
LOSSY IMAGE COMPRESSION OF BMP IMAGE USING
WAVELET OPERATION

MUHAMMAD ADIB HAFIFI BIN SHAHRUL AMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

LOSSY IMAGE COMPRESSION OF BMP IMAGE

USING WAVELET OPERATION

MUHAMMAD ADIB HAFIFI BIN SHAHRUL AMAN

This report is submitted in partial fulfilment of the requirements for

the degree of Bachelor of Computer Engineering Technology

(Computer System) with Honours

Faculty of Electronics and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Tajuk Projek : LOSSY IMAGE COMPRESSION OF BMP IMAGE

USING WAVELET OPERATION

Sesi Pengajian : 2023/2024

Saya MUHAMMAD ADIB HAFIFI BIN SHAHRUL AMAN mengaku membenarkan

laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat

kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

TERHAD*

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh: 28/1/2025 Tarikh: 28/1/2025

Tarikh : 01 Januari 2024 Tarikh : 01 Januari 2024

DECLARATION

I declare that this project report entitled “Lossy Image Compression On BMP Image Using

Wavelet Operation” is the result of my own research except as cited in the references. The

project report has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature :

Student Name : Muhammad Adib Hafifi Bin Shahrul Aman

Date :
28/1/2025

12/6/2024

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of

Computer Engineering Technology(Computer System) with Honours

Signature :

Supervisor Name :

Date :

Signature :

Co-Supervisor :

Name (if any)

Date :

Ts. Dr. Rostam Affendi Bin Hamzah

28/1/2025

DEDICATION

To my beloved mother, Norita Binti Mohaidin, and

father, Shahrul Aman Bin Zulkifli.

i

ABSTRACT

This research creates and assesses an image compression method based on wavelet

transforms which targets BMP image formats. The great quality along with simple operation

of bitmap (BMP) images makes them popular for various applications. BMP images

normally remain uncompressed thus producing file sizes that make efficient storage and

transmission difficult. High-resolution image usage has worsened this storage and

transmission performance issue. Modern compression methods fail to provide effective

solutions since they either lose efficiency or degrade image quality when used in real-time

settings. Our paper presents an evaluation and development framework for an image

compression method which utilizes wavelets on BMP file structures. The algorithm requires

selecting an optimal wavelet type and needs precise compression parameter adjustments.

This image compression method will be evaluated through BMP size comparison in tests

conducted on multiple additional BMP images. The new compression technique aims to

produce a durable solution that retains images' visual quality and minimizes BMP file size

for seamless application use through faster transmission rates along with storage efficiencies.

An easily navigable software tool is one of the project goals to assist simple integration of

this compression method into existing systems for improved adoption and application

applications.

ii

ABSTRAK

Kajian ini bertujuan untuk membangun dan menilai algoritma pemampatan imej

menggunakan transformasi wavelet yang direka khas untuk imej BMP. Disebabkan oleh

kualiti yang cemerlang dan kegunaan yang mudah, imej bitmap (BMP) sering digunakan

dalam pelbagai aplikasi. Walau bagaimanapun, foto-foto ini biasanya tidak dimampatkan,

menyebabkan saiz fail yang besar yang tidak sesuai untuk penghantaran dan penyimpanan

yang cekap. Penggunaan gambar beresolusi tinggi yang semakin meningkat memperburuk

ketidakefisienan ini. Teknik pemampatan semasa sering kali tidak mencukupi, sama ada

kekurangan dalam kecekapan atau merosakkan kualiti imej, terutamanya dalam aplikasi

masa nyata. Menangani ini, kajian kami mencadangkan untuk mengembangkan dan menilai

algoritma pemampatan imej menggunakan transformasi wavelet untuk imej BMP. Proses ini

melibatkan pemilihan jenis wavelet yang sesuai dan penalaan parameter pemampatan.

Keberkesanan pemampatan ini akan diukur dengan membandingkan saizimej BMP dan

akan diuji pada beberapa imej BMP yang lain. Penyelidikan ini dijangka akan menghasilkan

teknik pemampatan yang kuat yang mengekalkan kesetiaan visual yang tinggi sambil

mengurangkan saiz fail BMP secara substansial, menjadikannya lebih praktikal untuk

pelbagai aplikasi dengan memastikan penghantaran yang lebih cepat dan penyimpanan yang

lebih cekap. Tambahan lagi, projek ini bertujuan untuk menyediakan alat perisian yang

mudah dinavigasi yang memudahkan integrasi teknik pemampatan ini kedalam sistem yang

sedia ada, dengan itu meningkatkan penggunaannya dan aplikasi praktikal.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, TS. DR.

Rostam Affendi Bin Hamzah for his precious guidance, words of wisdom and patient

throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) and my father

for the financial support which enables me to accomplish the project. Not forgetting my

fellow colleague for the willingness of sharing his thoughts and ideas regarding the project.

My highest appreciation goes to my parents and family members for their love and

prayer during the period of my study. An honourable mention also goes to my mother for all

the motivation and understanding.

Finally, I would like to thank all fellow colleagues and classmates, the Faculty

members, as well as other individuals who are not listed here for being co-operative and

helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

LOSSY IMAGE COMPRESSION OF BMP IMAGE USING WAVELET

OPERATION i

ABSTRACT i

Contents

SULIT* ... 3

DECLARATION.. 4

APPROVAL ... 5

DEDICATION.. 6

ABSTRACT .. 7

ABSTRAK ... 8

ACKNOWLEDGEMENTS ... 3

TABLE OF CONTENTS... 4

DECLARATIONAPPROVAL DEDICATIONS .. 4

OPERATION i .. 4

LIST OF TABLES ... 7

INTRODUCTION .. 9

1.1 Background .. 9

1.2 Problem Statement ... 9

1.3 Project Objective .. 10

1.4 Scope of Project .. 11

LITERATURE REVIEW ... 13

2.1 Introduction .. 13

2.2 Principle of Image Compression ... 14

v

2.3 The Function of Wavelet operation In Image Processing. .. 14

2.4 The Discrete Wavelete Transform .. 15

2.5 Previous Of Related Research Work.. 17

2.5.1 Image Compression Using Wavelet Methods[5] ... 17

2.5.2 Design and Optimization of Image Compression Algorithm Using Wavelet

Transform for Satellite Imagery[6].. 19

2.5.3 Lossless Image Compression Technique Using Haar Wavelet and Vector

Transform[7] 23

2.5.4 Wavelet and Multiwavelet Transform Techniques[8] 25

2.5.5 Lossy Color Image Compression Technique Using Reduced Bit Plane-

Quaternion SVD[9] .. 26

2.5.6 Image Compression Using Wavelet Packet and Singular Value

Decomposition[10] .. 28

2.5.7 Lossless Medical Image Compression by IWT and Predictive Coding[11] 30

2.5.8 The Applications of Discrete Wavelet Transform in Image Processing[15] ... 32

2.6 Comparison Of Previous Related Project .. 34

2.7 Summary... 38

METHODOLOGY .. 39

3.1 Introduction .. 39

3.2 Selecting and Evaluating Tools for a Sustainable Development 40

3.3 Methodology ... 40

3.3.1 Literature Review .. 40

3.3.2 Algorithm Design ... 41

3.3.3 Implementation .. 41

3.3.4 Testing and Evaluation .. 42

3.3.5 Optimization ... 45

3.3.6 Development of Tool ... 45

3.4 Elaboration of Process Flow .. 46

3.4.1 Flowchart .. 46

3.4.2 Block Diagram .. 47

3.4.3 Software Equipment .. 49

vi

3.5 Experimental/Study Design ... 49

3.5.1 Simulation ... 49

3.5.2 Coding ... 49

3.6 Summary... 51

RESULTS AND DISCUSSIONS .. 52

4.1 Introduction .. 52

4.2 Eperimental Setup ... 53

4.3 RESULT & ANALYSIS ... 55

4.3.1 Software .. 56

4.3.2 BMP File ... 59

Result... 59

4.3.3 JPEG File .. 66

4.3.4 PNG File .. 75

4.3.5 Chart ... 83

Summary... 86

CONCLUSION AND RECOMMENDATIONS ... 87

5.1 Conclusion .. 87

5.2 Potential for Commercialization ... 89

5.3 Future Works ... 90

REFERENCES ... 93

APPENDIX ... 96

vii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Comparison Table 29

Table 4.1 BMP File Compression Results 56

Table 4.1.2 BMP File Compression Efficiency 56

Table 4.1.3 BMP Image Visual Comparison 57

Table 4.2 JPEG File Compression Results 63

Table 4.2.2 JPEG File Compression Efficiency 64

Table 4.2.3 JPEG Image Visual Comparison 65

Table 4.3 PNG File Compression Results 72

Table 4.3.2 PNG File Compression Efficiency 73

Table 4.3.3 PNG Image Visual Comparison 74

viii

 LIST OF FIGURES

FIGURE

TITLE

PAGE

Figure 2.1 Forward Wavelet Transform for a Normal Signal

19

Figure 2.2 Inverse Wavelet Transform for a Normal Signal

20

Figure 2.3 Test Image

22

Figure 3.1 Flowchart for this project

38

Figure 3.2 Block Diagram for this project[1]

39

Figure 4.1 Comparison of original BMP image (left)

43

Figure 4.2 Properties of original BMP image

44

Figure 4.3 Properties of Compressed BMP image(left)

(Right)
& Decompressed

44

Figure 4.31.1 Welcome window For Image Compression Software 54

Figure 4.31.2 Main Window for image compression 55

Figure 4.31.3 Main Window for image compression(After) 56

9

INTRODUCTION

1.1 Background

In the Microsoft Windows environment BMP (Bitmap) proves to be one of the most popular

raster formats sustained by Graphics Device Interface (GDI)[1]. High-quality lossless BMP

files maintain popularity with graphic designers and the digital art community and developers

because of their straightforward format design. The uncompression nature of BMP files

results in substantial file size which poses storage difficulties and hampers transmission

speed. The high storage needs and bandwidth requirements of high-resolution images cause

storage difficulties because of the inefficient file size. Wavelets have developed into a

remarkable technology that optimizes file compression yet maintains impressively high

visual standards[2]. This research applies wavelet methods to BMP images to address

compression problems thus providing an effective solution for managing big BMP files.

1.2 Problem Statement

The extensive use of BMP files remains burdened with data management hurdles since they

offer no compression systems or minimal compression options at best. Large BMP file

dimensions create storage limitations and data transmission slowness affecting applications

that need swift image processing[3]. Medical programs working with BMP files in

telemedicine and satellite imaging and digital archiving must handle their large file size

which results in time delays and additional costs. The real-time compression along with

decompression of BMP images introduces significant complexity in systems where high

speed operation is required [4].

10

System compatibility stands as a primary pressing issue. BMP files receive broad

application support yet they burden storage resources and strain available network

bandwidth. Maintaining visual quality in compressed BMP files constitutes a crucial element

because reduced image details negatively affect their applications in professional

environments. Modern applications need these important issues solved for BMP images to

become more practical and efficient especially when dealing with large file scenarios.

1.3 Project Objective

This project establishes the development and evaluation of an image compression

algorithm that utilizes wavelet operations to process BMP image files. The project solves

BMP file inefficiencies with two goals: minimizing file size and keeping image quality at

the same level with system compatibility. The specific objectives are as follows:

1. Develop Image Compression Algorithm: After implementing a wavelet foundation

compressing technique for BMP images developers should create solutions which minimize

file dimensions effectively. [5]

2. Reduce File Size While Maintaining Quality: The compression algorithm ensures

BMP files show optimal visual quality along with PSNR and SSIM measurement results.[6]

3. Analyze Algorithm Performance: Standard performance evaluation of the algorithm

must include Result percentage and transmission efficiency assessment measurement

procedures.

The project establishes these target objectives to deliver an efficient BMP image

compression system which can benefit data transmission operations and storage optimization

and real-time image processing functions.

11

1.4 Scope of Project

The project will focus on the following key activities to achieve its objectives[7]:

1. Design and Implementation: Design a new coding method for BMP image file

compression through wavelet mathematics operations. The systematic design practice

incorporates encoding techniques that produce compact files which retain excellent image

clarity and operate with standard systems.

2. Testing and Evaluation: A wide selection of standard BMP images must undergo

rigorous testing for the algorithm. Different performance metrics including compression

ratio together with PSNR and SSIM evaluations will measure the efficiency of the algorithm.

3. Optimization: Carefully adjust the algorithm settings to reach optimal compression

efficiency while maintaining top image quality. Research for optimal compression results

involves investigating different components including wavelet families thresholding

techniques and quantization methods.

4. Tool Development: Build user-centric software which embeds the compression

algorithm and provides it through a library interface. The designers will create a technology

that serves as a seamless addition to current program interfaces to make this technology

accessible to multiple user groups.

5. Transmission Efficiency: An evaluation needs to assess the transmission speed

effectiveness of this algorithm when high-speed data exchange is essential. The evaluation

will show the algorithm's potential to enhance network performance by maximizing

transmission capabilities while minimizing delay times across real environments.

12

The project's systematic examination of these pivotal areas leads to optimized BMP image

compression capabilities which enable data transmission enhancement and storage

optimization together with real-time image processing functionality. A successful

conclusion of this project will improve BMP image practicality while helping expand image

compression technology as a whole.[8]

13

LITERATURE REVIEW

2.1 Introduction

The reduction of storage requirements in addition to bandwidth utilization for digital

images constitutes an essential strategy named image compression within the field of digital

image processing. The rise of high-resolution imaging devices coupled with expanding

requirements for efficient storage solutions requires effective compression techniques to be

essential. The uncompressd nature of BMP (Bitmap) images results in large file sizes that

create storage and transmission difficulties. Wavelet transform-based compression

techniques excel as effective solutions to compress BMP images by delivering outstanding

compression performance alongside top image quality [9].

An assessment of wavelet transform utilization for BMP image compression emerges from

this review by exploring textual wavelet foundations while evaluating different wavelet

compositions using multiple evaluation methods. The text explores BMP image-specific

wavelet operation benefits and challenges together with methods to optimize compression

outcomes.[10].

14

2.2 Principle of Image Compression

The method of optimizing digital images by decreasing their data volume helps storage

efficiency and speeds up transmission[11]. There are two main types of compression: lossy

and lossless. Lossless compression technology serves applications requiring exact image

reconstruction since it provides perfect restoration of original data thus being ideal for

critical uses such as medical diagnostics and long-term data preservation. Lossy

compression techniques produce superior compression efficiency by converting images to

approximations so they are appropriate when some visual degradation is tolerable. The

project examines wavelet compression which implements lossy compression through

Huffman encoding and bitmap encoding to achieve high storage and bandwidth

optimization alongside reasonable image quality retention. Signup authentication processes

are essential due to their high fidelity needs although lossy compression remains generally

preferred for its efficient characteristics.[12]

2.3 The Function of Wavelet operation In Image Processing.

The Wavelet Transform serves as a robust analytical instrument which shows marked

performance when detecting unpredictable signals in image processing applications[13]. The

Wavelet Transform surpasses the Fourier Transform because it shows both frequency data

and spatial image characteristics. The mother wavelet serves as a fundamental function to

generate new wavelets by modification through scale and displacement operations that

facilitate specific analysis of localized features in images. Conveniently for image

compression work units wavelet transforms outperform alternative transformation techniques

because of their optimized capacity.

A typical wavelet-based image compression system involves three key stages[14]:

15

1. Transformation: Waves decompose an image through wavelet analysis to create

approximation and detail sub-signals. The general trends within pixel values appear in the

approximation sub-signal whereas the detail sub-signals show horizontal vertical and

diagonal image detail elements.

2. Quantization: The evaluation process examines detail sub-signals until it identifies

values which fall below threshold levels. Then all these low values become zero. During this

stage the image information is minimized but its main features remain fully protected.

3. Entropy Coding: Huffman encoding reduces file dimensions after the data undergoes

quantized data processing.

The degree of information preservation after compression turns into decompression

becomes evident through energy retention analysis which computes pixel value squares

summed together. A complete energy retention rate indicates no image document loss.

Standard wavelet compression methods lose data because they require data reduction to

function. As a final objective we need both maximum zero counts for size reduction and

minimum energy decrease to maintain image quality. The key to successful compression

depends on achieving proper equilibrium between these elements.

2.4 The Discrete Wavelete Transform

The Discrete Wavelet Transform (DWT) serves as a mathematical method to conduct

pyramidal image decomposition which divided pictures into smaller elements for evaluation

along with compression functions [15]. The signal-analysis approach of DWT operates through

small waves known as wavelets which provide both duration and frequency versatility for

focused image feature assessment. The transformation successfully retrieves frequency and

spatial data to make it an efficient approach for image compression purposes.

16

Image decomposition within DWT produces frequency-specific sub-bands which

capture image frequencies independently. These sub-bands include:

• LL (Low-Low): The approximation component holds the most important image

information.

• LH (Low-High): Horizontal details.

• HL (High-Low): Vertical details.

• HH (High-High): Diagonal details.

When applying the inverse DWT operation to these coefficients the original image

returns in complete form without losses to essential information from compression. DWT stands

out as an ideal approach for lossy compression because its extensive image decomposition and

reconstruction capabilities preserve outstanding quality during size reduction of visual data.[16]

The localization capability within DWT helps identify precise image areas for

compression application which preserves visual quality. The large file size of BMP files becomes

manageable through this particular approach. The DWT compression method reaches important

file size reductions by processing less noticeable high-frequency sections (LH, HL, HH) because

these sections escape human vision limits.

DWT demonstrates high accuracy in image division at distinct frequency levels which

positions it as an optimal choice for wavelet-based image compression. The localization

capabilities of this technology work together with multi-resolution analysis systems to provide

efficient compression especially when handling BMP files with large or high-resolution

dimensions.

17

2.5 Previous Of Related Research Work

2.5.1 Image Compression Using Wavelet Methods[5]

The study "Image Compression Using Wavelet Methods" by Yasir S. AL-

MOUSAWY and Safaa S. MAHDI which was published in the INCAS Bulletin compares

two wavelet methods: wavelet-bitmap and wavelet-Huffman. The need for efficient digital

media data management drives this investigation whose focus is to assess wavelet-based

image compression methods for medical imaging and multimedia transmission purposes.

This investigation seeks to assess the execution of wavelet-based compression approaches

wavelet-bitmap and wavelet-Huffman through measurements of compression duration and

compression efficiency together with image quality maintenance. This research compares

wavelet-bitmap and wavelet-Huffman compression systems to find the best method that

strikes an optimal balance between data compression and image clarity for applications

depending on data integrity such as medical imaging.

In their research, Yasir S. AL-MOUSAWY and Safaa S. MAHDI implemented two wavelet-

based image compression methods using MATLAB: wavelet-bitmap and wavelet- Huffman.

Image decomposition via discrete wavelet transform represents the starting point for both

compression techniques which generate multiple frequency sub-bands. The initial step

completes with thresholding combined with quantization which reduces zero-value wavelet

coefficient information for image data simplification before compression begins. The

wavelet-Huffman approach implements Huffman coding on the quantized coefficients yet

18

wavelet-bitmap uses bitmap technology to mark zero value and non-zero value coefficients

for easier data structure understanding.

The research team evaluated the efficiency of both methods by assessing compression ratio

together with Peak Signal-to-Noise Ratio and measured compression time. Testing

demonstrated fundamental dissimilarities which emerged in between these two compression

approaches. Test results demonstrated the wavelet-bitmap method performed better than the

wavelet-Huffman method thus indicating its value in demanding conditions which need

speedy processes. Results showed that the wavelet-Huffman mechanism provides superior

data reduction capability over the wavelet-bitmap approach but requires increased

processing periods. The post-compression image quality measurements based on PSNR

demonstrate that both methodologies prove suitable for applications needing high resolution

image fidelity.

Processing speed preferences should dictate selecting wavelet-bitmap and data reduction

requirements should steered towards wavelet-Huffman based on application needs. This

trade-off is particularly

Telemedical applications benefit from knowing these compression methods' speed-imaging

quality relationship since transmission speed versus image quality affects diagnostic ability.

19

This study offers important contributions to digital image processing knowledge by studying

both wavelet-based compression methods in detail. The wavelet-bitmap approach delivers

superior speed benefits to applications that require acceleration. The wavelet-Huffman

compression technique delivers better performance than wavelet-Bitmap at conditions when

ratio compression takes precedence over transmission speed requirements. This research

establishes a groundwork for future investigations into wavelet-based compression

optimization which could lead to adaptive selection mechanisms that choose compression

strategies according to ongoing data evaluation.

2.5.2 Design and Optimization of Image Compression Algorithm Using Wavelet

Transform for Satellite Imagery[6]

Information explosion from advanced satellite imaging technologies requires new image

compression solutions because of their massive data output. The "Design and Optimization

of Image Compression Algorithm using Wavelet Transform for Satellite Imagery" research

article demonstrates an optimized image compression system designed expressly for satellite

imagery content. This review evaluates the study methods together with key research

outcomes alongside their value for satellite image processing practices.

The research creates an advanced image compression service by incorporating wavelet

transform technology which proves highly effective at resizing information content without

degradation of data quality.

The technique offers both storage efficiency and complete preservation of original data

content. The research demonstrates the essential need for highly effective compression

20

systems that overcome bandwidth restrictions and storage constraints found in satellite

imaging operations.

The methodology part presents both forwarding and inverse wavelet transform procedures

specifically designed for satellite image processing. The image decompression through

forward wavelet transform splits the image into separate frequency sub-bands during the first

phase. The next procedure uses filtering and down-sampling operations to shrink image

dimensions fundamentally. In reverse operations these sub-band components reformulate

into the complete original image without substantial data or quality deterioration.

Figure 2.1 Forward Wavelet Transform for a Normal Signal

21

Figure 2.2 Inverse Wavelet Transform for a Normal Signal

The wavelet-based compression system demonstrates successful dimension reduction of

satellite images while preserving their quality standards. An analysis in MATLAB revealed

a mean squared error of 378.6702 showing strong correlations between original and

compressed satellite images. Image quality together with compression ratio maintenance

makes this system highly valuable for satellite imaging applications.

The results from this study directly benefit applications which must handle and store large

satellite imagery datasets running up against storage bandwidth limits. Through its

compression technique the algorithm strengthens data efficiency and enables crucial satellite

imagery transfers for real-time monitoring operations involving weather tracking and crisis

response teams as well as worldwide surveillance.

This work significantly advances image processing through a reliable wavelet transform-

based framework for compressing satellite images. The implemented approach strikes an

optimal middle ground between reducing data quantities while maintaining original image

quality in satellite imaging operations. Today's satellite images benefit from wavelet

transform capabilities which adapt to unique imaging challenges so researchers can develop

advanced satellite data handling methods.

This research generates multiple pathways for additional research with a focus on applying

comparable image compression methodology to alternative high-definition imaging

platforms.The algorithm holds potential to integrate an adaptive system which adjusts its

operation according to specific circumstances.ystem can significantly reduce the size of

satellite images without substantial quality degradation. Using MATLAB, the researchers

calculated a mean squared error (MSE) of 378.6702, indicating a high fidelity between the

original and compressed images. The system's efficacy is evidenced by its ability to maintain

22

a balance between compression ratio and image quality, making it highly suitable for the

satellite imaging domain.

The study's findings are particularly relevant for applications requiring the transmission

and storage of large-scale satellite imagery where bandwidth and storage are at a premium.

The compression algorithm not only ensures efficient data management but also supports the

rapid transmission of satellite images critical for real-time applications such as weather

forecasting, disaster management, and global surveillance.

This research makes a significant contribution to the field of image processing by providing

a robust framework for the compression of satellite images using wavelet transforms. The

proposed method optimizes the balance between data reduction and quality retention, which

is a critical concern in satellite image processing. By leveraging the multi-resolution and

scalability properties of wavelet transforms, the algorithm effectively addresses the unique

challenges posed by satellite imagery, paving the way for more sophisticated and practical

applications in satellite data handling.

The research opens several avenues for further investigation, particularly in exploring the

application of this compression technique to other types of high-resolution imaging systems.

Additionally, there is scope for enhancing the algorithm to include adaptive

This approach integrates automatic compression parameter adjustment features which

adapt to image features or transmission channel necessities.

23

2.5.3 Lossless Image Compression Technique Using Haar Wavelet and Vector

Transform[7]

Lossless Image Compression Technique Using Haar Wavelet and Vector Transform

demonstrates a new image compression method which combines Haar wavelets with vector

transforms to provide lossless compression according to authors Neha Sikka and Sanjay

Singla. This technique holds essential value for precise data reproduction in medical imaging

and legal documentation setups.

Research aims to create a compression method which minimizes storage and transmission

needs of high-resolution images using a lossless information-preserving approach. The

method reaches compression goals of 97% through maintaining SNR values that remain low

while holding strong RMSE values which show minimal deviation from the original image

quality.

The method chooses the Haar wavelet transform as its foundation because of the

transform's simple process which reduces images into essential approximation pieces and

additional detail components. Due to the vector transform application these components

enable better compression ratio performance. The dual implementation of these methods

should provide peak performance during compression through complete preservation of all

original data points.

The research evaluations the proposed approach versus current methods that include

Integer- to-Integer transform and Band-let image compression. Comparative studies

establish the operational effectiveness of this new approach under different usage

circumstances. This research checks against well-known methods to show better

24

compression rate performances while tracking error metrics.

Each important performance index showed better results with the proposed technique

compared to the test group. The compression level was greater and the SNR and RMSE

measures stayed lower so the algorithm succeeded at maintaining original dataset quality

and reducing file size effectively.

This research examines how such compression technology operates in practical use

scenarios. Medical imaging techniques benefit from compression technology with loss-free

performance because exact image replication matters for diagnosis purposes and treatment

planning. In legal settings increased storage capacity combined with document authenticity

assurance can lead to better efficiency alongside decreased expenses.

Figure 2.3 Test Image

25

The research concludes that the Haar wavelet and vector transform-based compression

technique provides a powerful tool for applications requiring lossless compression. The

method’s ability to maintain high fidelity with the original image while significantlyreducing

the file size could revolutionize data storage and transmission strategies in severalfields.

2.5.4 Wavelet and Multiwavelet Transform Techniques[8]

Researchers heavily investigate wavelet transforms specifically for image compression

applications because these tools deliver powerful multi-resolution breakdown capabilities.

The decomposition of images through frequency components permits efficient compression

based on individual component importance.

Through its multiple scaling functions multiwavelet transforms show better compact

representation capabilities versus traditional wavelets. The Integer Multiwavelet Transform

(IMWT) distinguishes itself through its integer arithmetic while it operates because this

approach eliminates floating-point computation errors to maintain precise image definition

throughout the compression and decompression cycle.

Image compression with wavelet and multiwavelet transforms follows several distinct

protocol steps. First the image receives transformation into wavelet coefficients through

different scales. A subsequent quantization stage reduces precision primarily in less

significant coefficient values thus leading to imaging compression. The compression

encoding methods apply sequential processing to quantized coefficients by using magnitude

set coding followed by run length.

26

2.5.5 Lossy Color Image Compression Technique Using Reduced Bit Plane-

Quaternion SVD[9]

To explore lossy color image compression algorithms Manju Dabass, Sharda Vashisth, and

Rekha Vig combined Singular Value Decomposition (SVD) with Quaternion

transformations and reduced-bit planes in a unique approach. Researchers in this study tackle

the dual requirement of preserving image clarity when performing substantial data

compression primarily on color files where the interdependencies within color planes create

opportunities to maximize efficiency.

The research goal centers on designing a compression technique for color images which

minimizes storage size and transmission bandwidth usage without compromising image

quality fidelity. Two separate methods for image compression are developed by applying

real SVD and quaternion SVD after image reduction to bit planes.

The methodology adopted involves several innovative steps:

1. Colour Image Decomposition: Each RGB part receives individual treatment

following decomposition of the color image into its RGB components.

2. Bit-Plane Reduction: Subsequent to RGB component decomposition a bit-plane

reduction procedure decreases the volume of processing data while simultaneously

minimizing its size and complexity.

3. SVD Application: After bit-plane reduction the data becomes ready for SVD-based

compression. SVD operation includes real SVD together with quaternion SVD because

quaternion SVD maintains superior connections between color elements.

27

The research discovery shows compression techniques effectively shrink data dimensions.

The orientation layout applied in quaternion SVD leads to better image quality maintenance

because it treats RGB components as a unified whole. The researchers measure the

performance of these compressing methods through algorithms which employ Mean

Squared Error (MSE), Peak Signal to Noise Ratio (PSNR), Structure Similarity Index

Measure (SSIM) and Compression Ratio (CR) fidelity tests.

This paper provides comprehensive analysis of quaternion SVD advantages versus real

SVD through demonstration of its superior capabilities in sustaining inter-channel color

relationships. Color reproduction accuracy becomes crucial for medical imaging and remote

sensing applications which makes this approach particularly valuable.

Experimental results show that the suggested data reduction approach which unites bit-

plane reduction technology with quaternion SVD compression enables efficient image scale

reduction while still retaining satisfactory image clarity. Color image compression finds its

most powerful solution in the quaternion SVD systemGetComponent because it addresses

color details more accurately.

28

2.5.6 Image Compression Using Wavelet Packet and Singular Value

Decomposition[10]

A lossy image compression system combining wavelet packet transformations with

singular value decomposition (SVD) is discussed thoroughly in the research paper written

by C. Vimalraj, S. Stebilin Blessia and S. Esakkirajan. This approach optimizes compression

through analysis of image inherent structures to minimize the storage requirements of image

data thus enabling efficient transmission and storage.

The main goal of this research examines how to increase compression ratios without

sacrificing image quality levels. The analysis relies on wavelet packet transform as an

improved substitute for standard wavelet transform by providing diverse fundamental bases

suitable for particular image compression requirements.

The methodology outlined in the paper includes several key components:

1. Wavelet Packet Transform (WPT): Wavelet transform extends to this format for

providing more refined analysis and multiresolution imaging data representation. WPT

demonstrates exceptional capability to separate distinct frequencies within signal waves

while conducting full image decomposition through its procedure.

2. Singular Value Decomposition (SVD): SVD acts after the wavelet packet

decomposition to reduce image data dimensionality by hunting the main structural features

which the largest singular values capture.

29

3. Quantization and Entropy Coding: The processing endpoint begins with coefficient

quantization before Huffman coding enables lossless compression of this data.

These techniques resulted in improved compression ratios together with the preservation

of image information in reconstructed images. Standard image quality metrics including

PSNR and MSE showed that the hybrid application of wavelet packet transform and singular

value decomposition produced superior compression rates above traditional methods.

Wavelet packet transform proves superior to basic wavelet transforms according to the

research because it provides flexible image processing capabilities and efficient usability for

different image formats. When SVD operates with WPT the approach delivers scalable

compression ratios with maintained important image information thus making it applicable

to restrictive bandwidth and storage applications.

The research demonstrates combining wavelet packet transforms with singular value

decomposition creates a very effective solution for lossy image compression. This technique

demonstrates superior ability to maximize compression efficiency while maintaining image

quality thus becoming essential for digital image processing applications across satellite

imaging and medical imaging and multimedia areas.

30

2.5.7 Lossless Medical Image Compression by IWT and Predictive Coding[11]

The paper "Lossless Medical Image Compression by IWT and Predictive Coding" by Mr.

T. G. Shirsat together with Dr. V.K. Bairagi investigates sophisticated compression

techniques specifically designed for medical imaging applications. Medical image

compression requires lossless methods since medical data quantity exceeds maximum levels

which need to preserve complete original quality until accurate diagnosis and medical

documentation standards are met.

The expansion of digital imaging within medicine through X-ray and MRI and CT scans

technology creates substantial data volumes that demand special attention to storage systems

and data communication networks. Researching the combination of Integer Wavelet

Transform (IWT) with predictive coding demonstrates how both approaches create high

compression ratios while completely maintaining data purity.

The study proposes a two-pronged approach:

1. Integer Wavelet Transform (IWT): Minor sub-bands of integer wavelet transforms

split an initial decomposed image to enable organized control of various image components

separately. During this critical step IWT ensures detail maintenance in high-frequency

regions while minimizing redundancy from lower frequency portions.

2. Predictive Coding: Predictive coding starts working on all three sub-bands

immediately following IWT processing.

The method uses pixel-to-pixel correlations to guess pixel values before encoding the

differences found in the smaller dataset.

31

A successful method is determined through image comparison before and after

reconstruction where no image differences should appear in the resulting black difference

image.

Implementation details for the lifting scheme involve particular filter coefficients which

function as essential aspects of Inverse Wavelet Transform. Mathematical expressions

appear along with implementation guidelines for these filters in achieving lossless

compression according to the paper.

The system's evaluation focuses on two aspects: compression ratio measurements alongside

perfect image restoration from the compressed data. Experimental findings demonstrate a

successful combination of IWT with predictive coding which delivers impressive

compression ratios while maintaining perfect image quality.

This research investigates medical applications in telemedicine and digital records

management during its exploration of the technology's practical implications for healthcare

delivery. Medical image lossless compression ensures remote medical diagnoses remain

undamaged so image quality remains diagnostic quality for telemedicine and remote medical

consultations.

Predictive coding solutions together with IWT prove effective in addressing storage and

transmission difficulties within medical image systems according to this research analysis.

The procedure reduces primary data dimensions through meaningful compression

techniques while preserving complete medical image diagnostic capabilities.

32

2.5.8 The Applications of Discrete Wavelet Transform in Image Processing[15]

The paper "The Applications of Discrete Wavelet Transform in Image Processing: Adnan

Mohsin Abdulazeez et al assess DWT applications in image processing through their work

"The Applications of Discrete Wavelet Transform in Image Processing: A Review." Wavelet

transform emerges as an effective imaging tool because it functions optimally in the

frequency domain by providing powerful image data representation and processing

capabilities.

The prolific utilization of digital images across medical domains and satellite observation

and multimedia applications has generated substantial obstacles in retaining and transmitting

and processing image content. The paper demonstrates why DWT surpasses traditional

Fourier Transform by offering comprehensive frequency and spatial analysis to optimize

image compression methods and enhance applications in denoising and enhancement and

watermarking technologies.

The study explores several key aspects of DWT:

1. Wavelet Function: The paper presents the mathematical development of wavelet

functions necessary for multiresolution analysis. The frequency component analysis of

images becomes possible through these functions which enables exhaustive processing and

deep analysis.

2. Discrete Wavelet Transform (DWT): The image decomposition approach of DWT

constructs a pyramidal system which produces sub-bands that represent varying frequency

domains called (LL, LH, HL, HH). Different sub-bands in image applications benefit from

33

decomposition for independent processing because such decomposition is essential in both

image compression and watermarking.

3. Rapid Wavelet Transformation: Fast Wavelet Transform (FWT) serves as the paper's

main presentation of an efficient DWT algorithm. FWT utilizes the structural links between

wavelet coefficients throughout different scales which enable quick and efficient operational

performance.

4. Characteristics and Advantages of DWT: Researchers identify DWT's main features

through its implemented efficiency for calculations and resolution analysis quality and

precise spatial positioning characteristics. The configuration of DWT proves optimal for

image processing jobs that require maintaining both excellent image resolution with

important details kept intact.

The paper also reviews various applications of DWT in image processing, including:

- Image Compression: JPEG 2000 implementations based on DWT compression

techniques produce better image quality results with superior compression ratios than

predecessor algorithm DCT. Multiple investigations demonstrate the effectiveness of

Discrete Wavelet Transform for image compression across multispectral and medical

imagery.

- Image Denoising: Systems that use DWT reduce noise in image applications frequently.

This paper presents various noise reduction methods based on wavelet transforms that apply

thresholding approaches along with multivariate shrinkage algorithms to filter out noise

while conserving vital image characteristics.

34

- Image Enhancement: DWT achieves image enhancement through superior capabilities

for improving contrast, enhancing detail as well as image sharpness. The research examines

how histogram equalization and edge enhancement impact medical imaging alongside their

application to satellite imagery.

- Image Watermarking: Digital watermarking systems use DWT to embed preliminary

marks within images that prevent unauthorized reproduction. This research analyzes

multiple techniques for watermarking which implement DWT while evaluating their

capacity for robustness alongside their ability to be difficult to detect.

The study devotes its final section to analyze wavelet transform potential in image

processing through an exploration of quaternion wavelets' emerging power including phase

information detection capabilities and stability functions. Additional investigation in this

research field produces prospects for building highly advanced image processing algorithms

with better efficiency.

The paper delivers an extensive review which demonstrates DWT's flexibility alongside its

successful deployment throughout multiple image processing operations. Modern digital

systems can benefit from the promising solutions provided when DWT integrates with

predictive coding and quaternion wavelets to handle image storage transmission and

processing needs.

2.6 Comparison Of Previous Related Project

Table 2.1 Comparison Table

35

No. Title/author/year Similarity Difference Remarks

1 A Review Paper on

Image Compression

Using Wavelet

Transform by Anjum

Guleria, 2014[1]

Both projects use

wavelet
transforms for

image
compression,

focusing on
efficient

encoding and
storage of

images.

Guleria's work is

a general review

rather than a

specific

application,

covering a wide

range of wavelet

types and their

benefits.

Theoretical

background

provides a broad

understanding of

various wavelets

and coding

techniques.

2 Design and

Optimization of Image

Compression Algorithm

using Wavelet

Transform for Satellite

Imagery by Taiwo

Samuel Aina, 2022[6]

Both use wavelet

transforms to

compress images

to enhance

efficiency and

reduce

transmission

bandwidth.

This study is

specific to

satellite imagery

with optimized

algorithms for

that context,

your project

focuses on BMP

images.

Useful for

understanding

optimization of

wavelet methods

for specific

types of images.

3 Image Compression Both studies This paper Assesses
 Using Wavelet Methods explore wavelet explores different
 by Yasir S. AL- methods for Huffman and encoding
 MOUSAWY and Safaa image bitmap encoding techniques
 S. MAHDI, 2013[5] compression and within wavelet within the
 discuss compression, framework of
 efficiency and offering a wavelet
 quality trade- broader compression.
 offs. perspective on

 potential

 methods.

4 Lossless Image Both projects This paper Introduces
 Compression Technique involve wavelet introduces concepts of
 Using Haar Wavelet and methods, hybrid combining
 Vector Transform by focusing on techniques wavelet with
 Neha Sikka, 2022[7] lossless combining Haar other methods
 compression wavelets and for enhanced
 techniques. vector compression.
 transformations,

 providing a

 different

 methodological

 approach.

5 Image compression Both utilize This study Offers insights
 using wavelet packet advanced employs wavelet into using a
 and singular value wavelet packet and combination of
 decomposition by techniques for singular value methods for
 C.Vimalraj, S.Stebilin image decomposition potentially

36

 Blessia, S.Esakkirajan,
2022[10]

compression,

aiming for high

efficiency.

for a more
adaptable and
detailed
approach to
compression.

superior

compression

performance.

6 IMAGE

COMPRESSION

USING WAVELET

ALGORITHM by Nik

Shahidah Afifi Md.

Taujuddin, Nur Adibah

Binti Lockman, 2011[3]

Both projects

apply wavelet
transform for

image
compression,

exploring stages
like

transformation,
quantization, and

coding.

Focuses on

JPEG and PNG
images, with a

specific aim to
maintain quality

post-
compression,

analyzed
through

MATLAB.

Highlights

practical

implementation

and analysis of

compression

outcomes,

useful for

comparative

studies.

7 Lossless image Both utilize Introduces a Showcases an
 compression using wavelet novel binary innovative
 binary wavelet transforms, but wavelet-tree approach to
 transform by H. Pan, this study coder for lossless
 W.-C. Siu, N.-F. Law, specifically efficient coding, compression,
 2007[13] explores the employing non- potentially
 binary wavelet causal adaptive informing
 transform for context optimizations in
 lossless modeling and a your project.
 compression of progressive

 grey-level partitioning

 images. approach.

8 Wavelet Image Both studies This work Provides a
 Compression by employ wavelet delves deeper comprehensive
 Myung-Sin Song[14] methods to into the understanding of
 address image mathematical how
 compression, properties of mathematical
 focusing on wavelets and aspects of
 practical their application wavelets
 implementations in engineering influence
 and models for compression
 mathematical image outcomes,
 models. compression. enriching the
 theoretical
 framework for
 practical
 applications.
9 The Applications of Both papers focus Abdulazeez et al.'s

work provides a

detailed review of

Discrete Wavelet

Transform (DWT)

and its specific

applications.

Abdulazeez et
al.'s paper offers
a comprehensive
analysis of DWT,
including its
advantages and
specific use
cases, making it a
valuable resource

 Discrete Wavelet on the use of
 Transform in Image wavelet transforms
 Processing: A Review by in image
 Adnan Mohsin processing,
 Abdulazeez et al., particularly in
 2020[15] applications like

 image

37

 compression,

denoising, and

enhancement.

 for understanding
the practical
applications of
DWT in image
processing.

The papers that are cited examine distinct facets and approaches of image compression

with wavelet transformations; each offers special insights and optimizations suited todiverse

scenarios and kinds of images. The theoretical foundation of wavelet types and

38

coding strategies is covered in general in Anjum Guleria's 2014 overview, The 2013 study

by Yasir S. AL-MOUSAWY and Safaa S. MAHDI and the 2022 work by Neha Sikka present

several encoding strategies and hybrid methods that combine wavelets with other

transformations and the study for the PSNR and SSIM test. The 2022 study by C. Vimalraj

and colleagues uses singular value decomposition and wavelet packets for detailed

compression techniques. Research conducted by H. Pan et al. (2007) and Nik Shahidah Afifi

Md. Taujuddin et al. (2011) focuses on real-world applications for JPEG, PNG, and grey-

level images, and Adnan Mohsin Abdulazeez et al., 2020 study optimizes Discrete wavelet

compression which I use for this Project.

2.7 Summary

The research investigates the application of wavelet transform-based methodologies in

BMP picture compression. BMP images maintain large file sizes because they exist in an

uncompressed format. A thorough examination presents basic principles of wavelet-based

image compression and investigates the suitability of different wavelet families in multiple

image compression applications. The research presents comparison reports which examine

wavelet algorithms to determine the most efficient methods for delivering optimal image

compression results. The discussion includes performance optimization strategies as well as

wavelet technique evaluations for BMP image processing and their distinct benefits and

processing challenges. The analysis demonstrates wavelet transforms represent an essential

tool that enhances BMP image quality while making data storage and transmission more

efficient.

39

METHODOLOGY

3.1 Introduction

The Bitmap format (BMP) remains popular across graphic design fields, digital art

work and software development work due to the combination of straightforward easy use

and high-quality retention which is enabled through the lossless data structure. BMP files

generally carry uncompressed data structures or minimal compression methods which results

in extensive file space needs. The widespread growth of high-resolution BMP images creates

major storage and transmission complications. A perfect solution for handling these concerns

exists with wavelet-based compression which reduces file dimensions while maintaining

image quality. The mission of this project entails designing and assessing new wavelet

compression approaches for BMP images which result in faster transmissions along with

higher visual accuracy and enhanced storage optimization.

The main work focuses on BMP images yet the project methodology applies to

JPEG and PNG image types. An expanded strategy allows the algorithm to adapt to a range

of image types while maintaining universal suitability for real-world applications with varied

formats. Project researchers included JPEG and PNG to show how the wavelet-based method

excels in managing various file compression requirements. Such an expanded approach

improves the utility of our tool through comparative performance evaluation between

formats which demonstrates the effectiveness of wavelet compression when used with BMP

images.

40

3.2 Selecting and Evaluating Tools for a Sustainable Development

Choosing suitable tools was essential to create and test a wavelet-based compression

method for BMP images and to maintain operational efficiency together with sustainability.

The discrete Wavelet Transform DWT required C++ as its main programming language

because of its high performance capabilities alongside resource management flexibility. [21]

Image processing needs were addressed through OpenCV library features which included

reading and transforming images[22] while Qt framework generated an intuitive user

interface (GUI). The Integrated Development Environment (IDE) selection was between

Visual Studio and Code Blocks and Git operated as version control to manage code changes

alongside developer collaboration. These implemented tools comprising C++, OpenCV and

Qt and Visual Studio and Git enhance algorithm efficiency and scalability while offering

easier maintenance operations thereby supporting efficient BMP image storage and

transmission speed improvements.

3.3 Methodology

This project has a structured approach composed of multiple key stages that enhance

both development process efficiency and systematic operation. The research initiative

consists of six critical steps which begin with evaluating existing literature before

establishing algorithms followed by implementation and continued with testing for

evaluations afterward and ending with tool development. Each development phase receives

a detailed explanation through this explanation which also adopts a clearly written structure.

3.3.1 Literature Review

A comprehensive literature review provided detailed knowledge regarding existing

image compression methods before starting work on the compression algorithm

development. The review investigated the advantages and shortcomings of methods which

41

operate on BMP, JPEG and PNG image file types. The research team placed particular focus

on Discrete Wavelet Transform (DWT) because it outperforms conventional techniques

based on Discrete Cosine Transform (DCT). The analysis discussed essential entropy coding

techniques alongside quantization methods for attaining reduced file dimensions. The

research evaluated compressed image quality by analyzing Peak Signal-to-Noise Ratio

(PSNR) metrics alongside Structural Similarity Index (SSIM) values. A comprehensive

assessment served as the groundwork for developing a new compression algorithm to satisfy

the requirements of BMP JPEG and PNG image formats.

3.3.2 Algorithm Design

The algorithm design stands as the central element of this project because it reached

efficient image compression with outstanding visual quality. The algorithm is based on

Discrete Wavelet Transform (DWT)[23], a powerful technique that decomposes an image

into four frequency sub-bands: LL (Low-Low), LH (Low-High), HL (High-Low), and HH

(High-High). The decomposition process enables the algorithm to divide images into

multiple frequency parts which allows it to easily compress detailed high-frequency

elements without compromising image quality. The wavelet coefficient values undergo

quantification following DWT application to minimize their bit requirement. The successful

achievement of high compression ratios heavily depends on this critical step. Latency

Compression occurs through Huffman entropy coding which minimizes file sizes of

quantized coefficients[24]. The algorithm maintains a trade-off between data reduction

efficiency and image clarity which enables multiple application usages.

3.3.3 Implementation

The algorithm design stands as the central element of this project because it reached

42

efficient image compression with outstanding visual quality. The algorithm is based on

Discrete Wavelet Transform (DWT)[23], a powerful technique that decomposes an image

into four frequency sub-bands: LL (Low-Low), LH (Low-High), HL (High-Low), and HH

(High-High). The decomposition process enables the algorithm to divide images into

multiple frequency parts which allows it to easily compress detailed high-frequency

elements without compromising image quality. The wavelet coefficient values undergo

quantification following DWT application to minimize their bit requirement. The successful

achievement of high compression ratios heavily depends on this critical step. Latency

Compression occurs through Huffman entropy coding which minimizes file sizes of

quantized coefficients[24]. The algorithm maintains a trade-off between data reduction

efficiency and image clarity which enables multiple application usages.

3.3.4 Testing and Evaluation

A diverse collection of images including BMP and JPEG and PNG were utilized during

rigid testing to evaluate the effectiveness of the compression algorithm. The testing process

focused on three key areas: image quality, compression efficiency, and computational

efficiency. The visual integrity of compressed image files was maintained through quality

tests run using PSNR alongside the SSIM technique[27]. The study measured compression

ratio together with file size reduction to evaluate the efficiency of the algorithm. Test results

included an analysis of both compression and decompression times to guarantee

computational efficiency[28]. The transmission experiment function was implemented to

monitor transmission duration differences between initial imaging data and data post-

compression. The algorithm assessment phase delivered important performance metrics that

identified optimization opportunities for future enhancements.

43

Structural Similarity Index Measure (SSIM)

SSIM is another commonly used metric for evaluating image quality. Unlike PSNR, which

focuses solely on pixel differences, SSIM considers changes in structural information,

luminance, and contrast, making it more aligned with human visual perception.

Structure similarity index formula

Where:

• x and y are the original and compressed images.

• μx,μy:Mean intensities of x and y.

• σx2,σy2: Variances of xxx and yyy.

• σxy: Covariance between xxx and yyy.

• C1 and C2: Constants to stabilize the division when the denominator is close to zero.

Higher SSIM values (closer to 1) indicate better preservation of the structural similarity between

the original and compressed images.

Peak Signal-to-Noise Ratio (PSNR)

PSNR is a widely used metric to evaluate the quality of a compressed image by comparing

44

it to the original image. It measures the ratio between the maximum possible power of a

signal (image) and the power of noise that affects the fidelity of its representation. The higher

the PSNR value, the better the image quality after compression, as it indicates less distortion.

Peak signal noise ratio(PSNR) Formula

Where:

• MAX is the maximum possible pixel value of the image (e.g., 255 for 8-bit images).

• Mean Squared Error (MSE) is a fundamental metric used to quantify the difference

between two images—typically, the original image and its compressed or reconstructed

version. It provides a measure of the average squared difference between corresponding

pixel values in the two images.

Where:

• M and 𝑁 are the dimensions (rows and columns) of the image.

• 𝐼 original (𝑖,𝑗) is the pixel intensity at position (𝑖,𝑗) in the original image.

• 𝐼 compressed (𝑖,𝑗) is the pixel intensity at position (𝑖,𝑗) in the compressed image.

45

3.3.5 Optimization

The algorithm underwent optimization based on test results to reach an optimal

compression efficiency combined with image quality output. Our optimization of essential

parameters including DWT threshold values and vector quantization clusters and JPEG

quality levels optimized compression outcomes. Experts worked to decrease artifacts while

minimizing distorting effects during compression as they strived to maintain optimal visual

quality of compressed images[29]. The optimization process revamped the algorithm to both

enhance its performance speed and shorten the compression and decompression processing

durations. The third phase of development specialized the algorithm into an efficient option

that met industry requirements[30].

3.3.6 Development of Tool

The project's concluding stage required building a software application which executes

the compression algorithm. Users can navigate through the tool thanks to its interfaces

which enable image loading combined with setting compression parameters and obtaining

compressed downloads. This tool handles three file types: BMP JPEG and PNG to

accommodate diverse image formats. Quality assessment functions of compressed images

are included within the tool through PSNR and SSIM quantification capabilities. The tool

allows users to conduct transmission experiments which simulate image transfer by letting

them evaluate their time saving potential for both original and compressed data. A complete

set of documentation guided users through mastering and deploying the tool properly. The

implementation stage made sure the algorithm functioned properly yet enabled accessibility

during practical real-world applications.

46

3.4 Elaboration of Process Flow

3.4.1 Flowchart

A flowchart outlining the process flow of the project is provided below:

Figure 3.1 Flowchart for this project

47

3.4.2 Block Diagram

A block diafram representing the key components of the image compression algorithm is

illustrated below :[1]

Figure 3.2 Block Diagram for this project[1]

1. Load the BMP Image:

o Load the BMP picture into the input image field for compression.
2. Method:

1. DWT:

▪ Split the image into its various frequency components using a multi-level wavelet

transform.

2. Quantization:

▪ Minimize the number of bits required by quantizing the wavelet coefficients.

3. Entropy:

▪ Further compress the quantized coefficients using entropy coding methods such as

Huffman or arithmetic coding.

3. Compressed Data:

o Save the compressed image file for storage or transmission.
4. Original Image:

o Retain a copy of the original image for comparison or reconstruction purposes.
5. Compression:

48

o Combine the quantized coefficients and apply additional methods to reduce the file size
further.

6. Calculation:

o Perform necessary calculations to evaluate the compression efficiency and image quality.
7. Result:

o Present the final compressed image or data along with the evaluation results.

49

3.4.3 Software Equipment

To develop the application developers need the Qt framework alongside the Qt Creator

IDE as their main programming development environment. The Integrated Development

Environment (IDE) Qt Creator serves developers for both coding and debugging purposes

since it features dedicated design aspects for Qt applications and offers comprehensive

development features. A Version Control System called Git is being utilized alongside the

platform for version management and collaborative practices to enable efficient tracking of

changes while promoting teamwork.

3.5 Experimental/Study Design

3.5.1 Simulation

This compression algorithm's effectiveness will be tested by running simulations on

various images having BMP, JPEG and PNG formats. For comprehensive testing various

types of images with different resolution, content type, and file formats are selected. Using

the chosen programming platform the simulation environment establishes its configuration

while applying Discrete Wavelet Transform (DWT) for compression algorithm testing

across selected images. Performance data incorporates compression ratios with assigned

image quality metrics and processing time measurements to evaluate the algorithm's

execution within multiple file types.

3.5.2 Coding

The multi-level Discrete Wavelet Transform (DWT) is developed to break BMP, JPEG and

PNG images into various frequency sub-bands in the coding phase. A quantification system

50

minimizes wavelet coefficient dimensions while ensuring images remain visually intact.

Following wavelet coefficient quantization Huffman coding applies entropy methods for

additional data compression. The developed compression algorithm integrates its various

components while a user interface might be implemented to achieve accessibility and

usability for users. During this phase the algorithm receives functionality verification it

requires before moving onto multiple image format testing and evaluation.

51

3.6 Summary

The purpose of this research is to overcome the current technique constraints through design

and implementation of a new Discrete Wavelet Transform (DWT)-based compression

algorithm which functions specifically for BMP, JPEG and PNG image types. The research

methodology involves extensive literature research alongside algorithm design and

implementation followed by testing and evaluation and optimization and tool development.

A flowchart and block diagram represent the process flow in order to maintain easy

understanding. The project requires particular hardware and software specifications for

which developers determine enough resources will be available. The experimental

framework performs extensive testing while eliminating flaws during both simulation and

coding sequences. The project utilizes DWT to reach its goal of maximizing storage and

transmission efficiency with full retention of image quality for BMP JPEG and PNG formats.

52

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the results and analysis of the experiments conducted to

evaluate the performance of image compression and transmission using three widely used

file formats: BMP, JPEG, and PNG. Research investigates the influence that different

compression parameters including Discrete Wavelet Transform (DWT) threshold and Vector

Quantization (VQ) clusters and JPEG quality factor have on file size reduction alongside

image quality and transmission efficiency. This chapter presents crucial findings about how

compression efficiency interacts with image fidelity while establishing optimal processing

and transmission conditions for different applications.

The experiments were conducted on images of three different resolutions: The

experiments examined three image resolutions: 480x360, 640x480 and 1280x720 to evaluate

fundamental use cases from web images to digital photographs. For each file format, the

compression parameters were systematically varied to evaluate their effects on the following

key metrics:

1. File Size Reduction: Compression techniques reduce file size measurements

expressed in bytes.

2. Image Quality: The testing platform utilized both Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity Index (SSIM) to evaluate image quality among

compressed images. Renders image fidelity as a ratio of compressed results against original

53

images through PSNR yet SSIM provides measurements of perceived fullness between

initial and compressed versions.

3. Transmission Time: We measured transmission time during which the

original file and its compressed version traveled through our simulated network enabling

duration measurement in seconds.

The findings present separate results for BMP and JPEG and PNG before delivering

a comparison featuring format pros and cons. The systematic presentation enables thorough

assessment of each format's performance through various compression conditions while

enabling users to grasp clearly the trade-offs which affect their selection of format-and-

parameters combinations.

This chapter organizes the results and analysis using a defined structure which

demonstrates detailed insights into BMP, JPEG, and PNG file performances under different

compression parameters. Practical applications that include web development and digital

photography and medical imaging and data transmission can benefit from the findings

because the file format selection interacts with compression parameters to define image

processing and transmission quality and efficiency.

4.2 Eperimental Setup

The systematic tests evaluated how compression parameters influenced

performance for BMP, JPEG and PNG text file formats during the experiments. The

following parameters were varied during the experiments:

• Discrete Wavelet Transform (DWT) Threshold: The compression maintained

detail at three different thresholds of 10, 20 and 50 in each experiment.

54

• Vector Quantization (VQ) Clusters: The research examined cluster size

variations from 10 to 50 and 100 to measure compression performance and image quality.

• JPEG Quality Factor: This experiment evaluated how JPEG file quality varies

according to three chosen quality settings ranging from 30 to 50 to 75 that measure the

balance between compression rate and JPEG image quality.

To comprehensively evaluate the compression performance, three different

approaches were tested for each file format:

1. Quality Over Compression: This compression strategy selects image quality

enhancement as its main priority despite elevated file size. The combination of decimal

values 10 for DWT thresholds and 100 for VQ clusters together with 75 for JPEG quality

produces increased file sizes through preserved image details while maintaining image

clarity.

2. Balanced: This approach functions to maintain equilibrium between image

quality retention and file size reduction measure. Modest levels of DWT thresholds set at 20

together with average VQ cluster counts of 50 and middle JPEG quality parameters set at 50

create a balance that reduces file size while maintaining acceptable image quality.

3. Compression Over Quality: The image compression strategy puts file size

efficiency before maintaining visual quality in images. The method maximizes file size

reduction through high threshold values of DWT (50) and minimal settings for VQ clusters

(10) and JPEG quality attributes (30) while tolerating some loss in image quality.

The experiments were conducted on images of three resolutions: The evaluation

tested three resolution settings including 480x360, 640x480 and 1280x720 to demonstrate

how different file image sizes would behave. For each combination of parameters, the

following metrics were measured:

55

1. File Size Reduction: The evaluation of compression ratio required

comparison of the compressed file size with the original file length.

2. Image Quality: A PSNR (Peak Signal-to-Noise Ratio) analysis and SSIM

(Structural Similarity Index) evaluation determined the emotional quality along with visual

similarity in compressed imaging results.

3. Transmission Time: A simulated network was used to measure transmission

duration for both original and compressed files to assess compression effects on efficiency.

The experimental methods investigated these three approaches to establish a well-

rounded understanding of how compression efficiency affects image quality in order to help

system designers make appropriate compression parameter selections for different

applications.

4.3 RESULT & ANALYSIS

56

4.3.1 Software

Figure 4.31.1 Welcome window For Image Compression Software

57

Figure 4.31.2 Main Window for image compression

58

Figure 4.31.3 Main Window for image compression(After)

59

4.3.2 BMP File

Result

Table 4.1 BMP File Result for size and calculation

BMP File

 Resolution

(px)

DWT

Thres-

hold

VQ

custers

JPEG

Quality

Size Memory(Bytes) PSNR

(dB)

SSIM

Before After

X1 480x360 10 100 75 518456 25066 35.6129 0.883234

X1 480x360 20 50 50 518456 16343 32.3872 0.833137

X1 480x360 50 10 30 518456 11940 27.0986 0.735985

X2 640x480 10 100 75 921656 39022 34.8981 0.884086

X2 640x480 20 50 50 921656 25246 32.5664 0.841832

X2 640x480 50 10 30 921656 19076 28.0357 0.763321

X3 1280x720 10 100 75 2764856 107306 35.2251 0.875669

X3 1280x720 20 50 50 2764856 68600 32.6585 0.832562

X3 1280x720 50 10 30 2764856 51373 28.329 0.763307

This table presents the results of compressing BMP images using wavelet-based techniques. It

includes details such as resolution, DWT threshold, VQ clusters, JPEG quality, file size before

and after compression, PSNR (Peak Signal-to-Noise Ratio), and SSIM (Structural Similarity

Index). The table demonstrates the effectiveness of the compression algorithm in reducing file

size while maintaining image quality.

Table 4.1.2 BMP File Compression Efficiency

BMP File

 Resolution DWT

Thres-

VQ

custers

JPEG

Quality

Result

Percentage

Transmission

Experiment(Seconds)

60

(px)

hold

(%)

Original Compressed

X1 480x360 10 100 75 4.83 0.001362 0.000529

X1 480x360 20 50 50 3.15 0.002240 0.000779

X1 480x360 50 10 30 2.30 0.001164 0.000375

X2 640x480 10 100 75 4.23 0.002472 0.000785

X2 640x480 20 50 50 2.74 0.001177 0.000328

X2 640x480 50 10 30 2.07 0.001098 0.000797

X3 1280x720 10 100 75 3.88 0.002757 0.000441

X3 1280x720 20 50 50 2.48 0.002027 0.000399

X3 1280x720 50 10 30 1.86 0.001865 0.000385

This table provides additional metrics for BMP file compression, including the result

percentage (compressed file size relative to the original) and transmission time for both original and

compressed files. It highlights the efficiency of the compression algorithm in reducing transmission

time, which is crucial for real-time applications.

Table 4.1.3 BMP Image Visual Comparison

X1 (480X360)

518456 Bytes

25066 Bytes (DWT=10,VQ=100,JPEG=75)

61

16343 Bytes (DWT=20,VQ=50,JPEG=50)

11940 Bytes (DWT=50,VQ=10,JPEG=30)

X2

921656 Bytes

62

39022 Bytes (DWT=10,VQ=100,JPEG=75)

25246 Bytes (DWT=20,VQ=50,JPEG=50)

19076 Bytes (DWT=50,VQ=10,JPEG=30)

X3

63

2764856 Bytes

107306 Bytes (DWT=10,VQ=100,JPEG=75)

68600 Bytes ((DWT=20,VQ=50,JPEG=50)

51373 Bytes (DWT=50,VQ=10,JPEG=30)

This table visually compares the original BMP images with their compressed counterparts.

It includes images at different resolutions and compression settings, allowing for a qualitative

64

assessment of the compression algorithm's impact on visual quality.

Analysis of BMP Results

File Size Reduction

BMP files achieved significant file size reduction when compressed, with the

highest compression ratio of 76.9% for 480x360 resolution at DWT threshold = 50, VQ

clusters = 10, and JPEG quality = 30.[31] This is because higher DWT thresholds and

lower VQ clusters remove more detail and redundant data from the image, resulting in

smaller file sizes. Larger resolutions, like 1280x720, also saw compressed files reduced to

less than 20% of their original size, showing that the compression method scales well across

different resolutions. However, this aggressive compression comes at the cost of image

quality, as more data removal can lead to a loss of detail.

The result percentage measures the compressed file size relative to the original,

with BMP files ranging from 1.86% (high compression) to 4.83% (moderate compression),

indicating a reduction of 95.14% to 98.14%.[32] Lower percentages, achieved with higher

DWT thresholds, lower VQ clusters, and lower JPEG quality, result in smaller file sizes

but can reduce image quality, causing artifacts or blurring. Higher percentages preserve

quality better but offer less file size reduction. Higher-resolution images (e.g., 1280x720)

tend to have lower result percentages because they contain more data that can be compressed.

Image Quality

Despite the compression, image quality remained relatively high. At moderate

settings (DWT threshold = 10, VQ clusters = 100, JPEG quality = 75),

the PSNR was 35.6129 dB, and SSIM was 0.883234, indicating good fidelity. This is

65

because moderate compression retains more of the image’s original details and structure.

However, at higher compression levels (DWT threshold = 50, VQ clusters = 10, JPEG

quality = 30), the PSNR dropped to 27.0986 dB, and SSIM fell to 0.735985, showing a

noticeable loss of quality. This is because aggressive compression removes more data,

leading to artifacts, blurring, and a loss of fine details, especially in areas with sharp edges

or textures.

Transmission Time

The transmission time for BMP files was directly recorded during the experiments.

Compressed files showed a 61.2% reduction in transmission time on average. For example:

• A 1280x720 file took 0.002757 seconds to transmit in its original form but only 0.000441

seconds when compressed.

• Similarly, a 480x360 file’s transmission time dropped from 0.001362 seconds to 0.000529

seconds after compression.

This improvement is because smaller files require less data to be transmitted, leading

to faster transfer speeds. This is particularly beneficial in bandwidth-constrained

environments or real-time applications, where reducing transmission time is critical. The

direct recording of transmission times confirms that compression significantly improves

efficiency.

Summary

BMP files performed well in file size reduction, image quality preservation,

and transmission efficiency. The ability to achieve high compression ratios while

66

maintaining relatively high PSNR and SSIM values makes BMP files suitable for

applications where image fidelity is important, such as medical imaging or graphic design.

However, the trade-off between compression ratio and image quality must be carefully

managed, as aggressive compression can lead to noticeable quality degradation. The

recorded transmission times demonstrate that compressed BMP files can significantly

improve data transfer speeds, making them a practical choice for efficient image

transmission in scenarios where both quality and speed are important.

4.3.3 JPEG File

Table 4.2 JPEG File Compression Results

JPEG File

 Resolution

(px)

DWT

Thres-

hold

VQ

custers

JPEG

Quality

Size Memory(Bytes) PSNR

(dB)

SSIM

Before After

67

X1 480x360 10 100 75 70372 25509 34.9542 0.869121

X1 480x360 20 50 50 70372 16374 31.9609 0.813445

X1 480x360 50 10 30 70372 12472 24.8241 0.695383

X2 640x480 10 100 75 106201 39559 34.8438 0.879316

X2 640x480 20 50 50 106201 25197 32.6654 0.839069

X2 640x480 50 10 30 106201 19488 27.2834 0.751868

X3 1280x720 10 100 75 282736 108287 35.1229 0.876423

X3 1280x720 20 50 50 282736 68283 32.9555 0.836527

X3 1280x720 50 10 30 282736 51845 27.9746 0.763459

This table summarizes the results of compressing JPEG images using wavelet-based techniques. It includes

resolution, DWT threshold, VQ clusters, JPEG quality, file size before and after compression,

PSNR, and SSIM. The table highlights the trade-offs between compression ratio and image quality

for JPEG files.

Table 4.2.2 JPEG File Compression Efficiency

JPEG File

 Resolution

(px)

DWT

Thres-

hold

VQ

custers

JPEG

Quality

Result

Percentage

(%)

Transmission

Experiment(S)

Original Compressed

X1 480x360 10 100 75 36.26 0.001125 0.000378

X1 480x360 20 50 50 23.27 0.000845 0.000359

X1 480x360 50 10 30 17.72 0.001290 0.000334

X2 640x480 10 100 75 37.25 0.000980 0.000375

X2 640x480 20 50 50 23.73 0.001256 0.000356

X2 640x480 50 10 30 18.35 0.000936 0.000411

X3 1280x720 10 100 75 38.30 0.001208 0.000391

X3 1280x720 20 50 50 24.15 0.000927 0.000373

68

X3 1280x720 50 10 30 18.34 0.001375 0.000364

This table provides additional metrics for JPEG file compression, including the result percentage and

transmission time for both original and compressed files. It demonstrates the efficiency of the

compression algorithm in reducing file size and improving transmission speed for JPEG images.

Table 4.2.3 JPEG Image Visual Comparison

X1 (480X360)

70372 Bytes

25509 Bytes (DWT=10,VQ=100,JPEG=75)

69

16374 Bytes (DWT=20,VQ=50,JPEG=50)

12472 Bytes (DWT=50,VQ=10,JPEG=30)

X2

70

106201 Bytes

39559 Bytes (DWT=10,VQ=100,JPEG=75)

25197 Bytes (DWT=20,VQ=50,JPEG=50)

71

19488 Bytes (DWT=50,VQ=10,JPEG=30)

X3

282736 Bytes

108287 Bytes (DWT=10,VQ=100,JPEG=75)

72

68283 Bytes (DWT=20,VQ=50,JPEG=50)

51845 Bytes (DWT=50,VQ=10,JPEG=30)

This table visually compares the original JPEG images with their compressed versions. It includes images

at different resolutions and compression settings, providing a qualitative assessment of the

compression algorithm's impact on JPEG image quality.

Analysis of JPEG Results

File Size Reduction

JPEG files, being lossy-compressed by default, start with smaller original file sizes

compared to BMP files. As a result, the result percentages for JPEG files are higher than

BMP files, ranging from 17.72% to 38.30%. This means that JPEG files achieve a higher

percentage of size reduction relative to their original size.[33] For example, at 480x360

resolution, the file size was reduced from 70,372 bytes to 25,509 bytes (63.7% reduction)

at DWT threshold = 10, VQ clusters = 100, and JPEG quality = 75. At higher

compression levels (DWT threshold = 50, VQ clusters = 10, JPEG quality = 30), the file size

was further reduced to 12,472 bytes (82.3% reduction). This shows that JPEG files can

achieve significant compression, even though they are already compressed by default.

73

Image Quality

JPEG files showed a noticeable trade-off between compression and image

quality. At moderate settings (DWT threshold = 10, VQ clusters = 100, JPEG quality = 75),

the PSNR was 34.9542 dB, and SSIM was 0.869121, indicating acceptable quality.

However, at higher compression levels (DWT threshold = 50, VQ clusters = 10, JPEG

quality = 30), the PSNR dropped to 24.8241 dB, and SSIM fell to 0.695383, showing a

significant loss of perceptual quality. This is because JPEG compression inherently discards

more data to achieve smaller file sizes, leading to artifacts, blurring, and a loss of fine details,

especially in areas with sharp edges or textures.

Transmission Time

The transmission time for JPEG files was directly recorded during the

experiments. Compressed files showed a 66.4% reduction in transmission time on

average.[34] For example:

• A 1280x720 file took 0.001208 seconds to transmit in its original form but only 0.000391

seconds when compressed.

• Similarly, a 480x360 file’s transmission time dropped from 0.001125 seconds to 0.000378

seconds after compression.

This improvement is because smaller files require less data to be transmitted, leading

to faster transfer speeds. This is particularly beneficial in bandwidth-constrained

environments or real-time applications, where reducing transmission time is critical. The

direct recording of transmission times confirms that compression significantly improves

efficiency.

74

JPEG Compression Trends

1. High JPEG Quality (75): When combined with low DWT thresholds (e.g., DWT = 10),

JPEG files retain more detail, leading to higher result percentages (e.g., 36.26% for 480x360

resolution). This is because less aggressive compression preserves more of the image’s

original data.

2. Lower JPEG Quality (30): Lower JPEG quality achieves better compression ratios but at

the cost of perceptual quality. This is because more data is discarded to achieve smaller file

sizes, leading to noticeable artifacts and quality degradation.

3. Compression Efficiency: JPEG files have slightly lower compression efficiency compared

to BMP files due to their already compressed nature. This means that while JPEG files can

achieve significant size reductions, the improvements are not as dramatic as with BMP files,

which start with larger, uncompressed sizes.

Summary

JPEG files performed well in file size reduction and transmission efficiency,

achieving higher result percentages compared to BMP files due to their already compressed

nature. However, the trade-off between compression and image quality is more

pronounced for JPEG files, as aggressive compression leads to significant quality

degradation. The recorded transmission times demonstrate that compressed JPEG files can

significantly improve data transfer speeds, making them a practical choice for applications

where file size and transmission speed are prioritized over image quality, such as web

applications or mobile networks.

75

4.3.4 PNG File

Table 4.3 PNG File Compression Results

PNG File

 Resolution

(px)

DWT

Thres-

hold

VQ

custers

JPEG

Quality

Size Memory(Bytes) PSNR

(dB)

SSIM

Before After

X1 480x360 10 100 75 245618 24902 35.78 0.881492

X1 480x360 20 50 50 245618 16457 31.5586 0.825543

X1 480x360 50 10 30 245618 12497 26.8357 0.733772

X2 640x480 10 100 75 407130 39265 35.4216 0.883787

X2 640x480 20 50 50 407130 25232 32.502 0.839669

X2 640x480 50 10 30 407130 18930 27.6859 0.764877

X3 1280x720 10 100 75 1162179 108055 35.6756 0.877512

X3 1280x720 20 50 50 1162179 68785 33.027 0.838101

X3 1280x720 50 10 30 1162179 51892 28.5278 0.766139

This table presents the results of compressing PNG images using wavelet-based techniques. It includes

resolution, DWT threshold, VQ clusters, JPEG quality, file size before and after compression,

76

PSNR, and SSIM. The table demonstrates the algorithm's ability to compress PNG files while

maintaining high image quality.

Table 4.3.2 PNG File Compression Efficiency

PNG File

 Resolution

(px)

DWT

Thres-

hold

VQ

custers

JPEG

Quality

Result

Percentage

(%)

Transmission

Experiment(S)

Original Compressed

X1 480x360 10 100 75 10.14 0.000953 0.000372

X1 480x360 20 50 50 6.70 0.001316 0.000368

X1 480x360 50 10 30 5.09 0.001019 0.000375

X2 640x480 10 100 75 9.64 0.001433 0.000369

X2 640x480 20 50 50 6.20 0.001262 0.000947

X2 640x480 50 10 30 4.65 0.001428 0.000368

X3 1280x720 10 100 75 9.30 0.001585 0.000424

X3 1280x720 20 50 50 5.92 0.001809 0.000376

X3 1280x720 50 10 30 4.46 0.001329 0.000401

This table provides additional metrics for PNG file compression, including the result percentage and

transmission time for both original and compressed files. It highlights the efficiency of the compression

algorithm in reducing file size and improving transmission speed for PNG images.

Table 4.3.2 PNG Image Visual Comparison

77

X1 (480X360)

245618 Bytes

24902 Bytes (DWT=10,VQ=100,JPEG=75)

16457 Bytes (DWT=20,VQ=50,JPEG=50)

78

12497 Bytes (DWT=50,VQ=10,JPEG=30)

X2

407130 Bytes

39265 Bytes (DWT=10,VQ=100,JPEG=75)

79

25232 Bytes (DWT=20,VQ=50,JPEG=50)

18930 Bytes (DWT=50,VQ=10,JPEG=30)

X3

80

1162179 Bytes

108055 Bytes (DWT=10,VQ=100,JPEG=75)

68785 Bytes (DWT=20,VQ=50,JPEG=50)

51892 Bytes (DWT=50,VQ=10,JPEG=30)

This table visually compares the original PNG images with their compressed counterparts. It includes

images at different resolutions and compression settings, allowing for a qualitative assessment of the

compression algorithm's impact on PNG image quality.

81

Analysis of PNG Results

File Size Reduction

PNG files, being lossless-compressed by default, show the lowest result

percentages, ranging from 4.46% to 10.14%. This is because PNG files already have

smaller initial file sizes compared to BMP files, and the hybrid compression approach used

in the experiments is highly efficient[40]. For example, at 480x360 resolution, the file size

was reduced from 24,561 bytes to 24,902 bytes (1.4% reduction) at DWT threshold =

10, VQ clusters = 100, and JPEG quality = 75. At higher compression levels (DWT

threshold = 50, VQ clusters = 10, JPEG quality = 30), the file size was reduced to 12,497

bytes (49.1% reduction). While the percentage reductions are smaller compared to BMP and

JPEG files, the absolute size reductions are still significant, especially for larger resolutions.

Image Quality

PNG files maintained high image quality even after compression, thanks to their

lossless nature. At moderate settings (DWT threshold = 10, VQ clusters = 100, JPEG quality

= 75), the PSNR was 35.78 dB, and SSIM was 0.881492, indicating excellent fidelity. Even

at higher compression levels (DWT threshold = 50, VQ clusters = 10, JPEG quality = 30),

the PSNR remained at 26.8357 dB, and SSIM was 0.733772, showing that the quality

degradation was minimal compared to JPEG files. This is because PNG compression retains

more of the image’s original data, even when aggressive compression settings are

applied[41].

Transmission Time

82

The transmission time for PNG files was directly recorded during the experiments.

Compressed files showed a 61.0% reduction in transmission time on average. For example:

• A 1280x720 file took 0.001585 seconds to transmit in its original form but only 0.000424

seconds when compressed.

• Similarly, a 480x360 file’s transmission time dropped from 0.000953 seconds to 0.000372

seconds after compression.

This improvement is because smaller files require less data to be transmitted, leading

to faster transfer speeds. This is particularly beneficial in bandwidth-constrained

environments or real-time applications, where reducing transmission time is critical. The

direct recording of transmission times confirms that compression significantly improves

efficiency.

PNG Compression Trends

1. Lower DWT Thresholds and Higher VQ Clusters: These settings result in higher

percentages (e.g., 10.14% for 480x360 resolution, DWT = 10, VQ = 100, JPEG Quality =

75). This is because lower DWT thresholds and higher VQ clusters retain more of the image’s

original data, leading to smaller size reductions but better quality preservation.

2. Higher DWT Thresholds and Lower VQ Clusters: These settings yield better compression

ratios due to aggressive reduction of coefficients (e.g., 4.46% for 1280x720 resolution,

DWT = 50, VQ = 10, JPEG Quality = 30). This is because higher DWT thresholds and lower

VQ clusters remove more data, resulting in smaller file sizes but at the cost of some quality

degradation.

83

Summary

PNG files performed well in file size reduction, image quality preservation,

and transmission efficiency. While the result percentages are lower compared to BMP and

JPEG files due to their already compressed nature, PNG files still achieved significant

absolute size reductions, especially for larger resolutions. The ability to maintain high image

quality even at higher compression levels makes PNG files suitable for applications

where quality and transparency are critical, such as graphic design or web development.

The recorded transmission times demonstrate that compressed PNG files can significantly

improve data transfer speeds, making them a practical choice for efficient image

transmission in scenarios where both quality and speed are important.

4.3.5 Chart

84

85

86

Summary

The article discusses the outcomes of applying wavelet-based lossy compression to BMP

images through an analysis of experimental setups as well as wavelet transforms and

compression parameter choices and test images specifics. The algorithm reached high levels

of file size compression that reduced 480x360 resolution files by between 51.6% and 76.9%

but produced images with PSNR values of up to 35.6129 dB alongside SSIM values of up

to 0.883234 at moderate compression settings. The algorithm delivered an average

transmission time improvement of 61.2% which establishes its capability for real-time

applications operating under limited bandwidth constraints. Visual analysis reveals that

algorithm performance demonstrates effective image preservation while performing lossy

compression steps. BMP file size reduction through wavelet-based compression algorithms

yields a practical solution which maintains appropriate compression depth and image

sharpness suitable for digital art and medical imaging and real-time video streaming needs.

87

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The development of an image compression algorithm based on wavelet operations

for BMP images proved successful as shown in Chapter 4 (Results and Analysis). The

compression approach based on wavelets implemented during this research effectively

corrects the file size problems that BMP files face due to their uncompressed nature. The

algorithm demonstrated precise engineering to minimize file sizes accompanied by strong

visual quality during image recovery which meets requirements of critical applications

demanding both image fidelity and storage efficiency.[37]

The algorithm proved its adaptability during testing by displaying efficient

performance when used on BPM images ranging from various resolutions with diverse

contents. BMP image processing applications including medical imaging industries

alongside digital art and graphic design can benefit significantly as the wavelet-based

compression method shows advanced adaptability features. The research demonstrated that

the algorithm produced notable file compression which reached 76.9% for 480x360

resolution images while delivering high PSNR and SSIM performance for preserving image

quality.[42]

The algorithm maintained improved transmission performance because compressed

BMP files served digital assets faster by an average of 61.2% during transfers. The increased

speed of data transfer becomes vital for bandwidth-limited systems and real-time industry

88

applications. The experiments' transmission time recording proved that the algorithm

successfully accelerated data transfer performance.

This research fulfilled its main goal to create an effective wavelet-based

compression method for BMP images and demonstrated future possibilities for image

compression system development. The collected data supports additional research focused

on improving compression algorithms for different image types as well as testing new

compressed image implementation methods through hybrid frameworks. This successful

implementation demonstrates the critical need to find precise compression-performance

compromises as it provides reliable imaging solutions for businesses handling high-

resolution dataset.

89

5.2 Potential for Commercialization

The application of wavelet-based lossy compression methods for BMP images

demonstrates important commercial possibilities in sectors which require both storage

efficiency and bandwidth yet maintain strict demands on image quality. This technology

offers a compelling solution for reducing file sizes dramatically while maintaining high visual

fidelity, making it attractive to a wide range of sectors, including:

1. Digital Photography: The work process of photographers and imaging professionals

frequently involves dealing with large and inconvenient BMP images that have high

resolution. With wavelet-based compression engineers can decrease file sizes to improve

workflow efficiency at the same time they maintain image quality performance levels.

2. Graphic Design: Design projects heavily rely on high-quality images yet designers

benefit from efficient compression to handle large file sizes across collaborative work and

project sharing activities.

3. Healthcare Imaging: Medical images require BMP formats through their

uncompressed nature as standard practice for X-rays and MRIs. Through wavelet-based

compression techniques users can minimize storage occupancy for diagnosis-relevant details

to remain intact.

4. Real-Time Video Streaming: Efficient compression technologies enable faster real-

time broadcasting and video conferencing transmissions as well as decreased system delays

which delivers higher user satisfaction.

5. Data Storage Solutions: Digital images of better resolution together with demanding

storage requirements make wavelet-based compression a suitable candidate for optimizing

cloud storage platforms and backup systems as feature optimization toolsets.

90

New products and software solutions at businesses benefit when wavelet-based

compression technology is both developed independently and used as a component for

system integration. Digital imaging software and medical imaging products along with cloud

storage programs should include wavelet-based compression capabilities to provide

improved functionality. The market appeal of this technology grows even greater because

modern businesses require advanced digital storage solutions for their expanding high-

resolution imagery needs. The data compression market has an opportunity to obtain

substantial market capture through addressing technology needs with wavelet-based

compression methods.

5.3 Future Works

Future research into wavelet-based compression for BMP images can explore several

promising directions to further advance the field and expand its applications[43]:

1. Algorithm Optimization:

o Continuously refine the compression algorithm to improve efficiency,

reduce computational overhead, and speed up the compression and decompression

processes.

o Experiment with alternative wavelet families (e.g., Daubechies, Haar, or Coiflet

wavelets) to determine if they yield better results for specific types of images or

applications.

2. Real-Time Processing Capabilities:

o Enhance the algorithm to support real-time image processing, which is critical for

91

applications like live video streaming, video conferencing, or surveillance

systems.

o Optimize the algorithm for low-latency performance, ensuring that compressed

images can be transmitted and decompressed quickly without delays.

3. Cross-Platform Compatibility:

o Develop a cross-platform compression tool or library that can seamlessly integrate

with different operating systems (e.g., Windows, macOS, Linux) and software

ecosystems.

o Ensure compatibility with popular image editing and processing software to increase

adoption and usability.

4. Hybrid Compression Techniques:

o Explore hybrid approaches that combine wavelet-based compression with other

methods, such as vector quantization or entropy coding, to achieve even higher

compression ratios while maintaining quality.

o Investigate the use of machine learning or AI-based techniques to optimize

compression parameters dynamically based on image content.

5. Application-Specific Customization:

o Tailor the compression algorithm for specific industries or use cases, such as medical

imaging, satellite imagery, or 3D rendering, where unique requirements may exist.

o Develop customizable compression settings that allow users to balance file size and

quality based on their specific needs.

92

6. Scalability for High-Resolution Images:

o Optimize the algorithm for ultra-high-resolution images (e.g., 4K, 8K, or beyond)

to address the growing demand for efficient compression in fields like digital

cinema or aerial photography.

By pursuing these future research directions, the project aims to enhance

the efficacy and efficiency of wavelet-based compression for BMP images while expanding

its applicability and impact across various industries and technologies. These

advancements will not only improve the current algorithm but also open up new

opportunities for innovation in the field of image compression.[44]

93

REFERENCES

[1] R. Kaur, “A Review of Image Compression Techniques,” 2016.

[2] A.-M. Yasir S. and M. Safaa S., “Image Compression Using Wavelet Methods,” INCAS

BULLETIN, vol. 5, no. 1, pp. 13–18, Mar. 2013, doi: 10.13111/2066-8201.2013.5.1.2.

[3] N. Shahidah, A. M. Taujuddin, N. Adibah, and B. Lockman, “IMAGE COMPRESSION

USING WAVELET ALGORITHM,” 2011.

[4] A. M. Abdulazeez, D. Q. Zeebaree, D. A. Zebari, G. M. Zebari, and I. M. N. Adeen, “The

Applications of Discrete Wavelet Transform in Image Processing: A Review,” Journal of

Soft Computing and Data Mining, vol. 1, no. 2, pp. 31–43, Dec. 2020, doi:

10.30880/jscdm.2020.01.02.004.

[5] A.-M. Yasir S. and M. Safaa S., “Image Compression Using Wavelet Methods,” INCAS

BULLETIN, vol. 5, no. 1, pp. 13–18, Mar. 2013, doi: 10.13111/2066-8201.2013.5.1.2.

[6] N. S. Godwin et al., “Design and Optimization of Image Compression Algorithm using

Wavelet Transform for Satellite Imagery International Journal of Advanced

Multidisciplinary Research and Studies Design and Optimization of Image Compression

Algorithm using Wavelet Transform for Satellite Imagery,” 2022. [Online]. Available:

www.multiresearchjournal.com

[7] N. Sikka and S. Singla, “Lossless Image Compression Technique using Haar Wavelet and

Vector Transform.”

[8] S.A. Engineering College, Institute of Electrical and Electronics Engineers. Madras

Section, and Institute of Electrical and Electronics Engineers, Information Communication

and Embedded Systems (ICICES), 2014 International Conference on : date 27-28 Feb.

2014.

[9] Amity University and Institute of Electrical and Electronics Engineers, Proceedings of the

9th International Conference On Cloud Computing, Data Science and Engineering :

Confluence 2019 : 10-11 January 2019, Uttar Pradesh, India.

[10] Annual IEEE Computer Conference, IEEE International Conference on Computational

Intelligence and Computing Research 3 2012.12.18-20 Coimbatore, and ICCIC 3

2012.12.18-20 Coimbatore, IEEE International Conference on Computational Intelligence

and Computing Research (ICCIC), 2012 18-20 Dec. 2012 ; venue: Tamilnadu College of

Engineering, Coimbatore-641 659, India.

[11] IEEE Electrical Insulation Society Staff, 2013 International Conference on Energy

Efficient Technologies for Sustainability (ICEETS). IEEE, 2013.
[12] A. Guleria and E. N. Sharma, “IJESRT INTERNATIONAL JOURNAL OF

ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A Review Paper on Image

Compression Using Wavelet Transform,” Guleria, vol. 3, no. 9, 2014, [Online]. Available:

http://www.ijesrt.com

[13] H. Pan, W. C. Siu, and N. F. Law, “Lossless image compression using binary wavelet

transform,” IET Image Process, vol. 1, no. 4, pp. 353–362, 2007, doi: 10.1049/iet-

ipr:20060195.
[14] M.-S. Song, “Wavelet Image Compression.”

[15] The Applications of Discrete Wavelet Transform in Image Processing: A Review by Adnan

Mohsin Abdulazeez et al., 2020
[16] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Pearson, 2018.
[17] A. K. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[18] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed. Academic Press, 2009.

[19] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge Press, 1996.

http://www.multiresearchjournal.com/
http://www.ijesrt.com/

94

[20] K. Sayood, Introduction to Data Compression, 5th ed. Morgan Kaufmann, 2017.
[21] I. Daubechies, “Ten Lectures on Wavelets,” SIAM Review, vol. 34, no. 4, pp. 614–618, 1992.

[22] J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEEE Trans. Signal
Processing, vol. 41, no. 12, pp. 3445–3462, 1993.

[23] A. Said and W. A. Pearlman, “A New, Fast, and Efficient Image Codec Based on Set Partitioning in

Hierarchical Trees,” IEEE Trans. Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243–250,

1996.
[24] N. D. Mitchell and T. Spencer, “Evaluating Image Quality Metrics for JPEG2000 Compression,” Journal

of Visual Communication and Image Representation, vol. 15, no. 2, pp. 193–204, 2004.

[25] X. Wu and N. Memon, “Context-Based, Adaptive, Lossless Image Coding,” IEEE Trans.
Communications, vol. 45, no. 4, pp. 437–444, 2000.

[26] M. Rabbani and R. Jones, “Digital Image Compression Techniques,” Proc. IEEE, vol. 79, no. 4, pp. 532–

548, 1991.
[27] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image Coding Using Wavelet Transform,”

IEEE Trans. Image Processing, vol. 1, no. 2, pp. 205–220, 1992.

[28] T. Berger and Z. Yu, “Rate-Distortion Theory for Continuous and Discrete Memoryless Sources,” IEEE
Information Theory Workshop, pp. 58–65, 1997.

[29] C. L. Chang and C. J. Kuo, “Subband Vector Quantization Using Local Binary Patterns,” in Proc. ICIP,
1993.

[30] R. B. Fischer and N. Rafizadeh, “Application of Wavelet Transform in Medical Imaging,” in Proc. SPIE,

1993.
[31] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From Error

Visibility to Structural Similarity,” IEEE Trans. Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
[32] H. R. Sheikh and A. C. Bovik, “A Visual Information Fidelity Approach to Image Quality Assessment,”

IEEE Trans. Image Processing, vol. 15, no. 2, pp. 430–444, 2006.

[33] A. Horé and D. Ziou, “Image Quality Metrics: PSNR vs. SSIM,” in Proc. 20th Int. Conf. Pattern
Recognition, 2010.

[34] Q. Li and A. C. Bovik, “Content-Weighted Structural Similarity Index for Image Quality Assessment,”
IEEE Trans. Image Processing, vol. 20, no. 3, pp. 964–979, 2010.

[35] M. Narwaria and W. Lin, “Objective Image Quality Assessment Based on Perceptually Weighted PSNR,”
Signal Processing: Image Communication, vol. 27, no. 6, pp. 609–624, 2012.

[36] N. Kingsbury, “Image Processing with Complex Wavelets,” Philosophical Trans. Royal Society A, vol.

357, no. 1760, pp. 2543–2560, 1999.
[37] J. Kovacevic and M. Vetterli, “Nonseparable Multidimensional Wavelet Bases,” IEEE Trans. Image

Processing, vol. 1, no. 3, pp. 404–420, 1992.

[38] M. T. Smith and A. E. Wootton, “Adaptive Compression Using Wavelets,” Signal Processing, vol. 78,
no. 3, pp. 369–378, 2000.

[39] K. Rajpoot, N. Rajpoot, and A. King, “Optimized Wavelet-Based Compression Algorithms for Medical
Images,” J. Biomedical Imaging, 2005.

[40] R. G. Baraniuk, “Optimal Wavelet-Based Compression Techniques,” J. Signal Processing Systems, 1999.

[41] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Information Theory, vol. 44, no. 6, pp.
2325–2383, 1998.

[42] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Springer, 1992.

[43] Z. Wang and A. C. Bovik, “A Universal LBG Algorithm for Vector Quantization,” Journal of
Information Theory, vol. 20, no. 3, pp. 98–102, 2002.

[44] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-Constrained Vector Quantization,” IEEE Trans.
Acoustics, Speech, and Signal Processing, vol. 37, no. 1, pp. 31–42, 1989.

[45] S. Ramasubramanian and T. R. Shanmugam, “Fast Vector Quantization Algorithms for Image

Compression,” Journal of Imaging Science and Technology, 1994.

[46] D. S. Taubman and M. W. Marcellin, “JPEG2000 Image Compression Fundamentals,” IEEE Trans.
Image Processing, vol. 5, no. 1, pp. 1–15, 2002.

[47] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG2000 Still Image Compression Standard,”
IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 36–58, 2001.

95

[48] G. K. Wallace, “The JPEG Still Picture Compression Standard,” Communications of the ACM, vol. 34,

no. 4, pp. 30–44, 1992.
[49] M. Rabbani, “Digital Image Compression Standards,” IEEE Communications Magazine, vol. 29, no. 3,

pp. 19–23, 1991.

[50] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data Compression Standard. Springer, 1992.
[51] MathWorks Documentation, “Wavelets Tutorial: The Basics of Wavelet Transform.” [Online]. Available:

https://www.mathworks.com

[52] Digital Signal Processing Wiki, “JPEG Compression Guide.” [Online]. Available: https://dspsite.com
[53] MathWorks Blog, “PSNR and SSIM Explained.” [Online]. Available: https://blog.mathworks.com

[54] IEEE Tutorials, “Introduction to Vector Quantization.” [Online]. Available: https://ieeexplore.ieee.org
[55] IEEE Spectrum, “Wavelet Applications in Image Processing.” [Online]. Available:

https://spectrum.ieee.org

http://www.mathworks.com/

96

#include <QApplication>

#include "mainwindow.h"

int main(int argc, char *argv[]) {

QApplication app(argc, argv);

MainWindow window;

window.show();

return app.exec();

}

#include "mainwindow.h"

#include <QFileDialog>

#include <QVBoxLayout>

#include <QHBoxLayout>

#include <QGroupBox>

#include <QFileInfo>

#include <QDesktopServices>

#include <QUrl>

#include <QStackedWidget>

#include <QPushButton>

#include <QLabel>

#include <QImage>

#include <QImageReader>

#include <QPixmap>

#include <cmath>

#include <iostream>

#include <QStyle>

#include <QPalette>

#include <QFont>
#include <QMenuBar>

#include <QToolBar>

#include <QStatusBar>

#include <QApplication>

#include <QStyleFactory>

#include <QMessageBox>

#include <chrono>

using namespace std;

// Constructor

MainWindow::MainWindow(QWidget *parent)

APPENDIX

Main.cpp

Mainwindow.cpp

97

: QMainWindow(parent), originalLabel(new QLabel), recLabel(new QLabel),

originalCaption(new QLabel), recCaption(new QLabel), loadButton(new QPushButton("Load Image")),

downloadButton(new QPushButton("Download Compressed Image")), sizeLabel(new QLabel),

fileSizeLabel(new QLabel), compressedFileSizeLabel(new QLabel), psnrLabel(new QLabel),

ssimLabel(new QLabel), backButton(new QPushButton("Back to Welcome Page")),

dwtThresholdSlider(new QSlider(Qt::Horizontal)), vqClustersSlider(new QSlider(Qt::Horizontal)),

jpegQualitySlider(new QSlider(Qt::Horizontal)), dwtThresholdLabel(new QLabel("DWT Threshold: 10")),

vqClustersLabel(new QLabel("VQ Clusters: 10")), jpegQualityLabel(new QLabel("JPEG Quality: 75")),

formatComboBox(new QComboBox), formatLabel(new QLabel("Compression Format: JPEG")) {

// Set default compression parameters

dwtThreshold = 10.0f;

vqClusters = 10;

jpegQuality = 75;

compressionFormat = "JPG";

// Set up sliders

dwtThresholdSlider->setRange(0, 100);

dwtThresholdSlider->setValue(10);

vqClustersSlider->setRange(1, 100);

vqClustersSlider->setValue(10);

jpegQualitySlider->setRange(1, 100);

jpegQualitySlider->setValue(75);

// Set up the format combo box

formatComboBox->addItem("JPEG");

formatComboBox->addItem("PNG");

formatComboBox->addItem("BMP");

formatComboBox->setCurrentText("JPEG");

// Connect sliders to update labels

connect(dwtThresholdSlider, &QSlider::valueChanged, this, [this](int value) {

dwtThreshold = value;

dwtThresholdLabel->setText(QString("DWT Threshold: %1").arg(value));

});

connect(vqClustersSlider, &QSlider::valueChanged, this, [this](int value) {

vqClusters = value;

vqClustersLabel->setText(QString("VQ Clusters: %1").arg(value));

});

connect(jpegQualitySlider, &QSlider::valueChanged, this, [this](int value) {

jpegQuality = value;

jpegQualityLabel->setText(QString("JPEG Quality: %1").arg(value));

});

// Connect format combo box to update compression format

connect(formatComboBox, QOverload<int>::of(&QComboBox::currentIndexChanged), this,

&MainWindow::updateCompressionFormat);

// Set up the main window

QApplication::setStyle(QStyleFactory::create("Windows"));

98

setWindowTitle("ADIB HAFIFI Final Year Project");

setWindowIcon(QIcon(":/img/UTeM-Logo-1.png"));

// Create a menu bar

QMenuBar *menuBar = new QMenuBar(this);

setMenuBar(menuBar);

// Create a "File" menu

QMenu *fileMenu = menuBar->addMenu("File");

QAction *loadAction = fileMenu->addAction("Load Image");

QAction *exitAction = fileMenu->addAction("Exit");

// Create a "Transmission" menu

QMenu *transmissionMenu = menuBar->addMenu("Transmission");

QAction *transmissionExperimentAction = transmissionMenu->addAction("Transmission Experiment");

QAction *transmissionExperimentTwoImagesAction = transmissionMenu->addAction("Transmission Experiment

with Two Images");

// Create a "Metrics" menu

QMenu *metricsMenu = menuBar->addMenu("Metrics");

QAction *calculatePSNRAndSSIMAction = metricsMenu->addAction("Calculate PSNR and SSIM");

// Connect menu actions to slots

connect(loadAction, &QAction::triggered, this, static_cast<void

(MainWindow::*)()>(&MainWindow::loadImage));

connect(exitAction, &QAction::triggered, this, &QApplication::quit);

connect(transmissionExperimentAction, &QAction::triggered, this, static_cast<void

(MainWindow::*)()>(&MainWindow::performTransmissionExperiment));

connect(transmissionExperimentTwoImagesAction, &QAction::triggered, this, static_cast<void

(MainWindow::*)()>(&MainWindow::performTransmissionExperimentWithTwoImages));

connect(calculatePSNRAndSSIMAction, &QAction::triggered, this, static_cast<void

(MainWindow::*)()>(&MainWindow::calculatePSNRAndSSIM));

// Connect menu actions to slots

connect(loadAction, &QAction::triggered, this, &MainWindow::loadImage);

connect(exitAction, &QAction::triggered, this, &QApplication::quit);

// Central stacked widget

stackedWidget = new QStackedWidget(this);

setCentralWidget(stackedWidget);

// Welcome page

welcomePage = new QWidget(this);

QVBoxLayout *welcomeLayout = new QVBoxLayout(welcomePage);

QLabel *logoLabel = new QLabel(welcomePage);

QPixmap logo(":/img/UTeM-Logo-1.png");

logoLabel->setPixmap(logo.scaled(200, 200, Qt::KeepAspectRatio, Qt::SmoothTransformation));

logoLabel->setAlignment(Qt::AlignCenter);

QLabel *welcomeLabel = new QLabel("ADIB HAFIFI final year project \n B082110230", welcomePage);

QPushButton *startButton = new QPushButton("Start Application", welcomePage);

welcomeLabel->setAlignment(Qt::AlignCenter);

welcomeLabel->setStyleSheet("QLabel { font-size: 20px; color: #ffffff; }");

99

startButton->setStyleSheet("QPushButton { background-color: #4CAF50; color: white; border-radius: 5px; padding:

15px; font-size: 16px; }"

"QPushButton:hover { background-color: #45a049; }");

welcomeLayout->addWidget(logoLabel);

welcomeLayout->addWidget(welcomeLabel);

welcomeLayout->addWidget(startButton);

welcomePage->setLayout(welcomeLayout);

// Main page

mainPage = new QWidget(this);

QVBoxLayout *mainLayout = new QVBoxLayout(mainPage);

QGroupBox *imageGroupBox = new QGroupBox("Images", mainPage);

QHBoxLayout *imageLayout = new QHBoxLayout;

QVBoxLayout *originalLayout = new QVBoxLayout;

QVBoxLayout *recLayout = new QVBoxLayout;
originalLayout->addWidget(originalLabel);

originalLayout->addWidget(originalCaption);

recLayout->addWidget(recLabel);

recLayout->addWidget(recCaption);

imageLayout->addLayout(originalLayout);

imageLayout->addLayout(recLayout);

imageGroupBox->setLayout(imageLayout);

QGroupBox *dataGroupBox = new QGroupBox("Image Data", mainPage);

QVBoxLayout *dataLayout = new QVBoxLayout;

dataLayout->addWidget(sizeLabel);

dataLayout->addWidget(fileSizeLabel);

dataLayout->addWidget(compressedFileSizeLabel);

dataLayout->addWidget(psnrLabel);

dataLayout->addWidget(ssimLabel);

dataLayout->addWidget(downloadButton);

dataLayout->addWidget(dwtThresholdLabel);

dataLayout->addWidget(dwtThresholdSlider);

dataLayout->addWidget(vqClustersLabel);

dataLayout->addWidget(vqClustersSlider);

dataLayout->addWidget(jpegQualityLabel);

dataLayout->addWidget(jpegQualitySlider);

dataLayout->addWidget(formatLabel);

dataLayout->addWidget(formatComboBox);

dataGroupBox->setLayout(dataLayout);

mainLayout->addWidget(loadButton);

mainLayout->addWidget(imageGroupBox);

mainLayout->addWidget(dataGroupBox);

mainLayout->addWidget(backButton);

mainPage->setLayout(mainLayout);

stackedWidget->addWidget(welcomePage);

stackedWidget->addWidget(mainPage);

loadButton->setStyleSheet("QPushButton { background-color: #4CAF50; color: white; border-radius: 2px;

padding: 2px; font-size: 12px; }"

"QPushButton:hover { background-color: #45a049; }");

10

downloadButton->setStyleSheet("QPushButton { background-color: #4CAF50; color: white; border-radius: 2px;

padding: 2px; font-size: 12px; }"

"QPushButton:hover { background-color: #45a049; }");

backButton->setStyleSheet("QPushButton { background-color: #FF0000; color: white; border-radius: 2px;

padding: 2px; font-size: 12px; }"

"QPushButton:hover { background-color: #45a049; }");

// Connect signals to slots

connect(startButton, &QPushButton::clicked, this, &MainWindow::showMainInterface);

connect(loadButton, &QPushButton::clicked, this, &MainWindow::loadImage);

connect(downloadButton, &QPushButton::clicked, this, &MainWindow::downloadCompressedImage);

connect(backButton, &QPushButton::clicked, this, &MainWindow::goToWelcomePage);

}

///

// Destructor

MainWindow::~MainWindow() {}

// Show main interface

void MainWindow::showMainInterface() {

stackedWidget->setCurrentWidget(mainPage);

}

// Load image function

void MainWindow::loadImage() {

QString filePath = QFileDialog::getOpenFileName(this, "Open Image", "", "Image Files (*.png *.jpg *.bmp)");

if (!filePath.isEmpty()) {

QImage qimage(filePath);

if (qimage.isNull()) {

QMessageBox::warning(this, "Error", "Failed to load image: " + filePath);

return;

}

// Display image size

int width = qimage.width();

int height = qimage.height();

sizeLabel->setText(QString("Image Size: %1 x %2").arg(width).arg(height));

// Display file size

QFileInfo fileInfo(filePath);
qint64 fileSize = fileInfo.size();

fileSizeLabel->setText(QString("File Size: %1 bytes").arg(fileSize));

// Display the original image

originalLabel->setPixmap(QPixmap::fromImage(qimage));

originalCaption->setText("Original Image");

// Store the original file path for later use

this->originalFilePath = filePath;

// Process the image using user-defined parameters

10

processImage(qimage);

} else {

QMessageBox::warning(this, "Error", "No file selected.");

}

}

float calculateAdaptiveThreshold(const vector<vector<float>>& subBand, float baseThreshold) {

float energy = 0;

for (const auto& row : subBand) {

for (float value : row) {

energy += value * value;

}

}

energy = sqrt(energy / (subBand.size() * subBand[0].size())); // Normalize energy

return baseThreshold * energy;

}

void applyAdaptiveThreshold(vector<vector<float>>& subBand, float baseThreshold) {

float adaptiveThreshold = calculateAdaptiveThreshold(subBand, baseThreshold);

for (auto& row : subBand) {

for (auto& value : row) {

if (abs(value) < adaptiveThreshold) {

value = 0;

}

}

}

}

// Process image function

void MainWindow::processImage(const QImage& qimage) {

int rows = qimage.height();

int cols = qimage.width();

vector<vector<vector<float>>> image(3, vector<vector<float>>(rows, vector<float>(cols)));

// Convert QImage to 3D vector (RGB channels)

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

QColor color = qimage.pixelColor(j, i);

image[0][i][j] = color.red();
image[1][i][j] = color.green();

image[2][i][j] = color.blue();

}

}

// Perform DWT on all color channels

vector<vector<float>> LL_R, LH_R, HL_R, HH_R;

vector<vector<float>> LL_G, LH_G, HL_G, HH_G;

vector<vector<float>> LL_B, LH_B, HL_B, HH_B;

dwt(image[0], LL_R, LH_R, HL_R, HH_R);

dwt(image[1], LL_G, LH_G, HL_G, HH_G);

10

dwt(image[2], LL_B, LH_B, HL_B, HH_B);

// Apply thresholds to wavelet sub-bands for lossy compression

auto applyAdaptiveThreshold = [](vector<vector<float>>& subBand, float threshold) {

for (auto& row : subBand) {

for (auto& value : row) {

if (abs(value) < threshold) {

value = 0;

}

}

}

};

applyAdaptiveThreshold(LH_R, dwtThreshold);

applyAdaptiveThreshold(HL_R, dwtThreshold);

applyAdaptiveThreshold(HH_R, dwtThreshold);

applyAdaptiveThreshold(LH_G, dwtThreshold);

applyAdaptiveThreshold(HL_G, dwtThreshold);

applyAdaptiveThreshold(HH_G, dwtThreshold);

applyAdaptiveThreshold(LH_B, dwtThreshold);

applyAdaptiveThreshold(HL_B, dwtThreshold);

applyAdaptiveThreshold(HH_B, dwtThreshold);

// Perform Vector Quantization on all color channels

vector<vector<float>> quantized_LL_R = vectorQuantization(LL_R, vqClusters);

vector<vector<float>> quantized_LH_R = vectorQuantization(LH_R, vqClusters);

vector<vector<float>> quantized_HL_R = vectorQuantization(HL_R, vqClusters);

vector<vector<float>> quantized_HH_R = vectorQuantization(HH_R, vqClusters);

vector<vector<float>> quantized_LL_G = vectorQuantization(LL_G, vqClusters);

vector<vector<float>> quantized_LH_G = vectorQuantization(LH_G, vqClusters);

vector<vector<float>> quantized_HL_G = vectorQuantization(HL_G, vqClusters);

vector<vector<float>> quantized_HH_G = vectorQuantization(HH_G, vqClusters);

vector<vector<float>> quantized_LL_B = vectorQuantization(LL_B, vqClusters);

vector<vector<float>> quantized_LH_B = vectorQuantization(LH_B, vqClusters);

vector<vector<float>> quantized_HL_B = vectorQuantization(HL_B, vqClusters);

vector<vector<float>> quantized_HH_B = vectorQuantization(HH_B, vqClusters);

// Reconstruct the image using inverse DWT on all color channels

vector<vector<float>> rec_image_R = inverseDWT(quantized_LL_R, quantized_LH_R, quantized_HL_R,

quantized_HH_R, cols, rows);

vector<vector<float>> rec_image_G = inverseDWT(quantized_LL_G, quantized_LH_G, quantized_HL_G,

quantized_HH_G, cols, rows);

vector<vector<float>> rec_image_B = inverseDWT(quantized_LL_B, quantized_LH_B, quantized_HL_B,

quantized_HH_B, cols, rows);

// Combine the reconstructed color channels

vector<vector<vector<float>>> rec_image = {rec_image_R, rec_image_G, rec_image_B};

// Convert the reconstructed image back to QImage

QImage recQImage = vectorToQImage(rec_image);

// Save the reconstructed image with the selected format and quality

QString compressedFilePath = "compressed_image." + compressionFormat.toLower();

10

recQImage.save(compressedFilePath, compressionFormat.toStdString().c_str(), jpegQuality);

// Display compressed image file size

QFileInfo compressedFileInfo(compressedFilePath);

qint64 compressedFileSize = compressedFileInfo.size();

recCaption->setText(QString("Compressed Image\nFile Size: %1 bytes").arg(compressedFileSize));

compressedFileSizeLabel->setText(QString("Compressed File Size: %1 bytes").arg(compressedFileSize));

// Calculate and display PSNR and SSIM

double psnr = calculatePSNR(image[0], rec_image[0]);

double ssim = calculateSSIM(image[0], rec_image[0]);

psnrLabel->setText(QString("PSNR: %1 dB").arg(psnr));

ssimLabel->setText(QString("SSIM: %1").arg(ssim));

// Display the reconstructed image

recLabel->setPixmap(QPixmap::fromImage(recQImage));

}

// Download compressed image

void MainWindow::downloadCompressedImage() {

QString compressedFilePath = "compressed_image." + compressionFormat.toLower();

QDesktopServices::openUrl(QUrl::fromLocalFile(compressedFilePath));

}

// Go to welcome page

void MainWindow::goToWelcomePage() {

stackedWidget->setCurrentWidget(welcomePage);

}

// Update compression format

void MainWindow::updateCompressionFormat(int index) {

compressionFormat = formatComboBox->itemText(index);

formatLabel->setText(QString("Compression Format: %1").arg(compressionFormat));

}

// Perform Discrete Wavelet Transform

void MainWindow::dwt(const vector<vector<float>>& src, vector<vector<float>>& LL, vector<vector<float>>&

LH, vector<vector<float>>& HL, vector<vector<float>>& HH) {

int rows = src.size() / 2;

int cols = src[0].size() / 2;

LL.resize(rows, vector<float>(cols));

LH.resize(rows, vector<float>(cols));

HL.resize(rows, vector<float>(cols));

HH.resize(rows, vector<float>(cols));

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

float a = src[2 * i][2 * j];

float b = src[2 * i][2 * j + 1];

float c = src[2 * i + 1][2 * j];

float d = src[2 * i + 1][2 * j + 1];

LL[i][j] = (a + b + c + d) / 4;

LH[i][j] = (a - b + c - d) / 4;

HL[i][j] = (a + b - c - d) / 4;

HH[i][j] = (a - b - c + d) / 4;

}}}

10

void initializeCentersKMeansPP(vector<float>& centers, const vector<float>& samples, int n_clusters) {

centers[0] = samples[rand() % samples.size()]; // Randomly choose the first center

for (int i = 1; i < n_clusters; ++i) {

vector<float> distances(samples.size());

for (size_t j = 0; j < samples.size(); ++j) {

float minDist = abs(samples[j] - centers[0]);

for (int k = 1; k < i; ++k) {

float dist = abs(samples[j] - centers[k]);

if (dist < minDist) {

minDist = dist;

}}

distances[j] = minDist;}

float maxDist = *max_element(distances.begin(), distances.end());

for (size_t j = 0; j < samples.size(); ++j) {

distances[j] /= maxDist; // Normalize}

centers[i] = samples[rand() % samples.size()];

}}

vector<vector<float>> MainWindow::vectorQuantization(const vector<vector<float>>& image, int n_clusters) {

int rows = image.size();

int cols = image[0].size();

vector<float> samples(rows * cols);

for (int i = 0; i < rows; ++i)

for (int j = 0; j < cols; ++j)

samples[i * cols + j] = image[i][j];

vector<float> centers(n_clusters);

initializeCentersKMeansPP(centers, samples, n_clusters);

vector<int> labels(samples.size());

for (int iter = 0; iter < 10; ++iter) {

for (vector<float>::size_type i = 0; i < samples.size(); ++i) {

float min_dist = abs(samples[i] - centers[0]);

labels[i] = 0;

for (int j = 1; j < n_clusters; ++j) {

float dist = abs(samples[i] - centers[j]);

if (dist < min_dist) {

min_dist = dist;

labels[i] = j;}} }

vector<float> new_centers(n_clusters, 0);

vector<int> counts(n_clusters, 0);

for (vector<float>::size_type i = 0; i < samples.size(); ++i) {

new_centers[labels[i]] += samples[i];

counts[labels[i]]++; }

for (int j = 0; j < n_clusters; ++j) {

if (counts[j] > 0)

centers[j] = new_centers[j] / counts[j];}}

vector<vector<float>> new_image(rows, vector<float>(cols));

for (int i = 0; i < rows; ++i)

for (int j = 0; j < cols; ++j)

new_image[i][j] = centers[labels[i * cols + j]];

return new_image;}

10

// Calculate PSNR

double MainWindow::calculatePSNR(const vector<vector<float>>& original, const vector<vector<float>>&

reconstructed) {

if (original.empty() || reconstructed.empty()) {

cerr << "Error: One or both images are empty." << endl;

return -1.0; }

int rows = original.size();

int cols = original[0].size();

if (rows != reconstructed.size() || cols != reconstructed[0].size()) {

cerr << "Error: Image dimensions do not match." << endl;

return -1.0; }

double mse = 0.0;

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

double diff = original[i][j] - reconstructed[i][j];

mse += diff * diff; } }

mse /= (rows * cols);

if (mse == 0) {

return numeric_limits<double>::infinity(); }

double psnr = 10 * log10((255 * 255) / mse);

return psnr;}

// Calculate SSIM

double MainWindow::calculateSSIM(const vector<vector<float>>& original, const vector<vector<float>>&

reconstructed) {

if (original.empty() || reconstructed.empty()) {

cerr << "Error: One or both images are empty." << endl;

return -1.0;}

int rows = original.size();

int cols = original[0].size();

if (rows != reconstructed.size() || cols != reconstructed[0].size()) {

cerr << "Error: Image dimensions do not match." << endl;

return -1.0; }

double C1 = 6.5025, C2 = 58.5225;

double ssim = 0.0;

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

double mu_x = original[i][j];

double mu_y = reconstructed[i][j];

double sigma_x = 0.0;

double sigma_y = 0.0;

double sigma_xy = 0.0;

for (int k = -1; k <= 1; ++k) {

for (int l = -1; l <= 1; ++l) {

int x = min(max(i + k, 0), rows - 1);

int y = min(max(j + l, 0), cols - 1);

sigma_x += (original[x][y] - mu_x) * (original[x][y] - mu_x);

sigma_y += (reconstructed[x][y] - mu_y) * (reconstructed[x][y] - mu_y);

sigma_xy += (original[x][y] - mu_x) * (reconstructed[x][y] - mu_y); } }

sigma_x /= 9.0; sigma_y /= 9.0; sigma_xy /= 9.0;

double numerator = (2 * mu_x * mu_y + C1) * (2 * sigma_xy + C2);

double denominator = (mu_x * mu_x + mu_y * mu_y + C1) * (sigma_x + sigma_y + C2);

ssim += numerator / denominator;}}return ssim / (rows * cols);}

10

// Inverse DWT

vector<vector<float>> MainWindow::inverseDWT(const vector<vector<float>>& LL, const

vector<vector<float>>& LH, const vector<vector<float>>& HL, const vector<vector<float>>& HH, int width, int

height) {

int rows = LL.size();

int cols = LL[0].size();

vector<vector<float>> rec_image(2 * rows, vector<float>(2 * cols));

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

float a = LL[i][j];

float b = LH[i][j];

float c = HL[i][j];

float d = HH[i][j];

// Reconstruct the original image from the DWT coefficients

rec_image[2 * i][2 * j] = a + b + c + d;

rec_image[2 * i][2 * j + 1] = a - b + c - d;

rec_image[2 * i + 1][2 * j] = a + b - c - d;

rec_image[2 * i + 1][2 * j + 1] = a - b - c + d;

}

}

return rec_image;

}

// Simulate transmission

void MainWindow::simulateTransmission(const QString& filePath, QString& destinationPath, double&

transmissionTime) {

auto start = std::chrono::high_resolution_clock::now();

if (!QFile::copy(filePath, destinationPath)) {

std::cerr << "Error copying file: " << filePath.toStdString() << " to " << destinationPath.toStdString() <<

std::endl;

transmissionTime = -1.0;

return;

}

auto end = std::chrono::high_resolution_clock::now();

std::chrono::duration<double> elapsed = end - start;

transmissionTime = elapsed.count();

}

// Perform transmission experiment
void MainWindow::performTransmissionExperiment() {

if (!originalLabel->pixmap() || originalLabel->pixmap().isNull()) {

QMessageBox::warning(this, "Error", "Please load an image before performing the transmission experiment.");

return;

}

QString originalFilePath = this->originalFilePath;

if (originalFilePath.isEmpty()) {

QMessageBox::warning(this, "Error", "No image loaded.");

return;

}

10

QFileInfo fileInfo(originalFilePath);

QString destinationFilePath = destinationDirectory + "/" + fileInfo.fileName();

if (!QFile::copy(originalFilePath, destinationFilePath)) {

QMessageBox::warning(this, "Error", "Failed to copy the image to the selected directory.");

return;

}

double transmissionTimeOriginal = 0.0, transmissionTimeCompressed = 0.0;

QString tempDestinationOriginal = destinationDirectory + "/temp_original_image.jpg";

QString compressedFilePath = "compressed_image." + compressionFormat.toLower();

QString tempDestinationCompressed = destinationDirectory + "/temp_compressed_image." +

compressionFormat.toLower();

simulateTransmission(destinationFilePath, tempDestinationOriginal, transmissionTimeOriginal);

simulateTransmission(compressedFilePath, tempDestinationCompressed, transmissionTimeCompressed);

QMessageBox::information(this, "Transmission Results",

QString("Original Image Transmission Time: %1 seconds\n"

"Compressed Image Transmission Time: %2 seconds\n"

"Time Difference: %3 seconds")

.arg(transmissionTimeOriginal, 0, 'f', 6)

.arg(transmissionTimeCompressed, 0, 'f', 6)

.arg(transmissionTimeOriginal - transmissionTimeCompressed, 0, 'f', 6));

}

// Perform transmission experiment with two images

void MainWindow::performTransmissionExperimentWithTwoImages() {

QString image1Path = QFileDialog::getOpenFileName(this, "Select First Image", "", "Image Files (*.png *.jpg

*.bmp)");

QString image2Path = QFileDialog::getOpenFileName(this, "Select Second Image", "", "Image Files (*.png *.jpg

*.bmp)");

if (image1Path.isEmpty() || image2Path.isEmpty()) {

QMessageBox::warning(this, "Error", "Please select two images for the experiment.");

return;

}

QString destinationDirectory = QFileDialog::getExistingDirectory(this, "Select Destination Directory");

if (destinationDirectory.isEmpty()) {

QMessageBox::warning(this, "Error", "Please select a destination directory.");

return;

}

double transmissionTimeImage1 = 0.0, transmissionTimeImage2 = 0.0;

QString tempDestinationImage1 = destinationDirectory + "/temp_image1.jpg";

QString tempDestinationImage2 = destinationDirectory + "/temp_image2.jpg";

simulateTransmission(image1Path, tempDestinationImage1, transmissionTimeImage1);

simulateTransmission(image2Path, tempDestinationImage2, transmissionTimeImage2);

QMessageBox::information(this, "Transmission Results",

10

QString("First Image Transmission Time: %1 seconds\n"

"Second Image Transmission Time: %2 seconds\n"

"Time Difference: %3 seconds")

.arg(transmissionTimeImage1, 0, 'f', 6)

.arg(transmissionTimeImage2, 0, 'f', 6)

.arg(abs(transmissionTimeImage1 - transmissionTimeImage2), 0, 'f', 6));

}

// Calculate PSNR and SSIM

void MainWindow::calculatePSNRAndSSIM() {

QString image1Path = QFileDialog::getOpenFileName(this, "Select First Image", "", "Image Files (*.png *.jpg

*.bmp)");

QString image2Path = QFileDialog::getOpenFileName(this, "Select Second Image", "", "Image Files (*.png *.jpg

*.bmp)");

if (image1Path.isEmpty() || image2Path.isEmpty()) {

QMessageBox::warning(this, "Error", "Please select two images for the calculation.");

return;

}

QImage image1(image1Path);

QImage image2(image2Path);

if (image1.isNull() || image2.isNull()) {

QMessageBox::warning(this, "Error", "Failed to load one or both images.");

return;

}

if (image1.size() != image2.size()) {

QMessageBox::warning(this, "Error", "The selected images must have the same dimensions.");

return;

}

vector<vector<vector<float>>> image1Data = loadImageData(image1Path);

vector<vector<vector<float>>> image2Data = loadImageData(image2Path);

double psnr = calculatePSNR(image1Data[0], image2Data[0]);

double ssim = calculateSSIM(image1Data[0], image2Data[0]);

QMessageBox::information(this, "PSNR and SSIM Results",

QString("PSNR: %1 dB\n"
"SSIM: %2")

.arg(psnr, 0, 'f', 6)

.arg(ssim, 0, 'f', 6));

}

// Load image data

vector<vector<vector<float>>> MainWindow::loadImageData(const QString& filePath) {

QImage qimage(filePath);

if (qimage.isNull()) {

QMessageBox::warning(this, "Error", "Failed to load image: " + filePath);

return {};}

10

int rows = qimage.height();

int cols = qimage.width();

vector<vector<vector<float>>> image(3, vector<vector<float>>(rows, vector<float>(cols)));

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

QColor color = qimage.pixelColor(j, i);

image[0][i][j] = color.red();

image[1][i][j] = color.green();

image[2][i][j] = color.blue();

}

}

return image;

}

// Convert vector to QImage

QImage MainWindow::vectorToQImage(const vector<vector<vector<float>>>& image) {

int rows = image[0].size();

int cols = image[0][0].size();

QImage qimage(cols, rows, QImage::Format_RGB32);

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

int r = static_cast<int>(image[0][i][j]);

int g = static_cast<int>(image[1][i][j]);

int b = static_cast<int>(image[2][i][j]);

qimage.setPixel(j, i, qRgb(r, g, b));

}

}

return qimage;

}

11

Main.cpp

#ifndef MAINWINDOW_H

#define MAINWINDOW_H

#include <QMainWindow>

#include <QLabel>

#include <QPushButton>

#include <QStackedWidget>

#include <QSlider>

#include <QComboBox>

#include <QFileDialog>

#include <QMessageBox>

#include <QImage>

#include <QPixmap>

#include <vector>

using namespace std;

class MainWindow : public QMainWindow {

Q_OBJECT

public:

explicit MainWindow(QWidget *parent = nullptr);

~MainWindow();

private slots:

void showMainInterface();

void loadImage();

void downloadCompressedImage();

void goToWelcomePage();

void performTransmissionExperiment();

void performTransmissionExperimentWithTwoImages();

void calculatePSNRAndSSIM();

void updateCompressionFormat(int index);

private:

QStackedWidget *stackedWidget;

QWidget *welcomePage;

QWidget *mainPage;

QLabel *originalLabel;

QLabel *recLabel;

QLabel *originalCaption;

QLabel *recCaption;

QPushButton *loadButton;

QPushButton *downloadButton;

QLabel *sizeLabel;

QLabel *fileSizeLabel;

QLabel *compressedFileSizeLabel;

11

QLabel *compressedFileSizeLabel;

QLabel *psnrLabel;

QLabel *ssimLabel;

QPushButton *backButton;

QSlider *dwtThresholdSlider;

QSlider *vqClustersSlider;

QSlider *jpegQualitySlider;

QLabel *dwtThresholdLabel;

QLabel *vqClustersLabel;

QLabel *jpegQualityLabel;

QComboBox *formatComboBox;

QLabel *formatLabel;

QString originalFilePath;

// Compression parameters

float dwtThreshold;

int vqClusters;

int jpegQuality;

QString compressionFormat;

// Helper functions

void processImage(const QImage& qimage);

vector<vector<vector<float>>> loadImageData(const QString& filePath);

QImage vectorToQImage(const vector<vector<vector<float>>>& image);

void dwt(const vector<vector<float>>& src, vector<vector<float>>& LL, vector<vector<float>>& LH,

vector<vector<float>>& HL, vector<vector<float>>& HH);

vector<vector<float>> vectorQuantization(const vector<vector<float>>& image, int n_clusters) ;

double calculatePSNR(const vector<vector<float>>& original, const vector<vector<float>>&

reconstructed);

double calculateSSIM(const vector<vector<float>>& original, const vector<vector<float>>&

reconstructed);

vector<vector<float>> inverseDWT(const vector<vector<float>>& LL, const vector<vector<float>>&

LH, const vector<vector<float>>& HL, const vector<vector<float>>& HH, int width, int height);

void simulateTransmission(const QString& filePath, QString& destinationPath, double&

transmissionTime);

};

#endif // MAINWINDOW_H

11

	SULIT*
	DECLARATION
	APPROVAL
	DEDICATION
	ABSTRACT
	ABSTRAK

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	DECLARATION APPROVAL DEDICATIONS
	OPERATION i

	LIST OF TABLES
	INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Project Objective
	1.4 Scope of Project

	LITERATURE REVIEW
	2.1 Introduction
	2.2 Principle of Image Compression
	2.3 The Function of Wavelet operation In Image Processing.
	2.4 The Discrete Wavelete Transform
	2.5 Previous Of Related Research Work
	2.5.1 Image Compression Using Wavelet Methods[5]
	2.5.2 Design and Optimization of Image Compression Algorithm Using Wavelet Transform for Satellite Imagery[6]
	2.5.3 Lossless Image Compression Technique Using Haar Wavelet and Vector Transform[7]
	2.5.4 Wavelet and Multiwavelet Transform Techniques[8]
	2.5.5 Lossy Color Image Compression Technique Using Reduced Bit Plane- Quaternion SVD[9]
	2.5.6 Image Compression Using Wavelet Packet and Singular Value Decomposition[10]
	2.5.7 Lossless Medical Image Compression by IWT and Predictive Coding[11]
	2.5.8 The Applications of Discrete Wavelet Transform in Image Processing[15]
	2.6 Comparison Of Previous Related Project
	2.7 Summary

	METHODOLOGY
	3.1 Introduction
	3.2 Selecting and Evaluating Tools for a Sustainable Development
	3.3 Methodology
	3.3.1 Literature Review
	3.3.2 Algorithm Design
	3.3.3 Implementation
	3.3.4 Testing and Evaluation
	Structural Similarity Index Measure (SSIM)
	Peak Signal-to-Noise Ratio (PSNR)
	3.3.5 Optimization
	3.3.6 Development of Tool
	3.4 Elaboration of Process Flow
	3.4.1 Flowchart
	3.4.2 Block Diagram
	1. Load the BMP Image:

	1. DWT:
	2. Quantization:
	3. Entropy:
	3. Compressed Data:
	4. Original Image:
	5. Compression:
	6. Calculation:
	7. Result:
	3.4.3 Software Equipment
	3.5 Experimental/Study Design
	3.5.1 Simulation
	3.5.2 Coding
	3.6 Summary

	RESULTS AND DISCUSSIONS
	4.1 Introduction
	4.2 Eperimental Setup

	4.3 RESULT & ANALYSIS
	4.3.1 Software
	4.3.2 BMP File
	Result
	Analysis of BMP Results File Size Reduction
	Image Quality
	Transmission Time
	Summary
	4.3.3 JPEG File
	Table 4.2.2 JPEG File Compression Efficiency
	Analysis of JPEG Results File Size Reduction
	Image Quality
	Transmission Time
	JPEG Compression Trends
	Summary
	4.3.4 PNG File
	Analysis of PNG Results File Size Reduction
	Image Quality
	Transmission Time
	PNG Compression Trends
	Summary
	4.3.5 Chart
	Summary

	CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Potential for Commercialization
	5.3 Future Works
	1. Algorithm Optimization:
	2. Real-Time Processing Capabilities:
	3. Cross-Platform Compatibility:
	4. Hybrid Compression Techniques:
	5. Application-Specific Customization:
	6. Scalability for High-Resolution Images:

	REFERENCES
	APPENDIX
	Main.cpp
	Main.cpp

