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ABSTRACT 

This thesis explores the application of the Whales Optimization Algorithm 

(WOA) to optimize the drilling path in Printed Circuit Board (PCB) manufacturing, a 

critical process in electronic device production. The PCBs require precise drilling for 

holes to ensure proper component placement and functionality. In traditional ways, 

problems often result in inefficient drilling sequences, increasing production time and 

costs. The WOA is inspired by humpback whales’ hunting behaviour and addresses 

these inefficiencies by minimizing the total drilling path length. To minimize the path 

length by proposing models applied in WOA and mimicking the behaviour of the 

Whales, such as exploration and exploitation to discover the possibility of the optimal 

drilling path length. The research involves applying the WOA to the PCB drilling 

sequences process, with results showing significant improvements in production 

efficiency and cost-effectiveness. This study concludes the WOA offers a robust 

solution for PCB drilling optimization, suggesting further reseacrh could enhance the 

algorithm. 
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ABSTRAK 

Tesis ini meneroka aplikasi Algoritma Pengoptimuman Paus (Whales 

Optimization Algorithm, WOA) untuk mengoptimumkan laluan penggerudian dalam 

pembuatan Litar Bercetak (Printed Circuit Board, PCB), yang merupakan proses 

kritikal dalam penghasilan peranti elektronik. PCB memerlukan penggerudian lubang 

yang tepat untuk memastikan penempatan komponen dan fungsi yang betul. Secara 

tradisional, masalah sering timbul dalam bentuk urutan penggerudian yang tidak efisien, 

yang meningkatkan masa dan kos pengeluaran. WOA yang diilhamkan oleh tingkah 

laku memburu ikan paus bongkok menangani ketidakefisienan ini dengan 

meminimumkan jumlah panjang laluan penggerudian. Untuk mencapai matlamat ini, 

model dicadangkan dalam WOA yang meniru tingkah laku paus, seperti eksplorasi dan 

eksploitasi, bagi menemui kemungkinan panjang laluan penggerudian yang optimum. 

Penyelidikan ini melibatkan penerapan WOA dalam proses urutan penggerudian PCB, 

dengan hasil yang menunjukkan peningkatan ketara dalam kecekapan pengeluaran dan 

keberkesanan kos. Kajian ini menyimpulkan bahawa WOA menawarkan penyelesaian 

yang kukuh untuk pengoptimuman penggerudian PCB, dan mencadangkan kajian lanjut 

untuk mempertingkatkan algoritma ini. 
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INTRODUCTION 

1.1 Introduction 

This chapter aims to deliver the structure and introduces the brief idea of this project. 

It will focus on the background of the Printed Circuit Boards drilling process, briefly describe 

the problem statement, state the objectives and scope of the project, and discuss the project’s 

contribution.   

 

1.2 Background 

Printed circuit boards (PCBs) are a component of the world today; they play the role 

of the backbone for mounting electronic components and providing connections between 

components. A PCB is a flat board that offers electronic components and supports their 

electrical connection through the conductive route. The route is made of copper and etched on 

an insulation board. The PCB simplifies the complex wiring to make the electronic component 

more compact. 

Manufacturing printed circuit boards involves several complex processes that require 

precision and attention to detail, such as fabrication, drilling, component placement drilling, 

welding, and testing. Drilling and component placement are particularly crucial to those 

processes. Drilling is essential for making vias and holes on the PCB and being able to place 

the component correctly to ensure the circuit works well.  Component placement must be more 

cautious to reduce the heat and noise between components while testing. Hongyan Shi et al. 

(2022) said these processes are important to ensure the PCB circuit works functionally. 
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From all of the processes, drilling determines the whole PCB and whether the PCB 

can still function well. The parameters that need to be considered in path planning before the 

drilling process are optimization, accuracy, complexity management and cost efficiency. Path 

planning is optimizing the distance of machine travelling to ensure drilling on the right location 

to avoid multiple overlapping paths causing production line inefficiency to the manufacturer. 

As Najwa Wahida et al.(2017) highlighted, effective path planning can improve production 

lines and PCB's qualities. 

1.3 Problem Statement 

One of those common problems for drilling a Printed Circuit Board is time spent on 

point-to-point movement, especially when there are multiple holes to drill. According to Shafie, 

Naqiuddin and Nor Aiman (2021), optimising the drilling path is crucial for reducing the 

drilling time and improving productivity by comparing the traditional method with Swarm 

Intelligence (SI) techniques. Furthermore, N.Wahida et al. (2017) stated that about 70% of the 

machining time in multiple-hole drilling processes involves tool movement. 

 

 Manufacturers today are still concerned about the efficiency of the production of 

PCBs due to the time spent. Denish et al. (2020) stated a growing need for manufactured parts 

to increase production rates by optimising the length of the route travelled to drill. D.H. Al-

Janan et al.(2016) acknowledge there are always possible ways to improve the efficiency of the 

drilling paths when the number of hole positions are well managed.  To achieve the production 

goal, the manufacturer needs to enhance the optimization on  route travelled around to drill the 

PCBs.  
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When manufacturers use the traditional ways for drilling, the cost will be a bottomless 

pit of expenses, and they need to be concerned about all the parameters of routing the PCB’s 

hole. As Zheng et al. (2011) said, drilling is a particularly complicated machining process, and 

it becomes more complicated when it is on PCBs. “There are also many traditional drilling path 

optimization problems that are similar in terms of approaching in the larger Tralling Salesman 

Problem(TSP) literature”, also stated by R.Dewil et al. (2018). The lack of systematic research 

into PCB drilling processes can cost an enormous of expenses and time even before starting the 

machining process. 

 

1.4 Project Objective 

The main aim of this project is to propose on Printed Circuit Board path palnning 

using Whales Algorithm Optimization by optimizing the distance of drilling holes with specific 

coordinate holes. In order to achieve the main objective, the sub-objectives will be the leading 

as:  

 

 To review existing computational algorithms and case studies that had been existing 

in previous literature reviews. Some explanations of the PCB drilling process and 

Manhattan and Euclidean distance will be elaborated for understanding in terms of 

applying them in Whales Optimization Algorithms. There will be a table to 

summarise the information about those algorithms and case studies in Chapter 2. 

 

 To apply the Whales Optimization Algorithm for optimizing the path planning in the 

PCB holes drilling process. The details of the algorithm and the adaption to  PCB 

path planning will be explained in Chapter 3 
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 To benchmark the Whales Optimization Algorithm (WOA) applied to PCB path 

Planning with previous literature on using other algorithms on path planning. The 

initial result of the WOA is discussed in Chapter 4. 

 

 

 

1.5 Scope of Project 

Scopes are the area to guarantee the project will be within its expected limit. Those 

scopes will be playing as an area to guarantee the project is heading in the right course with 

those objectives stated. In this project, the priority is using The Whales Optimization 

Algorithm for path planning 14 specific holes. Our primary aim is to find the optimized best 

route for overall distance to drill the particular coordinates of 14 holes. Due to the other, 

previous optimization algorithm literature for use as comparison and benchmarking with 

adapted model in this project was also using 14 coordinates holes.  

 

The path planning will be simulated throughout by using Matlab via MATLAB R2023b. 

has the capabilities to develop a functional Whales Optimization Algorithm for route 

optimization. The simulation will plot out the optimized route with its total distance for 

analysis and benchmarking and to ensure the WOA on path planning is applicable, especially 

if it is routing in the x-axis and y-axis. Matlab is also a platform for this project that is capable 

of simulating WOA with built-in. The reason that Matlab is used in this project is that in terms 

of the origin of the Whales Optimization Algorithm is verified. 
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For path planning, the route is designated on the two-dimensional aspect; therefore, 

only the path routes through the x-axis and y-axis. Due to the validation result of WOA on 

path planning hence in this will also using previous literature review with routing in x-axis and 

y-axis for benchmarking. From calculating the distance of the path in terms of the x-axis and 

y-axis, the Manhattan distance formulae will be used in this adapted model as the fitness 

function. However, some algorithms plan the route to move diagonally by using Euclidean 

distance formulae. Still, the adapted model will be compared with other algorithms that also 

plotted the path planning in the 2D model, so there will be an imbalance when the comparison 

of results between other algorithms is done. 

 

Time spent on drilling is inefficient, as stated in the problem statement. Therefore, the 

total distance of routing the drilling path will be the foremost important aspect to take concern 

of. By optimizing the total distance, the time spent on drilling will also decrease reasonably. 
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1.6 Project Contribution 

The project will contribute to the industry of PCB manufacturing in terms of 

improving and enhancing the drilling process. By introducing a path planning algorithm, the 

project tends to find the time reduction on point-to-point movement while drilling. This 

improvement will be assist the overall production line of the manufacturing progress. The 

swarm-based optimization algorithm in this project will be expected to minimize the path 

planning that the drill bit will travel for drilling, which can reduce costs and increase production 

rates. 

 

This project will also provide a method for manufacturers to manage the complexity 

of the PCB drilling, such as optimizing the sequences and hole’s position to ensure the 

efficiency of drilling paths and reduce the path overlapping. To maintain the functionality of 

the PCB circuits, it is very important to take into account the calculated management of PCB 

drilling. Furthermore, the adapted algorithms also attempt to be cost-effective in reducing the 

extra expenses for adjusting parameters as the manufacturers use the traditional drilling method. 
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LITERATURE REVIEW 

2.1 Introduction to PCB Drilling Process 

The PCB Drilling process is an advanced process that involves specialized machinery 

to create holes for component mounting and different connections. As Yi, (2024) stated that in 

the technology of machinery for drilling must have capabilities to handle different types of holes 

such as Plated Through holes (PTH) that can reach the entire PCB thickness and have conductor 

on the internal walls and Non-Plated Through Holes (NPTH) refers to no conductors on wall 

internal walls which are used for installing screws, spacers and supportive pin to hold the PCB.  

The drilling process in the machinery starts with the manufacturer creating a detailed 

drilling map that consists of coordinated holes, the size of the holes and the placement of the 

PCB. These details will be assigned to the instrument to perform the drilling with a high 

percentage of accuracy. As the computer numerically controlled machine drilling PCB with the 

manufacturer designed the finalized PCB layout, including the coordination and size of holes 

then convert into a drill file for drilling operation but and before initialling the process of drilling 

the setup on CNC will involves selecting the suitable and specify materials drill bits to achieve 

high precision of the exact coordinate of PCB hole. 

Drilling a printed circuit board is an essential task in terms of accuracy. Path Planning 

is one of the critical parts of the process, as it determines the most efficient route to drill across 

the PCB on the specific holes. According to S. NoorFaroque et al. (2015), an automated PCB 

drilling machine with efficient path planning can improve the stability and accuracy of the 

drilling process. 
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Optimizing the path planning for drilling PCBs can reduce the time and cost of the 

PCB manufacturing process. Several researchers, like N.W.Z Abidin et al. (2015), have used 

soft computing approaches for multi-hole drilling path optimization to solve the tool movement 

and switching time, improving the significant time spent drilling. 

2.1.1 Manhattan Distance and Euclidean Distance 

Distance calculation is a regular mathematical method for calculating the distance 

from one point to another point. When a clustered graph shows, the measurement of distance 

shows how close it will be due to the size of the numbers and groups, and it is similar. As the 

parameters measured are similar, distance measurement is the best method to assess clusters.  

Multiple distance measures, such as Minkowski distance, are generalized from 

different distance measures like Euclidean distance, Manhattan distance, Chebyshev distance 

and Hamming distance. Two distances have been globally used from those measurements, such 

as Manhattan Distance and Euclidean Distance. For Euclidean, Distance is one of the commonly 

used measurements between two points. It is the straight line distance in dimensions in Figure 

2.1. 

 

           Figure 2-1: Euclidean Distance between two points (Sujan 2015) 
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Manhattan distance is based on the Manhattan network, which is similar to how streets 

and buildings are arranged in Manhattan, as stated by Dalfo et al. (2007). Manhattan distance 

is similar to Euclidean space in terms of two-point but with the x-axis and y-axis coordinate 

system. The pattern of the Manhattan network and real-life examples of orthogonal streets in 

Manhattan are in Figure 2.2. 

 

    Figure 2-2: Pattern of Manhattan network and orthogonal streets in Manhattan Street 

2.1.2 Understanding Manhattan Distance and Euclidean Distance Equation 

In terms of the equation of Manhattan Distance and Euclidean Distance, there must be 

a coordinate of two points for calculating the distance. The Euclidean equation “d” is based on 

the Pythagorean Theorem, which is the longest side of the triangle between two coordinate 

points of kth and yet, the so-called hypotenuse, and the other two sides are called opposite and 

adjacent. The n value is the number of dimensions where the coordinates are positioned, and 

the k value is the number of coordinates in the dimension. The total distance will be obtained 

from the subtraction between the second and first coordinates. After that, the x and y values 

will be squared up as the Pythagorean Theorem states, then summed before the square root's 

function to get the coordinates' longest side. The Euclidean Distance [2.1] between xkth and ykth 

is the coordinate. 
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                              𝑑𝑑(𝑥𝑥,𝑦𝑦) = (∑ (𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘)2 + (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘)2𝑛𝑛
𝑘𝑘=1 )

1
2        [2.1] 

   

                        Equation 2-1: Euclidean Distance 

 

There will also be the same as Euclidean Distance in terms of n and k  for Manhattan 

Distance to calculate the distance between kth and yet, and it is the sum of the horizontal and 

vertical of the coordinates, but before the summation, there will be a magnitude to positively 

the subtracted value. The Manhattan Distance equation [2.2] is shown in Figure 2.4. 

 

                                 𝑑𝑑(𝑥𝑥,𝑦𝑦) = ∑ |(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘)| +𝑛𝑛
𝑘𝑘=1 |(𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘)|         [2.2] 

 

                        Equation 2-2: Manhattan Equation 

        

2.1.3 Illustration of Manhattan Distance and Euclidean Distance Equation 

The working of Manhattan [2.1] and Euclidean [2.2] distance equation will be shown 

as below in Figure 2.3 with 4 different coordinates which is (2, 3), (5, 7), (8, 6) and (5, 2) as 

labelled in 1, 2, 3 and 4 respectivelly. 
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              Figure 2-3: 10*10 Rectangular Shape with Specified Holes 

 

The Table 2.1 using Manhattan Distance equation [2.2] with sequence from 1 - 2 - 3 - 

4 according the graph above shows below: 

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = �|(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘)| +
𝑛𝑛

𝑘𝑘=1

|(𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘)| 

 
Sequence of holes Calculation 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 1 𝑡𝑡𝑡𝑡 2 (|5 − 2| + |7 − 3|) = 7 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 2 𝑡𝑡𝑡𝑡 3 (|8 − 5| + |6 − 7|) =  4 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 3 𝑡𝑡𝑡𝑡 4 (|5 − 8| + |2 − 6|) =  7 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1 −  2 −  3 

−  4 

(7 + 4 + 7) = 18 

           Table 2-1: Calculation Manhattan distance with sequence from 1- 2 – 3 – 4 
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The Table 2.2 of Euclidean distance equation [2.1] with sequence from 1 - 2 - 3 - 4 

according the graph above shows below 

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = ��(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘)2 + (𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑘𝑘)2
𝑛𝑛

𝑘𝑘=1

�

1
2

 

 

Sequence of holes Calculation 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 1 𝑡𝑡𝑡𝑡 2 ((5 − 2)2 + (7 − 3)2)
1
2 = 5 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 2 𝑡𝑡𝑡𝑡 3 ((8 − 5)2 + (6 − 7)2)
1
2 = 3.16 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 3 𝑡𝑡𝑡𝑡 4 ((5 − 8)2 + (2 − 6)2)
1
2 =  5 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1 −  2 −  3 

−  4 

(5 + 3.16 + 5) = 13.16 

         Table 2-2: : Calculation Euclidean distance with sequence from 1 - 2 - 3 – 4 
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The Figure 2.4 shows the connected coordinates in Manhattan distance and Euclidean 

distance which blue dash line represent Manhattan distance that only connected through x -axis 

and y-axis and Euclidean Distance connected through the longest line as green line. 

 

Figure 2-4 Connected Coordinates blue dash for Manhattan distance and Green line for 
Euclidean Distance 
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2.2 Whales Optimization Algorithm 

 

Table 2-3 : Algorithms applied on PCB Path Planning 

 
Optimization Algorithm is mostly called as computational intelligent that planned to 

use for finding the best solution for its respective problem. The algorithm explore in it respective 

space to get the solution and by setting up the parameters to improve the objective function. 

There are various type of optimization algorithms that have been done and there are also have 

some different classification of algorithms such as deterministic algorithms and stochastic 

algorithms. A different stochastics algorithm on PCB path planning will be stated in Table 2.3.  

As whales optimization algorithm are inspired by humpback whales’s  bubble-net hunting prey 

behaviour and randomness of this behaviour makes it classfy as meta-heuristic algorithms. 

Whales Optimization Algorithm classification as computational intelligence which bound with 

nature-inspired algorithms for solving optimization and decision making problems that lays on 

biology-based CI (BbCI) stated Nadim Rana et al.,(2020). There will be graphs and charts to 

show the research of the whales optimization algorithms. 

Stochastic Algorithms developed on Path Planning   

Algorithm Inspiration Author & Year 

Global Convergence PSO (GCPSO) Bird Flock Zhu. 2006 

Binary PSO Bird Flock Othman et al, 2011 

Particle Swarm Optimization (PSO) Bird Flock Adam et al., 2010 

Simulated Kalman Filter (SKF)  Kalman Filter Nor Hidayati et al, 2016 

Cuckoo Search Genetic Algorithm (CSGA) Cuckoo Wei Chen Esmonde et al.,2014 

Ant Colony System Optimization (ACS) Ants Saealal et al., 2011 

Travelled Salesman Problem (TSP) Travelling Salesman Eiichi Aoyama et al., 2004 

Genetic  Natural Evolution Denish Khatiwada et al, 2019 

Modified Shuffled Frog Leaping (mSL) Frog Leaping A.M. Dalavi., 2019 

Bat  Bat Sunny Diyaley., 2019 

Firefly Fireflies Asrani Lit., 2011 

Gravitational Search Algorithm (GSA) Gravitation Omar et al, 2014 
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Figure 2-5: Classification of Algorithms  

Whales Optimization Algorithm as one of the meta-heuristic swarm-based intelligent 

algorithm when compared with other swarm intelligence methods, it is simple to implement 

and robust which make WOA comparable with different nature inspired algorithms. The 

classification of WOA shown in Figure 2.5. In WOA, the population of humpback whales will 

search through a multi-dimensional space for food. The location of each agent are represented 

as different decision variables and the distance between agent with the food represents the value 

of objective cost. There are 3 operational processes that measured the location of the agent 

which are shrinking encircling prey, bubble-net attacking method (exploitation phase) and 

search for prey (exploration phase). The basic principle of the Bubble-net feeding behavior of 

humpback whales will show in Figure 2.6. 
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Figure 2-6 : Bubble-net feeding behavior of humpback whales 

 
The pseudo code shows in Figure 2.7 represents the each Whales (Xi) for initial whales 

when they have recognize the proximate location of the prey, agents will start encircling the 

prey and calculate the agents optimal position following the equation [2.3] and the position of 

each agent in the search space will be calculated for finding the best position to update and 

applied on equation [4] which both equations will be in the while loop. The fitness of each agent 

will calculate using the objective function or fitness equation for it specific problem.  

The fitness function is the goal to find the solution with highest or lowest fitness value 

depending on problems. X* is the best fitness from the initial population and represent a 

reference point for other agent during the optimization. There is a t indicates the current iteration 

for the number of find the best position. There will be a loop of each iteration through each 

agent in the population to get the best position. There are multiples parameter that used in this 

algorithm is playing a critical role in exploration and exploitation phases of the algorithm such 
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as 𝑎⃗𝑎,𝐴𝐴,𝐶𝐶, 𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎  𝑝𝑝. The 𝑎⃗𝑎 where consists in equation 2.9 is linearly decreased from 2 to 0 over 

the course of iterations to controls the search radius of each agent, which a high value will allow 

a larger search jump and vice versa in both exploration and exploitation phase. 𝐴𝐴 and 𝐶𝐶 are 

coefficient vectors as their equation 2.9 and 2.10. The 𝐴𝐴 is a random value representing [-1,1] 

as a range which will force the agent to move away from other agents to prevent matching up 

the same agent and getting the same position in exploration phase. For 𝐴𝐴 in exploitation phase 

is also a random value in the interval [-a, a] where 𝑎⃗𝑎 is decreased from 2 to 0 over course of 

iterations. The 𝐶𝐶 in equation 2.10 represent a number used between 2 and 0 determined by 𝑟𝑟 is 

a random vector in between [0,1]. For ‘l’ is a random number between [-1,1] and is an element-

by-element multiplication in equation 2.7. By acknowledging the humpback whales swim 

around the prey within shrinking circle and along a spiral-shaped path simultaneously. To 

simulate this behavior, there is a probability of 50% to choose between exploration or 

exploitation to update to position of agents during optimization and it represented as ‘p’ as 

stated in the pseudo code. The determination to decide between exploration and exploitation 

strategies, the random number of p is playing a critical parameter when the value of p is less 

than 0.5 and the exploration phase will be taking part. In the exploration phase, a parameter |𝐴𝐴| 

will be considered in between greater than 1 or less than 1. A random search agent will be 

chosen and update the position when |𝐴𝐴| is less than 1 by using the equation 2.4, while the best 

solution will be updated from the position of the agent when |𝐴𝐴| is greater than 1 using the 

equation 2.6 where 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a random position vector (a random whale) chosen from the current 

population. While for random value p is greater than 0.5, the exploitation phase will be taking 

part to calculate and update the position between whales and prey by using equation 2.7 from 

mimic the helix shaped movement of the humpback whale. 
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                                    𝐷𝐷 ���⃗ =  �𝐶𝐶 ∙ 𝑋𝑋∗����⃗ (𝑡𝑡)  − 𝑋⃗𝑋(𝑡𝑡)�         [2.3] 

               Equation 2-3: Distance of Initial agent optimal position 

 

                                      𝑋𝑋 ���⃗ (𝑡𝑡 + 1) =  𝑋𝑋∗����⃗ (𝑡𝑡)  − 𝐴𝐴 ∙ 𝐷𝐷��⃗        [2.4] 

                Equation 2-4: Position for Initial Exploration Phase  

 
 

                                          𝐷𝐷 ���⃗ =  �𝐶𝐶 ∙ 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�����������⃗   − 𝑋⃗𝑋�      [2.5] 

                 Equation 2-5: Distance of agent optimal position 

 
 

                                       𝑋𝑋 ���⃗ (𝑡𝑡 + 1) =  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�����������⃗  − 𝐴𝐴 ∙ 𝐷𝐷��⃗              [2.6] 

                  Equation 2-6: Position for Exploration Phase 

 

                           𝑋⃗𝑋(𝑡𝑡 + 1)  =  𝐷𝐷′����⃗ ∙   𝑒𝑒 𝑏𝑏𝑏𝑏  ∙  cos(2𝜋𝜋𝜋𝜋)  +  𝑋𝑋∗����⃗ (𝑡𝑡)         [2.7] 

                Equation 2-7: Spiral Equation for Exploitation Phase 

 

                                                𝐷𝐷′����⃗ =  𝑋𝑋∗����⃗ (𝑡𝑡)  − 𝑋⃗𝑋(𝑡𝑡)         [2.8] 

                   Equation 2-8: Distance of the agent to prey 

 
 

                                               𝐴𝐴 = 2𝑎⃗𝑎  ∙  𝑟𝑟  −  𝑎⃗𝑎       [2.9]  

   

                                                     𝐶𝐶 = 2 ∙ 𝑟𝑟       [2.10] 

                        Equation 2-9: vector A and C 
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Initialize the whales population Xi(i = 1, 2, ..., n)  

Calculate the fitness of each search agent  

X*=the best search agent  

while(t < maximum number of iterations)  

     for each search agent  

           Update a, A, C, l, and p  

             if1(p<0.5)  

                 if2(|A|< 1)  

                     Update the position of the current search agent by the Eq.[3]  

                 else if2(|A| >= 1)  

                      Select a random search agent ( Xrandom)  

                      Update the position of the current search agent by the Eq.[  

                 end if2  

               elseif1(p >= 0.5)  

                   Update the position of the current searchby the Eq. (2.5)  

               end if1  

     end for  

Check if any search agent goes beyond the search space and amend it  

Calculate the fitness of each search agent  

Update X* if there is a better solution  

t=t+1  

end while  

return X* 

 

Figure 2-7 : Pseudo code for Whales Algorithm   
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2.2.1 TagCloud of WOA applied 

The keywords from Scopus has classified out that those application with WOA applied 

from 2016 – 2024 has been arrange as Tag Cloud for better visual for acknowledge the fields 

for WOA mostly applied in Figure 2.8. The Application has search according to the article that 

have been published in Scopus. The WOA is mimicking the hunting behaviors of the whales 

and find the optimal solution in various domain, from that  the algorithms is mostly used as 

optimization algorithms, forecasting and supporting vector machines, and others such as PID 

controllers, Cluster Analysis and etc are those the least published articles among this Tag Cloud. 

 

                    Figure 2-8: Tag Cloud for WOA Application 
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2.2.2 Research Paper Whales Optimization Algorithm by Countries 

The research paper about Whales Optimization Algorithm that have published from 

2016 – 2024 in Computer Science and Engineering fields, the Chinese is conquering following 

by Indians is the second Country. Mostly WOA research paper were published by Asia 

Countries due to concentrated efforts such as research trends and communities. The researchers 

from Asian countries are actively explore through novel optimization techniques, such as 

Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO) and etc., including WOA. 

Others country which is the lowest contributing in this WOA are Americas, Europeans, and 

Africa Continent. The percentages of published WOA Article shows in Figure 2.9. 

 

                     Figure 2-9: Research Paper by Countries 
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2.2.3 Research Paper that published  

The WOA research paper was started publishing start from 2016 due to Whales 

behaviors were only discovered that it is able to apply as Optimization Algorithm. The trend 

were starting significantly by years after the algorithm were discovered. According to the charts, 

there will be over thousands of article publish due to there are over 500 article published since 

the starting of this year. The growth of WOA is shown in Figure 2.10. 

 

                  Figure 2-10: Growth of WOA research paper 
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2.3 Past Related Research Paper 

The past research papers are focused on the others Optimization Algorithm for path 

planning. Therefore, the research are related to the working of optimization algorithms working 

on different situation such as fourteen holes that some researches have been used or hundreds 

of specific holes and its path planning. Those research are validate researches or article from 

authorized website such as Science Direct and Scopus. 

 

2.3.1  Optimization of Drilling Process Using Non-Conventional Method 

This research was published by H.Abdullah et al, (2020) in Malaysia, it is aimed at 

minimize the tool path length in the drilling process in order to decrease the drilling time. The 

optimization algorithm that this paper using is Ant Colony Optimization and Particle Swarm 

Optimization. Both of the algorithms are applied on minimize the drilling path for 158 holes 

in Solidwork Software shows in Figure 2.11. Their result shows that PSO and ACO can reduce 

the tool path length as it compared with other tool path length that produced by Mastercam 

software shows in Table 2.4. 

  

Figure 2-11: A rectangular workpiece with 158 holes 

 

 



24 

Method Total path length, (mm) 

ACO 970.4575 

PSO 947.5632 

GA 1108.1375 

MasterCam 2707.529 

        

            Table 2-4: The Comparison total path length between 4 methods 
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2.3.2 Optimization of Drilling Path Planning for A Rectangular Matrix of holes Using 

Ant Colony Optimization 

This research was published by A.T. Abbas et al, (2011) from Egypt. The paper 

applied the Ant Colony Optimization Algorithm (ACO) for path planning of a Computer 

Numerically Controlled (CNC) drilling on different rectangular matrices with different 

numbers of holes, and the parameters are shown in Table 2.5. This mainly solves the total 

drilling time, which is the travelling salesman problem. A Modified ACO algorithm is 

proposed in this research, and its comparison between modified ACO, basic ACO and Genetic 

Algorithms in terms of tool travel distance. The modified ACO is modified in terms of the 

initial pheromone matrix so that the agent will go from one space to another, which is called 

neighborhood space, without knowing the space is interconnected to improve its performance. 

 

          
   

          
     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Case 

Study 

 

 1 2 3 

Layout of the matrix of holes 4 * 4 5 * 5 11 * 11 

Total number of Holes 20 25 121 

u-directional (Pu) 100.0mm 100.0mm 100.0mm 

v-directional (Pv) 50.0mm 50.0mm 50.0mm 

Lower Bound on optimum path 

length (fL.B) 

1300.0mm 1650.0mm 7050.0mm 

Number of runs performed for 

each algorithm 

50 50 50 

Table 2-5 : Summary of the case study problems 
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2.3.3 Optimization of the multi-hole drilling path sequence for concentric circular 

patterns 

This research paper was published by S.Diyaley et al, (2020) and originated from 

India. Optimizing path sequence is the primary task for facilities substantial reduction in tool 

travelling distance and drilling time. There will be comparison between multiples algorithms 

such as ant colony optimization, artificial bee colony algorithm, particle swarm optimization, 

firefly algorithm, differential evolution, and teaching learning-based optimization algorithm for 

determining the optimal path sequences with the traditional technique which is spiral path 

method in CNC operation due to this research is applied those algorithms on four and five 

consentric circular patterns of holes, and a heat exchanger tube sheet with two thousand and six 

hundreds of holes as three different case studies. The parameters of three case studies are shows 

below Figure 2.12 and Table 2.6 and 2.7. 

 

 

                Figure 2-12: A typical heat exchanger tube sheet 
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Table 2-6: Parameters for Case Studies 1 & 2 

 

 

Table 2-7: Parameters for Case Studies 3 
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2.3.4 Optimizing drilling conditions in printed circuit board by considering hole quality 

This research was published by E.Aoyama et al, (2004) from Japan. It is focused on 

solving the movement time for drilling process on the printed circuit board. The method that 

was applying on this research are conventional and Tracel Saleman Problem (TSP) for certain 

case studies. The case studies for comparison between conventional method and Travel 

Saleman Problem are that a group of contained fifty holes and a combined four group that 

contain fifty holes per group shows in Figure 2.13 and 2.14 respectively. There is a third case 

study with a group of 20 holes arranged in random on the PCB. The comparison between those 

method are separated to four patterns which is the conventional method and TSP will applied 

to the each group continuouly and another is both method applied to all holes as a target. For 

the third case study were abit challenging due to those 20 holes are having randomly arranged 

in Figure 2.15 and will affect the shortening ratio therefore certain formulae is modified for 

TSP. 

 

 

Figure 2-13: Case Study with 50 holes 
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Figure 2-14: Case Study with 4 group of 50 holes combined 

 

Figure 2-15: Case study with 20 holes 
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2.3.5 PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm 

This research was published by W.C.E Lim et al, (2014) from Malaysia. It is focused 

on solving the the drilling path optimization problem on the printed circuit board. For this 

paper, the proposed algorithm is the Combinatorial Cuckoo Search from the modified original 

Cuckoo Search Algorithm, where the agent can not only lay one egg at every net, but it can lay 

eggs at every nest for simulating existing better solutions for a better combinations. 

Furthermore, the modification from the original algorithm selects the best solution to pass on 

to the next generation to ensure the algorithm progresses properly. The third modification is 

considered to introduce a similarity-based mutation to explore promising areas. These 

modifications can ensure the improved efficiency of the algorithm. There are two case studies 

conducted where only 5 holes for different worktable movements from the BCS algorithm, 

shown in Figures 2.16 and 2.17. The worktable movements are separated to two movement 

which the drill will finish travelled x direction and then continue with the y direction and the 

for second movement is both direction are allowed to travel simultaneously.  

 

Figure 2-16: Worktable movement for Case Study 1 
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Figure 2-17: Worktable Movement for Case Study 2 
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2.3.6 Tool path optimization for drilling holes using Genetic Algorithm  

This research was published by D.Khatiwada et al. (2020) and originated from Nepal. 

It attempts to optimize the drilling path in terms of drilling a large number of holes. For this 

paper, the proposed Genetic Algorithm is used to solve some case studies with a large number 

of holes, as shown in Figure 2.18. The case studies take the path obtained by commercial 

software NC plot for comparison with the optimized tool path using the Genetic Algorithm. 

 

Figure 2-18: Raw Data of from Solidworks Model 
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2.3.7 Tool Path Optimization for Computer Numerical Control Machines based on 

Parallel ACO Algorithm  

This research was published by N.M. Rodriguez et al, (2012) and originally from 

Mexico. The paper purpose to optimize the tool path for CNC machines drilling holes in PCB. 

By achiving the purpose, the optimization method is using Parallel Ant Colony Optimization 

Algorithm which the agent can explore different parts of problem space at the same time. There 

are three experiments that conduct using Parallel-ACO with having different holes and 

different parameters respectively in this article which are 10, 27 and 45 holes in Figure 2.8, 2.9 

and 2.10. 

 

 

 Table 2-8: Parameter For Experiment 1 with 10 holes 

 

 Table 2-9: Parameter For Experiement 2 with 72 holes 
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 Table 2-10: Parameter For Experiment 3 with 45 holes 
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2.3.8 Solving Single Tool Hole Drilling Path Optimization Problems using Evolutionary 

Algorithm 

This research was published by M.Madic et al, (2023) and originated from Serbia. The 

paper purpose to investigate whether there exist better hole drilling sequence with optimal drill 

travel path. To solve the travelling salesman problem, the method using in this paper is 

Evolutionary Alogorithm (EA). There are 3 case studies with diffirent of multiple holes applied 

to the EA that have been conducted in this paper. The number of holes from the case1, 2, and 

3 are 15, 18 and 22  respectively in Figure 2.19, 2.20 and 2.21. Those optimal result from EA 

are compared with the result obtained using Feature CAM ommercial software. 

 

Figure 2-19: Placement of holes for Case Study 1 (15 holes) 
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Figure 2-20: Placement of holes for Case Study 2 (18 holes) 

 

 

Figure 2-21: Placement of holes for Case Study 3 (22 holes) 
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2.3.9 Tool Path Optimization of Drilling Sequence in CNC Machine Using Genetic 

Algorithm 

This research was published by N.K.A. Al-Sahib et al, (2014) and originally from Iraq. 

The paper determine to find the optimum shortest path to shorten the drilling time for the 

drilling of a given holes and able to reduce the drilling cost and improve computer numerical 

controlled machine efficiency. To solve the travelling salesman problem, the method using in 

this paper is Genetic Algorithm. There are two case studies based on Travel Salesman Problem 

which having 10 holes and 80 holes respectively shows in Figure 2.22 and 2.23. Those result 

from both case studies will be compered in terms of mechining time with the path obtained 

with the famous CAM software “ArtCAM”, where the software can produce many paths using 

variuos sequencing holes. 

 

Figure 2-22: Case Studies 1 with 10 holes 

 

Figure 2-23: Case Study 2 with 80 holes 
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2.3.10 Tool Path Optimization For Hole Pattern making On Printed Circuit Boards By 

Combinational Of TSP and ACO 

This research was published by V.H.Dao and T.K.Dao, (2018) originated from 

Vietnam. The paper propose to solve the non-productive time to reduce the air time of drilling. 

The research showed to solve the problem, the method are using the combination of Travelling 

Salesman Probelm and Ant Colony Optimization. The Method is applied on a complex Printed 

Circuit Board as an case study for showing the optimal path planning shows in Figure 2.24. 

The combination of TSP and ACO in this research is the TSP will provide the initial estimate 

of drilling path then the ACO will process the path from TSP to get the most optimal path.  

  

Figure 2-24: PCB with 219 specific holes 
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2.3.11 Multi-Hole Drilling Tool Path Planning and Cost Management through Hybrid 

SFLA-ACO Algorithm for Composites and Hybrid Materials 

This research was published by N.Mehmood et al, (2022) and originated from 

Pakistans. The paper focused on consumption of time for optimization of the tool path. The 

method that used in this research is the hybridization of Shuffled Frog Leaping Algorithm 

(SFLA) and Ant Colony Optimization (ACO) metaheuristic algorithms to solve the tool path. 

The proposed method applied for the case study which have numbers of holes with 5, 10, 15, 

20, and 25 and the complexity of the holes is increased exponentially with increasing number 

of holes as evident by the design space, which is 120, 3.6 * 106, 1.3 * 1012, 2.4 * 108, and 1.6 

* 1025 respectively. The results using hyridization of SFLA-ACO for case study in this research 

are testbenched with the original SFLA, modified SFLA, Dynamic Programming(DP), and 

ACO and Immune-based Evolutionary Approach. 

 

Figure 2-25: Holes locations for 10 holes 
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2.3.12 Determination of the optimal drill path sequence using bat algorithm and analysis 

of its optimization performance 

This research was published by S.Diyaley et al, (2019) and originally from India. The 

paper focused on detemination of optimal drill path sequence for CNC machines. The 

algorithm that used in this article is called Bat Algorithm to determine the different case 

studies. Those case studies are different layouts consisting of  5 * 5, 7 * 7, 9 * 9, 11 * 11 matric 

holes in Table 2.11, and a 14 specific holes model in Figure 2.26. The results form those case 

studies are benchmarked between Genetic Algorithm, PSO Algorithm, ACO Algorithm and 

ABC Algortihm. 

 

Table 2-11: Parameters for case studies 

 

Figure 2-26: Schematic diagram of 14 hole model 
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2.3.13 Application of a hybridized cuckoo search-genetic algorithm to path optimization 

for PCB holes drilling process 

This research was published by W.C.E. Lim et al, (2013) and originated from 

Malaysia. The paper is target to solve the path optimization problem for printed circuit board. 

The algorithm used in this article is hybridized cuckoo search-genetic algorithm which is the 

combination of cuckoo search algorithm and genetic algorithm that can improve the agent 

search space to get more solution. The method is applied on to two workpieces which is from 

others research that used PSO and Global Convergence Particle Swarm Optimition (GCPSO) 

for workpiece 1 that have  9 specific holes in Figure 2.27 and workpiece 2 is also taken from 

other reacrch that used Ant Colony System (ACS) in Figure 2.28. There is other case study 

consists multiple holes such as 30, 50, 75 ,100, and 200 of holes for comparison with original 

Cuckoo Search and Genetic Algorithm. For Workpieces 1 and 2 also have comparison in terms 

of polulation number applied, the minimum generation number ofr global convergence and 

average generation number for global convergence. 
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Figure 2-27: Workpiece 1 

 

Figure 2-28: Workpiece 2 
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2.3.14 A Kalman Filter Approach to PCB Drill Path Optimization Problem 

This research was published by N.H.A.Aziz et al, (2017) and originally from 

Malaysia. The paper is target to find the solution to solve when the number of holes for drilling 

increased and the number of possible solutions will also increase. The method in this paper 

using is Simulated Kalman Filter that inspired from Kalman Filter. There is a benchmarking 

between proposed proposed method SKF and Particle Swarm Optimization (PSO), Ant Colony 

System (ACS) and Cuckoo Search (CS) due to the case study for comparison is using the same 

PCB workpiece that consists 14-holes for drilling shows in Figure 2.41. 

 

Figure 2-29: PCB workpiece with 14 Specified Holes 
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2.3.15 Simulation Approach of Cutting Tool Movement Using Articficial Intelligence 

Method 

This research was published by H.Abdullah et al, (2015) and originally from Malaysia. 

The article targetting to solve the default tool path generated by CAD/CAM system which 

produced longer distance and increase the drilling time. The methods that used to solve those 

problems are Genetic Algorithm and Ant Colony Optimization. The Genetic Algorithm is used 

for optimizing the cutting tools movement and the Ant Colony Optimization to generate the 

shortest tool path. For case study in this paper is a PCB workpiece modal with consisting 76 

holes shows in Figure 2.42 as the 3D model and Figure 2.43 in 2D view. The result outcome 

from GA and ACO are compared with MasterCAM software. 

 

Figure 2-30: The 3-dimension PCB workpiece with 76 holes 
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Figure 2-31: 2-Dimensions PCB Modal with 76 holes 

 

 

 

2.4 Summary  

Past research is mostly aimed at solving and finding the best path planning and 

optimization of the path when it comes to PCB drilling. Although the aims are the same, the 

methods applied to the problems are different in terms of the behaviours of the algorithm. Plenty 

of metaheuristic algorithms still have not been explored and applied to these problems. For 

example, a table has shown the algorithms that are used for path planning, and 9 algorithms are 

going to be used for benchmarking with the model and will be shown in Chapter 4. Therefore, 

the algorithms that have not been published and researched are because of the possibility of the 

algorithm is able to apply to finding the best path planning. 
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METHODOLOGY 

 

3.1 Introduction 

 In this chapter, the explanation will roughly show the Whales Optimization 

Algorithm on adaptation of algorithm to PCB path planning along with the research had been 

done. The first pace that going in this project will be follow as understanding the method 

applied. After that comes with the overview combination of the method with the path planning. 

The process for this project will also be clarified in this chapter.  

3.2 Project Overview 

The overview for the project flowchart is shown in below Figure 3.1. For this semester, 

the Final Year Project will be conduct by proposing the purpose to carry out this project. The 

objectives and problems of this project will be determined after the proposed project. The limits 

of the project need to clarify in scope of the project with details. For analyzing the method 

applied on the project, literature studies and investigation have to be done in order to understand 

the requirement need in the project. In order to acknowledge to the development and stracture 

of the project, past researches have to be done as much as possible related to the project to 

assists in developing. The software acts as an important path for conducting this project, the 

functionality of the software indeed must be well-knowledge to let the project progress 

smoothly.  
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Figure 3-1 : Project Flowchart of Final Years Project 1 & 2 
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The development of the method used in this project will be conducted by taking the 

optimal result. Before taking the result, the function that is applied to the method is identified 

and ensure that the function is suitable for this method. The applied function must be combined 

with the method to get the optimal result. To get the optimal result, the method must be 

demonstrated to ensure the results are accurate. To safeguard a reliable result, understanding 

each program function of the project is a necessary process. After the understanding of the 

whole program functionality, the actual equation will be applied on the program for taking the 

actual optimal result. The testing and analysis of the optimal outcome will be followed. The 

result will be benchmarked with other different methods to compare the methods. After the 

comparison is finished, the outcome will be concluded and carried out in this first fiscal year 

project. 

For planning the second fiscal year project, the method will focus on tuning in terms 

of parameters to get more accurate results on optimization. Understanding another function of 

the software will also be one of the processes to achieve before getting the best optimal result. 

After acknowledging the software, the demonstration will be conducted and improvising on the 

combination between the method and the software will also be developed simultaneously to 

ensure the result is benchmarkable. Following the processes will be the testing and 

benchmarking the optimal result between the other methods with this project’s method.  

The flowchart of this project is roughly shown in Figure 3.1, and the Gantt chart for 

final year projects 1 and 2 are also shown below in Table 3.1 and Table 3.2. The planning for 

the second fiscal year of the project is going through as planned according to what can be 

improved from the project's fiscal year. The Flowchart and Gantt chart shows the progress of 

the project and how it was carried out within the two semesters. The Gantt Chart shows the 

expected progress of the project as represented with red line box, while the actual progress is 

shaded sky blue for Table 3.1 and dark purple for Table 3.2. 
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Table 3-1: Gantt Chart of Final Years Project 1 
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Table 3-2: Gantt Chart of Final Years Project 
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3.3 Whales Optimization Algorithm on Printed Circuit Board   

 

 

 

The model will be applied with the Whales Optimization Algorithm using Zhu’s 

(2006) 14-hole drilling problem in Figure 3.2. The problem has been chosen due to its 

complexity, and multiples research papers have been published using this as a case study 

with different optimization algorithms in Hidayati et al (2016), Lim et al (2013), Daadoo 

et al (2017), Dalavi et al. (2019), Diyaley et al. (2019), Asrani et al (2011) and Omar et al. 

(2014). The Printed Circuit boards are assumed to have a length of 100mm and a width of 

70mm. The objective of this problem is to drill 14 holes scattered around the PCB. These 

holes are assumed to be the same size. The coordinates for each hole in the Printed Circuit 

Board model are stated in Table 3.3. The targeted optimal result is 280mm as the best 

optimal distance for benchmarking with other existing algorithms and the path planning is 

connected in a specific route shown in Figure 3.3 from Zhu’s (2006) where the path can be 

either the path having sequence 2–3 4–7–8–13–14–10–11–12–9–6–5–1 or 1–5–6–9–12–

11–10 14–13–8–7–4–3–2 where the optimal result is 280mm. 

Hole 
No. 

Coordinate 
(x,y) 

Hole 
No. 

Coordinate 
(x,y) 

Hole 
No. 

Coordinate 
(x,y) 

Hole 
No. 

Coordinate 
(x,y) 

1 (10,10) 5 (32.32,12.66) 9 (62.3,26.4) 13 (72.59,55.75) 

2 (10,60) 6 (37.7, 26.4) 10 (90, 10) 14 (90, 60) 

3 (18, 53.6) 7 (37.7, 43.6) 11 (82, 16.5)   

4 (18, 42.5) 8 (62.3, 43.6) 12 (82, 27.5)   

Table 3-3 : Coordinates for 14 Holes 



52 

 

Figure 3-2: Case Study with 14 Holes 

 

Figure 3-3: Optimal Solution For Case Study 

The model will be applied with the Whales Optimization Algorithm to test with 

larger-size problems compared with Lim et al. 2013, which are 50-hole case studies and 

100-hole case studies, shown in Tables 3.4 and 3.5. The result will be benchmarked with 

Lim’s previous case study, which has a Cuckoo Search Algorithm, a Genetic Algorithm, 

and a Hybrid Cuckoo Search with a Genetic Algorithm. 
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3.4 Modeling in Whales Optimization Algorithm 

The combination of path planning with the Whales Optimization Algorithm is 

related to the applied fitness function. The fitness function in this project uses the 

Manhattan Distance to calculate the distance between the holes, and the total distance will 

be the solution. The solution will be optimized to get to the best solution according to the 

iteration and the number of Whales. The beginning of the process will initialize the agents, 

and the total distance as the solution will be randomly calculated from the 14 holes using 

the equation (Manhattan distance), and each agent will calculate and find the best solution 

multiple times according to the iteration—the parameters used in S. Mirjalili and A. Lewis 

(2016) applied this optimization process because most of the Whales Optimization 

Algorithm is caused by its parameters. The flowchart of the modeling is shown in Figure 

3.4.  

 

Possible Holes Route Total Distance (mm) 

Distance 1-2-3 11 

Distance 1-3-2 13 

Distance 2-1-3 16 

 

Table 3-4 : Possible Holes Route with Different  Total Distance 

 
 

Following the flowchart, the modal will initialize the population as Xi and Fitness 

Function Calculation of the initial whale solutions. Examples shows in Figure 3.4 shows 

the 3 coordinates and the 3-hole model and possible route solution will be like X1 = {(2,3), 

(5,7), (8,6)}, X2 = {(2,3), (8,6), (5,7)}, X3 = {(5,7), (2,3), (8,6)}, stated in Table 3.4 with 

repective order of drilling holes. Then the algorithm calculates the fitness value of each 

possible route by computing the total drolling path length. The fitness function is defined 
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using the Manhattna distance formula stated in Chapter 2 due to beachmark with other 

papers that used the equivilant fitness function.  

After the algorithm begin, the iterative process will starting to run from 0 to 10000 

by setting the iteration counter t = 0. At each iteration, t is increamented by 1and the process 

continues until a proedefined stopping condition, such as a maximum number of itreations 

10000 which has set or the convergence of the best solution is satisfied in its iteration. In 

each iteration, the parameters such a, A, C, l, and p are updated to guide the exploration 

and exploitation process. The parameter a decreases linearly with each iteration stated in 

Chapter 2, where value a from 2 to 0 for iterations to control the search radius of each 

whale, which a high value will allow a larger search jump and vice versa in both exploration 

and exploitation phase. Parameter A is a random value representing [-1,1] as a range that 

will force the agent to move away from other agents to prevent matching up with the same 

agent and getting the same position in the exploration phase. For A in the exploitation 

phase, there is also a random value in the interval [-a, a] where a is decreased from 2 to 0 

throughout iterations. The parameter C represents a number between 2 and 0, determined 

by r, a random vector in between [0,1]. For parameter l is a random number between [-1,1] 

and is an element-by-element multiplication in the equation stated in Chapter 2. By 

recognizing humpback whales swim in a spiral pattern and in a diminishing circle around 

their prey.  

Depending on the randomness of parameter p determines the phase in which the 

whales engage. Suppose the value p is smaller and value A is greater than or equal to 1; the 

whales will enter the Exploration Phase, and the solution Xi allows the algorithm to search 

for new regions in the boundary space by moving the whale to a position relative to the 

randomly selected whale Xrand. The new position calculation is stated in Chapter 2 as 

Position for Initial Exploration Phase. For instance, the Xrand = {(2,3), (5,7), (8,6)} and Xi  
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=  {(5,7), (2,3), (8,6)}, and the terms A = 1.5 and C = 1.2, there will be an updated and 

calculated position for each coordinate and a new fitness function is formed. If the value A 

requirement is smaller than 1, the starting fitness value will be updated as a solution. In the 

exploitation phase, when the value p is greater than 0.5, the whales are focused on 

exploiting the prey. In this phase, the value of Xi is updated relative to the current best 

solution as X* stated in Chapter 2 as the Spiral Equation for Exploitation Phase formula. 

As the example model, if X* = X2 = {(5,7), (2,3), (8,6)} and Xi  = {(2,3), (8,6), (5,7)}, the 

coordinates of Xi are updated iteratively to approach Xi. 

After updating the position, the algorithm ensures that all coordinates remain 

within the predefined grid boundaries, such as in the example modal; the initialization 

function generates search agents’ positions within the range [-100000, 100000] for each 

dimension. This creates enormous search space and allows for extensive exploration. Since 

only 3 coordinates and 3 possible optimal routes are shown in Table 3.4, the result will be 

less different due to very few dimensions. If any whales are searched outside the boundary, 

their position will be corrected, and their fitness function will be recalculated. The new 

position will be updated until the iteration is shown in Figure 3.4. 
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Figure 3-4: Flowchart of the modeling 
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Number of Holes Coordinate hole (x,y) 

1 (2,3) 

2 (5,7) 

3 (8,6) 

 
Table 3-5 : Coordinates of 3 Holes 

 

 Hole 1 Hole 2 Hole 3 

Vote -15.1652 -10.1193 36.8372 

Arranged 36.8372 -10.1193 -15.1652 

Sequence 3 2 1 

 

Table 3-6 : Step of Arranging the Vote 

 
The Whales Optimization Algorithm's visualization is proposed for continuous 

optimization problems like Path Planning for Printed Circuit Board. The population of 

humpback whales can search through a multi-dimensional search space to maximize the 

sequence requirement for a problem. In the path planning optimization problem, the 

sequence value represents the number of holes required. An example of a 3-hole printed 

circuit model is shown in Figure 3.5 and Table 3.7 for each coordinate. 6 possible path 

plans can be routed in the x-axis and y-axis, and the path ends where the last three holes 

are entered. There are 3 different paths (1-2-3), (1-3-2), and (2-1-3), and Manhattan 

Distance calculates the total distance as the whale's fitness function. For example, the 

boundaries are set from -100000 to 100000, and certain votes are generated randomly 

according to the number of dimensions. The number of dimensions, dim is according to 
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the number of holes shown in Figure 3.5. For instance, Figure 3.6 has 3 holes with 3 dim 

and will generate 3 numbers within the boundary range. Table 3.8 shows the steps when 

the votes are generated from the boundaries, and it will be arranged from the greatest to 

the smallest to acknowledge the sequences of the vote and place the sequence following 

the original vote shown in the MATLAB coding in Figure 3.6 and others coding will be 

in the Appedix . The agents will start encircling within their search space to adapt to the 

case study and try to find the prey. When the agent has found the prey(solution), the agent 

starts the exploitation phase as it will update its position, as shown in Table 3.4. Due to 

the other three possible routes, (2-3-1), (3-1-2), and (3-2-1), they have the same total 

distance as others in Table 3.4. For this example, the (1-2-3) is the best result found by 

the fitness function applied on each agent and will be updated as the best solution.  

 

 
 

Figure 3-5: 3 holes model in 10 * 10 size 
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Figure 3-6 : Setting and Coding vote for Exmpl  
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

The purpose of this chapter is to explain the result during the performance and 

implementation of WOA on finding the optimal result of multiple case studies with others 

algorithm. The result is analyzed in terms of efficiency and the stability of the algorithm 

applied on different case studies. 

4.2 Parameter  

 

 

Settings and Parameters Standard WOA 

Number of Whales, n      500 

Number of Iteration     10000 

A    [-1 ~ 1] 

(force agent to move away from a 

reference whale) 

C      [0, 2] 

b         1 

l      [-1, 1] 

p        0.5 

Table 4-1 : Settings and Parameters for Whales Optimization Algorithm 
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The Whales Optimization Algorithm is implemented to solve Zhu, 2006)14-hole 

drilling problem. The complexity of the problem is stated as 14 holes with a specific 

coordinate, which are scattered around the PCB. The result of this project uses the different 

values of agent and iteration to match and compare with the case study of Aziz et al. (2016), 

but the same parameters are used in S. Mirjalili and A. Lewis 2016 paper. The number of 

whales, iterations, and parameters are shown in Table 4.1. According to Table 4.1, the 

value has been set for benchmarking with other algorithms, which also applied the same 

number of agents and iterations. Other parameters such as A, C, b, l, and p values are 

followed according to the paper and can be used in this drilling path case. Parameter A 

helps to balance exploration and exploitation. Parameter C introduces randomness in 

scaling the distance between the whale and the best solution. Parameter b is a constant that 

defines the logarithmic spiral’s shape. l is a random number in the range [-1,1] to add 

randomness to the spiral movement in the exploitation phase. Value p is the parameter used 

to choose between exploitation and exploration. 

 

 

 

 

 

 

 

Study Zhu's (PSO) Othman Adam 
Number of Agents n 100 50 50 
Number of Iterations t 10000 2500 5000 
Number of Computations 50 50 50 
Inertia Weight w 0.0, 0.5, 1.0 0.9 - 0.4 0.9 - 0.4 
Cognitive Component c1 Not available 1.42 1.42 
Social Component c2 Not available 1.42 1.42 
Randomizer r1,r2 Random number [0,1] Not applicable Random number [0,1] 

Table 4-2 : Parameter for PSOs’ 
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Study SAEALAL (ACS) Lim (CSGA) Aziz (SKF) Omar (GSA) Asrani (FA) 

Number of Agents n 25 50 50 50 50 

Number of Iterations t 2500 4000 1000 2500 10000 

Number of Computations 50 50 50 50 50 

DECISION FACTOR, r0 0.5 Not applicable Not applicable Not applicable Not applicable 

Local evaporation factor, p1 0.3 Not applicable Not applicable Not applicable Not applicable 

Global evaporation factor, p2 0.3 Not applicable Not applicable Not applicable Not applicable 

Discovery Rate of Alien eggs, 
pa 

Not applicable 0..1667 Not applicable Not applicable Not applicable 

Crossover Rate, ac Not applicable 0.2143 Not applicable Not applicable Not applicable 

Mutation Rate, ah Not applicable 1 Not applicable Not applicable Not applicable 

Measurement Noise (R) Not applicable Not applicable 0.5 Not applicable Not applicable 

Process Noise, Q Not applicable Not applicable 0.1 Not applicable Not applicable 

Initial Estimate Error, P Not applicable Not applicable 1000 Not applicable Not applicable 

Gravitational Constant, G0 Not applicable Not applicable Not applicable 100 Not applicable 

Alpha, α Not applicable Not applicable Not applicable 20 Not applicable 

Epsilon, e Not applicable Not applicable Not applicable 0.01 Not applicable 

Attractiveness β0 Not applicable Not applicable Not applicable Not applicable 1 

Randomization Parameter α Not applicable Not applicable Not applicable Not applicable 1 

Absorption Coefficient γ Not applicable Not applicable Not applicable Not applicable 1 

Table 4-3 : Others’ Parameter 

 
Table 4.2 and 4.3 compares several algorithms applied to the 14-hole PCB 

drilling optimization problem, focusing on the Particle Swarm Optimizations (PSO), Ant 

Colony System (ACS), Cuckoo Search-Genetic Algorithm (CSGA), Simulated Kalman 

Filter (SKF), Gravitational Search Algorithm (GSA) and Firefly Algorithm (FA). Each 

algorithm is tuned with specific parameters to optimize the drilling path. The parameters 

are followed by the case study from Aziz et al. SKF Algorithm has used PSO, ACS, CSGA, 

and SKF itself. For GSA and FA is according to the original paper. 
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4.3 Implementation and Results 

 

 

The algorithm performance comparison differing the result between the 

published results obtained by Zhu’s (2006) Basic Particle Swarm Optimization Algorithm, 

Othman et al’s (2011) Global Convergence PSO, Adam et al’s (2010) Global convergence 

PSO with decreasing inertia weight, Saealal et al’s (2013) Ant Colony System, Lim et al’s 

(2014) Cuckoo Search, Aziz et al’s (2016) Simulated Kalman Filter, Omar et al’s (2014) 

Gravitational Search Algorithm and Lit et al’s (2011) Firefly Algorithm is shown in Table 

4.2. The comparison shows the least iteration number during global convergence, the 

Performance 
Indicators 

Basic 
PSO 
(ω=1.0) 

BPSO 
(ω=0.9-
0.4) 

GC 
PSO 
(ω=0.9-
0.4) 

ACS CS SKF GSA FA Our 

The least 
iteration 
number during 
global 
convergence 

93 71 7 193 23 27 87 22 209 

The average 
iteration 
number during 
global 
convergence 

847 783 353 1,037 429 73 632.36 1652.4 506.2 

The least 
number of 
solutions 
searched 

13,950 3550 350 4,825 2,300 2,700 4350 1100 10,450 

The average 
number of 
solutions 
searched 

127,050 39,150 17,650 25,925 42,900 7,300 31,618 82,620 253,100 

The least search 
ratio (%) 3.20e-5 8.14e-6 8.03e-7 1.11e-5 5.28e-6 6.19e-6 9.98e-6 2.52e-6 2.39-e-5 

The average 
search ratio (%) 2.91e-4 8.98e-5 4.05e-5 5.95e-5 9.84e-5 1.67e-5 7.25e-5 1.89e-4 5.8e-4 

Average fitness 
after computing 
50 
computations  

289.6 296 292.29 283.6 291.3 291.6 280.5 288.2 293.6 

Table 4-4 : Performance Comparison 
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average iteration number during global convergence, the least number of solutions 

searched, the least search ratio, and the average search ratio. Other performance indicators, 

such as the lowest and average iteration numbers, have been added compared to the usual 

performance comparison. Other added performance indicators are the least number of 

solutions searched, the average number of solutions, and their respective ratio due to the 

published paper using different numbers of agents in the population.  

 

To get the search ratio, Aziz et al. (2016) SKF algorithm came up with an 

equation in Equation 4.1, which shows the total Searched Solution divided by Solution 

Space. The total searched solution is given by the number of iterations required, multiplied 

by the number of agents used, and the solution space is 14! divided 2 due to the total 

optimal sequence being 280mm in 2 sequences, which is 2-3-4-7-8-13-14-10-11-12-9-6-

5-1 and 10-11-12-9-6-5-1-2-3-4-7-8-13-14. In total, there are 43 589,000,000 solutions in 

solution space. The search ratio is split out into 2, which is the least and average search 

ratio.   

 

                            𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

                            [4.1] 

Equation 4-1 : Search Solution 

 
From the implementation, WOA obtained one of the optimal solutions of 280 mm 

given by the optimal sequence of 10-11-12-9-6-5-1-2-3-4-7 8-13-14. Table 4.2 shows the 

WOA have a moderate performance in finding the optimal result compared to those 

algorithms. Table 4.2 shows the least iteration number during global convergence measures 

the minimum number of iterations required by each algorithm to converge to a global 

solution during its best run. A lower value which means a faster convergence rate. From 
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those algorithms, GC PSO (ω = 0.9-0.4) from Zhu’s 2006 shows the fastest and most 

efficient algorithm, which only needs 7 iterations. Followed by Cuckcco Search (CS)  and 

Firefly(FA), both showing similar good performance with 23 and 22 iterations, 

respectively. However, our’s is the slowest, which took 209 iterations to get the best 

solution. The average iteration number during global convergence for WOA is 506.2. 

Among other algorithms, WOA, which is higher than many competing algorithms, is 

because the adaptive algorithm has to balance between exploration and exploitation shifts 

depending on the situation it is facing. This shows the benefit of finding global optimal 

results. The WOA evaluates 10450 solutions, which is significantly higher than other 

algorithms; this reflects WOA’s emphasis on solution exploration, ensuring a wide range 

of solutions is considered before focusing on promising areas of the search space. For the 

average number of solutions searched by WOA is 253100 in Table 4.2. This is due to how 

WOA mimics whales' hunting behaviours, where the results are cross-checking through 

spiralling and encircling techniques. The WOA relies on a balance of stochastic exploration 

and deterministic exploitation, causing the lowest search ratio to be 2.39e-5, shown in 

Table 4.2. For the average search ratio, WOA performs at one of the highest among other 

algorithms, with 5.8e-4. This indicates that WOA explores an enormous search space 

across each run, enhancing the robustness in finding high-quality solutions. 
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The results are shown in Table 4.3 in two case studies: 50 holes and 100 holes 

from Lim et al. (2016) with CS, GA, and CSGA. The implementation of both case studies 

found the average and best optimal route. The result shows that WOA is not suitable for a 

large-scale problem. For example, the case study, which was 100 holes, shows an 

enormous scale of difference in WOA. 

 

 

 

 

 

 

 

 

Case Study Problems PCB with 50 holes PCB with 100 holes 

CS (Average) 79.270mm 156.298mm 

GA (Average) 70.479mm 109.576mm 

CSGA (Average) 69.412mm 97.783mm 

WOA (Average) 142.841mm 343.645mm 

CS (Best) 75.465mm 144.880mm 

GA (Best) 68.605mm 106.651mm 

CSGA (Best) 68.299mm 94.693mm 

WOA (Best) 92.469mm 188.378mm 

Table 4-5 : Comparison of WOA with CS, GA, and CSGA for study problem 
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4.4 Analyzing the result 

The global convergence curve is a tool used to understand how WOA operates. 

It displays the combination pattern of fitness across from 0 to 10000 iterations affected by 

the convergence curve. This is to observe the stabilization of the modal in terms of average 

fitness and convergence curve. Figure 4.1 shows the best optimal route is 280; the hole 

sequence is 10-11-12-9-6-5-1-2-3-4-7-8-13-14. and graph of the convergence curve and 

average fitness. The balancing of WOA can be observed from the right panel graph where 

the convergence curve and the fitness curve are synchronized when the convergence has 

a steep drop. The fitness curve also has a steep drop until the convergence has become 

linear. The average fitness shows a gradual improvement to discover the optimal result as 

the algorithm balances exploration and exploitation. 

 

               Figure 4-1 :The Route and Global Convergence for Best Result  
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Figure 4.2 showcases the Whale Optimization Algorithm (WOA) on the worst 

optimal result among the 50 runs. The left panel displays the optimized path on 309.5mm, 

and the hole sequence is 6-5-1-2-3-4-7-8-9-13-14-12-11-10. The right panel highlights 

the convergence, with an initial rapid drop in the best fitness value. The average fitness 

was rebalancing the exploitation and exploration behavior and instantly climbed up to 

almost 650mm, while the convergence discovered the optimal result after 2000 iterations.  

 

Figure 4-2 : The Route and Global Convergence for Worst Result 
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Figures 4.3 and 4.4 are the best and worst for the case study 50 holes Lim et al. 

(2013). The left panel in Figure 4.3 shows the most optimized routing path for all 50 holes, 

achieving the shortest possible distance, which is (92.469mm) and the right panel displays 

the convergence curve, where the best fitness value rapidly decreases and stabilizers after 

around 2000 iteration, indicating efficient convergence to the global optimum. Figure 4.4 

on the left panel is the worst result (190.6mm), and the route will also be more complex 

compared to Figure 4.3. The right panel of Figure 4.4 shows a slower convergence with 

fluctuations in average fitness values, showing difficulty in consistently refining the 

solution. 

 

Figure 4-3 : The Route and Global Convergence for Best Result 

 

 

Figure 4-4 : The Route and Global Convergence for Worst Result 
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The results shown in Figures 4.5 and 4.6 are from one of the Lim et al. (2013) 

case studies, which contain 100 holes. Figure 4.5 shows the best result from these 10000 

iterations with 500 whales, where the optimal routing is 228.84mm on approximately 4000 

iterations. Figure 4.6 illustrates the worst result, 407.372mm to finish the route and slower, 

fluctuating convergence requiring more iterations to stabilize.  

 

   
 

Figure 4-5 : The Route and Global Convergence for Best Result 

 

 
 
 

Figure 4-6 : The Route and Global Convergence for Worst Result 
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4.5 Implementation on Parameter b  

In the Whale Optimization Algorithm, parameter b enables the variable to 

discover the suitable parameter to modify the WOA to get the optimal time costing to find 

the optimal result. Parameter b in WOA is used to manipulate the spiral updating position 

during bubble-net hunting simulation, such as the tightness and shape of the logarithmic 

spiral that models the whale’s movement. The method used to find the suitable parameter 

value was set as 50 runs a row, and the average result and the standard deviation after 

finishing running were observed. This method was applied to the case study 14 holes. The 

parameter b has been set from 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, and 100, and the boundaries 

have been set from 100, 500, 1000, 5000, 10000, 50000, 100000, and 500000 in other 

words the range between -50 to 50 for 100 etc. shown in Table 4.4 and Table 4.5.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 4-6 : Comparison Standard Deviation for Parameter b 

 
 

               Boundaries 
 
Parameter b 

100 500 1000 5000 10000 50000 100000 500000 

0.01 8.9 7.01 9.14 8 9.16 8.12 9 8.5 

0.05 7.73 7.88 8.67 8.29 8.67 6.78 9.04 8.64 

0.1 8.46 8.3 7.53 8.07 8.46 8 9.07 8.62 

0.5 8.5 8.14 7.84 8.5 7.7 8.15 8.47 7.56 

1 8.19 7.23 7.86 7.7 8.1 6.5 7.6 8.2 

5 5.23 5.5 5.35 5.54 5.3 6 6.88 5.62 

10 5.86 6.72 6.51 6.29 4.88 6.3 6.16 6.34 

50 7.18 6.42 7 6.3 7.95 6.3 7.2 5.7 

100 6.96 6.05 6.5 7.76 6.08 7.8 4.95 6 
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Table 4-7 : Comparison Average Fitness for Parameter b 

 
 
 
 
 

         Boundaries 
 
 
Parameter b 

100 500 1000 5000 10000 50000 100000 500000 

0.01 293.3mm 291.4mm 293.42mm 292.4mm 293.2mm 293.73mm 292.37mm 293.3mm 

0.05 293.96mm 292.75mm 293.65mm 292.54mm 293.65mm 293mm 293.76mm 292.56mm 

0.1 292.88mm 295.38mm 293.71mm 291.78mm 298.88mm 292.6mm 294.11mm 293.54mm 

0.5 291.48mm 292.19mm 293.14mm 292.47mm 294.18mm 292.74mm 292.23mm 291.32mm 

1 292.97mm 292.99mm 294.13mm 293.64mm 293.79mm 289.85mm 291.45mm 292.45mm 

5 289.91mm 289.03mm 292.71mm 289.03mm 292.56mm 290.83mm 289.3mm 291.55mm 

10 291.13mm 290.4mm 289.25mm 292.66mm 289.1mm 292.66mm 290.52mm 291mm 

50 292.1mm 293.03mm 293.86mm 293.65mm 292.8mm 293.65mm 291.83mm 294.23mm 

100 293.49mm 291.66mm 291.64mm 294.8mm 292.55mm 294.77mm 294.13mm 291.64mm 
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4.5.1 Analysis 3D and 2D Graph 

Tables 4.4 and 4.5 show the general comparison, and it would be difficult to 

observe. Therefore, to know the difference between the value of Average Fitness and the 

Standard Deviation, a 3D and a 2D graph will be appropriate to observe, as shown in 

Figure 4.7 and Figure 4.8, respectively. Figure 4.7 shows the 3D view of Table 4.4 to 

observe the suitable parameter that can enhance the performance of WOA. The 3D graph 

has Parameters B on the z-axis, Standard Deviation on the y-axis, and the x-axis is the 

Boundaries. The range of Standard Deviation has been arranged into multiple colors, 

shown in Figures 4.7 and 4.8, respectively, to recognize the better and worse parameters 

for WOA. In Figure 4.8, a top view of the 3D view made a clear difference in parameter 

b. Parameter b in 5 is the most suitable parameter in this case study, and the worst 

parameter b, which is 0.01-0.5, is shown in the Graphs. This result indicates that 

parameters b from 0.01 to 0.5 have produced a tighter spiral modal that causes the Whales 

not to be able to balance the behaviors between exploitation and exploration. The best 

parameter to enhance WOA performance is value 5 for parameter b, which is the green 

color area, as shown in Figure 4.8. Parameter b value 5 has the best standard deviation 

value for almost all set up boundaries. 
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Figure 4-7 : 3D View of Standard Deviation 

 
 

Figure 4-8 : 2D View of Standard Deviation 
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Tables 4.9 and 4.10 show the Average Fitness in 3D and 2D graphs for Parameter 

b. This graph shows which Parameter consistently gets the optimal result, and the value 

approaching 280mm is considered to have multiple optimal results in 50 runs. From Figure 

4.9, the highest value is located on parameter b 0.01. Most results are between 290mm and 

295mm, mainly covering parameters b 0.01, 0.05, 0.1, 0.5, 50, and 100, which show that 

these parameters are unsuitable for WOA to generate these sizes of spiral for finding the 

optimal result due to the unable to balance the exploitation and exploration in terms of the 

relationship of the shape of spiral and boundaries that have set up. The most critical hit is 

on parameter b 0.1 in 10000 boundaries, where the value has hit 298.88mm on average, as 

shown in Figure 4.9. Parameters b 5 and 10 have multiple average fitness values close to 

280 in 50 runs, 289.03 on the average fitness observed from the 2D graph shown in Figure 

4.10. 

Figure 4-9 : 3D View of Average Fitness 
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Figure 4-10 : 2D View of Average Fitness 
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CONCLUSION  

5.1 Introduction 

Chapter 5 summarizes all the primary research points of this study and concludes 

crucial information and observations made during this project. These findings focus on the 

project's objective, which is to research the pass algorithm used for the case study stated in 

Chapter 4 and determine the algorithmic parameter to select to construct the better result 

of finding the optimal result. The parameter has been tested to guarantee optimal fitness in 

multiple case studies.  

5.2 Achievement of Project 

The objective of this project was to review the existing computational algorithms 

and their case studies that have been done in previous literature reviews with different 

cases. The Explanation of the Whales Optimization Algorithm is applied with Manhattan 

Distance as the Fitness Function for benchmarking with other Algorithms such as Basic 

PSO, Binary PSO, Global Convergence PSO, Ant Colony System, Firefly, Simulated 

Kalman Filter, Cuckoo Search, Gravitational Search, and Firefly which these Algorithms 

are also applied Manhattan Distance Equation as their fitness function. A table summarises 

the algorithms applied to optimize the drilling path, and a few use the Manhattan Distance 

Equation, where a table summarizes the algorithms in Chapter 4. The table also shows the 

benchmark values, such as the least iteration number, the average iteration number, the 

least number of solutions searched, etc. It proves that WOA is an average algorithm for 

solving 14 holes with the default parameters settings from the origin paper due to its 

balancing between exploitation and exploration to get a better and more convincing result.  
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The Modeling of the Whale Optimization Algorithm has shown in Chapter 3, 

arranging a sequence of the vole to get a particular fitness value to search for the optimal 

fitness value.  

To prove the balancing of the Whale Optimization Algorithm, the table and graph 

show the changes in manipulating parameter b that will affect the shape of the spiral during 

the exploitation phase. The tables in Chapter 4 show the standard deviation and average 

fitness of 9 different values of parameter b with 8 different boundaries for the search space, 

which shows that the best parameter b value for the 14-hole case study is 5. 

 

5.3 Future work  

Recommendations for further research are important to achieve a better result and 

analysis. A good-performance laptop is recommended to use for this project because to it 

time spent collecting data is enormous. To get a better analysis of this modal of algorithm 

tunning in terms of its parameters is also an objective to make the modal more efficient on 

getting the optimal result for those types of case study. 
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APPENDICES 

Appendix A  Part of MATLAB Coding 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

% This function initialize the first population of search 
agents 
function Positions=initialization(SearchAgents_no,dim,ub,lb) 
Boundary_no= size(ub,2); % numnber of boundaries 
% If the boundaries of all variables are equal and user 
enter a signle 
% number for both ub and lb 
if Boundary_no==1 
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb; 
end 
% If each variable has a different lb and ub 
if Boundary_no>1 
    for i=1:dim 
        ub_i=ub(i); 
        lb_i=lb(i); 
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-
lb_i)+lb_i; 
    end 
end 
 

Coding  1 : WOA Initialization Program  
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% This function containts full information and implementations of the 
benchmark 
% functions in Table 1, Table 2, and Table 3 in the paper 
% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d] 
% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d] 
% dim is the number of variables (dimension of the problem) 
function [lb,ub,dim,fobj] = Get_Functions_details(F) 
switch F 
    case 'PCB14' 
        fobj = @F1; 
        lb=-100000; 
        ub= 100000; 
        dim=14;  
 
    case 'Exmpl' 
        fobj = @Exmpl; 
        lb=-100000; 
        ub= 100000; 
        dim=3;  
 
    case 'PCB50' 
        fobj = @F2; 
        lb=-100000; 
        ub= 100000; 
        dim=50;  
 
    case 'PCB100' 
        fobj = @F3; 
        lb=-100000; 
        ub= 100000; 
        dim=100;  
end 
 
% F1 
function total_distance = F1(vote) 
 
[arranged, sequence]  = sort(vote, 'descend'); 
 
    hole_positions=[10, 60; 10, 10; 18, 16.5; 18, 27.5; 32.32, 57.34; 37.7, 
43.6; 37.7, 26.4;  
                    62.3, 26.4; 62.3, 43.6; 90, 60; 82, 53.5; 82, 42.5; 
72.59, 14.25; 90, 10]; 
 
total_distance = Manhattan_Distance_Calculation_Fucntion(hole_positions, 
sequence); 
end 
 

Coding  2 : Get Functions Detials Program (Start) 
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% F2 
function total_distance = F2(vote) 
 
[arranged, sequence]  = sort(vote, 'descend'); 
 

    hole_positions=[0.499, 2.852; 5.162, 8.129; 0.610, 7.264; 8.993, 
7.366; 9.100, 6.674; 
                9.375, 1.209; 8.220, 0.170; 2.765, 9.382; 0.131, 4.988; 
7.735, 0.839; 
                0.086, 5.636; 7.477, 3.258; 0.020, 0.007; 0.258, 7.957; 
2.500, 2.048; 
                8.307, 0.432; 5.250, 6.458; 2.530, 8.880; 6.591, 4.521; 
1.100, 7.875; 
                1.031, 4.026; 7.231, 9.284; 8.886, 4.514; 1.552, 0.162; 
1.393, 5.655; 
                7.811, 5.002; 9.361, 2.065; 3.201, 1.493; 9.997, 1.286; 
6.958, 9.044; 
                9.188, 7.210; 3.558, 9.303; 1.520, 2.461; 3.859, 9.867; 
8.968, 6.672; 
                2.927, 1.423; 7.902, 0.017; 3.494, 7.399; 4.401, 0.138; 
4.097, 3.576; 
                3.530, 3.771; 4.089, 8.296; 0.382, 9.086; 2.573, 1.264; 
3.981, 3.218; 
                3.278, 3.473; 4.852, 5.242; 8.533, 5.056; 3.455, 5.692; 
5.871, 5.965]; 

 
total_distance = Manhattan_Distance_Calculation_Fucntion(hole_positions, 
sequence); 
 
end 
 

Coding  3 : Get Functions Detials Program (Cont...) 



85 

 
 
 
  
 
 
 
 
 
 
 

% F3 
function total_distance = F3(vote) 
 
[arranged, sequence]  = sort(vote, 'descend'); 
 
hole_positions = [9.510, 7.400; 9.863, 7.875;  9.125, 0.143; 8.747, 2.847; 
7.380, 6.779; 
4.822, 7.804; 4.111, 4.902; 7.266, 6.148; 0.090, 5.883; 0.963, 0.046; 
4.608, 3.555; 8.631, 4.775; 5.340, 3.723; 3.148, 1.552; 9.823, 2.148; 
4.215, 5.512; 0.737, 9.583; 8.091, 4.312; 6.962, 3.673; 6.959, 1.413; 
5.761, 6.463; 6.238, 4.353; 0.747, 9.305; 0.402, 2.353; 6.316, 8.925; 
4.553, 3.023; 7.194, 9.226; 8.483, 5.236; 6.729, 3.651; 6.327, 6.986; 
8.577, 7.133; 4.678, 8.808; 8.648, 0.999; 7.037, 0.705; 6.105, 9.550; 
8.126, 3.928; 4.216, 9.783; 3.749, 7.362; 9.185, 4.146; 1.061, 3.058; 
8.753, 9.777; 9.009, 7.276; 6.938, 2.797; 5.732, 2.498; 7.679, 6.933; 
7.787, 0.777; 6.030, 1.885; 2.019, 4.886; 3.304, 9.679; 4.415, 6.957; 
1.377, 6.174; 5.141, 3.935; 1.223, 8.342; 7.534, 2.238; 8.731, 4.216; 
3.721, 1.414; 7.584, 5.618; 1.527, 6.534; 5.897, 2.504; 7.777, 1.176; 
8.264, 4.981; 7.205, 4.815; 1.298, 0.877; 8.698, 4.549; 2.995, 8.948; 
0.136, 4.661; 7.792, 9.131; 3.629, 0.691; 8.573, 3.765; 8.723, 4.558; 
4.266, 0.596; 5.728, 8.617; 0.314, 4.123; 2.680, 0.463; 0.989, 2.108; 
4.330, 0.203; 7.080, 2.884; 7.753, 9.938; 1.320, 3.131; 0.008, 0.877; 
6.760, 9.928; 7.523, 9.458; 7.351, 4.296; 3.803, 1.776; 6.490, 1.420; 
2.522, 3.615; 5.438, 9.060; 5.535, 6.921; 8.056, 4.216; 3.046, 2.213; 
4.609, 3.497; 9.423, 8.424; 5.515, 4.957; 1.194, 2.265; 6.337, 1.445; 
5.010, 9.552; 5.756, 4.504; 8.801, 5.501; 1.560, 9.147; 2.904, 4.556]; 
 
total_distance = Manhattan_Distance_Calculation_Fucntion(hole_positions, 
sequence); 
 
end 
 

Coding  4 : Get Functions Detials Program (End) 
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function total_distance = 
Manhattan_Distance_Calculation_Fucntion(hole_positions, sequence) 
    total_distance = 0; 
    for i = 1:length(sequence) - 1 
        x1 = hole_positions(sequence(i), 1); 
        y1 = hole_positions(sequence(i), 2); 
        x2 = hole_positions(sequence(i + 1), 1); 
        y2 = hole_positions(sequence(i + 1), 2); 
        distance = abs(x1 - x2) + abs(y1 - y2); 
        total_distance = total_distance + distance; 
    end 
end 
 

Coding  5 : Manhattan Distance Calculation Function 
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% The Whale Optimization Algorithm 
function [Leader_score,Leader_pos,Convergence_curve, 
AverageFitness_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj) 
% initialize position vector and score for the leader 
Leader_pos=zeros(1,dim); 
Leader_score=inf; %change this to -inf for maximization problems 
%Initialize the positions of search agents 
Positions=initialization(SearchAgents_no,dim,ub,lb); 
Convergence_curve=zeros(1,Max_iter); 
AverageFitness_curve=zeros(1,Max_iter); 
t=0;% Loop counter 
% Main loop 
while t<Max_iter 
    AverageFitness = 0; 
    for i=1:size(Positions,1) 
         
        % Return back the search agents that go beyond the boundaries of the 
search space 
        Flag4ub=Positions(i,:)>ub; 
        Flag4lb=Positions(i,:)<lb; 
        
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4l
b; 
         
        % Calculate objective function for each search agent 
        fitness=fobj(Positions(i,:)); 
        AverageFitness = AverageFitness  + fitness; 
        % Update the leader 
        if fitness<Leader_score % Change this to > for maximization problem 
            Leader_score=fitness; % Update alpha 
            Leader_pos=Positions(i,:); 
        end 
         
    end 
 

Coding  6 : Whale Optimization Algorithm(Start) 
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    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) 
     
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) 
    a2=-1+t*((-1)/Max_iter); 
     
    % Update the Position of search agents  
    for i=1:size(Positions,1) 
        r1=rand(); % r1 is a random number in [0,1] 
        r2=rand(); % r2 is a random number in [0,1] 
         
        A=2*a*r1-a;  % Eq. (2.3) in the paper 
        C=2*r2;      % Eq. (2.4) in the paper 
         
         
        b=1;               %  parameters in Eq. (2.5) 
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5) 
         
        p = rand();        % p in Eq. (2.6) 
         
        for j=1:size(Positions,2) 
             
            if p<0.5    
                if abs(A)>=1 
                    rand_leader_index = floor(SearchAgents_no*rand()+1); 
                    X_rand = Positions(rand_leader_index, :); 
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) 
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8) 
                     
                elseif abs(A)<1 
                    D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. 
(2.1) 
                    Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. 
(2.2) 
                end 
                 
            elseif p>=0.5 
               
                distance2Leader=abs(Leader_pos(j)-Positions(i,j)); 
                % Eq. (2.5) 
                
Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j); 
                 
            end 
             
        end 
    end 
    t=t+1; 
    Convergence_curve(t)=Leader_score; 
    AverageFitness_curve(t)=AverageFitness/size(Positions,1); 
    [t Leader_score]; 
end 
 
 Coding  7 : Whale Optimization Algorithm(End) 



89 

 

clear all  
clc 
 
SearchAgents_no = 500;  
Function_name = 'PCB14'; 
Max_iteration = 10000; 
num_runs = 10; 
 
 
all_best_scores = zeros(1, num_runs); 
all_best_solutions = zeros(num_runs, 14);   
 
for run = 1:num_runs 
 
    [lb, ub, dim, fobj] = Get_Functions_details(Function_name); 
 

[Best_score, Best_pos, WOA_cg_curve, WOA_af_curve] = WOA(SearchAgents_no, 
Max_iteration, lb, ub, dim, fobj); 

     
    figure('Position', [269, 240, 1000, 400]) 
     
    subplot(1, 2, 1); 
    vote = Best_pos; 
    [arranged, sequence] = sort(vote, 'descend'); 
 
    all_best_scores(run) = Best_score; 
    all_best_solutions(run, :) = Best_pos; 
 
    disp(['Run ' num2str(run) ':']); 
    disp(['Best solution obtained by WOA is : ', num2str(sequence)]); 
    disp(['Best optimal value of the objective function found by WOA is : ', 
num2str(Best_score)]); 
 
    plotRouting(sequence,Function_name); 
 
    subplot(1, 2, 2); 
    semilogy(WOA_af_curve, 'Color', 'b', LineWidth = 1); 
    hold on; 
    semilogy(WOA_cg_curve, 'Color', 'r', LineWidth = 2); 
 

Coding  8 : Main Program call (Start) 
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    title('Fitness Values'); 
    xlabel('Iteration'); 
    ylabel('Best score obtained so far'); 
    axis tight; 
    grid on; 
    box on; 
 
    legend({'Average Fitness', 'Convergence Curve'}, 'Location', 'best'); 
     
    hold off; 
     
    % % Save each figure to a file (optional) 
    % saveas(gcf, ['WOA_0.05_5000_Run_' num2str(run) '.fig']); 
    %  
    % % Save results to a .mat file for each run 
    % save(['WOA_0.05_5000_Run_' num2str(run) '.mat'], 'Best_score', 
'Best_pos', 'WOA_cg_curve', 
'WOA_af_curve','Max_iteration','SearchAgents_no'); 
 
end 
 
display(['The best solution obtained by WOA is : ', num2str(sequence)]); 
display(['The best optimal value of the objective function found by WOA is : 
', num2str(Best_score)]); 
 
 

Coding  9 : Main program  (End) 
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