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ABSTRACT 

Hand movement impairments significantly affect individuals' quality of life, highlighting the 

need for advanced assistive technologies. This study addresses the challenge of enabling 

intuitive and precise control of an exoskeleton hand by analyzing electromyography (EMG) 

signals. The objective is to develop a robust system capable of accurately interpreting muscle 

activity to facilitate seamless and natural interaction with an exoskeleton device. To achieve 

this, EMG signals were acquired using surface electrodes and underwent rigorous 

preprocessing to eliminate noise and artifacts, ensuring clean and reliable data for analysis. 

Sophisticated machine learning algorithms were employed to classify and differentiate 

between a range of hand movements, including grasping, pinching, and releasing objects. 

The system's performance was evaluated in terms of its accuracy in movement classification 

and its ability to translate these classifications into real-time control of the exoskeleton hand. 

The results demonstrated high classification accuracy and effective real-time translation of 

hand movements, underscoring the system’s potential for practical applications. This 

research highlights the viability of EMG signal analysis as a tool for enhancing the 

functionality of exoskeleton hands, offering a promising solution for individuals with hand 

movement impairments. 
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ABSTRAK 

Kekurangan keupayaan pergerakan tangan memberi kesan besar terhadap kualiti hidup 

individu, sekaligus menekankan keperluan untuk teknologi bantuan yang lebih maju. Kajian 

ini menangani cabaran mengawal eksoskeleton tangan secara intuitif dan tepat melalui 

analisis isyarat elektromiografi (EMG). Objektif utama adalah untuk membangunkan sistem 

yang kukuh dan mampu mentafsirkan aktiviti otot dengan tepat bagi memudahkan interaksi 

semula jadi dengan peranti eksoskeleton. Untuk mencapai matlamat ini, isyarat EMG 

diperoleh menggunakan elektrod permukaan dan diproses dengan teliti untuk menghapuskan 

bunyi serta artifak, memastikan data yang bersih dan boleh dipercayai untuk analisis. 

Algoritma pembelajaran mesin yang canggih digunakan untuk mengklasifikasikan dan 

membezakan pelbagai pergerakan tangan, termasuk menggenggam, mencubit, dan 

melepaskan objek. Prestasi sistem dinilai berdasarkan ketepatan klasifikasi pergerakan dan 

keupayaannya untuk menterjemahkan klasifikasi ini kepada kawalan eksoskeleton tangan 

secara masa nyata. Hasil kajian menunjukkan ketepatan klasifikasi yang tinggi dan 

keupayaan penterjemahan pergerakan tangan secara masa nyata, sekaligus menonjolkan 

potensi sistem ini untuk aplikasi praktikal. Penyelidikan ini menggariskan kebolehlaksanaan 

analisis isyarat EMG sebagai alat untuk meningkatkan fungsi eksoskeleton tangan, 

menawarkan penyelesaian yang menjanjikan bagi individu yang mengalami kekurangan 

pergerakan tangan. 

.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Electromyography (EMG) is a critical device, for the development of exoskeleton 

hand as it measures muscle activity by quantifying electrical signals that muscles produce. 

Wearable robotic devices that augment or restore hand functions based on muscle intent and 

sensing interpretations offer the promise of true patient personalization and real-time control. 

Initially, EMG was mostly employed in clinical setups to diagnose neuromuscular disorders 

and study muscle function. It was therefore possible to embed it in ever-more sophisticated 

systems due to progress in the realms of signal processing and machine learning. 

 

As for exoskeleton hand, raw electromyography signals from muscle are measured 

by surface electrodes placed on the skin surface. Since raw myoelectric signals exhibit 

inherent noise, preprocessing will enhance signal quality for further processing. Filtering 

and rectification procedures are usually executed sequentially. Typical precautions include 

noise and interference filtering, using band-pass filters, and signal rectification, that is, 

replacing it by the absolute value so that all the components are positive. 

 

Following preprocessing, some features can be extracted from EMG signals. The 

time-domain attributes, such as MAV and RMS, reflect signal amplitude and variability over 

time. The frequency-domain attributes are, for instance, MNF and MDF, which show the 
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frequency characteristics of the signal. Methods of time-frequency analysis, wavelet 

transforms, give more detail about signal dynamics. 

 

These features are applied as inputs to the machine learning techniques. Linear 

Discriminant Analysis uses linear combinations of the features to classify different hand 

movements while Support Vector Machines are effective in high dimensional space and 

ANN is used to learn complex patterns in data. The classified movements are used to 

generate the control signals for the exoskeleton hand, thus allowing real-time intuitive 

control. Although much progress has been made, remaining challenges include variability in 

EMG signals due to electrode placement and muscle fatigue, and differences in muscle 

physiology across individuals. Real-time processing and minimum control latency are also 

important to make the system smooth.  

 

Thus, in enhancing the life quality of individuals with hand movement disabilities, 

the decoding of various hand movements from EMG signals presents a multidisciplinary 

field ranging between biomechanics and signal processing up to machine learning. The 

potential of advanced, sophisticated, and user-friendly exoskeleton hands grows with 

improved research and advancement of technology.  

1.2 Problem Statement 

The problem statement of determining EMG signals based on distinct types of hand 

motions for exoskeleton hand applications passes through several hurdles. One main concern 

is the variability of the EMG signals, which depends on, among others, the placement of the 

electrodes, skin impedance, and muscle fatigue. Consequently, the variability can sometimes 

lead to ambiguity in the interpretation of the signals. This signifies that the real-time capture, 
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preprocessing, and analysis of EMG signals should also be extremely sophisticated to 

present minimal delay for the exoskeleton hand to have a quick and accurate response 

corresponding to the user's intended movement. Another critical issue is to design proper 

machine learning algorithms to reliably classify a wide range of hand movements from the 

EMG data, considering individual differences in muscle activation patterns. Thus, solving 

these problems would certainly enhance the creation of exoskeleton hands that are effective, 

dependable, and user-friendly to control, which will improve the quality of life for people 

with hand motion disorders. 

1.3 Project Objective 

The main goal of this project is to create a method that distinguishes various hand 

movements. Specifically, the objectives are as follows:  

• To analyze EMG signals for exoskeleton hand development. 

• To capture and interpret the electrical activity produced by muscles during different 

hand movements. 

• To design an exoskeleton hand that helps individuals with hand movement 

impairments perform daily tasks more easily. 

1.4 Scope of project 

This project aims to develop a system that uses Electromyography (EMG) signals to classify 

hand movements and control an exoskeleton. The key objectives include: 

• Investigating and analyzing EMG signals to identify unique patterns of muscle 

activation during various hand movements, such as scissor, pen, chopstick, and 

needle movements. 
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• Designing and implementing an exoskeleton that can replicate these hand 

movements accurately based on the processed EMG signals, allowing for real-time 

control and feedback. 

• Conducting experiments to evaluate the system's performance, including testing with 

real users to assess the accuracy and reliability of movement classification and the 

responsiveness of the exoskeleton. 

• Identifying any weaknesses or limitations in the current system, such as classification 

errors or hardware limitations, and working on improvements for better performance 

and user experience. 

: 

1.5 Summary 

This project focuses on developing an exoskeleton hand to assist people who have 

difficulties moving their hands. The system uses electromyography (EMG) signals, which 

measure the electrical activity of muscles, to understand and control the movements of the 

exoskeleton hand. These signals are collected using surface electrodes placed on the skin. 

Since raw EMG signals can be noisy and unclear, they are cleaned and processed to improve 

their quality. Important features of the signals, such as strength and frequency, are extracted 

to help identify specific hand movements. 

 

Advanced machine learning methods are used to classify these movements, like 

grasping, pinching, or releasing, and turn them into commands for the exoskeleton. This 

allows the device to respond in real time and work intuitively based on the user’s intentions. 
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However, some challenges remain, such as variations in the signals caused by 

differences in electrode placement, skin conditions, muscle fatigue, and individual muscle 

differences. It is also important to ensure the system processes the signals quickly and 

accurately, so the exoskeleton responds smoothly and without delay. 

 

The goal of this project is to study EMG signals, interpret different muscle activities 

during hand movements, and design a reliable and user-friendly exoskeleton hand. Testing 

the system and gathering feedback will help improve its performance and identify areas for 

future enhancement. Ultimately, this exoskeleton hand aims to improve the quality of life 

for people with hand movement impairments by helping them perform daily tasks more 

easily. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Introduction 

This section includes a complete review of the project's background and progress. 

Journals, articles, and books from previous work on this topic will be the main sources. This 

chapter will cover everything from the basics to related research applications. This step is 

important to understand the concept EMG Based on Different Types Of Hand Movement 

For Exoskeleton Hand Application. 

2.2 Electromyography (EMG) 

              The electrical activity of skeletal muscles is the most Volunteers valuable part of an 

EMG signal. This is where EMG detects muscle signals by electrical measurements. The 

source of such signals is motor neurons of the central nervous system or CNS. As EMG 

signals reflect neuromuscular activities, these help in the diagnosis of muscle injuries and 

problems of the nervous system and muscles. Advanced deep learning can also use the EMG 

signals for control of complex robotics systems or even just collect simple data. They could 

be useful in terms of recording muscle movements and how people walk, for instance. 

              There exist two different types of electrodes that are applied to measure EMG 

signals. They are surface or needle. Needle type is further divided into three: the concentric-

EMG electrode, single-fibre EMG electrode, and mono-polars single electrode. Needle types 

are about a breadth of 1 mm. Surface type is a non-invasive type since it is applied on the 

skin and is about 0.5 to 2.5 cm in breadth, Merlo et al., 2003. Surface electrodes measure the 
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changes between the surface of the skin and the muscles by using electrolytic conduction. 

Basically, there are the dry EMG electrodes and gelled EMG electrodes-two types of surface 

electrodes. 

              The electroencephalogram, the electrocardiogram, and the electromyography are 

the three major types of electrograms. The EMG signals range from 5 Hz to 2 kHz, more 

useful than ECG and EEG signals that are lower than 100 Hz. However, the EMG signals 

are not very interpretable and appear as patterns. This paper is a review of the various types 

of EMG signals, the process of gathering them, and their processing. Improved EMG 

diagnostics will benefit engineering and medicine. 

 

Figure 2.1 A proses of Electromyography [1] 

2.2.1 Needle Electrode 

              Electromyography, or EMG, uses needle electrodes to measure the electricity of 

muscle activity. This is in contrast with surface electrodes that are placed on the skin. The 

needles themselves go directly into the muscle tissue, thus giving a more precise reading of 

the muscle signals. There are three types of needle electrodes: single-fibre EMG electrodes, 

concentric EMG electrodes, and monopolar single electrodes. Monopolar single electrodes 

use only a single needle and require that a reference electrode also be placed on the body. 

[1]. These include fine wires inside a thin, hollowed-out needle for regional recordings and 

single-fibre electrodes that record activity from a few muscle fibres. The needle electrodes 

are inserted into the muscles and thus are invasive, about 1 mm or smaller in width. They 
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can be uncomfortable but give very good recordings. For the concentric this wire is inside a 

hollowed needle and for single fibre recording, the activity from a few muscle fibres. They 

are used for diagnosis of carpal tunnel syndrome, for diagnosis of neuromuscular diseases 

like ALS, myasthenia gravis, muscular dystrophy; they are also used in research for studying 

contraction/behaviour of muscles in different situations. Help formulate, control, and 

evaluate the rehabilitation strategies and therapies for the persons who have neuromuscular 

disorders. In the EMG test, a thin-needle electrode is placed inside the muscle for picking 

up the electrical signals of the muscle fibres. That amplifier records these signals and 

enlarges them for study. The EMG hence is known to show the way for evaluating the health 

of muscles and nerves since typical patterns indicate specific kinds of issues of 

neuromuscular. Only with full data on health of muscles and nerves is it possible to make an 

adequate diagnosis and plan the therapy effectively, for the acquisition of which needle 

electrodes are needed.  

 

Figure 2.2 Needle Electrode [1] 

 

2.2.2 Surface Electrode 

             For instance, electromyography will apply surface electrodes in measuring the 

electrical activity of muscles when recording from the skin surface. This is non-invasive, 

unlike the needle electrodes invaded into the muscle. Surface electrodes are applied to the 
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skin and pasted over the muscle to record the electrical impulses. The producing of the 

electrical impulses occurs whenever there is contraction or movement of the muscles. The 

two types of surface electrodes are the dry EMG electrodes and the gelled EMG electrode 

[1]. They are divided into dry and gelled ones; the dry ones do not have any gel, whereas the 

gelled ones contain a conductive gel that enhances signal detection. Surface electrodes do 

not hurt the person being examined, and they are easy to apply. The width usually ranges 

between 0.5 to 2.5 cm. It functions through conducting electricity through electrolytes and 

therefore can recognize any changes in electrical potential between the skin and the surface 

of the muscle. These electrodes are greatly used because it is very comfortable and easy to 

use. In physical research, therapy, and at the time of rehabilitation, this technique is 

implemented to monitor movements of muscles; monitor activation and analyze gait of 

muscles. Through the skin, it is a non-invasive method to measure muscle activity. They are 

comfortable, easy to use and serve innumerable purposes for understanding and following 

muscle function in both medical and scientific realms. 

 

Figure 2.3 Surface Electrode [1] 

2.3 Flexor Digitorum Profundus (FDP) and Flexor Superficialis (FDS) Muscles 

This is the muscle on the front of the human forearm. The muscles are covered by 

the pronator teres, palmaris longus, flexor pollicis longus, flexor carpi ulnaris, and flexor 

digitorum profundus muscles. The muscle created by two heads that form a muscular arch 

through which the median nerve and ulnar artery run. 
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2.3.1 Flexor Digitorum Superficialis (FDS) Muscles 

In the forearm's front part, the biggest muscle is flexor digitorum superficialis. It is 

one of the superficial flexors of the forearm and works together with other muscles like the 

pronator teres, flexor carpi radialis, flexor carpi ulnaris, and palmaris longus. Certain authors 

also refer to it as the independent middle/intermediate layer of the front part of the forearm, 

situated between the deep and superficial groups [2]. The flexor digitorum superficialis has 

two heads, the radial head and the humeroulnar head. These heads separated by where they 

originate. The muscle's broad and muscular belly extends away from the wrist and then splits 

into four tendons, which connect to the middle phalanges of the second through fifth digits 

of the hand. The tendons on the outer side of the forearm are very much superficial and thus 

easily palpable or felt. [2]. 

 

Figure 2.4 Flexor Digitorum Superficialis [2] 

2.3.2 Flexor Digitorum Profundus (FDP) Muscles 

The flexor digitorum profundus is a fusiform muscle lying deep within the anterior 

or flexor compartment of the forearm. Along with the flexor pollicis longus and pronator 

quadratus muscles, it forms the deep flexor compartment. Its origin is the proximal part of 

the ulna, and it inserts into the distal phalanges of the second to fifth fingers. Though it does 

take part in wrist flexion, its key role is the flexing of the fingers at the metacarpophalangeal 

and interphalangeal joints [19]. The flexor digitorum profundus muscle takes origin from 

four locations: the aponeurosis of the flexor carpi ulnaris muscle, the coronoid process of the 
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ulna, the proximal three-quarters of the anterior surface of the ulna, and the adjacent part of 

the interosseous membrane. It descends inferiors towards the hand from its origin. It forms 

a broad tendon in the distal forearm that passes over the superficial aspect of the pronator 

quadratus and enters the hand beneath the flexor retinaculum. As it enters the hand, the 

tendon splits into four slips that each attach to the base of the distal phalanx of the second 

through fifth fingers on the palmar surface [19]. 

 

 

Figure 2.5 Flexor Digitorum Profundus [19] 

2.4 Electromyography (EMG)-driven robotic hand exoskeleton. 

Hand motion analysis is of a great significance in rehabilitation because hands are 

mostly used in daily activities and hence the motion of the hands is quite relevant to the 

understanding of restoration of human motor function. Movements of the hands and fingers 

are to a large extent controlled by flexor muscles of the forearms. Surface EMG signals of 

these forearm muscles can be used to classify patterns of finger movements for such 

applications as EMG-driven robotic hand exoskeletons or such applications that classify 

patterns of finger movements, like sign language recognition. It helps in planning better 

rehabilitation strategies, making the assistive devices more functional, which are focused on 

improving hand motor control and dexterity. 
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Characteristics of surface electromyography signals change with changing patterns 

of these muscle contractions that are controlling the finger movements, so in effect this 

principle becomes the basic way of detecting hand gesture using myoelectric feature vectors 

obtained from these sEMG signals. It is difficult to make this process of recognition robust 

because of frequent changes that occur with muscle fatigue, position of the movement of 

electrode results in changing these signal properties. 

Complex movement assessments have been successful with synergy patterns of 

muscles in which synergistic muscular activity is usually controlled by neural mechanisms. 

This provides good robustness in the analysis of limb movement and gives rise to more 

reliable and effective applications of areas such as prosthetics and rehabilitation. 

2.4.1 Preprocessing of Electromyography (EMG) 

             The collected sEMG data were processed through various stages during the offline 

analysis using Matlab 2014a in order to improve their quality and gain back meaningful 

information. Power frequency interference was removed, first by a 50 Hz notch filter and a 

20 Hz to 500 Hz band-pass filter [5]. Then, filtered six-channel myoelectric data was used 

with a 3 Hz low-pass filter to obtain the envelope of this signal. This envelope signal captures 

the information about the general intensity or amplitude variation with time. Additionally, 

the myoelectric envelope signal after filtration has been rectified to get its intensity for 

movement onsets detection. This is done to detect the initiation point of muscle activity. This 

can be applied to situations in which movement analysis/ gesture recognition is necessary. 

MatLab has dominated these processing techniques that were very resourceful in the 

extraction of features from this sEMG that will allow for making a very detailed analysis 

and interpretation of patterns of activity in the muscle during movements. 
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EMGaverage  = √∑ 𝐸𝑀𝐺
6

𝑖=1
(𝑖)2 

EMGaverage {
≥ 0.005 𝑎𝑐𝑡𝑖𝑣𝑒

𝑒𝑙𝑠𝑒 𝑟𝑒𝑠𝑡
 

 

             In the described method, EMG (average) is the squared average value of the 

envelope signals of all six channels of electromyography (EMG); EMG(i) is the envelope 

signal of the ith channel; i = 1, 2, 3, 4, 5, and 6. A threshold of 0.005 was used to calculate 

EMG (average). When EMG (average) was greater than this threshold, myoelectric activity 

was considered to have begun, and this point was set as the start of movement. 

Later, a 4-second segment after this onset was selected as valid surface electromyography 

data for a single task trial[5]. Trial after trial, these 4-second sEMG segments were used for 

further analysis to drive the envelope signals that represent electromyographic activity of the 

performance of gesture. Thereafter, a batch of samples was synthesized for further 

recognition of EMG patterns with downsampled sEMG data. This developed the capacity to 

extract and analyze patterns of muscle activity relevant to specific movements or tasks in an 

explanation and quantification of muscular performance for diverse applications ranging 

from rehabilitation to the design of prostheses. 

2.4.2 Non-Negative Matrix Factorization (NMF) Algorithm 

              The Non-Negative Matrix Factorization algorithm was applied to the obtained 

sEMG envelope to extract muscle synergies together with its corresponding activation 

weight: 

 

V = W × H 
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              Six muscles are involved in this formula, denoted by the symbol 𝑚𝑚. The 𝑒𝑒 × 𝑢𝑛 

coefficient matrix H, which depicts the modulation and contribution of specific muscle 

synergy, indicates the synergy pattern among the six muscle channels. The symbol 𝑒𝑚 

represents the six muscle synergies. As a result, each column of W represents the weights of 

the appropriate muscle for a particular synergy, and each row of H represents the degree to 

which the relevant synergy is produced or activated[5]. 

 

Figure 2.6 EMG Signal and NMF Decomposition [5] 

 

              The Variability Accounted For (VAF) between the envelope signal data matrix (V) 

and the reconstruction matrix (V′ = W × H) was calculated to find the ideal number of muscle 

synergies (s).  

VAF =  1 − 
(𝑉 − 𝑉′)2

𝑉2
 

              Selecting the optimal number of muscle synergies is crucial to preserve as much of 

the original information as possible. It's determined based on achieving a mean global 

Variance Accounted For (VAF) of over 95% while ensuring that adding an additional 

synergy does not increase the mean global VAF by more than 1%. This approach ensures 

that the identified muscle synergies capture most of the variation in the original sEMG 

envelope data, providing a concise representation that retains essential information about 

muscle coordination and activation patterns. 
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2.4.3 sEMG Electrode Placement 

              With the individuals seated comfortably, elbows resting on a table (arm-forearm 

angle of 90º), palms facing inward, a grid was created on the forearm using five easily 

recognized anatomical landmarks. The whole forearm surface was covered by 30 distinct 

places that were designated by the grid. Electrodes were positioned longitudinally in the 

center of seven of these locations, in accordance with SENIAM guidelines, based on the 

following groups found in a prior study: Spots 1–7 represent wrist flexion and ulnar 

deviation, spot 2 and radial deviation, spot 3 and digit flexion, spot 4 and thumb extension 

and abduction/adduction, spot 5 and finger extension, spot 6 and wrist extension and ulnar 

deviation, to name a few. Hair was cut off and the area was cleansed with alcohol prior to 

the electrodes being placed. 

 

Figure 2.7 Spot for sEMG Electrode Placement [6] 

2.5 Artificial Neutron Networks (ANN) 

Units are like the brain cells of artificial neural networks. They are the building 

blocks that stacked together to create the whole thing. Depending on how complex the neural 

network needs to be to uncover patterns in a dataset, a layer can have just a handful of units 

or even millions. In artificial neural networks, you typically have input, output, and hidden 

layers doing their thing [4]. The input layer is where the network takes in data from the 
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outside world, stuff it needs to understand or learn about. Then, that data  pass through one 

or more hidden layers, which works their way to turn it into useful information for the output 

layer. The output layer generates an answer to the input data. In most neural networks, units 

correspond to units in the next layer. Unquestionably, each connection has weights 

associated with it that show how much one unit affects the other. As the data moves through 

the network from one unit to the next, it realizes more about the data; hence, the final output 

realized from the output layer [4]. Artificial neural networks structured according to the 

pattern of human neural paths. Artificial neural networks referred to as neural nets or neural 

networks. This is the first layer of the artificial neural network where the data from the 

external sources input into the network; receiving input transmits it into the adjacent layer 

often referred to as hidden. Every neuron in every hidden layer has the same task: to collect 

the outputs from all the neurons in the previous layer, compute the weighted sum of those 

signals, and then send its output to the following layer of neurons. It is this basic process 

that, by repetition, constitutes the processing and flow of information through the network 

to allow the ANN to perform complex computations and learn patterns from the input data 

[4]. Those connections incorporate weights aimed at determining the biggest impact of the 

previous layer inputs by determining a specific weight for each input, adjusted at the time of 

training for the purpose of boosting the model's performance. 

 

Figure 2.8 Neural Network Architecture [4] 
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2.6 Sample of Table in Landscape orientation 

Electroencephalograms or EEG, electrocardiograms or ECG, and electromyograms 

or EMG are the three major divisions of electrograms. Surface Electrodes and Needle 

Electrodes are two major types of electrodes used specifically for the assessment of the EMG 

signals. However, its use also comes with certain risks and considerations. here are the 

advantages and disadvantages of electromyography (EMG) signals based on various types 

of hand motions for exoskeleton: 

Advantages: 

• Precision:  

EMG signals provide detailed information about muscle activity, allowing 

exoskeletons to achieve accurate control of movements. This precision helps the 

exoskeleton respond appropriately to the user's intentions, which is essential for tasks 

requiring fine motor skills, such as picking up small objects or typing. 

• Real-time Feedback:  

EMG signals offer immediate feedback, enabling the exoskeleton to make quick 

adjustments. This real-time response allows for smooth, natural movements, which 

is important for dynamic tasks like playing an instrument or performing complex 

gestures. 

• Non-Invasive (with surface electrodes):  

Surface electrodes are placed on the skin and do not penetrate the body, making them 

more comfortable and safer than needle electrodes. This non-invasive nature 

encourages regular use without causing significant discomfort or inconvenience. 

• Detailed Muscle Activity:  
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EMG signals provide specific insights into different muscle activities. This allows 

the exoskeleton to recognize and respond to various hand motions, such as gripping 

or pinching, enhancing the functionality and customization of the exoskeleton. 

Disadvantages: 

• Skin Preparation (for surface electrodes):  

Proper skin preparation, including shaving and cleaning the skin, is necessary for 

accurate signal capture. This process can be time-consuming and inconvenient, and 

frequent preparation may irritate sensitive skin. 

• Invasiveness (for needle electrodes): 

 Needle electrodes penetrate the skin to reach the muscle tissue, causing discomfort 

and pain. This invasiveness makes them less suitable for long-term use and can pose 

risks such as infection or injury. 

 

• Signal Interference: 

 EMG signals can be affected by electrical noise, movement artifacts, and 

electromagnetic interference, which may reduce accuracy and reliability. 

Interference can lead to incorrect or delayed responses from the exoskeleton, 

compromising performance and safety. 

• Complex Signal Processing:  

Interpreting EMG signals requires advanced algorithms and processing techniques. 

The raw data needs to be filtered and analyzed to extract meaningful information, 

which can be challenging and resource intensive. Real-time processing is necessary 

to ensure timely responses from the exoskeleton, requiring sophisticated 

computational capabilities. 

• Muscle Fatigue:  



19 

Continuous use of EMG signals for controlling an exoskeleton can lead to muscle 

fatigue, decreasing signal quality and accuracy. This fatigue affects performance and 

user comfort, limiting the effective use duration. Managing fatigue involves 

providing adequate support and incorporating rest periods or adaptive control 

strategies. 

2.7 Journal Comparison from Previous Work Related to the Project 

Table 2.1 List of journal related to project. 

Author Title Hand movement Muscle 

involved 

Finding 

Enrique 

Mena-

Camilo, 

Jorge Airy 

Mercado, 

Omar Pina-

Ramirez [3] 

A Functional 

Electrical 

Stimulation 

Controller for 

Contralateral 

Hand 

Movements 

Based on EMG 

Signals. 

Power grasp 

movement, hand 

opening movement 

 

Left flexor 

digitorum (for 

power grasp 

movement) 

and extensor 

digitorum (for 

hand opening 

movement). 

 

 

The tests 

involve offline 

validation of a 

classifier 

algorithm, 

online 

performance 

testing of an 

FES controller, 

and a 

continuous 

functional task 

to assess the 

system's ability 

to mimic 

movements in a 

subject with 

hemiplegia. 

Adilbek 

Turgunov, 

Kudratjon 

Zohirov, 

Bobur 

Muhtorov 

[6] 

A new dataset 

for the detection 

of hand 

movements 

based on the 

SEMG signal. 

 

1) punch 

2) grip 

3) finger touch 

4) open hand 

5) flexion of the 

index finger 

6) flexion of the 

middle finger 

7) flexion of the 

ring finger 

1) punch 

2) grip 

3) finger touch 

4) open hand 

5) flexion of 

the index 

finger 

6) flexion of 

the middle 

finger 

7) flexion of 

the ring finger 

 

Sayanjit 

Singha Roy, 

Kaniska 

Samanta, 

Hand Movement 

Recognition 

Using Cross 

Spectrum Image 

1) Little Extension 

2) Little Flexion 

3) Ring Extension 

4) Ring Flexion 

Flexor 

Digitorum 

Profundus and 

Extensor 
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Author Title Hand movement Muscle 

involved 

Finding 

Sayantan 

Dey, Arnab 

Nandi [7] 

Analysis of 

EMG Signals-A 

Deep Learning 

Approach 

 

 

 

 

 

 

 

 

5) Mid Extension 

6) Mid Flexion 

7) Index Extension 

8) Index Flexion 

9) Thumb 

Extension 

10) Thumb Flexion 

11) Thumb 

Abduction 

12) Thumb 

Adduction. 

Digitorum 

Communis. 

 

 

 

 

 

 

 

 

 

 

 

Roxane 

Crepin, 

Cheikh 

Laytr Fail, 

Quentin 

Mascret 

[11] 

Real-Time Hand 

Motion 

Recognition 

Using sEMG 

Patterns 

Classification.  

 

1) Thumb flexion 

2) Index flexion 

3) Major flexion 

4) Annular flexion 

5) Auricular 

flexion 

6) 3 fingers flexion 

7) Open hand 

8) Prick up index 

9) Closed hand 

10) Lateral grip 

11) Cylindrical grip 

12) Simple pliers 

13) Complex pliers 

Flexor Pollicis 

Longus, 

Flexor 

Digitorum 

Superficialis 

and Opponens 

Pollicis. 

 

Shuxiang 

Guo, Zhi-

Jie Wang, 

Jian Guo 

[12] 

Study on Motion 

Recognition for 

a Hand 

Rehabilitation 

Robot Based on 

sEMG Signals 

1) Hand open 

2) Hand close 

3) OK gesture 

4) Number eight 

gesture 

5) Hold the cylinder 

6) Hold the ball 

Brachioradiali

s, Flexor carpi 

ulnaris, Flexor 

digitorum 

profundus, the 

Biceps brachii. 

 

 

 

 

 

Zhengzhen 

Li, Ke Li, 

Haibin 

zeng, Na 

Wei [14] 

Hand Gesture 

Recognition 

Based on 

Electromyograp

hic and 

Kinematic 

Analyses. 

2) Index Flexion 

3) Mid Flexion 

4) Ring Flexion 

5) Little Flexion 

5) thumb-to-palm 

6) thumb-to-index 

finger pinching 

7) thumb-to-middle 

finger pinching 

8) thumb-to-ring 

finger pinching 

9) thumb-to-little 

finger pinching 

Flexor carpi 

radialis (FCR), 

Extensor 

digitorum 

communis 

(EDC), 

Palmaris 

longus (PL), 

Flexor 

digitorum 

superficialis 

(FDS), 

Abductor 
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Author Title Hand movement Muscle 

involved 

Finding 

10) thumb, index 

finger, middle 

finger grasping 

11) thumb, middle 

finger, ring finger 

grasping 

12) four fingers 

(without little 

finger) grasping 

13) five fingers 

grasping 

pollicis brevis 

(APB) and 

First dorsal 

interosseous 

(FDI). 

 

Shradha 

Singhvi, 

Hongliang 

Ren [8] 

Comparative 

Study of Motion 

Recognition 

with Temporal 

Modelling of 

Electromyograp

hy for Thumb 

and Index Finger 

Movements 

aiming for 

Wearable 

Robotic Finger 

Exercises. 

1) Thumb 

adduction 

2) Thumb 

abduction 

3) Index finger 

MCP flexion 

4) Index finger 

extension 

5) Thumb CMC 

Joint Flexion 

6) Thumb 

extension 

Abductor 

pollicis 

longus, 

Adductor 

pollicis 

longus, 

Abductor 

pollicis brevis, 

Flexor pollicis 

brevis, 

Opponens 

pollicis, 

Extensor 

Indicis, First 

Dorsal 

Interosseous, 

Extensor 

Pollicis Brevis 

and Extensor 

Pollicis 

Longus. 

 

 

 

 

 

 

 

 

Jorge Luis 

Leyva 

Santiago. 

Perez Rios, 

David 

Arrustico, 

Lina Cortez 

[10] 

Volitional PD 

computed torque 

control design of 

a 2-DOF finger 

model for 

cylindrical grip 

movement 

assistance with 

sEMG signal 

classification. 

1) Large diameter 

grasp 

2) Fixed hook 

grasp 

3) Small diameter 

grasp  

4) Medium wrap 

Flexor 

Digitorum 

superficialis 

and Extensor 

Digitorum 

muscles. 

 

 

 

Ventakesh 

Bharadwaj 

Srinivasan, 

Finger 

Movement 

Classification 

1) Thumb Flexion 

2) Index Flexion 

3) Ring Flexion 

Carpometacar

pal joint, 

phalanx, 
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Author Title Hand movement Muscle 

involved 

Finding 

Mobarakol 

Islam, Wei 

Zhang, 

Hongliang 

Ren [9] 

from 

Myoelectric 

Signals Using 

Convolutional 

Neural 

Networks. 

4) Little Flexion 

5) Rest Action 

thenar, 

Hypothenar, 

metacarpophal

angeal, 

Proximal 

Inter-

Phalangeal, 

Distal 

Interphalangea

l 

 

Shivi 

Varshney, 

Ritula 

Thakur, 

Rajvardhan 

Jigyasu, 

Yogendra 

Narayan  

sEMG signal 

based hand and 

finger 

movement 

clasification 

using different 

classifiers and 

techniques : A 

Review 

 

 

 

 

• Cyrindarica

l grasp, Tip, 

Hook or 

Snap, 

Palmar, 

Spherical 

and Lateral 

 

Flexor Capri 

Ulnaris, 

Extensor 

Capri Radialis, 

Peronious 

Longus, and 

Peronious 

Brevis and 

center of 

Longus and 

Brevis 

 

 

 

 

 

 

The paragraph 

discusses the 

preprocessing 

steps applied to 

three SEMG 

datasets: UCI 

Repository, 

NinaPro DB6, 

and Mendeley. 

These steps 

include 

denoising, 

outlier 

handling, 

detrending, and 

normalization 

to enhance the 

quality of the 

data before 

feeding it into 

the proposed 

SFDN+DNN 

model for 

classification. 

Raul 

Simpetru, 

Michael 

Marz, 

Alessandro 

Del Vecchio 

[16] 

Proportional and 

Simultaneous 

Real-Time 

Control of the 

Full Human 

Hand From 

High-Density 

Electromyograp

hy. 

flexion of each 

digit, 

resting, 

pinching between 

index and thumb (2-

finger pinch) 

pinching between 

index, middle 

finger, and thumb 

(3- 

finger pinch), 

Distal 

and proximal 

muscles of the 

forearm 

 

 

 

In this study, 

data was 

collected from 

the muscles of 

the dominant 

hand of 10 

participants to 

investigate the 

feasibility of 

using pre-

trained neural 

networks for 

real-time 
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Author Title Hand movement Muscle 

involved 

Finding 

adduction and 

abduction of the 

wrist, 

fist closing and 

opening, pointing, 

peace sign, rock 

and roll sign 

 

 

 

prediction of 

hand 

movements. 

Models were 

trained and 

optimized to 

achieve rapid 

and accurate 

predictions, 

employing 

techniques such 

as transfer 

learning and 

prediction 

correction 

algorithms. 

Na Zhang, 

Ke Li, 

Guanglin Li 

[18] 

Multiplex 

Recurrence 

Network 

Analysis of 

Inter-Muscular 

Coordination 

During 

Sustained Grip 

and Pinch 

Contractions at 

Different Force 

Levels. 

1. Grip 

2. Pinch 

The 

brachioradialis 

(BR), flexor 

carpi ulnaris 

(FCU), flexor 

carpi radialis 

(FCR), flexor 

digitorum 

superficialis 

(FDS), 

extensor 

digitorum 

communis 

(EDC), 

abductor 

pollicis brevis 

(APB), first 

dorsal 

interosseous 

(FDI), and 

abductor digiti 

minimi 

(ADM). 

 

 

 

 

 

The experiment 

enlisted 24 

right-handed, 

healthy 

individuals 

without upper 

limb disorders, 

undergoing 

grip and pinch 

force 

assessments 

while their 

muscle activity 

was monitored 

via sEMG 

signals. 

Advanced data 

analysis 

techniques, 

including 

synchronizatio

n and similarity 

metrics, were 

applied to 

explore the 

intricate 

intermuscular 

coordination 

dynamics 

during force 

production, 

providing 
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Author Title Hand movement Muscle 

involved 

Finding 

deeper insights 

into the 

underlying 

neural 

mechanisms 

governing hand 

movements. 

Arvind 

Gautam, 

Madhuri 

Panwar, 

Dwaipayan 

Biswas, 

Amit 

Acharyya 

[17] 

Locomo-Net: A 

Low -Complex 

Deep Learning 

Framework for 

sEMG-Based 

Hand Movement 

Recognition for 

Prosthetic 

Control. 

 

 

 

 

 

 

 

 

 

 

 

 

Hamd grasp and 

Pinch Grip 

Flexor 

pollicis longus 

muscle, Flexor 

digitorum 

supercialis, 

extensor carpi 

radial and 

ulnaris 

muscle, 

extensor carpi 

radial 

and ulnaris. 

 

 

 

 

 

 

 

 

 

 

 

The paragraph 

outlines the 

methodology 

and 

implementation 

details of the 

proposed 

LoCoMo-Net 

framework for 

deep learning-

based 

classification 

of sEMG 

signals. It 

involves two 

datasets: DS1, 

consisting of 

able-bodied 

and trans-radial 

amputated 

participants 

performing 

various tasks 

with sEMG 

data collected 

using active 

electrodes, and 

DS2, 

comprising the 

NinaPro 

database. The 

framework 

employs a two-

stage pipeline 

with input data 

compression 

and data-driven 

weight sharing, 

aimed at 

reducing 

computational 
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Author Title Hand movement Muscle 

involved 

Finding 

complexity 

while 

maintaining 

classification 

accuracy. 

Binish 

Fatimah, 

Pushpendra 

Singh, Amit 

Singhal, 

Ram Bilas 

Pachori [13] 

Hand movement 

recognition from 

sEMG signals 

using Fourier 

decomposition 

method. 

Spherical, tip, 

palmar, lateral, 

cylindrical, and 

hook grasps. 

 

 

 

 

 

extrinsic/intrin

sic muscles of 

the hand, 

metacarpal 

phalangeal 

joints abduct 

 

 

 

 

 

The proposed 

method 

identifies hand 

movements 

from sEMG 

signals by 

breaking down 

the signal, 

extracting 

features, 

selecting 

important ones, 

and then 

classifying 

them. It's tested 

on two 

datasets, and 

different 

machine 

learning 

models like 

SVM and kNN 

are used for 

classification. 

To ensure 

accuracy 

without 

overloading the 

model, data is 

expanded by 

adding noise 

and randomly 

sampling it. 

Moh Arozi. 

Mochamma

d Ariyanto, 

Asa 

Kristianto, 

Joga 

Dharma 

Setiawan  

EMG Signal 

Processing of 

Myo Armband 

Sensor 

for Prosthetic 

Hand Input 

using RMS and 

ANFIS. 

Rest, Power Grasp, 

Hook, 

Pinch Grip, Tripod, 

Thumb, and Index. 

upper wrist 

 

 

 

 

The experiment 

uses a Myo 

Armband to 

capture EMG 

signals from 

hand 

movements, 

with data 

processed 
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Author Title Hand movement Muscle 

involved 

Finding 

through Myo 

Connect. Seven 

hand 

movement 

patterns are 

collected, each 

repeated six 

times, and 

analyzed using 

Root Mean 

Square (RMS) 

for feature 

extraction. 

Classification 

employs 

ANFIS, a 

system capable 

of learning 

nonlinear 

functions 

through fuzzy 

rules, 

enhancing hand 

gesture 

recognition. 

Enrique 

Mena-

Camilo, 

Jorge Airy 

Mercado, 

Omar Pina-

Remirez, L, 

Leija 

A Functional 

Electrical 

Stimulation 

Controller for 

Contralateral 

Hand 

Movements 

Based on EMG 

Signals. 

Power grasp 

movement, hand 

opening movement. 

 

 

 

 

 

 

left flexor 

digitorum (for 

power grasp 

movement) 

and extensor 

digitorum (for 

hand opening 

movement) 

The tests 

involve offline 

validation of a 

classifier 

algorithm, 

online 

performance 

testing of an 

FES controller, 

and a 

continuous 

functional task 

to assess the 

system's ability 

to mimic 

movements in a 

subject with 

hemiplegia. 

Alfredo 

Lobaina, 

Adson 

Rocha, 

Estimation of 

Joint Angle 

From sEMG and 

(A)- index Finger 

extension, 

(B)- ring, (C)- 

power, (D)- 

Five 

proximal 

interphalangea

l (PIP), five 

The study 

utilizes the 

seventh 

Ninapro 
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Author Title Hand movement Muscle 

involved 

Finding 

Alexander 

Suarez 

Leon, 

Alberto 

Lopez Delis 

[15] 

Inertial 

Measurements 

Based on Deep 

Learning 

Approach. 

parallel extension, 

and (E)- open 

a bottle with a 

tripod grasp. 

metacarpophal

angeal 

(MCP), the 

trapeziometac

arpal (TMC) 

and the wrist 

yaw 

(WY) joint 

angles. 

 

 

 

 

 

 

 

 

 

 

 

 

database, 

incorporating 

sEMG signals 

and kinematic 

data from right-

handed 

subjects for 

training and 

testing. 

Preprocessing 

involves 

bandpass 

filtering, 

rectification, 

and low-pass 

filtering of 

sEMG 

channels, 

followed by 

transfer 

learning to 

adapt a pre-

trained deep 

network model 

from basic joint 

movements to 

predict 

functional hand 

motions with a 

smaller training 

set, utilizing 

convolutional 

and recurrent 

neural network 

architecture. 

Nestor 

Jarque-Bou, 

Margarita 

Vwrgara, 

Joaquin 

Luis 

Sancho-Bru 

[20] 

 

 

 

 

 

Does Exerting 

Grasps Involve a 

Finite Set of 

Muscle 

Patterns_ A 

Study of Intra- 

and Intersubject 

Variability of 

Forearm sEMG 

Signals in Seven 

Grasp Types. 

Pad-to-pad 

pinch (PpP); 

cylindrical grasp 

(Cyl); lumbrical 

grasp (Lum); 

lateral pinch 

(LatP); oblique 

palmar grasp (Obl); 

inter-mediate 

power-precision 

grasp (IntPP). 

Wrist flexion 

and ulnar 

deviation; 

(spot 2) wrist 

flexion and 

radial 

deviation; 

(spot 3) digit 

flexion; (spot 

4) thumb 

extension and 

abduction/add

uction; (spot 

Subjects 

performed 

seven different 

grasps, starting 

with holding a 

dynamometer 

without 

exerting force, 

followed by 

exerting 

maximum 

grasping effort 

(MGE) for 3 
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Author Title Hand movement Muscle 

involved 

Finding 

 

 

 

 

5) finger 

extension; 

(spot 6) wrist 

extension and 

ulnar 

deviation; 

(spot 7) wrist 

extension and 

radial 

deviation. 

seconds, and 

then 50% of 

MGE for 3 

seconds, 

repeated three 

times with rest 

intervals, to 

calibrate 

muscle activity 

levels for 

subsequent 

analysis. 

Kenhub.co

m  

Flexor 

Digitorum 

Profundus 

Muscles. 

Palmar, Proximal 

surface of ulna, 

Split tendons attach 

to distal phalanx of 

the four fingers. 

Flexor 

digitorum 

Profundus 

The flexor 

digitorum 

profundus 

tendons' deep 

surfaces are 

where the 

hand's 

lumbrical 

muscles attach. 

Kenhub.co

m 

Flexor 

digitorum 

superficialis 

muscle. 

Lumbricals, 

Adductor Pollicis, 

Flexor Pollicis 

Brevis, Abductor 

Pollicis Brevis 

Flexor 

digitorum 

superficialis  

The flexor 

digitorum 

superficialis 

muscle heads 

run distally 

across the front 

of the forearm. 

GeeksforGe

eks [3] 

Artificial Neural 

Networks and its 

Applications. 

Thumb Finger, 

Index Finger, 

Middle Finger, 

Ring Finger, Pinky 

Finger. 

Artificial 

Network 

An artificial 

neural network 

comprises 

hidden layers 

in addition to 

input and 

output layers.  

 

2.8 Summary 

The literature related to hand application-based EMG exoskeletons has identified 

crucial progress and issues associated with the discipline. Researchers have utilized 

electromyography to design sophisticated exoskeletons whose purpose is to translate 
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myoelectric signals into exactly accurate control-oriented commands. Recent technological 

advances made towards increasing sensor accuracy, intriguing signal processing algorithms, 

and incorporating user-centered design features to promote comfort and control 

characteristics. Pattern recognition algorithms of control strategies based on SVM and CNN 

have observed to be useful in the interpretation mechanism of EMG signals for intuitive 

movement control. Results of clinical studies presented the effectiveness of such 

exoskeletons in enhancing the hand rehabilitation phase after stroke or injury and even result 

in motor skill recovery after focused therapy. Yet, signal noise, variations in sensor 

placement, and integration problems with real-time control remain significant bottlenecks. 

Future research directions would ensue in refining signal processing techniques and 

longitudinal studies that examine long-term usability and document clinical efficacy. User 

interface design has also been advancing, making EMG exoskeletons a method that 

fundamentally transforms the hand function in persons with motor impairments, as emergent 

research continues to overcome limitations standing in the way of deploying such life-

changing technologies to their full therapeutic potential. 
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CHAPTER 3  

 

 

METHODOLOGY 

3.1 Introduction 

Electromyography (EMG) is important in muscle activity and force application, 

respectively. This research emphasizes the analysis and interpretation of EMG- and signals 

using three different pinching movements to tailor control laws for hand exoskeleton 

applications. This research directed at finding clear EMG patterns related to those 

movements, aiming at making future exoskeletons more precise and responsive.  

3.2 Selecting and Evaluating Tools for EMG Exoskeleton Hand Control Project 

To be able to analyze the EMG properly during the three-finger pinching 

movements and be able to incorporate the information into the exoskeleton hand control 

system, the right tools should be chosen based on the criteria of accuracy, compatibility, ease 

of use, scalability, cost, and availably of support and documentation. 

 

A standard sEMG system recommended for data collection. These systems allow 

high-resolution acquisition of the EMG signal, allowing muscles to be recorded 

simultaneously. Built-in accelerometers in standard sEMG systems provide additional 

feature integration with motion analysis and real-time data streaming. There are no 

accuracies in data acquisition, which makes them compatible with most signal processing 

software. They are easy to use, with user-friendly interfaces, along with good 

documentation. Problems with these systems resolved through proper technical support. 
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As for signal processing and feature extraction, MATLAB should be the best-

recommended tool in this project. MATLAB offers robust tools for filtering, normalization, 

and feature extraction from sEMG and FSR signals. It supports very advanced algorithms 

and provides various libraries for signal processing, which makes it a powerful tool in this 

project. MATLAB is compatible with standard sEMG systems and with standard FSR 

sensors. Since documentation is quite comprehensive and very functional, and there is a 

strong community around it, one may conclude that it is scalable. 

 

To classify movements as pinching, we advise the use of an Artificial Neural 

Network (ANN) that is made using MATLAB’s Deep Learning Toolbox. If complicated 

models for distinguishing various pinching movements trained and validated effectively, 

then it is advisable to utilize the Deep Learning Toolbox provided by MATLAB for this 

purpose. This is because it can manage large scale networks with different architectures 

while still maintaining high performance levels. Additionally, because of its friendly nature 

and well-documented information resources, one can easily go through the complete process 

from collecting data to classification. 

3.3 Methodology 

We drafted a methodology to study the analysis of Electromyography (EMG) 

signals for distinguishing various hand movements in order to control exoskeleton hand 

devices. The methodology consists of a review of related literature, data collection, 

processing EMG and modeling with CAD, integration of these two systems — data from 

EMGs is coupled with CAD models such that each movement can be simulated across a 

computer screen – machine learning based classification.  
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Figure 3.1 Project Flowchart 
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3.3.1 Collecting hand measurement 

The measurements obtained are imperative for the appropriate design of the 

exoskeleton hand to be functional and ergonomic. This process ensures that the exoskeleton 

fits the hand well and is able to mimic the natural movement of the user's hand. The following 

systematic approach can be used for the collection of hand measurements using a ruler. 

 

 Materials: 

 

• Ruler with metric units 

• Hand measurement chart for recording data 

 

Participant Preparation: 

 

• Ensure the participant’s hand is clean, relaxed, and in a neutral position. 

• Remove any accessories that might interfere with the measurements. 

 

Measurement Points and Procedure: 

 

Overall Hand Length: 

 

• Place the ruler at the tip of the middle finger. 

• Measure straight down to the base of the palm, where the wrist begins. 

• Record this measurement as the hand length. 
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Palm Width: 

 

• Place the ruler horizontally across the widest part of the palm, typically at 

the knuckles (metacarpal heads). 

• Measure and record the palm width. 

 

Finger Lengths and Phalanx Measurements: 

 

• For each finger, measure the length of each phalanx separately (distal, 

middle, and proximal). 

 

Thumb: 

 

• Distal phalanx: Measure from the tip of the thumb to the interphalangeal 

joint. 

• Proximal phalanx: Measure from the interphalangeal joint to the base of the 

thumb. 

• Record both measurements. 

 

 

Index Finger: 

 

• Distal phalanx: Measure from the tip of the finger to the distal 

interphalangeal (DIP) joint. 
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• Middle phalanx: Measure from the DIP joint to the proximal interphalangeal 

(PIP) joint. 

• Proximal phalanx: Measure from the PIP joint to the metacarpophalangeal 

(MCP) joint. 

• Record all three measurements. 

 

Middle Finger: 

• Repeat the process used for the index finger. 

Ring Finger: 

• Repeat the process used for the index finger. 

Little Finger: 

• Repeat the process used for the index finger. 
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Figure 3.2 Measurement taken on hand. 
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Table 3.1 Hand measurement collected. 

No Hand part Measurement 

(mm) 

1 Palm Width 90 

2 Palm Length 100 

3 Thumb Breadth 150 

4 Thumb Proximal Phalanx Length 20 

5 Thumb Distal Phalanx Length 30 

6 Index Breadth 150 

7 Index Finger Proximal Phalanx Length 30 

8 Index Finger Middle Phalanx Length 2.50 

9 Index Finger Distal Phalanx Length 20 

10 Middle Breadth 150 

11 Middle Finger Proximal Phalanx Length 40 

12 Middle Finger Middle Phalanx Length 30 

13 Middle Finger Distal Phalanx Length 20 

14 Ring Breadth 150 

15 Ring Finger Proximal Phalanx Length 350 

16 Ring Finger Middle Phalanx Length 250 

17 Ring Finger Distal Phalanx Length 20 

18 Little Breadth 150 

19 Little Finger Proximal Phalanx Length 150 

20 Little Finger Middle Phalanx Length 20 

21 Little Finger Distal Phalanx Length 20 

 

 

3.3.2 Design 3D model using Solidwork 

Designing a 3D model for an exoskeleton hand is a pivotal step in making sure the 

end product works well and feels comfortable to use. SolidWorks, a powerful CAD software, 

plays a key role in this process by helping designers create, simulate, and perfect the 

exoskeleton hand model. This journey follows several structured steps, starting from initial 

ideas to thorough validation. The process initiates with conceptualization, involving 

brainstorming and conceptual sketching of ideas for the exoskeleton hand. The design of the 

finger parts begins with conceptualization based on the exoskeleton’s overall purpose and 

user requirements. This phase includes brainstorming sessions and initial sketches to outline 
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the basic form and function of each finger component. Considerations such as range of 

motion, force transmission, and user comfort are pivotal during this stage. 

 

 

Figure 3.3 Early design of hand 3D model. 

 

Subsequently, the conceptual ideas evolve into detailed 3D models within 

SolidWorks. Each component is crafted with precise dimensions and specifications to ensure 

optimal fit and operational performance. This stage entails iterative refinement to optimize 

design aspects for both technical requirements and ergonomic considerations. 

 

 

Figure 3.4 Palm design. 

 

. The design of the finger parts begins with conceptualization based on the 

exoskeleton’s overall purpose and user requirements. This phase includes brainstorming 
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sessions and initial sketches to outline the basic form and function of each finger component. 

Considerations such as range of motion, force transmission, and user comfort are pivotal 

during this stage.  

 

 

Figure 3.5 A 40cm phalanx. 

 

Once the conceptual framework is established, detailed, three-dimensional models 

of each part comprising a finger can be made using the software SolidWorks. The software 

enables highly accurate modeling, down to individual parts which describe specific 

dimensions, joint mechanics, and attachment points that fit into the overall design for an 

exoskeleton. Iterative refinement can bring about the fact that every part fits seamlessly in 

place with its neighboring components and works properly within the range of motion if it 

was actually built.  

 

The process of assembling the exoskeleton hand in SolidWorks is a process that will 

begin with preparation and organization of all components. This will include the care of 

verification of each part against design specifications and CAD models before commencing 

to ensure accuracy and compatibility. 
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Next, the assembly continues right down to the finger level and until the single 

components. The designers, using SolidWorks, can then carefully assemble the sub-

assemblies with precision as per their 3D models. This is the stage where mates are used to 

align and fix components exactly so that the joints and mechanical interfaces are captured 

correctly to allow free operation. 

 

 

Figure 3.6 Mate process. 

 

 

Then, structural components frame, support structures are assembled around the 

finger components. At each joining, the SolidWorks assembly tools aid in proper alignment 

according to the CAD models. Next in computational simulation, the process of verifying 

the structural integrity of the complete assembly takes place, with all parts positioned 

correctly and fastened. Functional testing is done after the assembled exoskeleton hand is 

seriously evaluated in SolidWorks. The designers subject it to extensive testing in order to 

prove mechanical functionality and movement. Further, studies of motion and analysis by 

simulation check how well the whole assembly performs under several operational 

conditions, so that design parameters derived are fine-tuned to optimize performance. 
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Figure 3.7 Hand exoskeleton design. 

 

3.3.3 Exporting a 3D Model from SolidWorks to Simulink Multibody Link 

Exporting a 3D model from SolidWorks to Simulink Multibody Link ensures that 

complex mechanical designs can be dynamically simulated within MATLAB. The process 

begins by preparing the SolidWorks model. This preparation involves ensuring that all 

components are fully defined, properly assembled, and accurately mated to reflect the 

intended mechanical behavior. Verification of the model's integrity is important to prevent 

issues during the export and import phases.  

 

Once the model has been prepared, it needs to be exported using the plug-in 

Simscape Multibody Link. This plug-in allows the exporting of the model in an .xml file 

format after its installation in SolidWorks. That is because this XML format keeps all the 

geometric and physical information required by Simulink Multibody. In SolidWorks, open 

the model, and initiate export through the Simscape Multibody Link tool. After that, select 

export, assign a save location for the file. 

 

Now that the XML is ready, attention shifts to MATLAB. The “mech_import” is 

the function used in MATLAB to import an XML file to Simulink Multibody. First, 
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MATLAB is opened, and it is ensured that both Simulink and Simulink Multibody 

Toolboxes are installed and ready to be used. Run mech_import in the MATLAB Command 

Window and specify the path to the XML file. 

 

 

Figure 3.8 The Simulink model. 

 

To analyze the model's performance, a simulation environment is built within 

Simulink. This involves configuring simulation parameters like start and stop times, ensuring 

the model behaves as expected over the simulated period. The simulation is then run, 

allowing for observation and analysis of the model's dynamics under various conditions. 

This step is crucial for identifying any potential issues and refining the model to enhance its 

performance and reliability. 

 

In summary, the process of exporting a 3D model from SolidWorks to Simulink 

Multibody using “mech_import” is a detailed and methodical approach that ensures the 

accurate translation of mechanical designs into a dynamic simulation environment. This 

integration enables comprehensive analysis and refinement of the model, facilitating the 

development of optimized mechanical systems such as exoskeleton hands. By leveraging the 

capabilities of both SolidWorks and Simulink Multibody, engineers can achieve a high level 



43 

of precision and functionality in their simulations, ultimately leading to better-designed and 

more effective mechanical devices. 

 

 

Figure 3.9 Simulink simulation. 

 

 

3.3.4 Experimental setup 

The configuration used for the EMG exoskeleton hand control project is designed 

in such a way that it involves a strong data collection, precise signal processing, and effective 

integration into the exoskeleton system. There will be participants who do not suffer from 

neuromuscular disorders meeting set qualifications; their task is to make three-finger 

pinching movements: chopstick grip, thread manipulation, drawing and scissor grip. To 

reduce impedance, the skin will be cleaned before putting surface EMG electrodes on Flexor 

Digitorum Superficialis (FDS) as well as Flexor Digitorum Profundus (FDP) in the right 

position. Each subject must perform ten repetitions of each activity within a controlled 
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environment that guarantees data fidelity. Signals captured by high resolution EMG systems 

synchronized. 

3.3.4.1 Parameters 

In the EMG and FSR-based exoskeleton hand control experiment, participants were 

carefully selected to ensure data quality and relevance. Healthy volunteers with no 

neuromuscular disorders were chosen, with a diverse demographic to capture muscle 

activation and force dynamics during three-finger pinching movements. Surface EMG 

electrodes were placed on the Flexor Digitorum Superficialis (FDS) and Flexor Digitorum 

Profundus (FDP) muscles after skin preparation to minimize impedance and get optimal 

signal. Each participant performed 10 reps of these movements in a controlled environment 

using a EMG system. Signal processing involved band-pass filtering of EMG signals to 

remove noise and artifact removal for smoother data. Data segmentation allowed us to 

analyze different movement phases and extract features such as Mean Absolute Value 

(MAV), Root Mean Square (RMS) and peak force from EMG. These features were used to 

train and validate an Artificial Neural Network (ANN) model to classify and distinguish 

between different pinching movements. The experiment design and parameters were 

carefully set to collect comprehensive data and analyze rigorously to be integrated into an 

exoskeleton control system to enhance rehabilitation and assistive technologies for hand 

functionality in various healthcare applications. 

3.3.4.2 Equipment 

In the EMG exoskeleton hand control setup, we use various specialized equipment 

to collect precise data, process signals thoroughly and integrate into the exoskeleton system. 

Participants are selected for their health and diversity and have electrodes placed on the 
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Flexor Digitorum Superficialis (FDS) and Flexor Digitorum Profundus (FDP) muscles after 

skin preparation to optimize signal quality. 

 

The experimental setup uses a surface EMG system that captures muscle activity 

patterns in high resolution, allowing simultaneous recording from multiple channels for real-

time monitoring. Integrated accelerometers within the EMG system contribute additional 

motion data, which enhances our understanding of hand movements. To ensure accurate data 

synchronization, a dedicated data acquisition unit coordinates sampling of both EMG and 

FSR signals, crucial for aligning temporal data points during analysis. 

 

Signal processing is performed using MATLAB. EMG signals undergo band-pass 

filtering to remove noise and extract key muscle activity features such as Mean Absolute 

Value (MAV) and Root Mean Square (RMS). This integrated approach enables analysis and 

interpretation of EMG, advancing our insights into motor function and performance. 

3.4 Limitation of proposed methodology 

The proposed methodology for integrating EMG into an exoskeleton hand control 

system presents several limitations that should be considered for ensuring the reliability and 

applicability of the research outcomes. Firstly, the study focused on healthy participants 

without neuromuscular disorders, which may restrict how well the findings can be 

generalized to populations with specific muscle activation patterns or different levels of hand 

impairment. This limitation could affect the practical utility of the exoskeleton system in 

clinical settings where muscle dynamics vary significantly. 
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Secondly, the accuracy of EMG measurements hinges heavily on precise sensor 

placement and consistency throughout the experimental sessions. Any variations or shifts in 

sensor positioning during movement could introduce inconsistencies in data collection, 

potentially influencing the reliability and reproducibility of the results. Moreover, despite 

employing advanced signal processing techniques such as filtering and normalization to 

clean EMG signals, there remains a risk of artifacts from external noise sources or electrode 

movements. These artifacts may distort the data and compromise the accuracy of feature 

extraction and subsequent classification tasks. Another limitation is the relatively narrow 

range of hand movements tested, which mainly focuses on specific three-finger pinching 

actions like the chopstick grip and drawing. This limited repertoire may not fully represent 

the diversity of hand gestures needed in real-world applications, potentially constraining the 

adaptability of the exoskeleton hand control system in practical use scenarios. 

 

Furthermore, the performance of the Artificial Neural Network (ANN) used for 

classification depends heavily on the selection of features and the complexity of the network 

architecture. If not optimized correctly, the ANN may struggle to distinguish between subtle 

variations in different pinching movements or under varying conditions. Additionally, 

transitioning from offline data analysis to real-time control within the exoskeleton system 

presents practical challenges such as latency, synchronization issues, and compatibility 

between hardware and software components. These challenges need careful consideration to 

ensure the smooth and responsive operation of the exoskeleton hand control system in real-

world applications. 
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Lastly, ethical considerations regarding participant consent, data privacy, and safety 

during experimental procedures must be carefully managed to uphold ethical standards and 

ensure participant well-being throughout the study. 

3.5 Summary 

This methodology uses a structured experimental setup to integrate EMG signals 

into an exoskeleton hand control system. Selected according to planned health parameters, 

participants make precise three-finger pinching motions as force and muscle activity are 

recorded by EMG electrodes on the FDS and FDP muscles. Advanced techniques such as 

filtering and normalisation are used to process the data, and an ANN is used to extract 

features for classification. The focus on healthy participants, possible variability in sensor 

placement, and difficulties with real-time system integration are among the limitations. The 

methodology's applicability in improving exoskeleton technology for hand rehabilitation and 

assistive applications will be enhanced upon overcoming these limitations through validation 

studies and algorithm optimisation. 
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CHAPTER 4  

 

 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents the findings of the project, which involves the analysis of 

muscle movements using EMG sensors, Lite Logger, and an Artificial Neural Network 

(ANN). The results are analyzed to evaluate the system’s performance in detecting and 

classifying four specific hand movements: scissor, pen, chopstick, and needle. The 

discussion focuses on the accuracy and reliability of the system, challenges encountered 

during implementation, and potential improvements. These insights are crucial to 

understanding the system's applicability for rehabilitation, assistive technology, and other 

fields. 

4.2 Data Acquisition 

 

Figure 4.1 Four items used in the experiment 

 

EMG data was collected for four specific hand movements: scissor, pen, chopstick, 

and needle. The data acquisition process begin by each trial involved alternating between a 

10-second rest phase and a 10-second grip phase, repeated continuously for one minute. This 
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process was repeated three times for each hand movement to ensure consistency in the data 

collected. The EMG signals were recorded using  LabQuest Mini and real-time visualization 

of the data was conducted using Lite Logger software. 

4.2.1 Scissor Movement 

The scissor movement showed strong activation of the FDS muscle, which played 

a primary role in finger flexion. The FDP exhibited weak activation, as the movement 

required minimal deep muscle engagement. 

 

 

 

Figure 4.2 Three datasets of Scissor EMG signals 
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The average EMG signal amplitude was 0.34mV, with the FDS contributing to most of the 

signal intensity. The filtered data showed consistent patterns across repetitions. 

4.2.2 Pen Movement 

The pen movement required fine motor control and precise grip adjustments, leading 

to strong FDS activation for stabilization. The FDP showed weak, intermittent activation, 

contributing minimally to the overall muscle activity. 

 

 
 

Figure 4.3 Three datasets of Pen EMG signals 
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The pen movement required fine motor control and precise grip adjustments, leading 

to strong FDS activation for stabilization. The FDP showed weak, intermittent activation, 

contributing minimally to the overall muscle activity. EMG signals for this movement 

exhibited lower amplitudes, averaging 0.125mV reflecting the lighter muscle load involved. 

The transitions between rest and contraction phases were gradual, indicating controlled and 

deliberate activation. Signal consistency across repetitions was reliable, though minor 

variations were observed due to the inherent complexity of the task. 

4.2.3 Chopstick Movement 

The chopstick movement involved alternating grip and release actions, which 

required balanced muscle activation. The FDS muscle was predominantly active, 

maintaining grip stability and facilitating precise adjustments. 
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Figure 4.4 Three datasets of Chopstick EMG signals 

 

The FDP demonstrated weak but steady activation, supporting sustained 

contractions without significantly contributing to the primary motion. EMG signals for this 

movement showed moderate amplitudes, averaging 0.31 mV, with distinguishable peaks 

during grip phases. The signal patterns across repetitions were consistent, and preprocessing 

effectively removed noise and artifacts. 
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4.2.4 Needle Movement 

The needle movement required the highest level of precision among the four tasks, 

relying almost entirely on FDS activation for fine motor control. The FDP exhibited the 

weakest activation among all movements, reflecting its minimal role in such detailed and 

surface-level tasks. 

 

 
 

Figure 4.5 Three datasets of Needle EMG signals 

 

The EMG signals for this movement had the lowest average amplitude, 0.09 mV. 

Despite the lower muscle engagement, the phases of rest and contraction were distinctly 
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visible, and the signals were consistent across repetitions. Noise levels were negligible after 

filtering, ensuring the quality of the data for analysis. 

4.3 Raw Data Processing and Analysis Using MATLAB  

The EMG data collected for each movement was analyzed using MATLAB. From 

the three repetitions of each movement, the best signal was chosen based on clarity, low 

noise levels, and clear phases of rest and contraction. This ensured that the most accurate 

and reliable data was used.  

 

Figure 4.6 FDP and FDS EMG Signal for four movement 

 

The selected signals were plotted for 60,000 samples, representing one minute 

of recording at a sampling rate of 1,000 Hz. The plots showed how the Flexor Digitorum 

Superficialis (FDS) and Flexor Digitorum Profundus (FDP) muscles responded during the 

movements. For the scissor movement, the FDS showed strong activation during the grip 

phase, while the FDP had weaker activity. In the pen movement, the FDS was moderately 

active, with smooth transitions between rest and grip phases, while the FDP had minimal 
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involvement. The chopstick movement involved steady activation of the FDS, with 

occasional activity from the FDP. During the needle movement, the FDS had low but 

consistent activation, while the FDP showed very little activity. 

Although the data was not filtered, the signals chosen for analysis were clear enough 

to show the differences between rest and contraction phases. MATLAB was used to create 

time-series plots, which showed how each muscle contributed to the movements. The results 

confirmed that the FDS was more active across all movements, while the FDP showed less 

involvement. These findings matched the expected roles of these muscles in hand 

movements. 

By focusing on the best signals from the data, it was possible to draw reliable 

conclusions about how the muscles worked during each task. This information is essential 

for understanding the patterns of muscle activation in the scissor, pen, chopstick, and needle 

movements. 

4.4 Integration of Artificial Neural Network (ANN) for EMG Analysis 

An Artificial Neural Network (ANN) was used to classify four hand movements—

scissor, pen, chopstick, and needle—based on EMG signals collected from the Flexor 

Digitorum Superficialis (FDS) and Flexor Digitorum Profundus (FDP) muscles. The EMG 

data was processed to extract important features such as Mean Absolute Value (MAV), Root 

Mean Square (RMS), and Integrated EMG (IEMG). These features served as inputs to the 

ANN, which aimed to recognize patterns of muscle activation unique to each movement. 

The ANN model had an input layer for the extracted features, a hidden layer with 

neurons, and an output layer with four nodes representing the movement classes. Despite 

careful feature extraction, the model struggled to distinguish between the movements 
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because the EMG signals for these tasks were highly similar. The overlapping patterns in the 

signals made it difficult for the ANN to classify the movements with high accuracy. 

To improve the analysis, force data was included as an additional output. This data 

provided measurements of the grip strength and effort used during each movement. By 

combining EMG and force data, the analysis became more robust, as the force information 

highlighted differences that were not evident in the EMG signals alone. However, even with 

the added force data, the ANN still faced challenges in distinguishing between the 

movements.  

 

 

Figure 4.7 The ANN result 

 

The results suggested that the current dataset was insufficient for reliable 

classification due to the limited variation in EMG signals and the small amount of force 

data. Additional force data, collected at varying levels of intensity and grip strength, is 

needed to improve the model’s accuracy. This would help the ANN capture subtle 

differences in muscle activation and effort for each movement. 
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Although the ANN did not achieve high accuracy, the study provided useful 

insights into how the FDS and FDP muscles contribute to different tasks. The findings 

highlight the potential of combining EMG and force data for analyzing hand movements. 

Future work could focus on collecting more comprehensive datasets, using more advanced 

neural network architectures, or integrating other types of sensor data to improve 

movement classification. 

4.5 Result Comparison with Previous Studies 

In the study "Dynamic Modelling of Hand Grasping and Wrist Exoskeleton: An 

EMG-based Approach" by Mohd Safirin bin Karis et al., the authors aimed to establish the 

relationship between surface electromyography (sEMG) signals, wrist angles, and handgrip 

force. They employed Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS) to model hand grasping dynamics at different Maximum 

Voluntary Contraction (MVC) levels. Their findings indicated that sEMG signal levels were 

directly proportional to handgrip force production, and that handgrip force varied with wrist 

angle, being higher in flexion positions compared to extension. Additionally, their results 

showed that ANN improved estimation accuracy over ANFIS by 0.22% in terms of the 

integral absolute error value.  

In contrast, the current study focused on classifying four specific hand 

movements—scissor, pen, chopstick, and needle—using sEMG signals from the Flexor 

Digitorum Superficialis (FDS) and Flexor Digitorum Profundus (FDP) muscles. An ANN 

model was implemented to distinguish between these movements. However, the model faced 

challenges in accurately classifying the movements due to the high similarity in EMG 

activation patterns among them. This limitation underscores the difficulty in differentiating 

fine motor tasks based solely on sEMG data from these two muscles. 
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Figure 4.8 Hand grip analysis graph 

 

Comparatively, while Karis et al. successfully modeled the relationship between 

sEMG signals, wrist angles, and handgrip force—achieving high estimation accuracy—the 

present study encountered difficulties in movement classification using similar ANN 

methodologies. This discrepancy highlights the complexity of classifying fine motor 

movements based on sEMG signals, suggesting that additional factors, such as incorporating 

more muscles, advanced feature extraction methods, or alternative machine learning models, 

may be necessary to improve classification accuracy. 

4.6 Challenges in ANN-Based Movement Classification 

Despite efforts to integrate the Artificial Neural Network (ANN) with the 

SolidWorks model for exoskeleton control, it was found that the network was unable to 

successfully classify the movements based on the EMG signals. The ANN, which was 

trained using key features extracted from the EMG data, including time-domain metrics such 

as Mean Absolute Value (MAV), Root Mean Square (RMS), and Integrated EMG (IEMG), 

as well as frequency-domain features like Mean Frequency (MNF) and Median Frequency 
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(MF), failed to produce reliable movement classifications. This failure became evident 

through low classification accuracy, frequent misclassifications, and poor generalization. 

The main issue was that the ANN did not accurately distinguish between the four 

hand movements—scissor, pen, chopstick, and needle—despite being trained on a diverse 

set of EMG features. The network produced outputs that were inconsistent with the actual 

movements, which led to incorrect control signals for the exoskeleton. This, in turn, caused 

errors in the simulation and hindered the potential for real-time control. The performance of 

the model was suboptimal, with accuracy levels falling below the expected threshold and the 

ANN often misclassified one movement as another. Additionally, the model exhibited signs 

of either overfitting or underfitting, indicating that it was either memorizing the training data 

too specifically or failing to generalize to unseen movement patterns. 

Several factors likely contributed to this failure. One potential cause is that the 

selected features might not have captured the most relevant aspects of muscle activation 

necessary for distinguishing between the movements. The features such as MAV, RMS, and 

IEMG might not have been sensitive enough to the subtle differences between the 

movements, leading to inadequate discrimination. Furthermore, data quality and 

preprocessing issues could have negatively impacted the model's performance. If the raw 

EMG data contained noise, motion artifacts, or baseline drift that were not effectively 

removed, the ANN would have been trained on corrupted data, thus limiting its ability to 

learn meaningful patterns. Preprocessing steps such as noise filtering and artifact removal 

may not have been sufficiently robust to eliminate these unwanted elements. 

Another possible reason for the classification failure could be an imbalance in the 

training data. If some movements were overrepresented while others were underrepresented, 

the ANN may have developed a bias toward the more frequent movements, leading to 
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misclassification of less frequent ones. Additionally, the architecture of the ANN may not 

have been well-suited to the task. If the network was too simple, with too few neurons or 

layers, it may not have had the capacity to learn the complex relationships between the EMG 

features and the movements. On the other hand, if the network was too complex, it may have 

overfitted the training data and struggled with generalizing to new examples. Furthermore, 

issues such as insufficient training or improper tuning of hyperparameters—such as the 

learning rate, number of epochs, or batch size—could have hindered the model's ability to 

converge to a suitable solution. 

To address these issues, several steps were considered for improving the ANN’s 

performance. First, a more in-depth analysis of the features used for training may be 

necessary. The current features might not be capturing the most discriminative information 

about the movements. By exploring advanced feature selection techniques, such as Principal 

Component Analysis (PCA) or Independent Component Analysis (ICA), and potentially 

incorporating additional features (e.g., frequency-domain characteristics or non-linear 

metrics), the discriminative power of the model could be improved. Moreover, revisiting the 

preprocessing pipeline could help ensure that noise, artifacts, and baseline drift are 

adequately removed from the raw EMG signals, which would help the model learn more 

accurately. Techniques like wavelet denoising or band-pass filtering could improve the 

quality of the input data. 

Furthermore, to address potential data imbalance, data augmentation techniques 

could be applied to artificially expand the dataset, ensuring that all movements are equally 

represented. This could involve methods such as time-domain stretching, frequency shifting, 

or introducing synthetic noise into the data. Another critical area for improvement is the 

ANN architecture. The number of neurons in the hidden layer, as well as the number of 
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hidden layers, might need to be adjusted to ensure that the network has sufficient capacity 

to capture the complexity of the task without overfitting. Additionally, experimenting with 

different types of networks, such as Convolutional Neural Networks (CNNs), could help 

extract more relevant features from the EMG signals. 

In conclusion, the failure of the ANN to accurately classify the movements based 

on EMG data presents a significant challenge for integrating it with the SolidWorks 

exoskeleton model. However, by addressing issues related to feature selection, data 

preprocessing, model architecture, and training, the classification accuracy can potentially 

be improved. Further refinement of the model, along with experimentation with advanced 

techniques, is necessary to achieve reliable movement classification and ensure the 

successful integration of the ANN with the exoskeleton system. 

 

 

 

 

 



62 

CHAPTER 5  

 

 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This project focused on the classification of four fine motor hand movements—

scissor, pen, chopstick, and EMG signals from the Flexor Digitorum Superficialis (FDS) and 

Flexor Digitorum Profundus (FDP) muscles. The primary aim was to analyze the EMG 

activity during these tasks and use machine learning, specifically an Artificial Neural 

Network (ANN), to identify and classify the movements. MATLAB was used for data 

preprocessing and analysis, and the ANN was trained using features extracted from the EMG 

signals. 

 

The findings revealed several important observations. The FDS muscle consistently 

showed stronger and more stable activation across all movements, while the FDP exhibited 

weaker and less consistent signals. This difference in muscle activity influenced the 

performance of the ANN, which struggled to accurately classify the movements. The 

primary challenge was the high similarity in EMG signal patterns between the tasks, making 

it difficult for the model to distinguish between them. This result highlights the inherent 

limitations of using surface EMG signals from only two muscles for fine motor task 

classification. 

 

Despite these challenges, the project successfully demonstrated the potential of 

using EMG signals and machine learning for hand movement classification. It provided 

valuable insights into the behavior of the FDS and FDP during precision tasks, showing that 
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such systems could contribute to fields like rehabilitation, prosthetics, and robotics. 

However, the current system’s limitations underline the need for further research and 

refinement. 

 

Future improvements, such as incorporating signals from additional muscles, 

applying advanced signal processing techniques, or using more sophisticated machine 

learning models, could enhance accuracy and reliability. These findings lay the groundwork 

for developing a more robust and practical system for real-world applications, bringing this 

research closer to potential commercialization. 

 

This project marks an essential step in understanding muscle behavior and applying 

technology to improve human-machine interaction. 

5.2 Project Commercialization 

The development of this project, focusing on the analysis and classification of hand 

movements through EMG signals and its integration with an exoskeleton model, has 

significant commercialization potential in various industries, particularly in healthcare, 

rehabilitation, prosthetics, and human-machine interaction. However, the successful 

commercialization of this technology would require a structured approach that considers 

product development, market analysis, intellectual property protection, and scalability. 

5.2.1 Target Market 

The primary market for this technology lies in the healthcare sector, particularly in 

rehabilitation and prosthetic control systems. The ability to classify precise hand movements 

based on muscle activation could greatly benefit patients undergoing physical therapy after 
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neurological injuries, such as strokes, or those recovering from musculoskeletal injuries. 

Additionally, the technology has potential applications in advanced prosthetic devices, 

enabling more intuitive control for individuals with limb loss. Secondary markets include 

human-computer interaction systems and industrial applications, such as robotic 

exoskeletons for workplace ergonomics and injury prevention. 

5.2.2 Long-Term Vision 

In the long term, this technology could be expanded to include additional 

movement classifications, integration with other biosignals (e.g., EEG or accelerometry), 

and broader applications in robotics, gaming, and virtual reality. By continually innovating 

and adapting to market needs, the project has the potential to become a leading solution in 

the field of human-machine interaction. 

5.3 Future Work 

This project has laid the groundwork for classifying fine motor hand movements 

using EMG signals and machine learning, but there is significant room for improvement to 

enhance the system’s accuracy and applicability. Future work could begin by addressing the 

limitations encountered in this study, particularly the difficulty in distinguishing between 

movements with similar EMG activation patterns. A key improvement would be to collect 

EMG data from a wider range of muscles. While this project focused on the Flexor 

Digitorum Superficialis (FDS) and Flexor Digitorum Profundus (FDP), including other 

muscles involved in hand and wrist movement—such as the Extensor Digitorum or Thenar 

muscles—could provide richer data and reduce overlap in signal patterns between 

movements. 
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Another area for enhancement involves data processing. More advanced signal 

processing techniques, such as band-pass filtering, wavelet transformation, or feature 

extraction methods like root mean square (RMS) and mean absolute value (MAV), could be 

applied to improve the quality and clarity of the EMG data. These techniques can help 

emphasize subtle differences in muscle activation that may not be apparent in raw signals. 

Additionally, exploring time-frequency domain analysis could reveal patterns that are 

missed in the time domain alone, potentially improving movement classification. 

From a machine learning perspective, future work could explore alternative models 

beyond the Artificial Neural Network (ANN) used in this project. Deep learning models, 

such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), are 

known for their ability to handle complex and non-linear data patterns. These models could 

provide improved classification performance, especially when trained on larger and more 

diverse datasets. Moreover, hybrid models that combine neural networks with other 

methods, such as support vector machines (SVMs), could also be explored. 

Finally, implementing and testing the system in real-world applications would be a 

crucial step forward. A real-time classification system could be developed to assess its 

performance in scenarios like rehabilitation, where accurate movement recognition is critical 

for tracking patient progress. Similarly, the system could be adapted for controlling robotic 

prosthetics, enabling individuals with motor impairments to perform precise hand tasks. 

Testing in practical environments would also help identify unforeseen challenges and guide 

further refinements. 

In conclusion, future research should focus on expanding the dataset, enhancing 

signal processing, and exploring advanced machine learning models to improve the system’s 

performance. These efforts could lead to a more robust and reliable system for classifying 
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fine motor movements, paving the way for its application in healthcare, robotics, and 

assistive technologies. 
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Appendix A Gannt Chart for PSM 1 
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Appendix B Gannt Chart for PSM 2 
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