
SECURITY PATROL ROUTES AND CHECKPOINTS
OPTIMIZATION WITH MATLAB TO MINIMIZE BLIND SPOTS

AND ENHANCE THE SAFETY

YASSVINDHRAN A/L MARIMUTHU

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SECURITY PATROL ROUTES AND CHECKPOINTS

OPTIMIZATION WITH MATLAB TO MINIMIZE BLIND SPOTS

AND ENHANCE THE SAFETY

YASSVINDHRAN A/L MARIMUTHU

This report is submitted in partial fulfilment of the requirements for

the degree of Bachelor of Electronics Engineering Technology with

Honours

Faculty of Electronics and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2025

Tajuk Projek : SECURITY PATROL ROUTES AND CHECKPOINTS OPTIMIZATION WITH

MATLAB TO MINIMIZE BLIND SPOTS AND ENHANCE THE SAFETY

Sesi Pengajian : 2024/2025

Saya YASSVINDHRAN A/L MARIMUTHU mengaku membenarkan laporan Projek

Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti

berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh : 7/2/2025 Tarikh : 7/2/2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

/

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan
menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

user
Official Vignes NEW FTKEK

DECLARATION

I declare that this project report entitled “SECURITY PATROL ROUTES AND

CHECKPOINTS OPTIMIZATION WITH MATLAB TO MINIMIZE BLIND SPOTS

AND ENHANCE THE SAFETY” is the result of my own research except as cited in the

references. The project report has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.

Signature :

Student Name :
YASSVINDHRAN A/L MARIMUTHU

Date :
7/2/2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical

Engineering Technology with Honours.

Signature :

Supervisor Name :
VIGNESWARA RAO A/L GANNAPATHY

Date :
7/2/2025

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

To my beloved mother, V PUSPA RANI, and father, MARIMUTHU.

i

ABSTRACT

In this project, we are using MATLAB to plan security patrol routes and checkpoints better,

determining the optimal routes for these patrols to go and the location for their checks is a

challenging but crucial task. By data analysis and optimization techniques, we ensure that

patrols efficiently cover critical areas and adjust to evolving security requirements. Most of

the time, the security checkpoints are usually not well-planned, requiring guards to travel the

same paths repeatedly, time, and energy. Due to poorly designed patrol routes and

checkpoints, guards can miss crucial locations like ATMs or hidden corners, leaving these

places open to potential threats. The guards may not even be aware that they are missing

these areas. The efficiency of security measures may be prevented by guards unknowingly

ignoring these areas of risk because they are unaware of the security threats. As a result of

that, this degrades overall safety because there is no systematic method and there is not a

clear and organized approach. Thus, it is important to develop a systematic approach using

MATLAB to optimize patrol routes, ensuring comprehensive coverage while minimizing

blind spots. This project aims to develop a program using MATLAB takes input parameters

such as the layout of the area to be patrolled and generates optimized patrol routes to enhance

surveillance coverage while reducing vulnerable areas. By leveraging computational

geometry, graph theory, and optimization techniques, the program aims to improve the

efficiency and effectiveness of security patrols, thereby enhancing overall security measures

in various environments. By using MATLAB to plan smarter patrol routes, guards will save

time and energy because they will not have to backtrack or miss important spots anymore.

This means they will be able to cover all the critical areas, like ATMs and hidden corners,

making those places safer from potential threats and enhance safety.

ii

ABSTRAK

Dalam projek ini, kami menggunakan MATLAB untuk merancang laluan ronda keselamatan

dan kawalan sempadan dengan lebih baik, menentukan laluan optimum untuk ronda ini dan

lokasi pemeriksaan mereka adalah tugas yang mencabar tetapi penting. Dengan analisis data

dan teknik optimasi, kami memastikan bahawa ronda-ronda secara efisien meliputi kawasan-

kawasan penting dan menyesuaikan dengan keperluan keselamatan yang berkembang.

Kebanyakan masa, kawalan keselamatan biasanya tidak dirancang dengan baik, memerlukan

pengawal untuk melakukan perjalanan di laluan yang sama berulang kali, masa, dan tenaga.

Kerana laluan ronda dan kawalan yang kurang berkualiti, pengawal boleh terlepas lokasi

penting seperti ATM atau sudut-sudut tersembunyi, meninggalkan tempat-tempat ini

terdedah kepada ancaman yang berpotensi. Pengawal mungkin tidak sedar bahawa mereka

melepaskan kawasan-kawasan ini. Kecekapan langkah-langkah keselamatan mungkin

dihalang oleh pengawal secara tidak sengaja mengabaikan kawasan-kawasan risiko ini

kerana mereka tidak menyedari ancaman keselamatan. Akibatnya, keselamatan keseluruhan

terjejas kerana tidak ada kaedah sistematik dan tidak ada pendekatan yang jelas dan teratur.

Oleh itu, penting untuk membangunkan pendekatan sistematik menggunakan MATLAB

untuk mengoptimumkan laluan ronda, memastikan liputan yang komprehensif sambil

meminimumkan titik buta. Projek ini bertujuan untuk membangunkan program

menggunakan MATLAB yang mengambil parameter input seperti susunan kawasan yang

akan dipatrol dan menghasilkan laluan ronda yang dioptimumkan untuk meningkatkan

liputan pengawasan sambil mengurangkan kawasan yang rentan. Dengan menggunakan

geometri komputasi, teori graf, dan teknik optimasi, program ini bertujuan untuk

meningkatkan kecekapan dan keberkesanan ronda keselamatan, dengan itu meningkatkan

langkah-langkah keselamatan keseluruhan dalam pelbagai persekitaran. Dengan

menggunakan MATLAB untuk merancang laluan ronda yang lebih bijak, pengawal akan

menjimatkan masa dan tenaga kerana mereka tidak perlu kembali atau melepaskan tempat-

tempat penting lagi. Ini bermakna mereka akan dapat meliputi semua kawasan penting,

seperti ATM dan sudut-sudut tersembunyi, menjadikan tempat-tempat tersebut lebih selamat

daripada ancaman yang berpotensi dan meningkatkan keselamatan.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor,

VIGNESWARA RAO A/L GANNAPATHY for his precious guidance, words of wisdom

and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial

support through enables which enables me to accomplish the project. Not forgetting my

fellow colleague, friends for the willingness of sharing his thoughts and ideas regarding the

project.

My highest appreciation goes to my parents, parents in-law, and family members for

their love and prayer during the period of my study. An honourable mention also goes to

seniors for all the motivation and understanding.

Finally, I would like to thank all the staffs at the UTeM, fellow colleagues and

classmates, the faculty members, as well as other individuals who are not listed here for

being co-operative and helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

SECURITY PATROL ROUTES AND CHECKPOINTS OPTIMIZATION WITH MATLAB TO
MINIMIZE BLIND SPOTS AND ENHANCE THE SAFETY i

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS viii

LIST OF ABBREVIATIONS ix

LIST OF APPENDICES x

 INTRODUCTION 1
1.1 Background 1
1.2 Project Relation to Current Issues 3
1.3 Problem Statement 4
1.4 Project Objective 5
1.5 Scope of Project 5

 LITERATURE REVIEW 7
2.1 Introduction 7
2.2 Enhancing Security Patrol Routes and Checkpoints Optimization with MATLAB7
2.3 Patrol Routes and Checkpoints Optimization with MATLAB: 8

2.3.1 Importance of Patrol route Optimization 9
2.3.2 General Methods 10
2.3.3 Optimization Techniques for Security Patrol Routes: 11

2.4 Data Analysis 13
2.5 Simulation-Based Studies on Security Patrol Optimization 14
2.6 Challenges and Opportunities 14
2.7 ARTICLES REVIEW 15
2.8 LIST OF LITERATURE REVIEW WITH TABLE 22
2.9 Overview of studies 29

v

2.10 Summary 29

 METHODOLOGY 31
3.1 Introduction 31
3.2 Flowchart 32
3.3 Data Collection and Analysis 33
3.4 Route Optimization and Algorithm Designing 33
3.5 BLOCK DIAGRAM 36
3.6 Gantt chart Error! Bookmark not defined.
3.7 Summary 37

 RESULTS AND DISCUSSIONS 39
4.1 Introduction 39
4.2 Data Collection 40
4.3 Data Structuring 43
4.4 Results and Analysis 46
4.5 Summary 54

 CONCLUSION AND RECOMMENDATIONS 56
5.1 Conclusion 56
5.2 Commercialize 57
5.3 Future Works 58

REFERENCES 59

APPENDICES 61

vi

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1:Literature Review Comparison 22

Table 3.1: Gantt chart I Error! Bookmark not defined.

Table 3.2 Gantt Chart PSM II Error! Bookmark not defined.

vii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 3.1: Flowchart 33

Figure 3.2: Block Diagram 36

Figure 4.1: Collecting Checkpoint latitude and longitude coordinates 40

Figure 4.2: Example latitude and longitude coordinates 41

Figure 4.3: All Checkpoints Data 42

Figure 4.4: Excel data of Checkpoint name and number 44

Figure 4.5: Excel Data of Distance Matrix 44

Figure 4.6: Excel Data of Time Taken Between Checkpoints 45

Figure 4.7: MATLAB Graphical User Interface 46

Figure 4.8: Result Excel Data 47

Figure 4.9: Optimized VS Unoptimized Cumulative Distance 48

Figure 4.10: Optimized Vs Unoptimized Cumulative Time Taken 49

Figure 4.11: Optimized Vs Unoptimized Average Time Taken 50

Figure 4.12: Optimized Vs Unoptimized Average Distance Per Checkpoint 51

Figure 4.13: Path Optimization Efficiency 52

Figure 4.14: Time Taken Per Checkpoints 53

Figure 4.15: Distance Taken Per Checkpoints 54

viii

LIST OF SYMBOLS

𝛿 - Voltage angle

 -

 -

 -

 -

 -

 -

 -

ix

LIST OF ABBREVIATIONS

𝑉 - Voltage

 -

 -

 -

 -

 -

 -

 -

x

LIST OF APPENDICES

APPENDIX TITLE PAGE

No table of figures entries found.

1

INTRODUCTION

1.1 Background

In today's security landscape, ensuring the safety of individuals and assets is a top

priority across various environments, including campuses, industrial facilities, urban

areas, and transportation hubs. Traditional security measures often rely heavily on

human patrols to monitor and secure these areas. However, the effectiveness of these

patrols can be compromised by inefficient route planning and poorly designed

checkpoints, leading to significant blind spots in surveillance coverage.

One of the primary challenges with traditional patrol route planning methods is their

built difficulties and potential to human mistake. Guards may find themselves

repeatedly getting around the same paths, overlooking critical areas or failing to

adapt to evolving security needs. This inefficiency not only wastes valuable

resources such as time, fuel, and energy but also leaves vulnerabilities unaddressed,

potentially exposing areas to security threats.

The existence of blind spots in patrol routes poses a significant risk, as these areas

may be exploited by perpetrators to carry out illegal activities undetected. Blind spots

can result from various factors, including inadequate surveillance coverage, poor

lighting, or inefficient patrol routes. Addressing these blind spots requires a

2

systematic approach to route optimization that ensures comprehensive coverage

while minimizing the risk of overlooking critical areas.

This is where my project comes into play. By leveraging MATLAB's powerful

capabilities in data analysis, optimization, and simulation, my project aims to

develop a systematic approach to optimize security patrol routes and checkpoints.

The objective is clear to enhance security measures by improving the efficiency and

effectiveness of patrol routes, thereby reducing blind spots and enhancing overall

safety.

Through this project, we seek to develop a program that takes into account key input

parameters, such as the layout of the area to be patrolled and generates optimized

patrol routes. By analyzing data and employing optimization techniques, the program

will ensure that patrols efficiently cover critical areas while adapting to changing

security requirements. By minimizing the risk of overlooking crucial locations such

as ATMs or hidden corners, this project aims to enhance safety by systematically

addressing blind spots in surveillance coverage.

Overall, this project is significant in its potential to transform security patrol planning

and execution. By optimizing patrol routes and checkpoints, it can help security

personnel make better use of their resources and respond more effectively to security

3

threats, ultimately contributing to a safer environment for individuals and

communities alike.

1.2 Project Relation to Current Issues

In today's world, security concerns are at the forefront of societal challenges.

Whether in bustling campuses area, urban areas, commercial districts, or residential

neighborhoods, the need for strong security protocols is crucial. However, traditional

methods of patrolling and surveillance often fall short in efficiently covering all areas

of potential risk, leaving blind spots that can be exploited by evil parties. With the

rise of various security threats, ranging from theft and vandalism to more severe

incidents like terrorism, there is an urgent need to optimize security patrol routes and

checkpoint locations.

Moreover, in an era where resources are increasingly limited, it is important to

maximize the efficiency of security operations. This includes minimizing fuel

consumption, reducing time spent on patrols, and streamlining the deployment of

security personnel. By leveraging computational techniques and optimization

algorithms within MATLAB, this project directly addresses these resource

optimization challenges, offering a systematic approach to enhancing security while

minimizing resource wastage.

Furthermore, the project aligns with greater technology advancements and trends

towards making use of data analytics. As cities and organizations worldwide embrace

smart technologies and data analytics to improve efficiency and safety, the

4

optimization of security patrol routes and checkpoint locations represents a critical

application of such technologies. By utilizing the power of MATLAB for this

purpose, the project exemplifies the project showing how advanced computer

methods can be used in real-world security operations.

Generally, the project's relevance lies not only in its immediate impact on enhancing

security measures but also in its alignment with greater trends towards technological

innovation and efficiency optimization. By addressing current security challenges

through the lens of computational methods, it contributes to the ongoing efforts to

create safer and more resilient communities in an ever-evolving security landscape.

1.3 Problem Statement

Inefficient security patrol routes and poorly located checkpoints pose significant

challenges in ensuring comprehensive surveillance coverage, leading to potential

blind spots and compromised safety in various environments. Current approaches

often lack systematic optimization, resulting in wasted resources, missed critical

areas, and increased potential to security threats. Guards may unknowingly ignore

certain areas due to poorly designed patrol routes, causing the risk of security

breaches. Consequently, there is a pressing need to develop a systematic and efficient

method for optimizing security patrol routes and checkpoint locations to enhance

safety and surveillance coverage while minimizing blind spots. This project aims to

address these challenges by leveraging MATLAB to analyze area layouts, optimize

5

patrol routes, and dynamically adjust checkpoints, ultimately improving the

efficiency and effectiveness of security patrols in various environments.

1.4 Project Objective

The primary objective of this project "Security Patrol Routes and Checkpoints

Optimization with MATLAB to Minimize Blind Spots and Enhance Safety" is:

 Collect and analyze current data on patrol routes, checkpoints, and security

incidents, presenting findings in graphical form for insight into existing patrol

patterns and potential blind spots at UTeM.

 Use optimization techniques to adjust patrol routes dynamically based on

security needs and environmental changes, while conducting comprehensive

testing to ensure efficient coverage and reduce blind spots.

1.5 Scope of Project

The scope of the project titled “Security Patrol Routes and Checkpoints Optimization

with MATLAB to Minimize Blind Spots and enhance the safety” includes the

following key areas:

a) Data Collection and Analysis:

• Gather data on the layout of the area to be patrolled, including maps,

blueprints, or in the digital app.

• Analise existing patrol routes and checkpoints, if any, to identify

inefficiencies and blind spots.

b) Algorithm Development:

• Develop algorithms within MATLAB to optimize patrol routes and

checkpoint locations.

6

• Implement computational geometry techniques to determine the most

efficient paths for patrols to cover the entire area while minimizing overlap

and blind spots.

c) Optimization Techniques:

• Incorporate optimization techniques to adjust patrol routes dynamically based

on changing security requirements or environmental factors.

• Integrate real-time data feeds or sensors to adapt patrol routes in response to

detected security threats or anomalies.

d) Documentation and Deployment:

• Document the project thoroughly, including algorithms and methodologies

7

LITERATURE REVIEW

2.1 Introduction

Literature review, being the foundation of this report, demands the inclusion of its

most crucial points for comprehensive insight and relevance. For my Bachelor's

project, I'm diving into a bunch of books and articles related to my topic. This is

called a literature review. Basically, I'm checking out what other people have said

about my topic already. By doing this, I can figure out what's already known and

what still needs to be explored. It's like building a map of what's out there in the

world of ideas. This helps me see where my project fits in and what new things I can

bring to the table. So, my literature review is like laying the groundwork for my

project by seeing what's been done before and figuring out what I can add.

2.2 Enhancing Security Patrol Routes and Checkpoints Optimization with

MATLAB

The optimization of security patrol routes and checkpoints using MATLAB

encompasses a variety of methodologies rooted in computational geometry, graph

theory, and advanced optimization techniques. Initially, the area of interest is mapped

out, with critical locations and potential threats identified as nodes in a graph.

MATLAB's robust suite of functions and toolboxes, such as the Optimization

Toolbox and the Mapping Toolbox, facilitate the creation of these spatial models.

The use of algorithms like the shortest path algorithm, Dijkstra's algorithm, and the

Traveling Salesman Problem (TSP) solver enables the determination of the most

8

efficient routes. These algorithms ensure that each node is visited in the least amount

of time and distance, reducing redundancy and enhancing coverage. Additionally,

constraints such as patrol frequency, guard availability, and specific security needs

are incorporated into the optimization process to generate practical and actionable

patrol schedules.

Moreover, MATLAB's ability to handle large datasets and perform real-time analysis

is instrumental in adapting to dynamic security environments. Advanced data

analysis techniques, including machine learning algorithms, are employed to assess

historical incident data and predict potential security threats. This predictive

capability allows for the adjustment of patrol routes in response to evolving security

requirements. Furthermore, MATLAB's visualization tools provide a clear

representation of the optimized routes, enabling security managers to easily interpret

and implement the suggested patrol paths. By continuously analyzing and refining

these routes based on real-time data, MATLAB ensures that the patrol strategies

remain effective and responsive to new threats, thereby enhancing overall security

management.

2.3 Patrol Routes and Checkpoints Optimization with MATLAB:

Patrol routes and checkpoints are crucial for keeping places safe, but if they're not

planned well, important areas might get missed. This project uses MATLAB, a

powerful tool for solving complex problems, to make patrol routes smarter and

decide where checkpoints should go. By analyzing data and using smart algorithms,

9

we aim to make sure security guards cover all the important spots efficiently. This

helps improve safety in different places by making sure no areas are left unprotected.

2.3.1 Importance of Patrol route Optimization

Patrol route optimization is crucial for enhancing the efficiency and effectiveness of

security operations. Optimized patrol routes ensure comprehensive surveillance

coverage, reducing the risk of leaving critical areas unchecked and preventing

potential security breaches. Strategic route planning maximizes resource utilization,

ensuring that manpower, time, and fuel are used efficiently, which in turn reduces

operational costs and increases the overall productivity of security personnel. By

analyzing data on historical incidents and threat levels, routes can be designed to

prioritize high-risk areas, improving the likelihood of preventing or quickly

responding to security threats.

Additionally, the integration of advanced technologies and data analysis tools, such

as MATLAB, enables dynamic and adaptive patrol strategies. These tools allow for

real-time adjustments to patrol routes as security threats evolve, ensuring that

security measures remain effective and relevant. This adaptability is particularly

important in today's rapidly changing security landscape, where static patrol routes

may quickly become ineffective. Overall, patrol route optimization is a key

component of modern security management, offering significant benefits in resource

efficiency, threat mitigation, and the ability to adapt to changing security needs,

ultimately enhancing the protection of the areas being safeguarded.

10

2.3.2 General Methods

The application of MATLAB in optimizing security patrol routes and checkpoints

involves several key methodologies that are grounded in computational geometry,

graph theory, and optimization techniques. This section explores the general methods

employed in using MATLAB for this purpose, highlighting the steps and algorithms

commonly utilized in the process.

I. Computational Geometry:

Computational geometry plays a crucial role in understanding the spatial layout of

the area to be patrolled. This involves mapping out the physical environment,

identifying critical locations, and defining the boundaries of the patrol area. Using

11

MATLAB, one can create detailed geometric models of the patrol area, which serve

as the foundation for route optimization

Key techniques in computational geometry include:

Voronoi Diagrams: These are used to partition the patrol area into regions based on

proximity to predefined points, which can represent checkpoints. This helps in

ensuring that each region is adequately covered.

Delaunay Triangulation: This technique is used to create a network of interconnected

points, which can represent potential paths for patrol routes. It ensures that the

network is efficient and covers the area comprehensively.

II. Graph Theory:

Graph theory provides the framework for modeling the patrol area as a network of

nodes (checkpoints) and edges (paths). This allows for the application of various

algorithms to determine the optimal routes.

III. Commonly used graph theory algorithms include:

Shortest Path Algorithms: Algorithms such as Dijkstra's or A* are employed to find

the shortest paths between checkpoints, ensuring minimal travel distance and time.

Eulerian and Hamiltonian Paths: These are used to create routes that either cover all

edges (paths) or all nodes (checkpoints) without repetition, ensuring comprehensive

coverage without redundancy.

2.3.3 Optimization Techniques for Security Patrol Routes:

Numerous optimization techniques have been applied to optimize security patrol

routes and checkpoints, aiming to minimize blind spots and enhance safety. One

common approach is the use of metaheuristic algorithms such as genetic algorithms

(GAs), particle swarm optimization (PSO), and simulated annealing (SA). For

12

instance, Sun et al. (2019) employed a GA to optimize routing design and fleet

allocation for freeway service patrols, demonstrating superior performance over

simulated annealing methods. Similarly, Shi and Huang (2022) proposed an

improved genetic and ant colony hybrid algorithm for optimizing patrol routes of

intelligent vehicles, achieving significant reductions in the number of turns and

iterations compared to traditional approaches.

• Genetic Algorithms (GA) with MATLAB

MATLAB provides a robust platform for implementing Genetic Algorithms through

its Global Optimization Toolbox. The ‘ga’ function in MATLAB allows users to

define optimization problems with various constraints and objectives. Researchers

can input the patrol area, set constraints like maximum patrol time, and define fitness

functions that minimize distance traveled or maximize coverage. Studies such as

Rathore et al.'s work on vehicle routing leverage MATLAB’s GA capabilities to

solve complex routing problems efficiently. The toolbox also supports custom

mutation and crossover functions, which can be tailored to specific patrol scenarios.

• Multi-Agent Systems (MAS) with MATLAB

MATLAB's Simulink and Stateflow environments are well-suited for modeling and

simulating Multi-Agent Systems. The AnyLogic software mentioned in the literature

can integrate with MATLAB for complex simulations. Researchers like Yanyun Fu

et al. have used MAS to create dynamic and adaptive patrol strategies. MATLAB’s

capabilities in handling real-time data and its extensive libraries for communication

protocols enable the implementation of MAS where agents can dynamically update

their routes based on new information. The ability to simulate different agent

13

behaviors and interactions helps in fine-tuning the coordination and efficiency of

patrol units.

• Particle Swarm Optimization (PSO) with MATLAB

MATLAB’s Global Optimization Toolbox also supports Particle Swarm

Optimization through the particleswarm function. This function is particularly useful

for optimizing multi-objective problems encountered in patrol route planning.

Researchers such as Mario Peñacoba et al. utilize MATLAB to simulate and optimize

robot trajectories using PSO. MATLAB allows for the customization of swarm

behavior and fine-tuning of parameters like inertia, cognitive, and social coefficients.

Visualization tools in MATLAB, such as 3D plots and animations, help in analyzing

the movement and convergence of particles, providing insights into the optimization

process

2.4 Data Analysis

Data analysis plays a pivotal role in the optimization of security patrol routes and

checkpoints through MATLAB, facilitating insights into historical incidents, threat

patterns, and patrol efficacy. MATLAB's robust data analysis capabilities enable the

processing and interpretation of extensive datasets, crucial for informing

optimization algorithms. This involves analyzing historical data to pinpoint high-risk

areas and times, which informs prioritization in patrol routes. Additionally, real-time

data integration from surveillance feeds and sensors allows for dynamic adjustments

to patrol routes in response to emerging threats. Before implementation, simulation

tools in MATLAB enable virtual testing of optimized routes under diverse scenarios,

ensuring effectiveness and identifying potential improvements. Overall, by

14

leveraging computational geometry, graph theory, optimization techniques, and data

analysis, MATLAB empowers security agencies to refine patrol strategies, enhance

coverage, mitigate blind spots, and elevate overall security measures effectively.

2.5 Simulation-Based Studies on Security Patrol Optimization

Simulation-based studies have also contributed significantly to the optimization of

security patrol routes and checkpoints. For example, Nan et al. (2022) developed a

dynamic path planning algorithm based on an improved particle filter optimization

technique to handle dynamic obstacles and task changes encountered by patrol robots

in power monitoring systems. Their simulation results demonstrated the

effectiveness of the proposed algorithm in real-time planning and security

fulfillment. Additionally, Verma et al. (2022) proposed a decentralized coordination

algorithm for patrolling and target tracking in the Internet of Robotic Things (IoRT),

utilizing dynamic waypoints and self-triggered communication mechanisms. Their

simulations in the Robot Operating System (ROS) and Gazebo validated the

performance of the proposed solution in patrolling and target tracking tasks.

2.6 Challenges and Opportunities

Optimizing security patrol routes and checkpoints using MATLAB presents several

challenges. The complexity of real-world scenarios, including varying threat levels

and unpredictable incidents, makes accurate modeling and simulation difficult and

computationally intensive. Additionally, the availability and quality of data pose

significant obstacles, as comprehensive and accurate datasets are crucial for effective

optimization but are often difficult to obtain due to privacy concerns and security

restrictions. Integrating MATLAB-based solutions with existing legacy systems used

15

by security agencies adds another layer of complexity, involving compatibility issues

and the need for seamless real-time data exchange. Furthermore, while simulations

can provide valuable insights, real-world validation remains a critical challenge, as

factors like human behavior and environmental conditions can significantly impact

the performance of optimized routes.

Despite these challenges, there are significant opportunities in this field. The use of

advanced algorithms and data analysis techniques in MATLAB can lead to more

efficient and effective patrol strategies, reducing resource wastage and improving

coverage. The integration of real-time data analytics and machine learning can

enhance the adaptability of patrol routes to evolving security threats. Moreover, the

ability to simulate and visualize different scenarios provides valuable tools for

planning and decision-making. As computational power and data availability

continue to improve, the potential for implementing and scaling these solutions in

real-world settings increases, offering enhanced security management capabilities

and more proactive threat mitigation.

2.7 ARTICLES REVIEW

According to (Yanyun Fu, Tsinghua University, Beijing, Yiping Zeng, Deyong

Wang, Hui Zhang, Yang Gao and Yi Liu), this study addresses the challenge of

planning routes for security patrols in smart communities. It combines a multi-agent

simulation model with a genetic algorithm (GA). The GA evolves the routes to find

optimal ones, while the multi-agent model sets constraints and evaluates routes.

Using a GIS map for realistic environment representation, the system simulates

patrol tasks using the Anylogic platform. Results show the multi-agent system

16

effectively finds optimal routes, making the planning process clear and dynamic[1].

In research by (Maite Dewinter, Christophe Vandeviver, Tom Vander Beken and

Frank Witlox), this review paper explores methods to solve the Police Patrol Routing

Problem (PPRP), highlighting the complexity of balancing proactive and reactive

police duties. It starts with existing literature on dynamic vehicle routing problems

(DVRP) and identifies a gap specifically focused on PPRP. Various methods are

discussed, including genetic algorithms (GA), linear programming, routing policies,

Markov Decision Processes, and online stochastic combinatorial optimization.

Hybrid GA, routing policies, and local search are deemed most effective for

PPRP.[2]

A study was conducted by (Dongming Zhao, Huimin Yu, Xiang Fang, Lei Tian and

Pengqian Han) this paper proposes a path planning algorithm for intelligent patrol

cars, used in environments like data centers. The approach combines multi-objective

Cauchy mutation cat swarm optimization (MOCMCSO) with the artificial potential

field method (APFM) to optimize path length and turning angles. Simulations and

experiments in a data center show this method achieves a balance between short paths

and smooth navigation, outperforming other optimization methods.[3] In accordance

with (Yirui Jiang, Hongwei Li, Binbin Feng, Zekang Wu, Shan Zhao, and Zhaohui

Wang), the paper proposes a model to optimize the allocation and routes of city

inspectors in Zhengzhou, China, aiming to minimize response times and the number

of inspectors needed. It uses a priority-patrol-and-multi objective genetic algorithm

(DP-MOGA) to classify patrol segments and develop optimal routes. Numerical

17

experiments confirm the algorithm’s effectiveness in reducing response times and

stabilizing performance across different scenarios.[4]

In consonance with (Qiu Mingyue, Zhang Xueying,2023), this study develops

precise patrol routes for police by combining ant colony optimization and genetic

algorithms, addressing the declining effectiveness of traditional patrols. The ant

colony algorithm first determines the shortest routes, which are then refined using

the K-means algorithm and optimized further with genetic algorithms to ensure

accurate and effective patrol routes[5]. According to (Omer Ozkan, Muhammed

Kaya,2021), this research focuses on optimizing UAV routes for border security,

specifically the Turkey-Syria border. A Genetic Algorithm Based Matheuristic

(GABM) is developed to minimize the number of UAVs needed and optimize their

routes. The approach combines genetic algorithms with mathematical modeling to

improve efficiency, significantly reducing UAV numbers and flight distances in

simulations.[6]

In proportion to (Cesar Guevara, Janio Jadán, César Zapata, Luis Martínez, Jairo

Pozo and Edison Manjarres, 2019), this article proposes a dynamic route generation

model for police patrolling using K-means clustering to identify critical patrol points

and Google Maps API for route design. Tested within Ecuadorian territory, the model

showed promising results in the testing phase and led to the development of an

Android-based mobile application for police use.[7]

As stated by (Yongxin Gao, Zhonglin Dai, Jing Yuan, 2022), the paper presents a

hybrid algorithm for path planning of coal mine patrol robots, improving upon

artificial fish swarm and dynamic window algorithms. By incorporating an improved

genetic algorithm, the proposed method enhances path accuracy, obstacle avoidance,

and overall efficiency. Simulations show reduced path length, time, and improved

18

smoothness in the challenging underground environment[8]. Pursuant to (Cesar

Guevara and Matilde Santos,2020), this study proposes an algorithm combining AI

and machine learning to create police patrol routes using crime data from Quito,

Ecuador. It predicts future crime hotspots and uses spatial-temporal information to

design effective patrol routes through a fuzzy decision system. The results

demonstrate that integrating spatial and temporal data improves route planning,

enhances security, and reduces police resource expenditure.[9]

According to (Yirui Jiang, Shan Zhao, Hongwei Li, Yulu Qin and Xiaoyue

Yang,2022), this paper addresses the problem of dividing areas for street patrols. It

introduces a new algorithm that combines spectral clustering and simulated

annealing. Tested in Zhengzhou, China, this algorithm improves patrol area

assignments by considering workload and is more effective compared to other

advanced algorithms[10]. In the manner of (Hai-shi Liu, Yu-xuan Sun, Nan Pan, Qi-

yong Chen, Xiao-jue Guo and Di-lin Pan,2021), this study proposes a new method

to improve the efficiency of border patrols using drones. It employs a whale

algorithm based on chaos theory for planning drone missions in complex

environments. The method effectively coordinates multiple drones, improving patrol

efficiency as shown by simulation results.[11]

As reported by (Alam, Rahman, Carrillo and P. et al. Stochastic,2020), the paper

discusses how multiple robots can patrol an area with limited visibility and no

reliable communication. It proposes using non-deterministic patrolling paths to avoid

predictability by adversaries. The method employs Markov chains and convex

optimization, proving effective through simulations and physical tests.[12] In line

with (Mario Peñacoba, Jesús Enrique Sierra-García, Matilde Santos, and Ioannis

Mariolis,2023), this research focuses on optimizing the paths of a surveillance robot

19

using genetic algorithms, particle swarm optimization, and pattern search. Each

method is compared in various environments, showing that pattern search works best

in simple scenarios, while particle swarm optimization excels in complex ones.[13]

In accordance with (Kangjing Shi and Li Huang,2022), the study presents an

improved hybrid algorithm combining genetic and ant colony optimization for

intelligent vehicle path planning. It focuses on reducing the number of turns and

energy consumption. The improved algorithm outperforms traditional methods,

especially in reducing iterations and turns in both simple and complex grids.

[14]Correspondent to (Jose, C, Vijula Grace and K.S.,2020), this paper proposes a

dynamic path planning model for emergency vehicles using a VANET simulation

and a new optimization algorithm, Exp-BSA. The method forecasts travel times and

finds optimal paths, outperforming other methods in terms of distance, traffic

density, speed, and travel time in various simulations.[15]

Concordant to (Omer Ozkan,2021), this paper develops an algorithm to use UAVs

for forest fire detection, combining simulated annealing and local search with an

integer linear programming model. Tested in Turkey, the algorithm uses daily fire-

risk maps to optimize UAV routes, proving effective and efficient in reducing CPU

times compared to a genetic algorithm.[16] In agreement to (Li Huang, MengChu

Zhou, Hua Han, Shouguang Wang and Aiiad Albeshri,2024), this study proposes a

learning-inspired immune algorithm for planning maritime patrol paths for multiple

robots. It uses historical data to improve solution diversity and efficiency. The

algorithm performs better than existing methods, generating multiple effective patrol

schemes and saving time and storage space.[17]

In rapport to (Rathore, Jain and Parida,2019), this paper develops a genetic

algorithm-based solution for the vehicle routing problem, focusing on optimizing

20

warehouse locations and transportation costs in logistics operations. Tested with real-

life scenarios, the model successfully determines optimal warehouse locations to

meet customer demands at minimal cost.[18] Corresponding to (Xiuqiao Sun,

Xiuqiao Sun, SciProfilesScilitPreprints, Jian Wang, Weitiao Wu and Wenjia

Liu,2019), the research introduces a genetic algorithm to optimize patrol routing and

fleet allocation for freeway service patrols. It compares overlapping and non-

overlapping patrol strategies, showing that overlapping is more effective. The genetic

algorithm outperforms simulated annealing, especially when integrated with LINGO

software for fleet allocation.[19]

According to (Yao Nan, Qin Jian-Hua, Zhu Xue-Qiong and Wang Hong-

Chang,2022), this paper introduces a dynamic path planning algorithm for patrol

robots that improves traditional particle filter optimization. The new algorithm

handles unexpected obstacles and task changes in real time, ensuring efficient and

secure path planning. Simulations show its effectiveness in dynamic scenarios.[20]

Corresponding to (Verma, Janardan Kumar, Ranga and Virender,2022), this research

presents a decentralized coordination strategy for robots in the Internet of Robotic

Things (IoRT) to perform patrolling and target tracking. Robots are divided into two

groups for perimeter and area patrolling, using dynamic waypoints and a self-

triggered communication system. The solution is validated through simulations,

demonstrating good performance in patrolling and tracking.[21]

Uniform to (Yuan, Xiaojuana, Shi, and Chunsheng,2019), The paper explores

optimizing tourism routes using an improved ant colony algorithm. Tested on travel

simulation problems, the improved algorithm finds shorter and more efficient paths

compared to the standard ant colony algorithm, with faster convergence and better

solutions.[22] As reported by (Nafis Ahmed,Chaitali, J. PawaseORCID and

21

KyungHi Chang) This study proposes a particle swarm optimization (PSO) algorithm

for distributed 3-D path planning of multiple UAVs to ensure full area surveillance.

The algorithm allows UAVs to independently plan optimal paths while avoiding

collisions. Simulations show that the method produces effective and efficient

surveillance paths.[22]

22

2.8 LIST OF LITERATURE REVIEW WITH TABLE

Table 2.1:Literature Review Comparison

No Title Objective Results Limitations Software Used Dataset

Used

Author(s)

1 Research on Route

Optimization Based

on Multiagent and

Genetic Algorithm

for Community

Patrol

To solve the

problem of route

planning for

security patrol in

smart

communities

using a multi-

agent model and

genetic

algorithm.

The designed

multi-agent

system can obtain

optimal results,

with intuitive and

visible route

planning that

meets dynamic

requirements.

Limited testing

and real-world

validation

required.

AnyLogic GIS map Yanyun Fu,

Yiping Zeng,

Deyong

Wang, Hui

Zhang, Yang

Gao, Yi Liu

2 Analysing the Police

Patrol Routing

Problem: A Review

To discuss

solution

methods for the

police patrol

routing problem

(PPRP).

(Hybrid) GA,

routing policies,

and local search

are most valuable

for solving the

PPRP.

No specific

focus on PPRP

in existing

literature;

knowledge gap

remains.

Not specified Not

specified

Maite

Dewinter,

Christophe

Vandeviver,

Tom Vander

Beken, Frank

Witlox

3 A Path Planning

Method Based on

Multi-Objective

Cauchy Mutation

Cat Swarm

Optimization

Algorithm for

To propose a

path planning

algorithm for

intelligent patrol

cars using multi-

objective

optimization.

MOCMCSO

algorithm

balances shortest

path and path

smoothness,

outperforming

MOCSO and

Limited to

simulations;

real-world

applicability

not fully

assessed.

Not specified Not

specified

Dongming

Zhao,

Huimin Yu,

Xiang Fang,

Lei Tian,

Pengqian

Han

23

Navigation System

of Intelligent Patrol

Car

MOPSO in

simulations.

4 Street Patrol Routing

Optimization in

Smart City

Management Based

on Genetic

Algorithm: A Case

in Zhengzhou, China

To minimize

average

response time

and number of

inspectors using

a genetic

algorithm for

patrol path

optimization.

The proposed

algorithm reduces

average response

time and number

of inspectors,

demonstrating

efficiency in

different time

scenarios.

Limited to a

specific city;

applicability to

other regions

not assessed.

Not specified Patrol data Yirui Jiang,

Hongwei Li,

Binbin Feng,

Zekang Wu,

Shan Zhao,

Zhaohui

Wang

5 Determining

Accurate Patrol

Routes Using

Genetic Algorithm

and Ant Colony

To develop

precise patrol

routes using ant

colony and

genetic

algorithms

based on crime

hotspots.

Accurate patrol

routes are

obtained,

improving patrol

effectiveness.

Limited to

urban areas

with crime

hotspots;

applicability to

other contexts

not assessed.

Not specified Not

specified

Qiu

Mingyue,

Zhang

Xueying

6 UAV routing with

genetic algorithm

based matheuristic

for border security

missions

To ensure

border security

using UAVs

with a genetic

algorithm based

matheuristic

approach.

GABM approach

decreases the

number of UAVs

and their flight

distances

significantly in

various scenarios.

Limited to the

Turkey-Syria

border;

applicability to

other borders

not assessed.

Not specified Not

specified

Omer Ozkan,

Muhammed

Kaya

7 A Multiobjective

Hybrid Optimization

Algorithm for Path

To improve path

planning for

coal mine patrol

robots using a

The proposed

algorithm

shortens path

length, reduces

Limited to

simulations;

real-world

ROS Not

specified

Yongxin

Gao,

Zhonglin

24

Planning of Coal

Mine Patrol Robot

hybrid

algorithm.

time, and removes

redundant points,

showing

effectiveness and

superiority.

validation

required.

Dai, Jing

Yuan

8 Smart Patrolling

Based on Spatial-

Temporal

Information Using

Machine Learning

To improve

security and

reduce crime

using an AI and

ML algorithm

for generating

police patrol

routes.

The algorithm

effectively

designs patrolling

routes, improving

citizen security

and reducing

police resource

spending.

Limited to

Quito City,

Ecuador;

scalability to

other cities not

assessed.

OpenStreetMa

p API

Crime data Cesar

Guevara,

Matilde

Santos

9 A hybrid spectral

clustering simulated

annealing algorithm

for the street patrol

districting problem

To optimize

street patrol

districting using

a hybrid

algorithm.

The proposed

algorithm

effectively solves

the street patrol

districting

problem.

Limited testing

on real

instances from

Zhengzhou,

China.

Not specified Not

specified

Yirui Jiang,

Shan Zhao,

Hongwei Li,

Yulu Qin,

Xiaoyue

Yang

10 Multi-UAV

Cooperative Task

Planning for Border

Patrol based on

Hierarchical

Optimization

To improve the

patrol efficiency

of border patrol

drones using a

hierarchical

optimization

algorithm.

The proposed

scheme can

effectively plan

multi-UAV

coordinated

missions for

border patrol.

Not specified Not specified Not

specified

Hai-shi Liu,

Yu-xuan Sun,

Nan Pan, Qi-

yong Chen,

Xiao-jue

Guo, Di-lin

Pan

11 Stochastic Multi-

Robot Patrolling

with Limited

Visibility

To develop

patrolling

policies for

multiple robots

using limited

Proposed

visibility-based

non-deterministic

patrolling method

shows

May not

account for all

real-world

factors

influencing

Not specified Not

specified

Alam,

Rahman,

Carrillo, et al.

25

visibility regions

and non-

deterministic

patrolling paths.

effectiveness in

simulations and

physical

implementation.

patrolling

scenarios.

12 Path Optimization

Using Metaheuristic

Techniques for a

Surveillance Robot

To optimize

trajectories of a

robotic

surveillance

system using

genetic

algorithm,

particle swarm

optimization,

and pattern

search methods.

Pattern search

method quickly

obtains feasible

solutions; PSO

works better in

complex

environments.

Results may

vary based on

initial

trajectory and

environment

complexity.

MATLAB Not

specified

Mario

Peñacoba,

Jesús Enrique

Sierra-

García,

Matilde

Santos,

Ioannis

Mariolis

13 Path Planning

Optimization of

Intelligent Vehicle

Based on Improved

Genetic and Ant

Colony Hybrid

Algorithm

To improve path

planning for

intelligent

vehicles using

an improved

genetic and ant

colony hybrid

algorithm.

The proposed

hybrid algorithm

effectively

reduces the

number of turns

in simple and

complex grid

maps.

Limited to

simulation and

physical

experiments;

may not

account for all

real-world

factors.

MATLAB Not

specified

Kangjing Shi,

Li Huang

14 Optimization based

routing model for the

dynamic path

planning of

emergency vehicles

To develop a

dynamic path

planning scheme

for routing

emergency

vehicles using

an Exponential

Bird Swarm

Proposed Exp-

BSA method

achieves overall

best performance

compared to

existing methods

in simulations.

Limited to

simulation

setups; real-

world

applicability

not fully

assessed.

Not specified Not

specified

Jose, C,

Vijula Grace,

K.S.

26

Optimization

Algorithm.

15 Optimization of the

distance-constrained

multi-based multi-

UAV routing

problem with

simulated annealing

and local search-

based matheuristic to

detect forest fires:

The case of Turkey

To develop a

matheuristic

algorithm for

routing UAVs to

detect forest

fires, using

simulated

annealing and

local search

techniques.

Proposed

algorithm

effectively

mitigates forest

fire risks in a real-

life case study for

Turkey.

Limited to

Turkish case

study;

scalability to

other regions

not explored.

MATLAB,

ILOG

Not

specified

Omer Ozkan

16 Learning-Inspired

Immune Algorithm

for Multiobjective-

Optimized

Multirobot Maritime

Patrolling

To develop an

immune

algorithm for

multi-objective

optimization of

multirobot

maritime

patrolling.

Proposed

algorithm

generates multiple

patrolling

schemes for

decision-makers

and outperforms

state-of-the-art

methods.

Limited to

simulations;

real-world

implementatio

n not assessed.

Not specified Not

specified

Li Huang,

MengChu

Zhou, Hua

Han,

Shouguang

Wang, Aiiad

Albeshri

17 A MATLAB-Based

Application to Solve

Vehicle Routing

Problem Using GA

To develop a

MATLAB-

based

application for

solving the

vehicle routing

problem using a

genetic

algorithm.

Proposed

algorithm

successfully finds

potential locations

for warehouse

setup based on

real-life

scenarios.

Limited to

generated data

based on real-

life scenarios;

real-world

applicability

may vary.

MATLAB Not

specified

Rathore, Jain,

Parida

27

18 Genetic Algorithm

for Optimizing

Routing Design and

Fleet Allocation of

Freeway Service

Overlapping Patrol

To optimize

routing design

and fleet

allocation for

freeway service

patrols using a

genetic

algorithm.

Overlapping

patrol strategy

outperforms non-

overlapping

strategy; GA

performs better

than SA.

Limited to

numerical

experiments;

applicability to

other regions

not assessed.

Not specified Sioux Falls Xiuqiao Sun,

SciProfilesSc

ilitPreprints,

Jian Wang,

Weitiao Wu,

Wenjia Liu

19 Dynamic Path

Planning Based on

Improved Particle

Filter Optimization

for Patrol Robots

To develop a

dynamic path

planning

algorithm for

patrol robots

using an

improved

particle filter

optimization

technique.

Proposed

algorithm

effectively

handles dynamic

obstacles and task

changes

encountered by

patrol robots.

Limited to

simulations;

real-world

validation

required.

Not specified Not

specified

Yao Nan, Qin

Jian-Hua,

Zhu Xue-

Qiong, Wang

Hong-Chang

20 A Decentralized

Coordination

Algorithm for

Patrolling and Target

Tracking in Internet

of Robotic Things

(IoRT) using

Dynamic Waypoints

and Self-triggered

Communication

To propose a

decentralized

coordination

strategy for

patrolling and

target tracking

in IoRT using

dynamic

waypoints and

self-triggered

communication.

Proposed solution

effectively

coordinates

multiple robots

for patrolling and

target tracking

tasks.

Limited to

simulations in

ROS and

Gazebo; real-

world

implementatio

n not assessed.

Not specified Not

specified

Verma,

Janardan

Kumar,

Ranga,

Virender

28

21 Research on tourism

individualized route

management based

on intelligent

optimization

algorithm

To optimize

tourism routes

using ant colony

and improved

ant colony

algorithms.

Improved ant

colony algorithm

achieves smaller

optimal path and

average path

length compared

to ant colony

algorithm.

Limited to

simulations;

real-world

applicability

not fully

assessed.

MATLAB Benchmark

27, Att48,

kroA100

Yuan,

Xiaojuana,

Shi,

Chunsheng

22 Distributed 3-D Path

Planning for Multi-

UAVs with Full

Area Surveillance

Based on Particle

Swarm Optimization

To develop a

trajectory

planner for

multi-UAVs

with full area

surveillance

using Particle

Swarm

Optimization.

Proposed

algorithm

generates feasible

optimal

trajectories for

UAVs to surveil

entire areas of

interest.

Limited to

simulations;

real-world

validation

required.

Not specified Not

specified

Nafis

Ahmed,Chait

ali, J.

PawaseORCI

D and

KyungHi

Chang

29

2.9 Overview of studies

The discussion initiates with a global perspective on the critical importance of

optimizing security patrol routes and checkpoints, emphasizing the shortcomings of

traditional methods and the necessity for systematic planning to mitigate security

threats effectively. Transitioning to methodologies, the discourse highlights the

pivotal role of MATLAB in facilitating optimization through Genetic Algorithms

(GA), Multi-Agent Systems (MAS), and Particle Swarm Optimization (PSO),

elucidating their applications in dynamic security contexts. This section encapsulates

the versatility of MATLAB in implementing sophisticated optimization strategies

tailored to address evolving security dynamics.

Furthermore, a synthesis of pertinent literature encapsulates diverse studies and

research endeavors, showcasing the breadth of applications and methodologies in

security patrol route optimization. By meticulously examining each study's

objectives, methodologies, and outcomes, this overview underscores the collective

insights garnered from empirical investigations in the field. Concluding with a

discussion on challenges and opportunities, the discourse underscores critical

considerations such as data availability, computational resources, and ethical

considerations, providing a comprehensive overview of the complexities inherent in

deploying MATLAB-based optimization solutions for security management.

2.10 Summary

The literature review provides a comprehensive exploration of security patrol route

optimization, addressing its global significance, methodological approaches,

30

empirical studies, and practical considerations. It underscores the inadequacies of

traditional patrol methods and emphasizes the need for systematic planning to

effectively mitigate security threats. The review elucidates the role of MATLAB in

implementing optimization techniques such as Genetic Algorithms (GA), Multi-

Agent Systems (MAS), and Particle Swarm Optimization (PSO), showcasing its

versatility in dynamic security contexts. Through a synthesis of relevant literature,

diverse studies and research endeavors are examined, highlighting the breadth of

applications and methodologies in security optimization. The review culminates with

a discussion on challenges and opportunities, elucidating critical considerations such

as data availability, computational resources, and ethical considerations, thus

providing a holistic overview of the intricacies involved in deploying MATLAB-

based solutions for security management.

31

METHODOLOGY

3.1 Introduction

The methodology for this project will involve the development of an efficient and

systematic approach to optimize the security patrolling route at UTeM. This is meant

to minimize travel distance and time to fully cover all checkpoints. The nearest

neighbor algorithm, one of the well-known route optimization techniques, is adopted

in this project to find the shortest path for patrolling. These distances and times were

calculated between all checkpoints using Google Maps, tabulated in the form of well-

structured matrices. The basis for these becomes the grounds upon which the

computation of optimal patrol routes is done by considering prevailing conditions.

This research methodology integrates math modeling with the design of an algorithm

32

to ensure that practical usability and reliability are warranted when the methodology

of improving security details' performances is enhanced.

3.2 Flowchart

33

Figure 3.1: Flowchart

3.3 Data Collection and Analysis

To begin my project, I used Android apps such as MyGPSCoordinate to gather

location data at each checkpoint. This involved recording precise coordinates using

GPS technology. Once I had the coordinates for each checkpoint, I used an NFC tool

app to program NFC tags specifically for each checkpoint. These NFC tags were

configured with the respective GPS coordinates previously recorded.

After setting up the NFC tags, I organized all the collected data into an Excel file.

This file now serves as the central input for my project. It contains detailed location

information for each checkpoint, which is crucial for developing and optimizing

security patrol routes and checkpoint placements using MATLAB.

In summary, the initial steps involved using Android apps to collect GPS coordinates

at checkpoints and then configuring NFC tags with this location data. By storing this

information in an Excel file, I have established a solid foundation for the subsequent

phases of my project, where I will utilize MATLAB to enhance security measures by

optimizing patrol routes and strategically placing checkpoints to minimize blind

spots.

3.4 Route Optimization and Algorithm Designing

• Matrix construction:

 One of the most important parts of the Nearest Neighbor algorithm is to build the

matrices. For this project, I have made two 29×29 matrices, one for distances and

34

another one for time. Every element of this matrix will give the distance or time

between any two checkpoints pairwise, while the diagonals will be zero since the

distance or time from a checkpoint to itself is zero. Because these matrices are

symmetric meaning the value from Checkpoint A to B is the same as from

Checkpoint B to A. All data used to populate these matrices came from Google Maps,

which assures that the information is valid in a real-world context. I prepared some

Excel files, distance.xlsx for the distance matrix and time taken.xlsx for the time

matrix. These were carefully created based on data retrieved from Google Maps

about all the possible routes between the 29 checkpoints so that the algorithm can

calculate the shortest path effectively. The distance matrix serves as an input to

calculate the shortest route based on physical distance, while the time matrix

considers travel duration, which may vary due to factors such as traffic. All this was

necessary for the algorithm to provide accurate and efficient results for the security

patrolling task at UTeM.

• Nearest Neighbor Algorithm:

 The Nearest Neighbor is a greedy strategy for route optimization problems, it can be

used for security patrolling checkpoints algorithm. It starts from an initial location,

at each step chooses that unvisited location that is closest according to a distance

matrix and finally returns to the originating location after visiting all the other

locations. The algorithm prioritizes local optimization at each step, seeking the

shortest immediate path without considering the overall route's global optimization.

In practice, the Nearest Neighbor algorithm works in an efficient way to determine a

near-optimal solution for visiting a set of locations. For this project at UTeM in

security patrolling, this algorithm will select the best route for patrol starting from a

35

given checkpoint where at every step one travels to the nearest unvisited checkpoint

until all the checkpoints are visited. This makes the travel distance and time as little

as possible, thus making the patrol efficient and orderly. This would complete the

patrol cycle, as the campus would be fully covered by returning to the starting point.

• Simulation and Testing:

In the development process, the designs will be subjected to rigorous simulation and

testing using MATLAB. This iterative approach will validate whether designed

algorithms are effective in optimizing patrol routes or not. Scenarios considered for

simulation include, varying patrol frequencies, changing weights to edges based on

dynamic security priorities, and runtime adjustment of routes according to simulated

security incidents. This will hopefully cut on the blind spots within patrol coverage

through continued testing and refinement of the algorithms for enhanced efficiency

in security patrol.

By integrating matrix construction, optimization techniques, and MATLAB's

computational capability, the route optimization algorithm will be systematically

tailored to meet the project's objectives. This will enhance security measures through

36

optimized patrol route planning, which will cover all critical areas, maximize patrol

efficiency, and improve responsiveness to dynamic security challenges.

3.5 BLOCK DIAGRAM

Figure 3.2: Block Diagram

37

3.6 Summary

This project aimed to optimize path for patrolling routes at UTeM is based on the

principle of minimum distance while traveling but involving all checkpoints. First

and foremost, the GPS coordinates for 29 checkpoints have been measured using an

Android application, MyGPSCoordinate. The coordination then was programmed

into the NFC tags, which make for easy identification during patrolling. All this data

collected was tabulated in an Excel file, the central input into route optimization and

checkpoint placement. It ensures that all the succeeding steps of the project rely on

accurate and valid data.

Two 29×29 symmetric matrices-one for distance and one for travel time to compute

the optimal routes for patrolling. These matrices are filled with data from Google

Maps, pairwise distances or times between checkpoints, while the diagonal values

are set to zero to reflect no travel between the same checkpoints. The distance matrix

is used for finding the shortest routes, while the time matrix considers factors like

traffic conditions to calculate the fastest routes. This construction of the matrices is

very important for the accuracy and effectiveness of the algorithm.

A greedy optimization algorithm known as the Nearest Neighbor Algorithm, was

implemented to find the near-optimal patrol routes. From any given initial location,

the algorithm selects the closest unvisited checkpoint at each step and returns to the

starting point after covering all locations. In this approach, the algorithm does local

optimization greedily, thus being efficient and quite suitable for the patrolling

38

requirements of UTeM. This algorithm ensures the least travel distance and time and

hence increases the overall efficiency and orderliness of the patrol cycle.

The simulation and validation in MATLAB can go through rigorous testing and

refinement of the proposed routes. Further scenarios can include changes in patrol

frequency, dynamic prioritization based on area criticality, and response to any

simulated incident. It is a continuous testing to be able to implement comprehensive

checkpoint coverage, reduce blind spots, and respond effectively to security

challenges. Outputs also involve optimized patrol routes, including studies and

visualizations by graphs for the purpose of monitoring and assessment.

The method developed here will incorporate advanced data collection, mathematical

modeling, and the Nearest Neighbor Algorithm to realize optimally efficient route

construction for security patrols. This project can provide practical usability and

reliability through simulation of the process in MATLAB. In that sense, this would

be a development of good security framework with efficient patrol planning in UTeM

and full coverage in general, plus high adaptability against dynamic security needs.

39

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the findings from the development and implementation of the

MATLAB-based program designed to optimize security patrol routes and

checkpoints. The results from various stages of the project, including data collection,

algorithm development, simulation, and implementation, are thoroughly analyzed

and discussed. During the data collection phase, latitude and longitude data were

gathered and used to configure checkpoints. Key metrics such as patrol coverage

efficiency, response times, and the effectiveness of minimizing blind spots are

evaluated. The discussion interprets these results in the context of the project's

objectives, highlighting the strengths and areas for improvement in the developed

system. This chapter aims to provide a comprehensive understanding of how the

40

proposed solutions perform in practice and their potential impact on enhancing

security measures.

4.2 Data Collection

Figure 4.1: Collecting Checkpoint latitude and longitude coordinates

41

During my journey, I visited 29 different checkpoints to capture their latitude and

longitude coordinates and ensured all necessary configurations were completed on-

site.

Figure 4.2: Example latitude and longitude coordinates

42

This is an example of data that appeared when I collected the latitude and longitude

coordinates. I took a screenshot and saved it for reference.

Figure 4.3: All Checkpoints Data

43

After collecting each set of data and configuring it in NFC, I organized everything

neatly in an Excel file, like the table above.

4.3 Data Structuring

After collecting the latitude and longitude data, I started organizing it to make it more

useful. Using the coordinates, I looked up the checkpoints on Google Maps to find

the distances and travel times between them. I carefully recorded this information in

Excel files, making sure everything was accurate and clear.

Next, I created a 29×29 matrix in Excel. Each box in the matrix shows the distance

or time between two checkpoints, while the diagonal boxes are set to zero because

there’s no distance between a checkpoint itself. This matrix is a key input for the

Nearest Neighbor Algorithm, which I used to calculate the shortest and most efficient

44

patrol routes. With this approach, the algorithm can help create a security patrolling

plan that covers all checkpoints in the least amount of time and distance.

Figure 4.4: Excel data of Checkpoint name and number

Figure 4.5: Excel Data of Distance Matrix

45

Figure 4.6: Excel Data of Time Taken Between Checkpoints

Based on the data I collected from Universiti Teknikal Malaysia Melaka (UTeM), I

compiled three comprehensive files to serve as input for my GUI application. The

first file is a detailed list of checkpoint names paired with their respective numbers,

allowing for precise identification and organization of locations. The second file

documents the distances between each checkpoint, providing a clear understanding

of the spatial relationships and travel requirements. The third file includes the time

taken to travel between these checkpoints, which adds a practical dimension for

planning and analysis. To ensure accuracy and reliability, the distance and time data

46

were sourced directly from Google Maps. These files form a structured and well-

organized dataset, enabling the GUI to function effectively for route optimization.

4.4 Results and Analysis

Figure 4.7: MATLAB Graphical User Interface

The results of the MATLAB optimization for security patrol routes and checkpoints

demonstrate an efficient path for minimizing total distance and time while ensuring

comprehensive coverage of the checkpoints. The computed path starts and ends at

the same checkpoint, ensuring a closed-loop route suitable for patrol purposes. The

total distance covered is 22.9220 KM, and the patrol completes within approximately

1 hour and 1 minute, indicating that the algorithm successfully optimized the route

47

to enhance safety and minimize blind spots. This optimization can improve patrol

efficiency and reliability in practical applications.

Figure 4.8: Result Excel Data

Then I took those results and organized them neatly in an Excel sheet, comparing the

unoptimized and optimized routes according to distance and time. Further, I created

a cumulative distance-time for both routes and plotted graphs depicting the difference

between them. From the graph, the difference will evidently show just how much

more efficient the routes get after the process of optimization, it just depicts the

48

process reducing the distance traveled hence time taken in the simplest yet

understandable way possible.

Figure 4.9: Optimized VS Unoptimized Cumulative Distance

This graph shows how the cumulative distance increases as checkpoints are visited.

The optimized route (orange line) grows much slower compared to the unoptimized

49

route (blue line). This clearly demonstrates that the optimized route significantly

reduces the total distance covered, making the patrol much more efficient.

Figure 4.10: Optimized Vs Unoptimized Cumulative Time Taken

This graph tracks the cumulative time spent on both routes. It’s easy to see that the

optimized route (orange) consistently takes less time than the unoptimized one

50

(blue). This shows how optimization not only saves distance but also makes the

patrol quicker.

Figure 4.11: Optimized Vs Unoptimized Average Time Taken

This bar chart highlights the average time spent per checkpoint. The optimized route

only takes 2.1 minutes, while the unoptimized route takes 3.28 minutes. That’s about

51

a 36% reduction in time, which is a significant improvement for any security patrol

operation.

Figure 4.12: Optimized Vs Unoptimized Average Distance Per Checkpoint

52

This graph focuses on the average distance per checkpoint. The optimized route

averages 0.8KM, while the unoptimized route is much higher at 1.6KM. This means

the optimized route cuts the distance by half, saving resources and effort.

Figure 4.13: Path Optimization Efficiency

This chart gives a clear summary of how much better the optimized route is. It

achieves 45% distance efficiency and 38%-time efficiency compared to the

53

unoptimized route. These numbers show the practical impact of using the optimized

path.

Figure 4.14: Time Taken Per Checkpoints

This graph looks at how much time is taken at each checkpoint individually. The

optimized route (orange) is almost always faster than the unoptimized one (blue).

54

The spikes in the blue line highlight inefficiencies in the unoptimized route that the

optimization process avoids.

Figure 4.15: Distance Taken Per Checkpoints

This graph shows the distance covered for each checkpoint. Just like the time graph,

the optimized route (orange) consistently stays below the unoptimized route (blue).

The peaks in the blue line emphasize how much extra travel the unoptimized route

requires, which is eliminated in the optimized one.

4.5 Summary

Chapter 4 presents the results and analysis of the MATLAB-based program

developed for route and checkpoint optimization in security patrols. It begins with

data collection on latitude and longitude coordinates from 29 checkpoints, which

were gathered and configured. Using the collected data, distances and travel times

55

between all checkpoints were calculated and organized into a 29×29 matrix as input

for the Nearest Neighbor Algorithm.

It is the shortest, most efficient route computed by the algorithm, which includes a

total distance of 22.9220 KM and can be traveled in about 1 hour and 1 minute. The

best route that could provide complete coverage, allowing the least number of blind

spots. Further analysis was made by comparing unoptimized and optimized routes

regarding distance in time, presenting the efficiency enhancement on graphs. This

chapter shows the practicality of the optimization process, which allows the

possibility to help improve security by reducing travel time and distance of patrol

routes.

56

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

A program in MATLAB will showcase the development and implementation of an

optimal route of security patrols at UTeM together with security patrol checkpoints.

The aim would be to make surveillance efficient while the blind spots will be minimal

for maximum area coverage, mainly critical ones. Advanced data gathering,

mathematical modeling, and optimization by algorithms together created results;

thus, meeting the requirements on presenting a working framework that offers

improvements in the security aspects.

Precise data collection with GPS technology and configuration of NFC tags for easy

identification began the project, naming 29 checkpoints. This list was organized in

Excel files for easy handling and was used as input for the optimization. To perform

route calculations with precision, it was necessary to create two symmetric matrices-

one of distances and one of travel times-both accurate and valid.

By implementing the Nearest Neighbor Algorithm, the project had successfully

calculated the shortest and most efficient patrol route that covers the total distance of

22.9220 km in approximately 1 hour and 1 minute. The optimized route hugely

reduced travel time and avoided many detours yet still be able to cover all

checkpoints. Comparisons between unoptimized and optimized routes were shown

57

through graphs for better visualization of how much more efficient the algorithm

made the routes.

Simulation and testing with MATLAB proved effective with the proposed solution.

Dynamic prioritization, variable patrol frequencies, and runtime adjustment are just

some of the scenarios that prove the system can adapt to changing security needs. It

was apparent from the visual output and analysis that the optimized routes save time

and energy and improve safety due to previously unidentified blind spots.

In general, this work provides a system approach to the problem of security patrol

planning that can be easily adapted for different environments. It integrates

computational geometry, graph theory, and optimization techniques in order to

obtain an efficient and scalable practical solution. The results show the possibilities

of using MATLAB and data-driven algorithms to achieve the greatest possible patrol

efficiency with minimum vulnerability while responding dynamically to security

challenges. This work forms a very strong foundation for further advances in security

management and optimization.

5.2 Commercialize

This project has immense potential for practical applications across various domains.

For example, it can be deployed to enhance condominium security patrolling,

ensuring that guards follow optimised routes to cover all areas efficiently, reducing

the risk of blind spots. It is equally beneficial for police car patrolling, where dynamic

route adjustments can be utilised to respond to real-time incidents or high-crime

areas, improving public safety. In school security patrolling, the system can help

58

security teams monitor critical zones such as entrances, playgrounds, and parking

lots to ensure the safety of students and staff. Additionally, the project can support

company operational line patrolling, where routine checks of equipment and facilities

can be scheduled and optimized to minimize downtime and enhance operational

efficiency. These diverse use cases highlight the versatility of the system in

addressing safety, security, and operational challenges across different industries.

5.3 Future Works

The next development in this project can focus on the improvement of its

functionality and adaptability. Dynamic route adjustment is one major improvement,

updating patrol routes in real-time based on factors such as traffic, weather

conditions, or security alerts. This ensures that routes are efficient and responsive to

changing conditions. Another advancement is the integration with Geographic

Information Systems (GIS), which would enable the visualization of patrol routes

and checkpoints on a map, improving situational awareness and decision-making.

Additionally, optimization for multiple patrol units can be explored, ensuring that

teams operate simultaneously with coordinated routes to maximize coverage and

minimize overlaps. Finally, the system can be enhanced by incorporating algorithms

that identify and prioritize areas with limited patrol coverage so that no critical zones

are overlooked. All these enhancements would collectively improve the overall

effectiveness and adaptability of the security patrol system.

59

REFERENCES

[1] Y. Fu, Y. Zeng, D. Wang, H. Zhang, Y. Gao, and Y. Liu, “Research on Route

Optimization Based on Multiagent and Genetic Algorithm for Community Patrol,”

in 2020 International Conference on Urban Engineering and Management Science

(ICUEMS), IEEE, Apr. 2020, pp. 112–116. doi:

10.1109/ICUEMS50872.2020.00034.

[2] M. Dewinter, C. Vandeviver, T. Vander Beken, and F. Witlox, “Analysing the

police patrol routing problem: A review,” ISPRS Int J Geoinf, vol. 9, no. 3, 2020,

doi: 10.3390/ijgi9030157.

[3] D. Zhao, H. Yu, X. Fang, L. Tian, and P. Han, “A Path Planning Method Based on

Multi- Objective Cauchy Mutation Cat Swarm Optimization Algorithm for

Navigation System of Intelligent Patrol Car,” IEEE Access, vol. 8, pp. 151788–

151803, 2020, doi: 10.1109/ACCESS.2020.3016565.

[4] Y. Jiang, H. Li, B. Feng, Z. Wu, S. Zhao, and Z. Wang, “Street Patrol Routing

Optimization in Smart City Management Based on Genetic Algorithm: A Case in

Zhengzhou, China,” ISPRS Int J Geoinf, vol. 11, no. 3, p. 171, Mar. 2022, doi:

10.3390/ijgi11030171.

[5] Qiu Mingyue and Zhang Xueying, “Determining Accurate Patrol Routes Using

Genetic Algorithm and Ant Colony,” Automatic Control and Computer Sciences,

vol. 57, no. 4, pp. 337–347, Aug. 2023, doi: 10.3103/S0146411623040065.

[6] O. Ozkan and M. Kaya, “UAV routing with genetic algorithm based matheuristic

for border security missions,” An International Journal of Optimization and

Control: Theories & Applications (IJOCTA), vol. 11, no. 2, pp. 128–138, Apr. 2021,

doi: 10.11121/ijocta.01.2021.001023.

[7] C. Guevara, J. Jadán, C. Zapata, L. Martínez, J. Pozo, and E. Manjarres, “Model of

Dynamic Routes for Intelligent Police Patrolling,” MDPI AG, Oct. 2018, p. 1214.

doi: 10.3390/proceedings2191214.

[8] Y. Gao, Z. Dai, and J. Yuan, “A Multiobjective Hybrid Optimization Algorithm for

Path Planning of Coal Mine Patrol Robot,” Comput Intell Neurosci, vol. 2022, pp.

1–10, Jun. 2022, doi: 10.1155/2022/9094572.

[9] C. Guevara and M. Santos, “Smart Patrolling Based on Spatial-Temporal

Information Using Machine Learning,” Mathematics, vol. 10, no. 22, p. 4368, Nov.

2022, doi: 10.3390/math10224368.

[10] Y. Jiang, S. Zhao, H. Li, Y. Qin, and X. Yang, “A hybrid spectral clustering

simulated annealing algorithm for the street patrol districting problem,” Complex &

Intelligent Systems, vol. 9, no. 2, pp. 1791–1807, Apr. 2023, doi: 10.1007/s40747-

022-00880-w.

[11] H. Liu, Y. Sun, N. Pan, Q. Chen, X. Guo, and D. Pan, “Multi-UAV Cooperative

Task Planning for Border Patrol based on Hierarchical Optimization,” Journal of

Imaging Science and Technology, vol. 65, no. 4, pp. 040402-1-040402–8, Jul. 2021,

doi: 10.2352/J.ImagingSci.Technol.2021.65.4.040402.

[12] T. Alam, Md. M. Rahman, P. Carrillo, L. Bobadilla, and B. Rapp, “Stochastic Multi-

Robot Patrolling with Limited Visibility,” J Intell Robot Syst, vol. 97, no. 2, pp.

411–429, Feb. 2020, doi: 10.1007/s10846-019-01039-5.

[13] M. Peñacoba, J. E. Sierra-García, M. Santos, and I. Mariolis, “Path Optimization

Using Metaheuristic Techniques for a Surveillance Robot,” Applied Sciences, vol.

13, no. 20, p. 11182, Oct. 2023, doi: 10.3390/app132011182.

60

[14] K. Shi et al., “Path Planning Optimization of Intelligent Vehicle Based on Improved

Genetic and Ant Colony Hybrid Algorithm,” Front Bioeng Biotechnol, vol. 10, Jul.

2022, doi: 10.3389/fbioe.2022.905983.

[15] C. Jose and K. S. Vijula Grace, “Optimization based routing model for the dynamic

path planning of emergency vehicles,” Evol Intell, vol. 15, no. 2, pp. 1425–1439,

Jun. 2022, doi: 10.1007/s12065-020-00448-y.

[16] O. Ozkan, “Optimization of the distance-constrained multi-based multi-UAV

routing problem with simulated annealing and local search-based matheuristic to

detect forest fires: The case of Turkey,” Appl Soft Comput, vol. 113, p. 108015, Dec.

2021, doi: 10.1016/j.asoc.2021.108015.

[17] L. Huang, M. Zhou, H. Han, S. Wang, and A. Albeshri, “Learning-Inspired Immune

Algorithm for Multiobjective-Optimized Multirobot Maritime Patrolling,” IEEE

Internet Things J, vol. 11, no. 6, pp. 9870–9881, Mar. 2024, doi:

10.1109/JIOT.2023.3326567.

[18] N. Rathore, P. K. Jain, and M. Parida, “A MATLAB-Based Application to Solve

Vehicle Routing Problem Using GA,” 2020, pp. 285–298. doi: 10.1007/978-981-32-

9487-5_22.

[19] X. Sun, J. Wang, W. Wu, and W. Liu, “Genetic Algorithm for Optimizing Routing

Design and Fleet Allocation of Freeway Service Overlapping Patrol,” Sustainability,

vol. 10, no. 11, p. 4120, Nov. 2018, doi: 10.3390/su10114120.

[20] Y. Nan, Q. Jian-Hua, Z. Xue-Qiong, and W. Hong-Chang, “Dynamic Path Planning

Based on Improved Particle Filter Optimisation for Patrol Robots,” in 2022 7th Asia

Conference on Power and Electrical Engineering (ACPEE), IEEE, Apr. 2022, pp.

1898–1903. doi: 10.1109/ACPEE53904.2022.9784034.

[21] J. Verma and V. Ranga, “A Decentralized Coordination Algorithm for Patrolling

and Target Tracking in Internet of Robotic Things using Dynamic Waypoints and

Self-triggered Communication,” International Journal of Computing and Digital

Systems, vol. 12, no. 4, pp. 992–1003, Oct. 2022, doi: 10.12785/ijcds/120180.

[22] X. Yuan and C. Shi, “Research on tourism individualized route management based

on intelligent optimization algorithm,” Journal of Computational Methods in

Sciences and Engineering, vol. 19, no. 4, pp. 1065–1072, Nov. 2019, doi:

10.3233/JCM-193821.

61

APPENDICES

Coding

classdef PSM_BDP < matlab.apps.AppBase

 % Properties that correspond to app components
 properties (Access = public)
 UIFigure matlab.ui.Figure
 Label matlab.ui.control.Label
 ResultsTextArea matlab.ui.control.TextArea
 ResultsTextAreaLabel matlab.ui.control.Label
 BrowseButton_3 matlab.ui.control.Button
 BrowseButton_2 matlab.ui.control.Button
 BrowseButton matlab.ui.control.Button
 TimeTakenFileEditField matlab.ui.control.EditField
 TimeTakenFileEditFieldLabel matlab.ui.control.Label
 DistanceMatrixFileEditField matlab.ui.control.EditField
 DistanceMatrixFileEditFieldLabel matlab.ui.control.Label
 CheckpointNamesFileEditField matlab.ui.control.EditField
 CheckpointNamesFileEditFieldLabel matlab.ui.control.Label
 ExportButton matlab.ui.control.Button
 ResetButton matlab.ui.control.Button
 ComputePathButton matlab.ui.control.Button
 end

 properties (Access = private)
 distance_matrix % Stores the distance matrix
 time_matrix % Stores the time taken matrix
 checkpoint_data % Stores the checkpoint names and numbers
 total_path % Stores the computed path
 total_distance % Stores the total distance
 total_time % Stores the total time
 end

 % Callbacks that handle component events
 methods (Access = private)

 % Button pushed function: BrowseButton
 function BrowseButtonPushed(app, event)

 [file, path] = uigetfile('*.xlsx', 'Select Checkpoint Names File');
 if file
 app.CheckpointNamesFileEditField.Value = fullfile(path, file);
 end
 end

 % Button pushed function: ComputePathButton
 function ComputePathButtonPushed(app, event)
 try
 % Load data from input files
 app.distance_matrix =
xlsread(app.DistanceMatrixFileEditField.Value);

62

 app.time_matrix = xlsread(app.TimeTakenFileEditField.Value);
 app.checkpoint_data =
readtable(app.CheckpointNamesFileEditField.Value, 'VariableNamingRule',
'preserve');

 % Validate loaded data
 if isempty(app.distance_matrix) || isempty(app.time_matrix) ||
isempty(app.checkpoint_data)
 error('One or more input files are empty or invalid.');
 end

 % Extract checkpoint numbers and names
 checkpoint_numbers = app.checkpoint_data{:, 1};
 checkpoint_names = app.checkpoint_data{:, 2};

 % Set the starting checkpoint to the first checkpoint
 start_checkpoint = 1; % Assuming the first checkpoint in the
list

 % Initialize variables
 n = size(app.distance_matrix, 1);
 visited_checkpoints = zeros(1, n);
 app.total_path = [];
 app.total_distance = 0;
 app.total_time = 0;
 current_checkpoint = start_checkpoint;

 % Loop to compute the shortest path
 while sum(visited_checkpoints) < n
 visited_checkpoints(current_checkpoint) = 1;
 app.total_path = [app.total_path, current_checkpoint];
 min_distance = inf;
 next_checkpoint = -1;

 for i = 1:n
 if ~visited_checkpoints(i) &&
app.distance_matrix(current_checkpoint, i) > 0 ...
 && app.distance_matrix(current_checkpoint, i)
< min_distance
 min_distance =
app.distance_matrix(current_checkpoint, i);
 next_checkpoint = i;
 end
 end

 if next_checkpoint == -1
 break;
 end

 app.total_distance = app.total_distance + min_distance;
 app.total_time = app.total_time +
app.time_matrix(current_checkpoint, next_checkpoint);
 current_checkpoint = next_checkpoint;
 end

 % Add return to the starting checkpoint
 if current_checkpoint ~= start_checkpoint
 app.total_path = [app.total_path, start_checkpoint];

63

 app.total_distance = app.total_distance +
app.distance_matrix(current_checkpoint, start_checkpoint);
 app.total_time = app.total_time +
app.time_matrix(current_checkpoint, start_checkpoint);
 end

 % Convert checkpoint numbers to numeric if necessary
 if iscell(checkpoint_numbers)
 numeric_path = cellfun(@str2double,
checkpoint_numbers(app.total_path)); % Convert to numeric
 else
 numeric_path = checkpoint_numbers(app.total_path); % Use
directly if already numeric
 end

 % Convert checkpoint names to strings if necessary
 if iscell(checkpoint_names)
 path_names = checkpoint_names(app.total_path); % Extract
as cell array of strings
 else
 path_names = cellstr(checkpoint_names(app.total_path)); %
Convert to cell array of strings
 end

 % Display results
 % Format numeric path as "CP1, CP2, ..."
 formatted_numeric_path = sprintf('CP%d ', numeric_path);
 formatted_numeric_path = strtrim(formatted_numeric_path);
% Remove trailing space

 % Display results
 % Convert total time to hours and minutes
 hours = floor(app.total_time / 60); % Extract hours
 minutes = mod(app.total_time, 60); % Extract remaining
minutes

 % Display results
 app.ResultsTextArea.Value = sprintf(['Path (Numeric):
%s\n' ...
 'Path (Names): %s\n' ...
 'Total Distance: %.4f KM\n' ...
 'Total Time: %d hours %d minutes'], ...
 formatted_numeric_path, strjoin(path_names, ' -> '),
app.total_distance, hours, minutes);

 catch ME

 % Handle errors and display a message
 uialert(app.UIFigure, sprintf('Error: %s', ME.message),
'Error');
 end
 end

 % Button pushed function: ResetButton
 function ResetButtonPushed(app, event)

 % Clear all inputs

64

 app.DistanceMatrixFileEditField.Value = '';
 app.TimeTakenFileEditField.Value = '';
 app.CheckpointNamesFileEditField.Value = '';

 % Clear results
 app.ResultsTextArea.Value = '';

 % Reset stored properties
 app.distance_matrix = [];
 app.time_matrix = [];
 app.checkpoint_data = [];
 app.total_path = [];
 app.total_distance = 0;
 app.total_time = 0;

 end

 % Button pushed function: ExportButton
 function ExportButtonPushed(app, event)

 [file, path] = uiputfile('*.txt', 'Save Results As');
 if file
 % Open the file for writing
 fileID = fopen(fullfile(path, file), 'w');

 % Write results to the file
 fprintf(fileID, 'Path (Numeric): %s\n',
num2str(app.total_path));
 fprintf(fileID, 'Path (Names): %s\n',
strjoin(app.checkpoint_data{app.total_path, 2}, ' -> '));
 fprintf(fileID, 'Total Distance: %.4f KM\n',
app.total_distance);
 fprintf(fileID, 'Total Time: %d minutes\n', app.total_time);
 % Close the file
 fclose(fileID);

 % Notify user of success
 uialert(app.UIFigure, 'Results exported successfully!',
'Success');
 end
 end

 % Button pushed function: BrowseButton_2
 function BrowseButton_2Pushed(app, event)

 [file, path] = uigetfile('*.xlsx', 'Select Distance Matrix File');
 if file
 app.DistanceMatrixFileEditField.Value = fullfile(path, file);
 end
 end

 % Button pushed function: BrowseButton_3
 function BrowseButton_3Pushed(app, event)

 [file, path] = uigetfile('*.xlsx', 'Select Time Taken File');
 if file
 app.TimeTakenFileEditField.Value = fullfile(path, file);
 end
 end

65

 end

 % Component initialization
 methods (Access = private)

 % Create UIFigure and components
 function createComponents(app)

 % Create UIFigure and hide until all components are created
 app.UIFigure = uifigure('Visible', 'off');
 app.UIFigure.Color = [0.9412 0.8157 0.5255];
 app.UIFigure.Position = [100 100 640 480];
 app.UIFigure.Name = 'MATLAB App';

 % Create ComputePathButton
 app.ComputePathButton = uibutton(app.UIFigure, 'push');
 app.ComputePathButton.ButtonPushedFcn = createCallbackFcn(app,
@ComputePathButtonPushed, true);
 app.ComputePathButton.FontName = 'Times New Roman';
 app.ComputePathButton.FontSize = 14;
 app.ComputePathButton.FontColor = [0.149 0.149 0.149];
 app.ComputePathButton.Position = [81 227 100 25];
 app.ComputePathButton.Text = 'Compute Path';

 % Create ResetButton
 app.ResetButton = uibutton(app.UIFigure, 'push');
 app.ResetButton.ButtonPushedFcn = createCallbackFcn(app,
@ResetButtonPushed, true);
 app.ResetButton.FontName = 'Times New Roman';
 app.ResetButton.FontSize = 14;
 app.ResetButton.FontColor = [0.149 0.149 0.149];
 app.ResetButton.Position = [197 227 100 25];
 app.ResetButton.Text = 'Reset';

 % Create ExportButton
 app.ExportButton = uibutton(app.UIFigure, 'push');
 app.ExportButton.ButtonPushedFcn = createCallbackFcn(app,
@ExportButtonPushed, true);
 app.ExportButton.FontName = 'Times New Roman';
 app.ExportButton.FontSize = 14;
 app.ExportButton.FontColor = [0.149 0.149 0.149];
 app.ExportButton.Position = [310 227 100 25];
 app.ExportButton.Text = 'Export';

 % Create CheckpointNamesFileEditFieldLabel
 app.CheckpointNamesFileEditFieldLabel = uilabel(app.UIFigure);
 app.CheckpointNamesFileEditFieldLabel.BackgroundColor = [0.2118
0.2941 0.4588];
 app.CheckpointNamesFileEditFieldLabel.HorizontalAlignment =
'right';
 app.CheckpointNamesFileEditFieldLabel.FontName = 'Times New Roman';
 app.CheckpointNamesFileEditFieldLabel.FontWeight = 'bold';
 app.CheckpointNamesFileEditFieldLabel.FontColor = [1 1 1];
 app.CheckpointNamesFileEditFieldLabel.Position = [23 369 128 22];
 app.CheckpointNamesFileEditFieldLabel.Text = 'Checkpoint Names
File:';

 % Create CheckpointNamesFileEditField

66

 app.CheckpointNamesFileEditField = uieditfield(app.UIFigure,
'text');
 app.CheckpointNamesFileEditField.FontName = 'Times New Roman';
 app.CheckpointNamesFileEditField.FontWeight = 'bold';
 app.CheckpointNamesFileEditField.FontColor = [1 1 1];
 app.CheckpointNamesFileEditField.BackgroundColor = [0.2118 0.2941
0.4588];
 app.CheckpointNamesFileEditField.Position = [166 369 100 22];

 % Create DistanceMatrixFileEditFieldLabel
 app.DistanceMatrixFileEditFieldLabel = uilabel(app.UIFigure);
 app.DistanceMatrixFileEditFieldLabel.BackgroundColor = [0.2118
0.2941 0.4588];
 app.DistanceMatrixFileEditFieldLabel.HorizontalAlignment = 'right';
 app.DistanceMatrixFileEditFieldLabel.FontName = 'Times New Roman';
 app.DistanceMatrixFileEditFieldLabel.FontWeight = 'bold';
 app.DistanceMatrixFileEditFieldLabel.FontColor = [1 1 1];
 app.DistanceMatrixFileEditFieldLabel.Position = [37 339 114 22];
 app.DistanceMatrixFileEditFieldLabel.Text = 'Distance Matrix
File:';

 % Create DistanceMatrixFileEditField
 app.DistanceMatrixFileEditField = uieditfield(app.UIFigure,
'text');
 app.DistanceMatrixFileEditField.FontName = 'Times New Roman';
 app.DistanceMatrixFileEditField.FontWeight = 'bold';
 app.DistanceMatrixFileEditField.FontColor = [1 1 1];
 app.DistanceMatrixFileEditField.BackgroundColor = [0.2118 0.2941
0.4588];
 app.DistanceMatrixFileEditField.Position = [166 339 100 22];

 % Create TimeTakenFileEditFieldLabel
 app.TimeTakenFileEditFieldLabel = uilabel(app.UIFigure);
 app.TimeTakenFileEditFieldLabel.BackgroundColor = [0.2118 0.2941
0.4588];
 app.TimeTakenFileEditFieldLabel.HorizontalAlignment = 'right';
 app.TimeTakenFileEditFieldLabel.FontName = 'Times New Roman';
 app.TimeTakenFileEditFieldLabel.FontWeight = 'bold';
 app.TimeTakenFileEditFieldLabel.FontColor = [1 1 1];
 app.TimeTakenFileEditFieldLabel.Position = [59 307 92 22];
 app.TimeTakenFileEditFieldLabel.Text = 'Time Taken File:';

 % Create TimeTakenFileEditField
 app.TimeTakenFileEditField = uieditfield(app.UIFigure, 'text');
 app.TimeTakenFileEditField.FontName = 'Times New Roman';
 app.TimeTakenFileEditField.FontWeight = 'bold';
 app.TimeTakenFileEditField.FontColor = [1 1 1];
 app.TimeTakenFileEditField.BackgroundColor = [0.2118 0.2941
0.4588];
 app.TimeTakenFileEditField.Position = [166 307 100 22];

 % Create BrowseButton
 app.BrowseButton = uibutton(app.UIFigure, 'push');
 app.BrowseButton.ButtonPushedFcn = createCallbackFcn(app,
@BrowseButtonPushed, true);
 app.BrowseButton.BackgroundColor = [0.3373 0.3294 0.5294];
 app.BrowseButton.FontColor = [1 0 0];
 app.BrowseButton.Position = [273 369 100 22];
 app.BrowseButton.Text = 'Browse';

67

 % Create BrowseButton_2
 app.BrowseButton_2 = uibutton(app.UIFigure, 'push');
 app.BrowseButton_2.ButtonPushedFcn = createCallbackFcn(app,
@BrowseButton_2Pushed, true);
 app.BrowseButton_2.BackgroundColor = [0.3373 0.3294 0.5294];
 app.BrowseButton_2.FontColor = [1 0 0];
 app.BrowseButton_2.Position = [274 339 100 22];
 app.BrowseButton_2.Text = 'Browse';

 % Create BrowseButton_3
 app.BrowseButton_3 = uibutton(app.UIFigure, 'push');
 app.BrowseButton_3.ButtonPushedFcn = createCallbackFcn(app,
@BrowseButton_3Pushed, true);
 app.BrowseButton_3.BackgroundColor = [0.3373 0.3294 0.5294];
 app.BrowseButton_3.FontColor = [1 0 0];
 app.BrowseButton_3.Position = [275 307 100 22];
 app.BrowseButton_3.Text = 'Browse';

 % Create ResultsTextAreaLabel
 app.ResultsTextAreaLabel = uilabel(app.UIFigure);
 app.ResultsTextAreaLabel.BackgroundColor = [0.7451 0.6196 1];
 app.ResultsTextAreaLabel.HorizontalAlignment = 'right';
 app.ResultsTextAreaLabel.FontWeight = 'bold';
 app.ResultsTextAreaLabel.Position = [108 188 48 22];
 app.ResultsTextAreaLabel.Text = 'Results';

 % Create ResultsTextArea
 app.ResultsTextArea = uitextarea(app.UIFigure);
 app.ResultsTextArea.FontWeight = 'bold';
 app.ResultsTextArea.BackgroundColor = [0.7451 0.6196 1];
 app.ResultsTextArea.Position = [171 23 426 189];

 % Create Label
 app.Label = uilabel(app.UIFigure);
 app.Label.FontName = 'Arial Black';
 app.Label.FontSize = 14;
 app.Label.FontWeight = 'bold';
 app.Label.Position = [174 410 387 52];
 app.Label.Text = {'SECURITY PATROL ROUTES AND CHECKPOINTS ';
'OPTIMIZATION WITH MATLAB TO MINIMIZE '; 'BLIND SPOTS AND ENHANCE THE SAFETY'};

 % Show the figure after all components are created
 app.UIFigure.Visible = 'on';
 end
 end

 % App creation and deletion
 methods (Access = public)

 % Construct app
 function app = PSM_BDP

 % Create UIFigure and components
 createComponents(app)

 % Register the app with App Designer
 registerApp(app, app.UIFigure)

68

 if nargout == 0
 clear app
 end
 end

 % Code that executes before app deletion
 function delete(app)

 % Delete UIFigure when app is deleted
 delete(app.UIFigure)
 end
 end
end

69

