdrd CFwd

March-ee

[36]

18N 100% 100% 100% 50% 100% 100% 25%

March MSS

[37

18N 100% 100% 100% 100% 100% 100% 100%

March LV

[38]

18N 100% 100% 100% 100% 100% 100% 50%

March CS

[39]

20N 100% 100% 100% 100% 100% 100% 100%

March SS

[40]

22N 100% 100% 100% 100% 100% 100% 100%

March RAW

[29]

26N 100% 100% 100% 100% 100% 100% 100%
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In the realm of memory testing, achieving a balance between test complexity and fault

coverage (FC) is crucial. Simple algorithms like March X and March Y offer quick and

efficient tests but fall short in detecting a wide range of faults, limiting their fault

coverage[1]. On the other hand, more complex algorithms such as March LV and March EE

provide very high fault coverage but at the cost of significantly increased test complexity and

duration. This high complexity can be prohibitive in terms of time, computational resources,

and practicality for large-scale or real-time applications [1].

March AZ1 and March AZ2 stand out as preferred choices because they strike an optimal

balance between test complexity and fault coverage [1]. Both algorithms are designed to

efficiently detect a wide array of faults, offering high fault coverage comparable to more

complex algorithms, but without the excessive overhead [1]. This balance makes them

particularly suitable for practical memory testing scenarios where both comprehensive fault

detection and efficiency are necessary [1]. By maintaining moderate complexity, these

algorithms ensure that the testing process remains feasible and cost-effective [1].

Comparing March AZ1 and March AZ2, both algorithms provide similar levels of fault

coverage and share the common strength of balancing efficiency with thoroughness [1].

March AZ1 uses a sequence of write and read operations (⇕ (w0);⇓ (w1); ⇑ (w1, r1, r1,

w0); ⇑ (w0, r0); ⇑ (r0, w1, w1, r1); ⇑ (r1);), while March AZ2 uses a slightly different

sequence (⇕ (w0); ⇓ (w0, r0); ⇑ (r0, w1, w1, r1); ⇑ (r1, w0);⇓ (r0, w1, w1, r1); ⇑ (r1);)

[1].The primary difference lies in the specific order of operations, which may impact

their implementation details and performance in specific contexts [1]. However, both are

well-suited for general-purpose memory testing, offering reliable fault detection without

imposing excessive test complexity. The choice between the two can be based on specific

application requirements or preferences in testing methodology [1].
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2.7 Summary

In Chapter 2, the primary focus is on the performance evaluation of different test

algorithms used in our system. The analysis is centered around two main algorithms:

March AZ1 and AZ2 algorithms. The chapter divided into various aspects of these

algorithms, including their complexity, fault coverage (FC), and overall fault coverage. For

March AZ1 algorithm, the fault coverage of March AZ1 algorithms is lower compared to

March AZ2 algorithms, which limits its effectiveness in detecting all potential faults and

the complexity of the AZ1 algorithm is relatively low, making it computationally efficient

and suitable for systems with limited resources. Its complexity is denoted as ≤ 14N.

Basically, this project identify the weakness in fault detection by the March AZ

algorithms. Then, we rearrange the chosen algorithms test operations to increase the

coverage of that particular fault type without reducing its overall fault coverage.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter comprehensively describes the method for the implementation of Memory

BIST (MBIST) Controller in FPGA using the Improved March AZ1 as the Test Algorithm.

Section 3.2 have 2 part which section 3.2.1 describe about the project execution flow and

section 3.2.2 describe about the project planning. Therefore, section 3.3 mentions about

the Improved March AZ1 Algorithm while section 3.4 describe about the project

development. For section 3.5 is the lists of the software and hardware used in this project.
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3.2 Project Design

3.2.1 Project Execution Flow

Figure 3.1 Project Execution Flowchart
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The flowchart in Figure 3.1 illustrates the process of developing and validating an

improved memory built-in self-test (MBIST) algorithm, specifically focusing on

enhancing the March AZ1 algorithm. The process begins with a comprehensive review

of MBIST methodologies and existing test algorithms. Following this review, the

weaknesses of the March AZ1 algorithm's test sequences are analyzed. Based on this

analysis, modifications are proposed, and the potential improvements from these

modifications are evaluated. Finally, the necessary tools and software for MBIST

insertion and validation are planned.

The second phase, denoted as PSM 2, involves the practical implementation of the

improved March AZ1 algorithm. The process starts by describing the improved test

sequences in the Tessent Core Description (TCD) file. The development TCD file was

then read for the MBIST insertion process. If MBIST insertion is successful, a functional

simulation is performed to validate the generated MBIST functionality. If the MBIST

functionality is satisfactory, the process moves forward; otherwise, adjustments are made,

and the process is repeated.

The final phase involves implementing the validated MBIST into an FPGA using

Quartus software. Once implemented, the fault coverage of the improved March AZ1

algorithm was checked. If the fault coverage meets the required standards, a final report

is prepared, concluding the process. If the fault coverage is inadequate, further

improvements and validations are conducted until satisfactory coverage is achieved.

This iterative process ensures that the MBIST algorithm is robust and effective in

identifying faults.
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The implementation of a MBIST controller in an FPGA using the Improved March AZ1

algorithm begins with thorough planning and requirements analysis. This phase involves

defining project objectives, allocating resources, and setting a detailed timeline. The

requirements analysis focuses on understanding the functional and non-functional needs of

the BIST controller, including the specific memory characteristics and performance criteria.

Following this, the improved March AZ1 algorithm was studied and optimized for hardware

implementation to ensure efficient fault coverage and minimal resource utilization.
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3.2.2 Project Planing

The proposed project is planned for a total duration of 28 weeks that comprise both PSM 1

and PSM 2. The Gantt chart in Appendix 1 provides the project activities and timeline,

while Appendix 2 shows the project milestones.

In Appendix 1 and Appendix 2, it shows all the activities done in PSM 1 and activities

that done in PSM 2.

In PSM1, form week 1 to week 5 was the comprehensive investigation on March

algorithms. Analyze the original and improved March AZ1 algorithm test sequence and

fault coverage was done between week 5 to week 7. I plan to search for the tools and

FPGA device for MBIST implementation and validation process at week 7 to week 12 and

prepare my PSM report in week 10 to week 14.

In PSM2, by synthesizing the MBIST circuitry design and fit it into targeted FPGA

device using Altera Quartus software in the week 15-20. In the meanwhile, for week 17 to

week 23 were plan to validate the implemented MBIST through FPGA experimental test.

Next is to analyze the implement MBIST performance in terms of its fault coverage, speed,

and area. The duration for this activity is 5 week which is week 21 to week 25. Finally, the

last 2 activity is prepare my final report and presentation. For final report submission was

in week 28 and the presentation was located at the final 2nd weeks, which is week 27.
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3.3 The Improved March AZ1 Algorithm

With the same 13N complexity and the following test sequence, the recent March AZ1

algorithm is now known as the March AZ1 algorithm with the test sequences of ⇕ (w0);

⇓ (r0, w1); ⇑ (w1, r1, r1, w0, w0); ⇑ (r0); ⇑ (r0, w1, w1, r1); ⇑ (r1).

Table 3.1 The Recent March AZ1 algorithm’s fault detection analysis
Fault Fault Primitive Detection Status Fault Coverage

SAF < 1 / 0 / - > Yes 2/2 (100%)
< 0 / 1 / - > Yes

TF < 0w1 / 0 / - > Yes 2/2 (100%)
< 1w0 / 1 / - > Yes

RDF < r0 / 1 / 1 > Yes 2/2 (100%)
< r1 / 0 / 0 > Yes

IRF < r0 / 0 / 1 > Yes 2/2 (100%)
< r1 / 1 / 0 > Yes

DRDF < r0 / 1 / 0 > Yes 2/2 (100%)< r1 / 0 / 1 > Yes
WDF < 0w0 / 1 / - > Yes 2/2 (100%)

< 1w1 / 0 / - > Yes
CFtr < 0; 0w1 / 0 / - > a>v No 6/8 (75%)

< 0; 0w1 / 0 / - > a<v Yes
< 1; 0w1 / 0 / - > a>v Yes
< 1; 0w1 / 0 / - > a<v Yes
< 0; 1w0 / 1 / - > a>v Yes
< 0; 1w0 / 1 / - > a<v No
< 1; 1w0 / 1 / - > a>v Yes
< 1; 1w0 / 1 / - > a<v Yes

CFdrd < 0; r0 / 1 / 0 > a>v Yes 6/8 (75%)
< 0; r0 / 1 / 0 > a<v Yes
< 1; r0 / 1 / 0 > a>v No
< 1; r0 / 1 / 0 > a<v No
< 0; r1 / 0 / 1> a>v Yes
< 0; r1 / 0 / 1> a<v Yes
< 1; r1 / 0 / 1> a>v Yes
< 1; r1 / 0 / 1> a<v Yes

CFwd < 0 ; 0w0 / 1 /- > a>v Yes 4/8(50%)
< 0 ; 0w0 / 1 /- > a<v Yes
< 1 ; 0w0 / 1 /- > a>v No
< 1 ; 0w0 / 1 /- > a<v No
< 0 ; 1w1 / 0 /- > a>v Yes
< 0 ; 1w1 / 0 /- > a<v Yes
< 1 ; 1w1 / 0 /- > a>v No
< 1 ; 1w1 / 0 /- > a<v No
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The recent March AZ1 algorithms have a slightly lower coverage on the CFwd. So, the

improved March AZ1 algorithms was by rearranging the sequences of March AZ1

algorithms. The test sequence of the improved March AZ1 algorithm was divided into six

test elements, denoted as TE₀ through TE₅, and separated from one another by a semicolon

as shown in Table 3.1. Throughout the test, the test components was be carried out in a

sequential manner. Before going on to the next TE, all test procedures specified in TE must

be completed on all memory cells. Its 13N complexity is also explained by the fact that all

N memory cells require 13 read or write operations to be completed.

The TCD file for improved March AZ1 algorithm is list at the Appendix 3 while the

TCD file to run the tessent shell software is alsolist in the Appendix 4.
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Table 3.2 The Improved March AZ1 algorithm descriptions
Test

Element
Test Sequence Test Description

TE0 ⇕ (w0) All cells are written to 0.

TE1 ⇓ (w1)
All cells are written to 1 in descending address

order.

TE2
⇑ (w1, r1, r1

w0)

All cells are sequentially written to 1, read twice

(expecting a 1 at the output), and written to 0 in

ascending address order.

TE3 ⇑ (w0, r0)

All cells are sequentially written to 0 before

being read (expecting a 0 at the output) in

ascending address order.

TE4
⇑ (r0, w1, w1

r1)

All cells are sequentially read (expecting 0),

written to 1 twice, and reread (expecting 1) in

ascending address order.

TE5 ⇑ (r1)
All cells are read (expecting 1) in ascending

address order.

Using a specially designed fault detection analyzer that finds the sensitizer and detector

pairings for each targeted FP in the test sequence [1], a fault detection analysis was

performed on the March AZ1 algorithm. Based on their detection requirements as outlined

in Chapter 2, it identified all potential pairs of sensitizer and detector for each detectable FP

detected inside the analyzed test sequence, from the first test operation defined in TE0 to

the last test operation in TE5. The sensitizer and detector pairs for each FP found

throughout the analysis's test sequence of the March AZ1 algorithm are displayed in
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Table 3.2. The sensitizing or detecting operation for each FP was found at the jth test

operation in TEi, as indicated by the TEi-j notations. Multiple pairings of sensitizer-

detector were found in some FPs during the test process. Table 3.2 illustrates that:

 All targeted SCFs are detectable since their FPs have at least one identified

sensitizer-detector pair. So, the improved March AZ1 algorithm offers 100% of all

SCFs.

 The fault analyzer identified the sensitizer-detector pairs for 5 FPs of CFtr. Hence,

CFtr coverage equals 62.5% (5 detectable FPs out of 8).

 The fault analyzer identified the sensitizer-detector pairs for 6 FPs of each CFdrd

and CFwd. Hence, the CFdrd and CFwd coverages equal 75% (6 detectable FPs out of

8).

 The fault detection analysis derived the expected fault coverage by the improved

March AZ1 algorithm.
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Table 3.3 The Improved March AZ1 algorithm’s fault detection analysis
Fault Fault Primitive Identified

(Sensitizer,Detector)
Detection
Status

Fault
Coverage

SAF < 1 / 0 / - > (TE2-1, TE2-2),(TE4-3,TE4-4) Yes 2/2 (100%)
< 0 / 1 / - > (TE2-5, TE3-1) Yes

TF < 0w1 / 0 / - > (TE1-1, TE2-2),(TE4-2,TE4-4) Yes 2/2 (100%)
< 1w0 / 1 / - > (TE2-4, TE3-1) Yes

RDF < r0 / 1 / 1 > (TE2-1, TE2-2),(TE4-3,TE4-4) Yes 2/2 (100%)
< r1 / 0 / 0 > (TE2-5, TE3-1) Yes

IRF < r0 / 0 / 1 > (TE2-1, TE2-2),(TE4-3,TE4-4) Yes 2/2 (100%)
< r1 / 1 / 0 > (TE3-1, TE4-1) Yes

DRDF < r0 / 1 / 0 > (TE3-1, TE4-1) Yes 2/2 (100%)< r1 / 0 / 1 > (TE2-2, TE2-3),(TE4-4,TE5-1) Yes
WDF < 0w0 / 1 / - > (TE2-5, TE3-1) Yes 2/2 (100%)

< 1w1 / 0 / - > (TE2-1, TE2-2),(TE4-3,TE4-4) Yes
CFtr < 0; 0w1 / 0 / - > a>v (TE4-2, TE4-4) Yes 5/8 (62.5%)

< 0; 0w1 / 0 / - > a<v (TE1-1, TE2-2) Yes
< 1; 0w1 / 0 / - > a>v (TE1-1, TE2-2) Yes
< 1; 0w1 / 0 / - > a<v (TE4-2, TE4-4) Yes
< 0; 1w0 / 1 / - > a>v Not found No
< 0; 1w0 / 1 / - > a<v (TE2-4, TE3-1) Yes
< 1; 1w0 / 1 / - > a>v Not found No
< 1; 1w0 / 1 / - > a<v Not found No

CFdrd < 0; r0 / 1 / 0 > a>v (TE3-1, TE4-1) Yes 6/8 (75%)
< 0; r0 / 1 / 0 > a<v (TE3-1, TE4-1) Yes
< 1; r0 / 1 / 0 > a>v Not found No
< 1; r0 / 1 / 0 > a<v Not found No
< 0; r1 / 0 / 1> a>v (TE4-4, TE5-1) Yes
< 0; r1 / 0 / 1> a<v (TE2-2, TE2-3) Yes
< 1; r1 / 0 / 1> a>v (TE2-2, TE2-3) Yes
< 1; r1 / 0 / 1> a<v (TE4-4, TE5-1) Yes

CFwd < 0 ; 0w0 / 1 /- > a>v (TE2-5, TE3-1) Yes 6/8(75%)
< 0 ; 0w0 / 1 /- > a<v (TE2-5, TE3-1) Yes
< 1 ; 0w0 / 1 /- > a>v Not found No
< 1 ; 0w0 / 1 /- > a<v Not found No
< 0 ; 1w1 / 0 /- > a>v (TE4-3, TE4-4) Yes
< 0 ; 1w1 / 0 /- > a<v (TE2-1, TE2-2) Yes
< 1 ; 1w1 / 0 /- > a>v (TE2-1, TE2-2) Yes
< 1 ; 1w1 / 0 /- > a<v (TE4-3, TE4-4) Yes

The analyzed March AZ1 algorithm has a slightly lower coverage of CFtr than the March

AZ2 algorithm with 14N test complexity. This is because the analysis output presented in

Table 3.2 shows that the March AZ1 algorithm cannot detect the CFtr < 1;1w0 / 1 / - >a>v.
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When the a-cell is in a specific state, an x' logic can be written to the cell that includes an x

logic to sensitize a CFtr occurrence in a v-cell. After the write action, a read operation is

performed to look for any improper behavior from the v-cell. One of the test sequences

below can be used to sensitize and detect the CFtr < 1; 1w0 / 1 / - >a>v, as per, where F(x)

denotes any operation that results in an x-state in the memory cells and * indicates that the

related operations are optional

i. Condition 3.1: ⇕ (…, F(1)); ⇑ (F(1)*, w0, w0* r0, F(0)*);

ii. Condition 3.2: ⇕ (…, F(1)); ⇑ (F(1)*, w0, w0*); ⇕ (r0, …);

iii. Condition 3.3: ⇕ (…, F(1)); ⇕ (w0, w0*, r0, F(0)*, F(1));
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The only place in the test sequence for the March AZ1 algorithm where the contents of the

cells can change from 1 to 0 is at TE₂: ⇑ (w1, r1, r1, w0), where the w0 operation should

set the states of the cells to 0. Therefore, the defective behavior brought on by the CFtr < 1;

1w0 / 1 / - >a>v can be identified by a subsequent read operation. But before carrying out

the necessary read operation, that w0 action in TE₂ is followed by another w0 operation in

TE₃: ⇑ (w0, r0). As seen in Fig 3.1, which uses a 4-cell memory as an example with the v-

cell and a-cell set to address 0 and 2, respectively, the w0 operation in TE₃ really functions

as the CFtr <1; 1w0 / 1

/ - >a>v fault recover that masks its occurrence from being detected by the r0 operation in

TE₃. Since cell 2, the aggressor cell in TE₂ operation, is in a high state, cell 1, which is

impacted by the CFtr <1; 1w0 / 1 /- >a>v fault, is unable to convert its state to low when the

w0 operation is carried out. Since the aggressor cell in TE3 is no longer in a high state, the

w0 operation in TE₃ manages to successfully convert its state to low.

Figure 3.2 Illustration of the CFtr < 1; 1w0 / 1 / - >a>v fault recovering at TE₃ of the

improved March AZ1 algorithm.
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To address this, the w0 operation in TE₃ was shifted to the end of TE₂, rearranging TE₂ and

TE₃ of the March AZ1 algorithm. Consequently, the test sequence for TE₂ has been

adjusted to become ⇑ (w1, r1, r1, w0, w0) whereas the test sequence for TE₃ has been

changed to ⇑ (r0). As a result, the rearranged TE₂ and TE₃ satisfy the necessary test

sequence specified in Condition 3.2 and ought to be capable of identifying the CFtr <1;

1w0 / 1 / - > a>v. With the same 13N complexity and the following test sequence, the

recently altered March AZ1 algorithm is now known as the March AZ algorithm: ⇅ (w0);

⇓ (r0, w1); ⇑ (w1, r1, r1, w0, w0); ⇑ (r0); ⇑ (r0, w1, w1, r1); ⇑ (r1). With the revised

March AZ1 algorithm, the fault detection analysis was carried out once more. The CFtr

coverage was decreased from 75% to 62.5% but the CFwd was increased from 50% to 75%

by the Improved March AZ1, as mentioned in Table 3.2. Additionally, as their coverages

are unaltered, it demonstrates that the suggested test element restructuring had no effect on

the detections of other FPs.
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3.4 Project Development

The implementation of a Memory BIST controller in FPGA using the Improved March

AZ1 algorithm was begin with thorough project planning and requirements analysis.

During this initial phase, the primary objectives was be established, such as ensuring high

fault coverage and efficient implementation on an FPGA. Resources, including

appropriate hardware, software, and team expertise, was be allocated, and a detailed

timeline with key milestones was be developed. Functional requirements was be clearly

defined, specifying the necessary capabilities of the BIST controller, such as test pattern

generation and fault detection. Non- functional requirements, like performance

benchmarks and area constraints, was also be outlined to guide the development process.
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Figure 3.3 Flowchart of Implementation of MBIST
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The process of Memory BIST (MBIST) insertion was crucial at this stage. MBIST

insertion involves generating the MBIST controller and associated circuitry, and it

was automated using Tessent MemoryBIST. This tool was streamlined the generation

process, ensuring precise and efficient MBIST implementation.

A high-level architecture was generated, including essential components like the

test pattern generator, address generator, comparator, control unit, and memory

interface. Each component’s functionality and interactions was specified, forming a

comprehensive blueprint for the HDL coding phase.

HDL coding represented a critical development stage where the high-level

design was translated into hardware description language, such as VHDL or Verilog.

Each module, from the test pattern generator to the control unit, was meticulously

developed and integrated to form a cohesive BIST controller. This phase was

involved creating detailed testbenches for simulation, ensuring each module operates

correctly in isolation and within the integrated design.

Functional simulations were conducted on a fault-free memory model using the

generated MBIST controller. These simulations were checked for any mismatches

between the output data and the expected data, help to derive test complexity and

ensured that the controller functions correctly under normal conditions. Subsequently,

functional simulations were performed on a fault-inserted memory model using the

generated MBIST controller to validate fault coverage. These simulations ensured

that the MBIST controller can accurately detect and report faults within the memory.

Once the design is verified through simulation, the synthesis and

implementation phase was began. The HDL code was synthesized into a gate-level

netlist using tools like Altera Quartus, converting the design into a format suitable for

FPGA deployment. Timing constraints and pin assignments were defined to ensure
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the design meets performance criteria and interfaces correctly with the FPGA

hardware. The synthesized design was then implemented on the FPGA, followed by

placement and routing to optimize its physical layout. This stage were culminated in

programming the FPGA with the BIST controller and preparing for hardware testing.

In the final phases, extensive hardware testing and performance evaluation was

conducted. The BIST controller was tested in a real-world setup, with the memory

under test connected to the FPGA. In-circuit testing was verified the controller’s

functionality and fault detection accuracy. The same test procedures used in the

simulations were applied to the hardware testing. Performance metrics, such as test

speed, fault coverage, and resource utilization, were collected and analyzed. It is

expected that the hardware testing achieved the same results as the simulations,

confirming the reliability and effectiveness of the MBIST controller.

The project was concluded with comprehensive documentation of the design,

implementation, and testing processes, along with a user manual and final report.

Stakeholder reviews and sign-offs ensured the project meets all objectives and

quality standards, culminating in a successful implementation of the Memory BIST

controller in FPGA.
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3.5 Software and Hardware

3.5.1 Software

There were some software used in this project.

 Questa Sim

The Questa advanced simulator is the core simulation and debug engine of the

Questa verification solution; the comprehensive advanced verification platform

capable of reducing the risk of validating complex FPGA and SoC designs.

 Tessent Shell MemoryBIST

A tool designed to automate the implementation of Memory Built-In Self-Test

(MBIST) controllers. Can ensure a high level of fault coverage, streamline the

MBIST implementation process, and enhance the reliability of memory testing in

their FPGA or ASIC designs.

 Intel Quartus Design software

Intel Quartus Design software is a comprehensive software tool suite designed for the

development of digital logic circuits. It is primarily used for the design, analysis, and

implementation of FPGA (Field- Programmable Gate Array) and CPLD

(Complex Programmable Logic Device) circuits.
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3.5.1 Hardware

Figure 3.4 FPGAs (Field Programmable Gate Arrays)

Field Programmable Gate Arrays (FPGAs) are versatile integrated circuits widely used

across various industries due to their reprogrammable nature.

The FPGA development board to be used in this process is designed to facilitate the

implementation and testing of the improved MBIST algorithm within a hardware

environment. Typically, such development boards feature a high- capacity FPGA, which

provides the reconfigurable logic needed to support complex testing algorithms like

MBIST. The board includes multiple I/O interfaces, memory modules, and often integrates

tools for programming and debugging, such as JTAG interfaces. The chosen FPGA

development board should be compatible with Quartus software, enabling seamless design

synthesis, implementation, and functional validation.

In this context, the development board is crucial for verifying the functionality of the
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modified March AZ1 algorithm in a real-world setting. By implementing the MBIST on

the FPGA, developers can test the algorithm's fault detection capabilities and ensure that it

performs correctly under various conditions.

The test vectors generator and MBIST circuits were implemented on an Intel Max 10

DE10-Lite FPGA Development Board. The experimental results were captured using the

builtin SLA. The onboard SW0 switch, assigned to the test en input, was set to high to start

the test. It was reset to low once the test was completed and the results were displayed in

the SLA window.
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3.6 Summary

The methodology for implementing a Memory Built-In Self-Test (BIST) controller in an

FPGA using the Improved March AZ1 algorithm involves several key phases. Initially, the

project planning and requirements analysis phase sets the foundation. During this stage,

clear objectives are defined, resources such as hardware and software tools are allocated,

and a detailed timeline with milestones is created. The functional and non-functional

requirements of the BIST controller are identified, focusing on performance metrics like

fault detection capabilities, speed, and power consumption.

Following the planning phase, the Improved March AZ1 algorithm is studied and

optimized. This step includes a thorough analysis of the algorithm’s test sequences and fault

coverage capabilities to tailor it for efficient hardware implementation. The process of

Memory BIST (MBIST) insertion is automated using Siemens Tessent MemoryBIST

software, which ensures precise generation of the MBIST controller and associated circuitry.

In the design phase, a high-level architecture of the BIST controller is developed,

encompassing components such as the test pattern generator, address generator, comparator,

control unit, and memory interface. Each module is described in detail, forming a blueprint

for the hardware description language (HDL) coding phase. The design is then translated

into HDL, and the modules are rigorously simulated using Siemens ModelSim or

QuestaSim to verify their functional correctness.
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After successful simulation, the HDL code undergoes synthesis and implementation using

Altera Quartus, converting it into a gate-level netlist suitable for FPGA deployment. The

design is then implemented on the FPGA, ensuring compliance with timing constraints and

pin assignments. Extensive hardware testing is conducted in the final phase, including in-

circuit testing to validate the BIST controller's performance. Performance metrics such as

test speed, fault coverage, and resource utilization are collected and analyzed. The project

concludes with comprehensive documentation and a formal review to ensure the BIST

controller meets all specified requirements and functions reliably in its intended

environment.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter comprehensive reviews about the result of the implementation of Memory

BIST Controller in FPGA using the Improved March AZ1 as the Test Algorithm. Section

4.2 mention about the test on the fault free memory model while section 4.3 states about

the test on the fault-injected memory mode. Section 4.4 mentions about the test on the

Altera Quartus using FPGA and section 4.5 states about the limitation of this project.

4.2 Test on the fault-free memory model

This test was run to evaluate the operation of the MBIST that was put into place and used

the March AZ1 and Improved March AZ1 as the UDA. It was assessed by measuring the

test completion time, which should equal the UDA's complexity multiplied by N and the

duration of the clock used (20 ns), as well as by monitoring the MBISTPG_GO flag, which

should remain high until the test was finished or until the MBISTPG_DONE flag was

asserted. Since the test memory was a 1-kB memory, N equaled 1024. The simulation

waveform generated by the fault-free memory model test in QuestaSim is shown in

Fig.4.1 and Fig 4.2. In this test, the expected data produced by the MBIST controller

(BIST_EXPECT_DATA) whenever CMP_EN is high was compared to the output data read

from the memory cell (dout). It demonstrates that the test was initiated by asserting the

MBISTPG_GO flag, which remained high until the test was finished, as shown by a

high MBISTPG_DONE flag. This observation indicates that there was no difference

found during the comparison between dout and BIST_EXPECT_DATA when the
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CMP_EN signal is high.

Figure 4.1 The simulation waveform observed in QuestaSim from the

test on the fault-free memory model by Improved March AZ1 as

the UDA.

For March AZ1 algorithm, 266240ns is the test completion time, measured

from the beginning to the conclusion. The test completion time is comparable

to what was anticipated because 13 * 1024 * 20ns = 266240ns. As a result,

the observation of this test confirmed that the MBIST, which employed the

March AZ1 as the UDA, was implemented correctly.
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4.3 Test on the fault-injected memory model

Figure.4.2 The waveform observed from the test on the fault-injected memory, using the

Improved March AZ1 as the UDA.

Using the improved March AZ1 as the UDA, Fig.4.3 shows the simulation waveform of the

MBIST operation on the fault-injected memory. When the test was finished (shown by a

high MBISTPG_DONE flag), the values of all fault detection flags were noted and entered

into Table 4.1. Consequently, the number of high bits in each fault's detection flag was

counted to estimate the fault coverage of the March AZ1 method. As can be seen, the CFtr

was reduced and the fault coverage is 5/8 (62.5%) but the CFwd was picked up and

increase the fault coverage to 6/8 (75%) by the improved March AZ1 algorithm. Therefore,

March AZ1 algorithms have a overall fault coverage of 80.6%.
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Table 4.1 The Test Result of the Improved March AZ1 algorithm

Fault Detection

Flags

Corresponding

fault

Corresponding

FP

Observed

value

Derived Fault

Coverage (FC)

saf_detect[1] SAF <1/0/-> 1 2/2 (100%)

saf_detect[0] <0/1/-> 1

tf_detect[1] TF <0w1/0/-> 1 2/2 (100%)

tf_detect[0] <1w0/1/-> 1

rdf_detect[1] RDF <r0/1/1> 1 2/2 (100%)

rdf_detect[0] <r1/0/0> 1

irf_detect[1] IRF <r0/0/1> 1 2/2 (100%)

irf_detect[0] <r1/1/0> 1

drdf_detect[1] DRDF <r0/1/0> 1 2/2 (100%)

drdf_detect[0] <r1/0/1> 1

wdf_detect[1] WDF <0w0/1/-> 1 2/2 (100%)

wdf_detect[0] <1w1/0/-> 1

cftr_detect[7] CFtr <0;0w1/0/->a>v 1 5/8(62.5%)

cftr_detect[6] <0;0w1/0/->a<v 1

cftr_detect[5] <1;0w1/0/->a>v 1

cftr_detect[4] <1;0w1/0/->a<v 1

cftr_detect[3] <0;1w0/1/->a>v 0

cftr_detect[2] <0;1w0/1/->a<v 1

cftr_detect[1] <1;1w0/1/->a>v 0

cftr_detect[0] <1;1w0/1/->a<v 0

cfdrd_detect[7] CFdrd <0;r0/1/0>a>v 1 6/8(75%)

cfdrd_detect[6] <0;r0/1/0>a<v 1

cfdrd_detect[5] <1;r0/1/0>a>v 0

cfdrd_detect[4] <1;r0/1/0>a<v 0

cfdrd_detect[3] <0;r1/0/1>a>v 1

cfdrd_detect[2] <0;r1/0/1>a<v 1

cfdrd_detect[1] <1;r1/0/1>a>v 1

cfdrd_detect[0] <1;r1/0/1>a<v 1
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Fault Detection

Flags

Corresponding

fault

Corresponding

FP

Observed

value

Derived Fault

Coverage (FC)

cfwd_detect[7] CFwd <0;0w0/1/->a>v 1 6/8(75%)

cfwd_detect[6] <0;0w0/1/->a<v 1

cfwd_detect[5] <1;0w0/1/->a>v 0

cfwd_detect[4] <1;0w0/1/->a<v 0

cfwd_detect[3] <0;1w1/0/->a>v 1

cfwd_detect[2] <0;1w1/0/->a<v 1

cfwd_detect[1] <1;1w1/0/->a>v 1

cfwd_detect[0] <1;1w1/0/->a<v 1
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4.4 Test on the Altera Quartus using FPGA

For Fig 4.5, it shows that the test enable flag is asserted. The signal tap logic analyzer will

capture and show it in a waveform. When the test enable is asserted, the MBISTPG_GO

signal will start to high and the MBIST will start to operate.

Figure 4.5 Test_en is asserted

For Fig 4.6, the signal tap logic analyzer capture when the MBIST is done. When the test

is end, the MBISTPG_DONE signal will start to high and the MBISTPG_GO will

remaining to be high to indicates that there were no error between the observed output and

expected output. So, it shows that the MBIST that apply the March AZ1 algorithms and

improved March AZ1 algorithms have been successfully implemented in FPGA.

Figure 4.6 Test Done (MBISTPG_DONE = 1)

For Fig 4.7, the CYCLE_COUNT signal has be added to the signal tap analyzer. We can

determine the complexity of March AZ1 algorithms and Improved March AZ1 algorithms

by observing the cycle count. For March AZ1 algorithms, the cycle count will be around

13*1024 = 13312 due to the 13N complexity and the 1-kB SRAM (N=1024).
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Figure 4.7 Cycle count for March AZ1 Algorithms

For Figure 4.8, it shows that the schematic RTL design after the implementation of

improved March AZ1 algorithms into FPGA.

Figure 4.8 Schematic RTL design after implementation into FPGA

For Fig 4.9, it shows that the Altera Quartus version used is 13.0 and thefamily for the

FPGA is Cyclone III. In this project, the total registers used is 1372 registers and the total

memory bits used is 420620 which is 82% of the total FPGA memory bits. These 82% of

memory bits were used in the SRAM, ROM and SignalTap Analyzer.
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Figure 4.9 Complilation Flow Summary

4.5 Limitation

There were some limitation while doing the project. In this project, only fault free models

were able to implement into the FPGA using altera quartus software. The fault-injected

models were unable to implement into FPGA is due to its Verilog HDL code is not

synthesizable. It required more time and effort that not able to done in a short project time

to implement the fault-injected models into FPGA.

4.6 Summary

In this project, the result were generated through the Questa simulator and Altera quartus

software. For Questa simulator, it help to determine complexity for fault-free improved

March AZ1 algorithms and the number of fault detected in the fault-injected improved

March AZ1 algorithms. For Altera Quartus software, the Signal tap analyzer helps to

compile the output files generated by the Questa simulation software and show the

waveform when the test enable is high when the switch on FPGA is asserted. It also show

the clock cycle of the improved March AZ1 algorithms which can be used to calculate its

complexity.
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CHAPTER 5

CONCLUSION

5.1 Conclusion

This project has presented the implementation of the improved March AZ1 algorithm as

the UDA in an MBIST controller. The test sequences were described in a TCD file which

was used to read and hard-coded into the MBIST controller by the Tessent Shell software

during the MBIST insertion process. Simulation were also performed on the generated

MBIST controller to validate its functionality, testing time and fault coverage. The

improved March AZ1 algorithm remains the complexity of 13N but slightly increases in

the overall fault coverage. The simulation of the fault-free model helps to calculate the

complexity of the improved March AZ1 algorithm while the simulation of the fault-

injected models shows the fault detected for each static fault. Next, this project also

implement the improved March AZ1 as the test algorithms into FPGA. This is to test and

analyze the improved March AZ1 algorithm in order to assess its fault coverage and

complexity.By using the Signal Tap Analyzer, the high input at the test enable and the

moment that the MBIST implementation is done can be observed. The Signal Tap

Analyzer also shows the clock cycle used for the improved March AZ1 algorithm which

used to calculate the complexity of the improved March AZ1 algorithm. In this project, the

March AZ1 algorithm has been improved while remaining the complexity lower than

March AZ2 algorithm. Next, the improved March AZ1 algorithm was implement into

FPGA as a MBIST controller. The complexity and fault coverage of improved March AZ1
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algorithm was been evaluate through the test and analysis.

For the first objective, the achievement of developing an improved March AZ1 test

algorithm lies in its ability to effectively match the fault coverage of the more complex

March AZ2 algorithm, while maintaining a reduced level of complexity. This improvement

ensures that the algorithm can identify and address potential faults in memory systems with

the same level of precision as the March AZ2, but with greater efficiency and simplicity,

thereby offering a more streamlined and practical solution for memory testing. The

improved March AZ1 algorithm remains its complexity in 13N while increase in the total

fault coverage.

The implementation of a Memory Built-In Self-Test (BIST) controller in Field-

Programmable Gate Array (FPGA) using the improved March AZ1 test algorithm marks a

significant milestone. This achievement demonstrates the practical applicability of the

improved algorithm in real-world hardware, showcasing its compatibility with FPGA

technology. By integrating the March AZ1 algorithm into the Memory BIST controller, the

system can autonomously test and verify memory integrity, leading to enhanced reliability

and performance of memory systems. The improved March AZ1 algorithm is successfully

implement into the FPGA board and enable to test the high input of the test enable, high

output when the process is done and showing the clock cycle which helps in calculate the

complexity.

Evaluating the fault coverage and complexity of the improved March AZ1 algorithm

through rigorous tests and analysis has solidified its effectiveness and efficiency. The

comprehensive evaluation process has provided detailed insights into the algorithm's

capabilities, confirming its ability to detect a wide range of memory faults while

maintaining lower complexity. This achievement not only validates the algorithm's
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performance but also ensures its suitability for various memory testing applications,

making it a valuable tool for enhancing the reliability of memory systems.

5.2 Recommendation for Future Work

There were some recommendation for the future work. At first, by further refining the

improved March AZ1 test algorithm to enhance its fault coverage while reducing

complexity is important. Investigating new techniques and approaches to memory testing

can lead to additional breakthroughs, potentially resulting in even more efficient and

effective algorithms. This ongoing refinement will ensure that the algorithm continues to

evolve and meet the demands of modern memory systems.

Next, the integrating of the improved March AZ1 test algorithm and the Memory BIST

controller into more advanced hardware platforms, such as Application-Specific

Integrated Circuits (ASICs) and System-on-Chip (SoC) devices, will help assess the

algorithm's adaptability and performance across various technological environments. By

testing the algorithm in diverse hardware settings, researchers can identify any potential

limitations and make necessary adjustments to optimize its performance.

Finally, documenting the research, development, and testing processes of the improved

March AZ1 algorithm and Memory BIST controller in detail and sharing this knowledge

through publications, conferences, and workshops will contribute to the broader scientific

community. This dissemination of information will inspire further research in memory

testing and ensure that the advancements made are widely recognized and built upon by

future researchers.
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5.3 Potential of commercialization

The potential for commercializing the improved March AZ1 test algorithm and Memory

BIST controller is promising. Given its enhanced fault coverage, reduced complexity, and

successful implementation in FPGA technology, this solution is well-suited for a wide

range of industries that rely on reliable memory systems, such as consumer electronics,

automotive, aerospace, and telecommunications. The ability to integrate the algorithm into

diverse hardware platforms further broadens its market appeal. Companies looking to

ensure the integrity and performance of their memory systems will find this technology

invaluable, making it an attractive product for commercialization. With continued

development and real-world testing, the commercial viability of this innovative memory

testing solution is substantial.
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APPENDICES
Appendix 1

Activity
Week
1 2 3 4 5 6 7 8 9 1
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March algorithms
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Az1 algorithm test
sequence and fault
coverage
Plan for the tools
and FPGA device
for MBIST
implementation and
validation process
Prepare PSM 1
report
PSM 2
Synthesis MBIST
circuitry design and
fit it into targeted
FPGA device using
Altera Quartus.
Validate the
implemented
MBIST through
FPGA experimental
test.
Analyze the
implement MBIST
performance in
terms of its fault
coverage, speed, and
area
Prepare final report

Presentation
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Appendix 2

Activity Duration
(Weeks) Start

Week
EndWeek

PSM 1
Comprehensive investigation on March
algorithms 5 1 5

Analyze the original and improved March
Az1 algorithm test sequence and fault
coverage

3 5 7

Plan for the tools and FPGA device for
MBIST implementation and validation
process

6 7 12

Prepare PSM 1 report 5 10 14
PSM 2
Synthesis MBIST circuitry design and fit it
into targeted FPGA device using Altera
Quartus.

6 15 20

Validate the implemented MBIST
through FPGA experimental test. 7 17 23

Analyze the implement MBIST performance
in terms of its fault coverage, speed, and area 5 21 25

Prepare final report 3 24 26
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Appendix 3 Improved March AZ1 algorithm TCD file

Algorithm (march_AZ1) {
TestRegisterSetup {

OperationSetSelect : TessentSyncRamOps;
AddressGenerator {

AddressRegister (A) {
LoadColumnAddress: MinColumn;
LoadRowAddress: MinRow;
X1CarryIn: None;
Y1CarryIn: X1CarryOut;

}
}
DataGenerator {

LoadWriteData : 8'b00000000;
LoadExpectData : 8'b00000000;

}
}
MicroProgram {

Instruction (M0_w0){
OperationSelect : WriteWriteFastRow;
X1AddressCmd : Increment;
Y1AddressCmd : Increment;
WriteDataCmd : DataReg;
InhibitLastAddressCount : on;

NextConditions {
X1_EndCount : on;
Y1_EndCount : on;

}
}
Instruction (M1_w1){

OperationSelect : WriteWriteFastRow;
X1AddressCmd : Decrement;
Y1AddressCmd : Decrement;
WriteDataCmd : InverseDataReg;
InhibitLastAddressCount : on;
NextConditions {

X1_EndCount : on;
Y1_EndCount : on;

}
}
Instruction (M2_w1r1){

OperationSelect : WriteRead;
ExpectDataCmd : InverseDataReg;
WriteDataCmd : InverseDataReg;
NextConditions {
}

}
Instruction (M2_r1w0){

OperationSelect : ReadModifyWrite;
X1AddressCmd : Increment;
Y1AddressCmd : Increment;
ExpectDataCmd : InverseDataReg;
WriteDataCmd : DataReg;
BranchToInstruction : M2_w1r1;
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X1_EndCount : on;
Y1_EndCount : on;

}
}
Instruction (M3_w0r0){

OperationSelect : WriteRead;
X1AddressCmd : Increment;
Y1AddressCmd : Increment;
ExpectDataCmd : DataReg;
WriteDataCmd : DataReg;
NextConditions {

X1_EndCount : on;
Y1_EndCount : on;

}
}
Instruction (M4_r0w1){

OperationSelect : ReadModifyWrite;
ExpectDataCmd : DataReg;
WriteDataCmd : InverseDataReg;
NextConditions {
}

}
Instruction (M4_w1r1){

OperationSelect : WriteRead;
X1AddressCmd : Increment;
Y1AddressCmd : Increment;
ExpectDataCmd : InverseDataReg;
WriteDataCmd : InverseDataReg;
BranchToInstruction : M4_r0w1;
NextConditions {

X1_EndCount : on;
Y1_EndCount : on;

}
}
Instruction (M5_r1){

OperationSelect : ReadReadFastRow;
X1AddressCmd : Increment;
Y1AddressCmd : Increment;
ExpectDataCmd : InverseDataReg;
NextConditions {

X1_EndCount : on;
Y1_EndCount : on;

}
}

}
}
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Appendix 4 TessentSyncRamOps TCD File

//
// THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH
// IS THE PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS
// SUBJECT TO LICENSE TERMS.
//
// Copyright 1992-2017 Mentor Graphics Corporation
//
// All Rights Reserved.
//
// Technology Release: 2018.2
OperationSet(TessentSyncRamOps) {

PipeliningStages (StrobeDataOut) : 1;

Operation (NoOperation) { // OP0
Tick {
Select : On;
OutputEnable : On;

}
Tick {
}
Tick {
}
Tick {
}

}

Operation (Write) { // OP1
Tick {
Select : On;

WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;

}
}

Operation (Read) { // OP2
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
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OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;

}
}

Operation (ReadModifyWrite) { // OP3
Tick{
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
StrobeDataOut;

}
Tick{
Select : On;
WriteEnable : On;
ReadEnable : Off;
ShadowReadAddress : On;
ConcurrentReadRowAddress : On;

}
}
Operation (ReadModifyWrite_WithSelectOff) { // OP4

Tick{
Select : Off;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
StrobeDataOut;

}
Tick{
Select : Off;
WriteEnable : On;
ReadEnable : Off;

}
}
Operation (WriteReadCompare) { // OP5

Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
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ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On ;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : Off;
OutputEnable : On ;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;

}
}

Operation (WriteReadCompare_EvenGWE_ON) { // OP6
Tick {
Select : On;
WriteEnable : On;
OddGroupWriteEnable : Off;
EvenGroupWriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;

ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
OddGroupWriteEnable : Off;
EvenGroupWriteEnable : On;
ReadEnable : On;
OutputEnable : On;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {

Select : On;
WriteEnable : Off;
OddGroupWriteEnable : Off;
EvenGroupWriteEnable : On;
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ReadEnable : Off;
OutputEnable : On;

}
}

Operation (WriteReadCompare_OddGWE_ON) { // OP7
Tick {
Select : On;
WriteEnable : On;
OddGroupWriteEnable : On;
EvenGroupWriteEnable : Off;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
OddGroupWriteEnable : On;
EvenGroupWriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
OddGroupWriteEnable : On;
EvenGroupWriteEnable : Off;
ReadEnable : Off;
OutputEnable : On;

}
}

Operation (WriteReadCompare_AllGWE_OFF) { // OP8
Tick {
Select : On;
WriteEnable : On;
OddGroupWriteEnable : Off;
EvenGroupWriteEnable : Off;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;

ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
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Tick {
Select : On;
WriteEnable : Off;
OddGroupWriteEnable : Off;
EvenGroupWriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
OddGroupWriteEnable : Off;
EvenGroupWriteEnable : Off;
ReadEnable : Off;
OutputEnable : On;

}
}

Operation (Read_WithReadEnableOff) { // OP9
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : Off;
OutputEnable : On;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : Off;

}
}
Operation (ReadModifyWrite_Column_ShadowWriteRead) { // OP10
Tick{
Select : On;
WriteEnable : Off;

ConcurrentWriteColumnAddress : On;
ConcurrentWriteDataPolarity : Inverse;
ReadEnable : On;
OutputEnable : On;
ConcurrentReadEnable : On;
StrobeDataOut;

}
Tick{
Select : On;
ConcurrentWriteColumnAddress : Off ;
WriteEnable : On;
ReadEnable : Off ;
ConcurrentReadEnable : On;
ConcurrentReadColumnAddress : On;

}
}
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Operation (ReadModifyWrite_Row_ShadowWriteRead) { // OP11
Tick{
Select : On;
WriteEnable : Off;
ConcurrentWriteRowAddress : On;
ConcurrentWriteDataPolarity : Inverse;
ReadEnable : On;
OutputEnable : On;
StrobeDataOut;

}
Tick{
Select : On;
WriteEnable : On;
ConcurrentWriteRowAddress : Off;
ReadEnable : Off;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
}

Operation (WriteRead_Column_ShadowReadWrite) { // OP12
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On ;
ConcurrentReadEnable : On;
ConcurrentReadColumnAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
ConcurrentWriteColumnAddress: On;
ConcurrentWriteDataPolarity : Inverse;
ReadEnable : On;
OutputEnable : On;
ConcurrentReadColumnAddress : Off;

}
}

Operation (WriteRead) { // OP13
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
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Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
}

Operation (ReadRead) { // OP14
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
StrobeDataOut;

}
}

Operation (ReadReadFastRow) { // OP15
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
RowAddressCount : On;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
RowAddressCount : On;
StrobeDataOut;

}
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Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
RowAddressCount : On;
StrobeDataOut;

}
}

Operation (ReadReadFastColumn) { // OP16
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
ColumnAddressCount : On;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
ColumnAddressCount : On;
StrobeDataOut;

}
}

Operation (WriteWriteFastRow) { // OP17
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;
RowAddressCount : On;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
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ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;
RowAddressCount : On;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;
RowAddressCount : On;

}
}

Operation (WriteWriteFastColumn) { // OP18
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;
ColumnAddressCount : On;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;
ColumnAddressCount : On;

}
}

Operation (WriteReadWriteInvert) { // OP19
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
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ConcurrentReadRowAddress : On;
}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
InvertWriteData : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
}

Operation (ReadWriteReadInvert) { // OP20
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
InvertExpectData : On;
ShadowReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : Off;
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StrobeDataOut;
}

}

Operation (ReadWriteWriteInvert) { // OP21
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;
InvertWriteData : On;

}
}

Operation (WriteWrite) { // OP22
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
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OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
}
Operation (ReadAwayReadHome) { // OP23
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
SwitchAddressRegister : On;
InvertExpectData : Off;
ShadowReadEnable : On;
ConcurrentReadEnable : On;
StrobeDataOut;

}
}

Operation (WriteWriteInvert) { // OP24
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : On;
InvertWriteData : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
}
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Operation (WriteAwayReadHome) { // OP25
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadRowAddress : Off;
SwitchAddressRegister : On;
InvertExpectData : Off;
StrobeDataOut;

}
}

Operation (ReadWriteRead) { // OP26
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadEnable : On;
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ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
}

Operation (WriteReadRead) { // OP27
Tick {
Select : On;
WriteEnable : On;
ReadEnable : Off;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : On;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : On;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
Tick {
Select : On;
WriteEnable : Off;
ReadEnable : On;
OutputEnable : On;
ShadowReadEnable : On;
ShadowReadAddress : Off;
ConcurrentReadEnable : On;
ConcurrentReadRowAddress : Off;
StrobeDataOut;

}
}

}
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