
TEXT FILE COMPRESSION USING HUFFMAN CODING

NUR SYAZWANI BINTI ZAINON

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TEXT FILE COMPRESSION USING HUFFMAN CODING

NUR SYAZWANI BINTI ZAINON

This report is submitted in partial fulfilment of the requirements for the

degree of Bachelor of Computer Engineering Technology (Computer

Systems) with Honours

Faculty of Electronics and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2025

Tajuk Projek : TEXT FILE COMPRESSION USING HUFFMAN

CODING

Sesi Pengajian : 2024/2025

Saya NUR SYAZWANI BINTI ZAINON mengaku membenarkan laporan Projek

Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti

berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan ():

SULIT*
(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

TIDAK TERHAD

Disahkan oleh:

TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh : 12 Januari 2025 Tarikh : 12 Januari 2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan

menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled “Text File Compression Using Huffman Coding” is

the result of my own research except as cited in the references. The project report has not

been accepted for any degree and is not concurrently submitted in candidature of any other

degree.

Signature :

Student Name : NUR SYAZWANI BINTI ZAINON

Date : 12 January 2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer

Engineering Technology (Computer Systems) with Honours.

Signature :

Supervisor Name : TS. DR. ROSTAM AFFENDI BIN HAMZAH

Date : 12 January 2025

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

This project is dedicated to my beloved parents, who have always helped and motivated me

throughout my academic career. Your unfailing confidence in my skills has served as a

constant source of inspiration and motivation for me.

To my friends and classmates, thank you for your companionship,

collaboration, and for making this journey enjoyable and educational.

The times we spent together and your support have been priceless.

To my supervisor and mentors, I sincerely appreciate your commitment

to my growth and the effort you have spent on teaching and guiding me.

Because my academic and professional goals have been greatly shaped

by the advice, wisdom, and support of you all.

Finally, I dedicate this project to all the final year students who work hard

and overcome obstacles in order to realize their goals. I hope that my effort

will demonstrate the value of endurance, hard work, and dedication.

i

ABSTRACT

With the amount of data growing exponentially in the digital era, text file efficiency in

transmission and storage is a major challenge. This research investigates the application of

Huffman Coding, a well-known lossless data compression technology, for text file

compression. The goal is to create a method that keeps the original information intact while

drastically reducing the size of text files. Huffman Coding assigns variable-length binary

codes to characters based on their frequencies, which ensures that more often occurring

characters have shorter codes and less frequently occurring characters have longer codes. By

utilizing the unique prefix rule, which forbids any code from becoming a prefix of another,

this technique minimizes the overall file size and removes any potential for ambiguous

decoding. The project is to create a Huffman Tree using a min-heap data structure, analyse

the frequency of characters in a text file, and create Huffman codes for every character. The

text file's characters are then changed using these codes, producing a compressed output that

uses less storage space. Significant file size reductions, data integrity preservation, and real-

world examples of the useful uses of Huffman Coding are among the anticipated results. In

addition to improving data transmission speed and storage efficiency, this research seeks to

give a greater grasp of the theoretical and practical elements of lossless text file compression.

The system's performance will be evaluated through extensive testing and assessment,

opening the door for potential future improvements in text compression methods. This study

emphasizes how crucial it is to handle data well and provides a solid answer to the problems

associated with organizing massive amounts of text data.

ii

ABSTRAK

Dengan jumlah data yang semakin bertambah pesat di dalam era digital ini, kecekapan

pemindahan dan penyimpanan fail teks menjadi cabaran utama. Penyelidikan ini adalah

untuk menyiasat aplikasi Pengekodan Huffman, teknologi pemampatan data tanpa

kehilangan yang terkenal, untuk pemampatan fail teks. Matlamatnya adalah untuk mencipta

kaedah yang mengekalkan maklumat asal sambil mengurangkan saiz fail teks secara drastik.

Pengekodan Huffman memberikan kod binari panjang berubah kepada watak berdasarkan

kekerapan mereka, yang memastikan bahawa watak yang lebih kerap muncul mempunyai

kod yang lebih pendek dan watak yang kurang kerap muncul mempunyai kod yang lebih

panjang. Dengan menggunakan peraturan awalan unik, yang melarang mana-mana kod

daripada menjadi awalan kepada kod yang lain, teknik ini meminimumkan saiz fail

keseluruhan dan menghapuskan sebarang potensi kekeliruan dalam penyahkodan. Projek ini

adalah untuk mencipta Pokok Huffman menggunakan struktur data min-heap, menganalisis

kekerapan watak dalam fail teks, dan mencipta kod Huffman untuk setiap watak. Watak

dalam fail teks kemudian diubah menggunakan kod ini, menghasilkan output mampat yang

menggunakan ruang penyimpanan yang lebih sedikit. Pengurangan saiz fail yang ketara,

pemeliharaan integriti data, dan contoh dunia nyata mengenai penggunaan berguna

Pengekodan Huffman adalah antara hasil yang dijangka. Selain meningkatkan kelajuan

pemindahan data dan kecekapan penyimpanan, penyelidikan ini bertujuan untuk

memberikan pemahaman yang lebih mendalam tentang aspek teori dan praktikal

pemampatan fail teks tanpa kehilangan. Prestasi sistem akan dinilai melalui ujian dan

penilaian yang meluas, membuka peluang untuk penambahbaikan masa hadapan dalam

kaedah pemampatan teks. Kajian ini menekankan betapa pentingnya pengurusan data yang

baik dan menyediakan penyelesaian kukuh kepada masalah yang berkaitan dengan

menguruskan sejumlah besar data teks.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, TS. DR.

ROSTAM AFFENDI BIN HAMZAH for his precious guidance, words of wisdom and

patience throughout this project.

I am also indebted to University Technical Malaysia Melaka (UTeM) for the

financial support which enables me to accomplish the project. Not forgetting my fellow

colleague, for the willingness of sharing their thoughts and ideas regarding the project.

My highest appreciation goes to my parents, and family members for their love and

prayer during the period of my study.

Finally, I would like to thank all the staff at the FACULTY OF ELECTRONICS

AND COMPUTER TECHNOLOGY AND ENGINEERING, fellow colleagues and

classmates, the Faculty members, as well as other individuals who are not listed here for

being co-operative and helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xiv

LIST OF ABBREVIATIONS xv

LIST OF APPENDICES xvi

 INTRODUCTION 1

1.1 Background 1

1.2 Societal and Technological Impact 1

1.3 Problem Statement 2

v

1.4 Project Objective 3

1.5 Scope of Project 3

 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 The historical development of data compression techniques 6

2.3 Huffman Coding 9

2.4 Introduction to the Core Principles and Execution of Huffman Coding 11

2.4.1 Basic Principles 11

2.4.2 Benefits and Constraints 14

2.4.3 Real-World uses of Huffman Coding 15

2.5 Comparative Analysis of Compression Algorithms 15

2.6 Real-world Applications of Huffman Coding 20

2.7 Existing Areas of Research that Require Further Investigation and Present

Difficulties 23

2.7.1 Scalability 25

2.7.2 Compression Efficiency across Varied Data Types: 25

vi

2.7.3 Ensuring the safety and strength of the system: 26

2.8 The Application of Colour in User Interface Design 27

2.8.1 Colour Psychology in User Interface Design 27

2.8.2 Effectiveness of Bright Colours in UI/UX 27

2.8.3 Implementation of Neon Green in Technology 27

2.9 Conclusion 28

2.9.1 Essential Highlights Summary 28

2.9.2 Importance of Addressing Research Gaps: 29

 METHODOLOGY 31

3.1 Introduction 31

3.2 Project Flowchart 32

3.3 Visual Studio 32

3.3.1 Project Structure in Visual Studio 33

3.3.2 HuffCompressProject 35

3.3.3 HuffDecompressProject 37

vii

3.3.4 HuffmanPython 38

3.3.5 Folder Structure and Contents 39

3.3.6 Static folder 41

3.4 Step for implementation 43

3.5 Summary 45

 RESULTS AND DISCUSSIONS 46

4.1 Introduction 46

4.2 Huffman tree result 46

4.2.1 Explanation by figure 46

4.2.2 Detail explanation for Huffman tree 50

4.3 Binary Encoding and File Size Reduction 56

4.4 Summary 58

 CONCLUSION AND RECOMMENDATIONS 59

5.1 Conclusion 59

5.2 Potential for Commercialization 59

viii

5.3 Future Works 60

REFERENCES 61

REFERENCES 62

APPENDICES 67

ix

LIST OF TABLES

TABLE TITLE PAGE

Table 1: Huffman vs LZW 10

Table 2: Comparison of Huffman vs Arithmetic 11

Table 3: Comparison Table of Compression Algorithms 16

Table 4: ASCII Code 50

Table 5: File Size Comparison Before and After 56

x

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 1: Timeline of Data Compression Techniques 7

Figure 2: Example of Run-Length Encoding 7

Figure 3: String for Shanon Fano example 8

Figure 4: Summary of the string 8

Figure 5: Shannon-Fano Tree 8

Figure 6: Example Huffman Tree 12

Figure 7: Huffman encoder flow chart 13

Figure 8: Huffman Tree Construction Example 14

Figure 9: Compression Ratios Comparison 17

Figure 10: flowchart of Huffman coding 18

Figure 11: flowchart of LZW 19

Figure 12: flowchart of Arithmetic coding 19

Figure 13: Project Flowchart 32

Figure 14: Visual Studio 33

xi

Figure 15: Structure of Visual Studio 34

Figure 16: Solution Explorer 35

Figure 17: HuffCompressProject 36

Figure 18: HuffDecompressProject 38

Figure 19: HuffmanPython.py 38

Figure 20: Homepage of the Huffman Coding website showing options for file

compression and decompression 39

Figure 21: Compress Uploads 40

Figure 22: Decompress Uploads 40

Figure 23: Homepage of The Project 41

Figure 24: Compress Text File Page 41

Figure 25: Upload testing.txt Into Uploads File With 47,189 KB 42

Figure 26: Successfully Added testing.txt File Into Uploads File 42

Figure 27: bin File Was Successfully Created In Downloads File With 25,203 KB 42

Figure 28: Decompress Text File Page 43

Figure 29: Decompress-Upload testing-compressed.bin From Downloads File 43

Figure 30: Successfully Decompress The File Back To Original Type File 43

Figure 31: String of Characters 46

xii

Figure 32: Character Frequencies 47

Figure 33: Combine A&G 47

Figure 34: Combine M&T 47

Figure 35: Combine E&H 48

Figure 36: Combine 2&2 48

Figure 37: Combine 4&4 48

Figure 38: Combine 6&5 49

Figure 39: Combine 8&11 49

Figure 40: Assigned the left edges as ‘0’ & Assigned the right edges as '1’ 50

Figure 41: Hex to Binary 51

Figure 42: Frequency of Characters 51

Figure 43: Step 1 51

Figure 44: Step 2 51

Figure 45: Step 3 52

Figure 46: Step 4 52

Figure 47: Step 5 52

Figure 48: Step 6 52

Figure 49: Step 7 53

file:///C:/Users/Dell/Desktop/THESISWANI1%20(1).docx%23_Toc188176489

xiii

Figure 50: Step 8 53

Figure 51: Step 9 54

Figure 52: Original: 104 bits 54

Figure 53: New: 37 bits 55

Figure 54: From Binary to Hex 55

Figure 55: Binary In .bin File 55

Figure 56: Step For Decoding 56

xiv

LIST OF SYMBOLS

0 - Binary digit zero

1 - Binary digit one

xv

LIST OF ABBREVIATIONS

𝐻𝑇𝑀𝐿 - HyperText Markup Language

CSS - Cascading Style Sheets

GIF - Graphics Interchange Format

JPEG - Joint Photographic Experts Group

MP3 - MPEG Audio Layer III

MPEG - Moving Picture Experts Group

RLE - Run-Length Encoding

LZW - Lempel-Ziv-Welch

PC - Personal Computer

ZIP - Zip file format for data compression

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Project Planning(Gantt Chart) 67

Appendix B Contents Language 69

1

INTRODUCTION

1.1 Background

Text files may take up a lot of storage space. Examples include HTML, JavaScript,

CSS, and plain text (.txt). Compressing these files is essential to enhance storage efficiency

and facilitate quicker transmission over networks. Huffman Coding is a useful technique that

ensures the best possible compression by assigns variable-length binary codes to characters

based on their frequencies [1].

1.2 Societal and Technological Impact

There are several significant advantages of using Huffman Coding for text file

compression for both society and technology.

I. With compressed text files, it will take up less space, which means our

computers and servers use less storage. This helps reduce the energy

consumption of data centres, which is good for the environment [1].

II. Because they consume less bandwidth, smaller files will be transmitted over

the internet more quickly. This outcome will be leads to faster data transfer

which improve the efficiency and smoothness of online operations.

III. File size reduction will decrease the cost of storage and bandwidth. For

example businesses and organizations can make a financial savings on data

storage and internet usage, freeing up funds for other crucial investments.

2

IV. Compressed text files enable larger text file handling applications to operate

more quickly and fluidly. Better user experiences and more effective

software and website functioning are the outcomes of this.

V. As a lossless compression technique, Huffman Coding shrinks files without

erasing any data. This is essential to guaranteeing the complete restoration

of the original data, which is essentials for accuracy and security.

1.3 Problem Statement

As the amount of digital information keeps growing rapidly, handling and sending

vast amounts of text data has become a major difficulty. Text files, including HTML,

JavaScript, CSS, and plain text (.txt), are used in both personal and professional

environments. These files can take up a lot of storage space and bandwidth, which increases

expenses, slows down data transmission, and causes inefficiencies in data handling and

storage.

The primary issue is that uncompressed text files are inefficient. They take up too

much space and could decrease data access and transfer rates. This inefficiency is especially

troublesome for enterprises and organizations that manage massive databases and need

quick, dependable access to information.

Huffman Coding is a way for solving this problem by compressing text files to make

them smaller while retaining all contents. It works by assigning shorter codes to commonly

used characters and longer codes to uncommon characters, reducing the total file size.

The aim is to create a system that efficiently compresses text files using Huffman

Coding. This system has to drastically decrease file sizes, minimize storage and transmission

costs, and enhance data handling, all while preserving the original data.

3

1.4 Project Objective

The purpose of this project is to create a system for compressing text files using

Huffman Coding. The objectives of this system are:

 To utilize the Huffman Coding algorithm for text file compression.

 To reduce the amount of storage required for bin files by making them

smaller, hence saving space on PCs and servers.

 To verify the performance of the algorithm.

1.5 Scope of Project

This project will provide a system to compress text files using Huffman Coding,

concentrating on the following main areas:

a) The project will deal with standard text files such as HTML, JavaScript, CSS,

and plain text (.txt).

b) Use the Huffman Coding technique to reduce text file size by assigning

shorter codes to frequently used characters and longer codes to less frequent

ones.

c) Create a user-friendly tool or system that can:

I. Read text files and record how frequently each character appears.

II. Create a Huffman Tree that generates codes for each character.

d) Test the program on various text files to observe how effectively it

compresses them.

e) To determine efficacy, compare the sizes of the original and compressed

files.

4

f) Create a simple interface where users can pick files, compress them, and

save the compressed versions.

g) Provide explicit instructions about how to utilize the tool.

h) Include a report on the tool's performance and result of it.

i) The project will only compress text files, not decompress those or deal with

other file formats such as photos or videos. The utility can handle files of

typical size, but it may not perform effectively with really big files or real-

time compression.

5

LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of the current research and knowledge on text file

compression, specifically emphasizing Huffman Coding. The objective is to comprehend the

existing body of knowledge and findings in this field. This review aims to enhance our

comprehension of the theory and use of Huffman Coding by examining multiple research,

algorithms, and real-world implementations.

Text file compression is crucial due to the perpetual expansion of digital data.

Utilizing efficient compression techniques aids in conserving store capacity, minimizing

transmission duration, and enhancing data administration. Huffman Coding is a widely used

method of lossless compression that is renowned for its efficient data compression

capabilities while preserving all information [1]. In a study by Andysah Putera Utama

Siahaan, the Huffman Text Compression Technique was detailed, explaining its efficiency

in reducing file sizes without data loss [2].

Initially, we will examine the historical progression of data compression techniques,

illustrating their evolution throughout the years [2] [3]. A notable contribution in this area is

the study by D. Jasmine Shoba and Dr. S. Sivakumar, which provides a comprehensive

analysis of Huffman Coding algorithms and their applications in data compression [4]. This

study enhances our understanding of the theoretical foundations and practical

implementations of Huffman Coding.

Next, we shall elucidate the functioning of Huffman Coding, encompassing

its fundamental concepts and the methods for its implementation. In addition, we will do a

6

comparative analysis of Huffman Coding in relation to various compression algorithms in

order to emphasize its advantages and disadvantages [5].

In addition, we will examine several implementations of Huffman Coding in fields

such as web development, software engineering, and data transfer. Through the examination

of case studies and research, we will observe the practical applications of Huffman Coding

in real-world scenarios [1].

The purpose of this chapter is to provide a concise overview of the existing

knowledge on text file compression using Huffman Coding. Additionally, it will identify any

deficiencies in the existing research and propose potential avenues for future investigation.

This assessment will establish a strong basis for the development and execution of our

proprietary text file compression system.

2.2 The historical development of data compression techniques

Advancements in data compression strategies have seen substantial development

over time, propelled by the necessity to effectively store and transport data. Initial techniques

were rather uncomplicated, although they established the groundwork for more advanced

algorithms such as Huffman Coding. Gaining an understanding of these advancements helps

to position Huffman Coding in the broader perspective of the progression of data

compression [4] [6] [7].

7

 Figure 1: Timeline of Data Compression Techniques

Primitive Methods

I. Run-Length Encoding (RLE) is a data compression technique.

RLE, or Run-Length Encoding, is a straightforward technique that compresses data by

substituting repeated characters with a single character and its corresponding count. As an

illustration, the string "AAAABBBCCDAA" is transformed into "4A3B2C1D2A" [5] [4].

Figure 2: Example of Run-Length Encoding

Applications: It is effective for data sets that have a high number of recurring elements, such

as basic photographs.

Drawbacks: The Run-Length Encoding (RLE) method is not efficient for text files that have

limited repetition, as it may not significantly decrease the file size.

8

II. The Shannon-Fano coding technique:

The method, devised by Claude Shannon and Robert Fano, involves assigning variable-

length codes to characters based on their frequency of occurrence. Characters that appear

often are assigned shorter codes [3] [6].

Figure 3: String for Shanon Fano example

Figure 4: Summary of the string

Figure 5: Shannon-Fano Tree

The process: the process will be involves sorting characters based on their

frequency and then creating a binary tree to assign codes.

9

Drawbacks: Although it surpasses certain previous techniques, it is not as efficient

as Huffman Coding.

2.3 Huffman Coding

Huffman Coding, devised by David A. Huffman in 1952, represented a significant

breakthrough. Huffman's technique achieves optimality by generating the most

efficient variable-length codes for a given set of character frequencies. The

Huffman Coding method constructs a binary tree in which each character is

assigned a code according to its frequency. Characters that appear often are

assigned shorter codes [2] [4].

The process of Huffman Coding involves the following steps:

a) Determine the frequency of occurrence for each individual character in

the given text.

b) Place characters and their frequencies into a priority queue.

c) Merge the two characters with the lowest frequencies into a new node

and continue this process until only one node remains, which will serve

as the root of the tree.

d) Encode characters with binary codes according to their position in the

tree.

e) Subsequent advancements following the Huffman coding technique.

I. Lempel-Ziv (LZ) algorithms:

The LZ77 and LZ78 algorithms, developed by Abraham Lempel

and Jacob Ziv, employ a dictionary to substitute recurring

patterns within the data. Extensively utilized in compression

10

utilities and file formats such as ZIP and GIF [4].

II. The Lempel-Ziv-Welch (LZW) algorithm.

The concept refers to an enhanced iteration of LZ78, which was

created by Terry Welch. Utilized in file formats such as GIF.

The LZW method constructs a dictionary of sequences based

on the input data and substitutes sequences with individual

dictionary references [6].

Table 1: Huffman vs LZW

III. Arithmetic Coding

Arithmetic Coding is a concept that replaces predefined codes

with ranges of integers to represent whole messages. This can

result in higher compression ratios. Utilized in scenarios that

require optimal compression efficiency, particularly in

multimedia applications [3].

Arithmetic coding has the advantage of increased efficiency for

specific data types. Also can enables the representation of

probabilities that are not whole numbers, resulting in improved

compression. The disadvantages of this method is more intricate

and less efficient compared to Huffman Coding and also requires

11

meticulous execution to prevent numerical complications [3].

Table 2: Comparison of Huffman vs Arithmetic

2.4 Introduction to the Core Principles and Execution of Huffman Coding

Huffman Coding is a prevalent algorithm utilized for the compression of data

without any loss. David A. Huffman introduced it in 1952 as a component of his term thesis

during his time as a Ph.D. student at MIT. This technique employs shorter codes for

frequently occurring characters and longer codes for less often occurring ones, resulting in

a reduction in data size [2] [8].

2.4.1 Basic Principles

a) Variable-Length Coding:

Huffman Coding assigns variable lengths of codes to characters dependent on their

frequency of occurrence. More commonly occurring characters are assigned shorter

codes, while less commonly occurring characters are assigned longer codes [2].

For instance, in a text with many occurrences of the letter 'e', it could be represented

by a concise code such as '01', whereas a less common character like 'z' might be

assigned a longer code such as '1101'.

12

Figure 6: Example Huffman Tree

b) Prefix-Free Codes:

Huffman Coding guarantees that no code is a prefix of another code. This implies

that every code can be distinctly identifiable during the decoding process [3]. For

example, if '01' is designated as a code, no other code will commence with '01', hence

guaranteeing unambiguous decoding [9].

The process of Huffman coding involves the following steps:

I. Calculation of frequency:

First, determine the frequency of occurrence for each individual character in

the given text. Second, generate a comprehensive inventory of every

individual character and its corresponding frequency [5] as shown in the

figure below.

13

 Figure 7: Huffman encoder flow chart

II. Creating a Priority Queue:

Insert the characters and their frequencies into a priority queue, which is a specialised

data structure that arranges elements in ascending order based on their values. This

facilitates the quick identification and utilization of the least common characters [3].

III. Construction of Huffman Tree:

Merge the two characters with the lowest frequencies to create a new node with their

combined frequency. Continue iterating this procedure, merging nodes, until there is

just a single node left, which will be the root. A tree is created in which the binary

code for each character is determined by its route from the root to its leaf node [5].

14

 Figure 8: Huffman Tree Construction Example

IV. Generation of code:

Allocate binary codes by traversing the tree from the root to each leaf node.

The label '0' is assigned to each left edge, while the label '1' is assigned to

each right edge. As an illustration, the route to reach the letter 'e' could be

described as left-left-right, resulting in a code such as '001' [3].

V. Data encoding:

Convert each character in the text into its respective binary representation.

This process generates a condensed rendition of the text, occupying a smaller

amount of storage capacity [2].

2.4.2 Benefits and Constraints

a) Benefits:

Huffman Coding is highly efficient in compressing file sizes for the characters it

examines [2].

I. The approach is easily comprehensible and may be executed without

difficulty [5].

II. Lossless compression is a method of reducing the size of data without

sacrificing any information, allowing for the complete and accurate

reconstruction of the original data [3].

15

b) Constraints:

The approach necessitates two iterations over the data—one to calculate frequencies

and another to encode the text [5].

I. Not necessarily the optimal choice because in certain scenarios, other

techniques such as arithmetic coding may achieve superior data compression

[3].

II. If the data undergoes frequent changes, a static Huffman tree may not be as

optimal. Adaptive Huffman coding can provide assistance, albeit it entails

greater complexity [5].

2.4.3 Real-World uses of Huffman Coding

Huffman Coding is widely employed in numerous applications due to its effectiveness and

user-friendly nature:

I. WinRAR and 7-Zip utilise Huffman Coding in their file compression algorithms

[5].

II. JPEG images employ Huffman Coding to compress specific sections of the

image data [3].

III. Minimising the data volume transmitted via the internet conserves bandwidth and

accelerates transmission [2].

2.5 Comparative Analysis of Compression Algorithms

This section provides a comparison between Huffman Coding and other widely used

compression methods, aiming to emphasize the advantages and disadvantages of Huffman

Coding. Gaining a comprehensive understanding of these contrasts will offer a more distinct

16

understanding of the reasons and circumstances in which Huffman Coding is employed, as

well as its respective benefits and constraints.

a) Lempel-Ziv-Welch (LZW) is a method used for compressing data.

LZW is a compression technique that employs a dictionary to replace sequences of

characters with shorter codes. When sequences are encountered, they are added to a

dictionary. When a repetitive sequence occurs, it is replaced with a reference to the

appropriate term in the dictionary [7].

I. Benefits: The LZW technique is particularly effective in compressing

data that has a large number of repetitive sequences. It is often used in

graphical file formats such as GIF and in compression software like ZIP.

II. Constraints: LZW may not exhibit the same level of efficiency as

Huffman Coding when applied to text material that lacks significant

redundancy. Additionally, the initial size of the dictionary can impact the

effectiveness of compression.

The LZW algorithm compresses a file that contains repeating text, such as

"ABABABABAB", by identifying the recurring sequence "AB" and replacing it with shorter

codes.

Table 3: Comparison Table of Compression Algorithms

17

b) Arithmetic coding.

Arithmetic Coding distinguishes itself from Huffman Coding by encoding

complete messages as intervals of values ranging from 0 to 1. Instead than

allocating predetermined binary codes to each individual character, it converts

a sequence of characters into a singular integer within a specified range [3] [10].

Arithmetic Coding has the advantage of achieving superior compression ratios

compared to Huffman Coding, especially for material that has intricate

probability distributions. It effectively manages fractional probabilities,

resulting in improved compression for specific data types [3]. Arithmetic

Coding exhibits certain weaknesses, namely its higher computational intensity

and complexity compared to Huffman Coding. The intricacy of this can result

in slower encoding and decoding procedures and necessitates meticulous

execution to prevent any precise issues [3]. Arithmetic Coding is a method that

can generate a more concise representation of a text with different character

frequencies. It achieves this by employing ranges instead of preset codes.

 Figure 9: Compression Ratios Comparison

18

c) Run-Length Encoding (RLE) is a data compression technique.

I. Benefits: RLE, or Run-Length Encoding, is a straightforward

compression technique that decreases the data size by substituting

consecutive instances of the same character with a single character

followed by the number of times it repeats. RLE is highly efficient for

data that contains extended sequences of repeated characters, such as

monochrome photographs or uncomplicated graphic files [5].

II. Constraints: The Run Length Encoding (RLE) method is not effective

for text data or files with considerable variability, as it does not result in

a significant reduction in file size for such data [5].

In an image containing a series of adjacent black pixels, the Run-Length

Encoding (RLE) method would compress the sequence "00000000" to "8_0". In

this compressed representation, "8" represents the count of consecutive

occurrences and "0" represents the repeated character.

 Figure 10: flowchart of Huffman coding

19

 Figure 11: flowchart of LZW

 Figure 12: flowchart of Arithmetic coding

Summary of Comparison:

Huffman Coding is particularly effective for text files that have imbalanced frequency

distributions, resulting in great efficiency. LZW is particularly efficient for files containing

repetitive sequences, whereas Arithmetic Coding provides superior compression for data

with intricate probabilities. Run-length encoding (RLE) is particularly well-suited for data

that contains numerous sequences of repeated characters.

Huffman Coding achieves a harmonious equilibrium between simplicity and efficiency. The

LZW and RLE algorithms are generally uncomplicated, although they may not always

provide optimal compression. Arithmetic Coding, although it has the potential to be more

efficient, is characterised by increased complexity and decreased execution speed.

20

Huffman Coding is extensively employed in various applications such as text compression,

web data transmission, and image formats like JPEG. The LZW algorithm is widely

employed in the compression of GIF pictures and ZIP files. Arithmetic Coding is utilized in

multimedia compression, particularly in situations when achieving high efficiency is of

utmost importance. Run-length encoding (RLE) is commonly employed in basic graphics

and certain picture formats.

2.6 Real-world Applications of Huffman Coding

The efficiency and ease of implementation of Huffman Coding make it a widely

utilized technique in numerous applications. This section will examine several practical

applications of Huffman Coding, showcasing its efficacy and utility in diverse fields.

a) File compression tools:

File compression applications, like WinRAR and 7-Zip, utilize Huffman Coding as

part of their compression algorithms to reduce file sizes, hence improving storage and

transfer efficiency. These software employ compression methods to encode commonly

appearing characters with shorter codes, leading to a decrease in the overall size of the files.

WinRAR use Huffman Coding, along with other techniques, to achieve remarkable

compression ratios. WinRAR is compatible with several file formats and is widely used for

creating compressed archives, which allow for easy storing and sharing. 7-Zip is a widely

used file compression tool that incorporates Huffman Coding as part of its LZMA (Lempel-

Ziv-Markov chain algorithm) compression method. This application is widely recognized

for its outstanding compression ratios and comprehensive support for numerous file formats,

making it an extremely adaptable choice for all file compression needs [5].

21

b) Image Compression:

Huffman Coding is an essential element of the JPEG image format, used to

efficiently compress image data. During the process of JPEG compression, the image is

divided into blocks, and each block is subjected to a transformation and quantization.

Afterwards, Huffman Coding is utilized to compress the quantized values, effectively

reducing the file size without affecting the image quality. JPEG compression, created by the

Joint Photographic Experts Group, employs Huffman Coding to encode the quantized

coefficients derived from applying a discrete cosine transform (DCT) to the image blocks.

This approach efficiently reduces the amount of data required to represent the image,

resulting in smaller file sizes without compromising on quality [3].

c) Transmission of Data:

Reducing the quantity of data sent over the internet is essential for preserving

bandwidth and accelerating transmission speeds. Huffman Coding achieves this by

compressing text-based data, such as HTML, CSS, and JavaScript files, commonly utilized

in web development, hence reducing their size [11]. Huffman Coding is employed to

compress text files during the transmission of web pages over the internet, hence minimizing

the volume of data that needs to be transmitted. As a consequence, this leads to quicker

loading speeds for web pages and enhances the overall user experience. Web browsers and

servers can utilize Huffman Coding to compress HTTP headers and content, hence

enhancing the efficiency of data transfer [2].

d) Applications of multimedia:

Huffman Coding is utilized in diverse multimedia applications, including audio and

video compression. Huffman Coding facilitates the effective storage and transmission of

multimedia content by lowering the size of audio and video files. The MP3 audio format

22

employs Huffman Coding as a component of its compression strategy for encoding audio

data. This process aids in diminishing the file size of audio files without substantially

impacting the sound quality, hence facilitating the storage and sharing of music and other

audio content [11]. MPEG Video Compression utilizes Huffman Coding to compress

remaining data following motion compensation and transform coding. This minimizes the

data needed to depict the video, facilitating effective storage and streaming [3].

e) Compression of documents:

Huffman Coding is employed in document compression formats such as PDF and

PostScript to effectively diminish the file size of textual and graphical content. PDF files

commonly employ Huffman Coding to compress text and graphics, thereby reducing file

size and facilitating sharing. This is particularly crucial for extensive documents that require

transmission over the internet or storage on devices with restricted storage capacity.

PostScript files utilize Huffman Coding to compress both text and graphics, similar to PDF

files. Compressing files enhances the efficiency of printing and sharing documents by

reducing the amount of storage space and bandwidth they use [5].

f) Communication protocols used in computer networks:

Huffman Coding is employed in diverse network protocols to enhance data

transmission efficiency and minimize delay. Huffman Coding enhances the efficiency of

data communication over networks by compressing protocol headers and payloads. The

HTTP/2 protocol utilizes Huffman Coding to compress HTTP headers, facilitating the

delivery of web pages and other internet resources. This decreases the dimensions of the

headers, leading to enhanced data transmission speed and improved web performance.

QUIC, which stands for Quick UDP Internet Connections, is a network protocol developed

23

by Google. It use Huffman Coding to compress the headers of the protocol. This aids in

decreasing latency and enhancing the efficiency of online applications [3].

2.7 Existing Areas of Research that Require Further Investigation and Present

Difficulties

Although Huffman Coding is widely used and effective, there are still research gaps

and problems that must be solved in order to enhance its performance and broaden its

usefulness. This section delineates the existing deficiencies and proposes prospective

avenues for future investigation.

a) Real-Time Compression refers to the process of reducing the size of data in real-

time, without any delay or latency.

Huffman Coding often necessitates performing two passes over the data—one to

compute the frequencies of each letter and another to encode the text. This can be suboptimal

for real-time applications where data is constantly generated and requires on- the-fly

compression.

Although static Huffman Coding is effective for fixed datasets, it is not as

appropriate for streaming data that undergoes dynamic changes [3].

Future research should focus on the development of adaptive Huffman coding

algorithms that can efficiently handle real-time data compression. Adaptive Huffman Coding

dynamically modifies the Huffman tree while processing fresh data, enabling real-time

compression. Research can concentrate on optimizing these methods to minimize computing

burden and enhance performance [12].

24

b) Integration with Other Techniques:

Although Huffman Coding is generally efficient for many data formats, it may not

consistently achieve the highest compression ratios when compared to alternative methods

such as arithmetic coding or dictionary-based algorithms [5].

Presently, certain hybrid compression algorithms amalgamate Huffman Coding

with other methods, yet there is still scope for enhancing efficiency and compression ratio

[3]. Future research should focus on investigating hybrid models that combine the

advantages of several compression approaches in order to enhance overall performance. By

combining Huffman Coding with Lempel-Ziv (LZ) algorithms or arithmetic coding, it is

possible to achieve improved compression ratios and faster processing times. Research

should prioritize the identification of optimal combinations for different types of data and

the enhancement of the integration of these methods [16].

c) Optimization of energy usage

The computational intricacy of Huffman Coding can result in increased energy use,

particularly in large-scale data centres where efficient power usage is crucial [5]. Although

Huffman Coding is economical in terms of computing, the requirement for frequent tree

updates and encoding can lead to higher energy consumption, especially when dealing with

huge datasets [3].

Exploring methods to enhance the algorithm's energy economy without

compromising compression effectiveness. Possible approaches include the development of

more streamlined data structures for the Huffman tree, the optimisation of algorithms for

traversing the tree, or the utilisation of hardware accelerators to enhance the efficiency of

compression activities. Further research could investigate adaptive methods that optimise

25

the trade-off between energy usage and compression performance, taking into account the

specific workload.

2.7.1 Scalability

Scalability refers to the ability of a system or process to handle an increasing amount of work

or data without sacrificing performance or efficiency.

With the ongoing increase in data volumes, the ability of Huffman Coding to handle larger

amounts of data becomes more crucial. The method should possess the capability to

efficiently process big datasets without experiencing substantial performance deterioration

[3].

Presently, Huffman Coding is capable of managing datasets of moderate size. However, its

efficiency may decline as the quantity of the data increases [5].

Future research should focus on the development of scalable Huffman coding algorithms

capable of efficiently processing extremely huge datasets. This may entail utilizing parallel

processing techniques, distributed computing frameworks, or enhanced data structures that

decrease the temporal complexity of constructing and navigating the Huffman tree.

Research might potentially prioritize the optimization of the method for particular categories

of extensive datasets, such as big data applications or high-resolution multimedia

information.

2.7.2 Compression Efficiency across Varied Data Types:

Huffman Coding is particularly efficient for text and some forms of binary data, but its

effectiveness may vary for other types of data that have distinct statistical characteristics [5].

26

Although Huffman Coding is commonly employed, it may not always deliver the most

efficient compression for data that has highly variable or non-uniform distributions [3].

Exploring methods to enhance the efficiency of Huffman Coding for various types of data.

One possibility is to create tailored Huffman trees that take into account the unique attributes

of the data. Another option is to combine Huffman Coding with machine learning models to

forecast the most effective coding strategies for certain datasets. Further research could

investigate context-aware compression techniques that dynamically adjust the Huffman tree

in response to evolving patterns in the input.

2.7.3 Ensuring the safety and strength of the system:

It is of utmost importance to guarantee the security and resilience of compressed data,

particularly in situations when the preservation of data integrity and confidentiality are of

vital significance [3].

The current state is that Huffman Coding alone does not offer security, but it can be

combined with encryption and error-correction methods to improve data protection [5].

Future research should focus on the development of compression techniques that are both

secure and robust. These schemes should integrate Huffman Coding with encryption

algorithms and error-correction codes. This may entail developing integrated frameworks

that guarantee the compactness and security of compressed data, protecting it from

unauthorized access and transmission faults. Research might also prioritize evaluating the

influence of these integrated strategies on compression efficiency and performance.

27

2.8 The Application of Colour in User Interface Design

2.8.1 Colour Psychology in User Interface Design

Colours are essential in user interface (UI) design as they affect users' visual

perception, focus, and emotional reactions. Elliot and Maier (2014) conducted a study

demonstrating that particular colours can elicit distinct psychological responses. Green is

frequently linked to balance, harmony, and stability, whereas more vibrant shades like neon

green evoke a futuristic and contemporary aesthetic. This hue is commonly employed in

technology to highlight essential components such as buttons or significant icons. [13]

2.8.2 Effectiveness of Bright Colours in UI/UX

Witzel and Gegenfurtner (2018) discovered that vibrant colours, such as neon green,

improve the visibility of screen elements, especially in low-light environments or when

immediate prominence is required. Neon green is recognised for its significant contrast with

dark backgrounds, rendering it an exceptional option for enhancing readability and visual

clarity in applications like websites and interactive systems. [14]

2.8.3 Implementation of Neon Green in Technology

In HTML and CSS, neon green is commonly represented by the colour code HEX

#39FF14. The W3C's official documentation (2023) emphasises that CSS offers versatility

in colour manipulation, rendering it an effective instrument for personalising user interface

designs. Moreover, this hue is frequently employed in interactive initiatives to augment user

experience. [15]

28

2.9 Conclusion

The literature review has presented a thorough examination of text file compression,

specifically emphasizing Huffman Coding. Through a review of its historical progression,

core concepts, practical applications, comparison with other algorithms, and existing

research gaps, we have acquired a comprehensive comprehension of the importance of

Huffman Coding and its function in data compression.

2.9.1 Essential Highlights Summary

a) The historical development of data compression techniques: We examined the

progression of data compression strategies, emphasizing the developments from

basic approaches such as Run-Length Encoding and Shannon-Fano Coding to more

intricate algorithms like Huffman Coding. The inception of Huffman Coding by

David A. Huffman in 1952 represented a noteworthy breakthrough in the realm of

data compression, offering an ideal technique for producing variable-length codes

based on the frequencies of characters [2].

b) Introduction to the Core Principles and Execution of Huffman Coding: Huffman

Coding allocates shorter codes to frequently encountered characters and longer codes

to less commonly encountered ones, guaranteeing efficient data compression without

any loss of information. The procedure entails computing the frequencies of

characters, establishing a priority queue, constructing a Huffman tree, producing

codes, and encoding the data [4].

c) Comparative Analysis of Compression Algorithms: An analysis of Huffman Coding

in comparison to other compression methods such as LZW, Arithmetic Coding, and

Run- Length Encoding has revealed its advantages and disadvantages. Huffman

29

Coding is very effective for text files with imbalanced frequency distributions but

may not consistently reach the optimal compression ratios compared to alternative

approaches in some situations [4] [3].

d) Real-world Applications of Huffman Coding: We examined many practical

implementations of Huffman Coding, encompassing its utilization in file

compression utilities like WinRAR and 7-Zip, picture compression formats like

JPEG, data transmission for web pages, and multimedia applications such as MP3

and MPEG. These implementations showcase the adaptability and efficacy of

Huffman Coding in diminishing data size and enhancing storage and transmission

efficiency [3].

e) Existing Areas of Research that Require Further Investigation and Present

Difficulties: Although Huffman Coding is widely used, it is also accompanied with

various obstacles and limits. These requirements encompass real-time compression,

integration of Huffman Coding with other methods, enhancement of energy

efficiency, scalability, compression efficiency for various data kinds, and

guaranteeing security and robustness. It is essential to address these areas of research

that need attention in order to progress Huffman Coding and broaden its usefulness

in different fields [4] [3].

2.9.2 Importance of Addressing Research Gaps:

a) Real-Time Compression: Enhancing the capabilities of Huffman Coding to

efficiently compress real-time data would increase its suitability for applications that

involve continuous data generation and require immediate processing.

30

b) Integration with Other Techniques: Investigating hybrid models that integrate

Huffman Coding with other compression methods can result in enhanced overall

performance and increased compression ratios, hence improving effectiveness across

a broader spectrum of data types.

c) Optimization of energy usage: Efficiently optimizing Huffman Coding is crucial for

power-sensitive environments such as large-scale data centers, where energy

conservation is of utmost importance. This will contribute to enhancing the

sustainability and cost-efficiency of data compression.

d) Scalability: Improving the scalability of Huffman Coding will allow it to effectively

manage the increasing amounts of data, assuring its continued usefulness and

applicability for large datasets and big data applications.

e) Compression Efficiency across Varied Data Types: Enhancing the efficiency of

Huffman Coding for diverse data types will broaden its applicability, rendering it a

more adaptable tool for a wide range of data compression jobs.

f) Ensuring the safety and strength of the system: By combining Huffman Coding with

encryption and error-correction techniques, we may create compression schemes that

are both secure and reliable. These schemes will guarantee that compressed data is

compact and safeguarded against unauthorized access and transmission mistakes.

31

METHODOLOGY

3.1 Introduction

This chapter presents the methodologies used to achieve the project's goals. The

methodology involves the construction of a Huffman Coding mechanism for compressing

text files, the development of the required software, and the evaluation of the system's

efficiency.

32

3.2 Project Flowchart

Figure 13: Project Flowchart

3.3 Visual Studio

Microsoft Visual Studio is one of the most popular integrated development

environments, and it can support many languages and many different platforms. Visual

Studio has a whole set of development tools for coding, debugging, and project management;

hence, it is ideal for making and managing big software projects.

33

Visual Studio has been chosen for the implementation of this project because it

possesses many superior attributes, including a strong debugging system that allows the easy

combination of C++ and Python code, besides handling a few related projects under one

solution.These capabilities were essential for implementing and testing the Huffman Coding

algorithms efficiently.

This project utilised Visual Studio to:

a) To develop the compression and decompression algorithms in C++, respectively

called HuffCompressProject and HuffDecompressProject.

b) To implement a Python-based web interface-HuffmanPython project-which can

easily be used by a user for compressing and decompressing files.

c) Oversee project dependencies and configurations to guarantee seamless

compilation and execution of the system.

Figure 14: Visual Studio

3.3.1 Project Structure in Visual Studio

The Huffman Coding project was executed in Microsoft Visual Studio, utilising a solution

architecture comprising three distinct projects. Each project was formulated to tackle

specific functionalities within the system, encompassing compression, decompression, and

web-based integration. I designated this project in Visual Studio as HuffmanCodingSolution.

34

Figure 15: Structure of Visual Studio

a) HuffCompressProject.

This project executes the fundamental Huffman compression algorithm. The source

file `HuffCompressProject.cpp` conducts frequency analysis, constructs the

Huffman Tree, and encodes the input text into binary format. The resultant

compressed data is recorded in a `.bin` file.

b) HuffDecompressProject.

This project contains the decompression algorithm, implemented in the source file

`HuffDecompressProject.cpp`. The project includes the decompression algorithm,

implemented in the source file `HuffDecompressProject.cpp`. The system reads the

compressed `.bin` file, reconstructs the Huffman Tree utilising metadata, and

decodes the binary data back into the original text.

c) HuffmanPython.

This project incorporates Python functionality to deliver an intuitive web interface

for file compression and decompression.

35

The elements comprise:

I. ‘HuffmanPython.py’: The primary script that oversees the compression and

decompression operations.

II. Templates (‘compress.html’, ‘decompress.html’, and ‘home.html’): HTML

documents designed for displaying web pages that facilitate user interaction

with the system.

III. Folders:

‘uploads’: Stores user-uploaded files for compression or decompression.

‘downloads’: Contains the compressed .bin files and the decompressed files.

‘static’: Holds supporting assets, including an image that illustrates the

project's workflow.

3.3.2 HuffCompressProject

Figure 16: Solution Explorer

a) Ensure the file you want to compress is located in the uploads directory of the project.

This is necessary for the program to access the file correctly.

36

b) Right-click on the solution name, ‘HuffmanCodingSolution (3 of 3 projects)’, in the

Visual Studio Solution Explorer.

c) Select ‘Open in Terminal’ to open a terminal window at the project’s root directory.

d) Once the terminal shows the project path

(e.g.,PSC:\Users\Dell\source\repos\HuffmanCodingSolution>), type the following

command to navigate to the debug folder:

:- cd x64\debug

e) Use the following command to execute the HuffCompressProject.exe file.

Replace the input and output file paths as needed:

.\HuffCompressProject.exe

"C:\Users\Dell\source\repos\HuffmanCodingSolution\HuffmanPython\uploads\

testing.txt"

"C:\Users\Dell\source\repos\HuffmanCodingSolution\HuffmanPython\downloa

ds\testing-compressed.bin"

I. Explanation:

The first path ("C:\...\uploads\testing.txt") specifies the input file to be

compressed. The second path ("C:\...\downloads\testing-compressed.bin")

specifies the output location for the compressed .bin file.

 Figure 17: HuffCompressProject

37

3.3.3 HuffDecompressProject

a) Ensure that the testing-compressed.bin file is located in the downloads folder of the

project before running the program.

b) Right-click on the solution name ‘HuffmanCodingSolution (3 of 3 projects)’ in the

Visual Studio Solution Explorer.

c) Select ‘Open in Terminal’ to open a terminal window in the project directory.

d) Right click on the Solution ‘HuffmanCodingSolution’(3 of 3 projects) and click open

in terminal.

e) In the terminal, type the following command to navigate to the debug folder where

the executable files are stored:

:- cd x64\debug

f) Execute the HuffDecompressProject.exe file with the appropriate input and output

paths. Use the following command:

.\HuffDecompressProject.exe

"C:\Users\Dell\source\repos\HuffmanCodingSolution\HuffmanPython\downloa

ds\testing-compressed.bin"

"C:\Users\Dell\source\repos\HuffmanCodingSolution\HuffmanPython\downloa

ds\testing-decompressed.txt"

I. Explanation:

The first path ("C:\...\testing-compressed.bin") specifies the input file to

decompress. The second path ("C:\...\testing-decompressed.txt") specifies

the output location where the decompressed file will be saved.

38

 Figure 18: HuffDecompressProject

3.3.4 HuffmanPython

To run this HuffmanPython section:

a) Right click on the HuffmanPython project in your IDE and select ‘set as startup

project’.

b) After HuffmanPython project was set as startup project, right click again and click

‘open in terminal’.

c) Once the terminal was open type the following sentence as shown in the figure below:

I. In the terminal, activate the virtual environment by typing:

‘Scripts\activate’

II. Run the application by typing:

‘python HuffmanPython.py’

Figure 19: HuffmanPython.py

39

d) Copy the URL http://127.0.0.1:5000 from the terminal and paste it into your browser

to access the application.

e) Then the website will display as shown below:

 Figure 20: Homepage of the Huffman Coding website showing options for file

compression and decompression

f) You can either start by compressing files and decompress them later, or you can

decompress any .bin files first.

g) Press button Ctrl+C at your own pc if you want to stop the program from running.

3.3.5 Folder Structure and Contents

a) Uploads folder.

I. The uploads folder contains the input files that are prepared for compression.

These files are uploaded to the system before starting the compression

process.

II. For instance, the file testing.txt is a text document stored here for testing the

compression algorithm.

40

III. Figure 22 shows the contents of the uploads folder, including sample input

files.

Figure 21: Compress Uploads

b) Downloads folder.

I. The downloads folder stores all output files generated by the system,

including compressed .bin files and their corresponding decompressed text

files.

II. For example:

The file testing-compressed.bin is the compressed output for the input file

testing.txt. The file testing-decompressed.txt is generated after

decompressing testing-compressed.bin.

III. Figure 23 provides an overview of the files in the downloads folder.

Figure 22: Decompress Uploads

41

3.3.6 Static folder

The static folder contains auxiliary files, such as stylesheets or images, that are essential

for the visual presentation of the web-based user interface.

Figure 23: Homepage of The Project

Figure 24: Compress Text File Page

42

Figure 25: Upload testing.txt Into Uploads File With 47,189 KB

Figure 26: Successfully Added testing.txt File Into Uploads File

Figure 27: bin File Was Successfully Created In Downloads File With 25,203 KB

43

Figure 28: Decompress Text File Page

Figure 29: Decompress-Upload testing-compressed.bin From Downloads File

Figure 30: Successfully Decompress The File Back To Original Type File

3.4 Step for implementation

1. Step 1: Conduct frequency analysis.

The programme parses the input text file and computes the occurrence rate of each

individual character.

The frequencies are recorded in a table or list, which acts as the foundation for

constructing the Huffman Tree.

2. Step 2: Constructing the Huffman Tree

44

The characters and their frequency are added to a priority queue. The two

characters with the lowest frequencies are iteratively removed and merged into a new node,

which is subsequently inserted back into the priority queue. The procedure continues until

only one node remains, which represents the root of the Huffman Tree.

3. Step 3: Creating Huffman Codes

The assignment of binary codes to each character is accomplished by traversing the

HuffmanTree.

The left edges are assigned the label '0' while the right edges are assigned the label

'1', guaranteeing that no code is a prefix of another.

4. Step 4: Text Encoding

The initial text is encoded utilizing the produced Huffman codes.

The encoded text and the Huffman Tree structure are stored in a compressed file.

45

3.5 Summary

This chapter delineated the systematic methodology employed to design,

implement, and assess the Huffman Coding system for text file compression. The process

commenced with a comprehensive overview of the project flowchart, outlining each phase

in the system's development. Microsoft Visual Studio served as the principal integrated

development environment, integrating C++ and Python capabilities to facilitate effective

compression and decompression.

The methodology outlines the project's structure in Visual Studio, comprising three

primary components:

a) HuffCompressProject: Implements a compression algorithm to encode text files into

compact .bin files.

b) HuffDecompressProject: Reverts .bin files to their original text format.

c) HuffmanPython: Offers an intuitive web interface for file compression and

decompression.

This chapter elucidated the project structure in Visual Studio, detailing folder

organization and the functions of uploads and downloads directories in managing input and

output files. The methodology for constructing Huffman Trees, allocating binary codes to

characters, and producing compressed binary files was elucidated through sequential

instructions and accompanying illustrations.

By adhering to this methodology, the Huffman Coding system guarantees

substantial file size reduction while preserving data integrity. This project's methodology

illustrates scalability for diverse file types and establishes a basis for effective data

management.

46

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter delineates the results of the Huffman Coding system, illustrating its

efficacy in compressing text files. The results demonstrate the diminishment of file sizes, the

intricate formation of Huffman Trees, and the most efficient encoding of textual data. These

results confirm the efficacy of Huffman Coding in attaining lossless compression, with

possible applications in data transmission, storage optimization, and real-time processing.

4.2 Huffman tree result

The Huffman Tree is an essential element of the Huffman Coding algorithm,

facilitating the creation of variable-length binary codes derived from character frequencies.

This section illustrates the construction of the Huffman Tree utilizing the input string 'AEE

ISSIG MSISS HTH' and elucidates each step with accompanying figures.

4.2.1 Explanation by figure

Figure 31: String of Characters

a) Step 1:

I. Insert each character as separate nodes into a priority queue, arranged by

frequency.

47

II. A priority queue is utilised to guarantee that the two nodes with the lowest

frequencies are consistently merged first. This reduces the total length of the

code.

Figure 32: Character Frequencies

b) Step 2:

I. Combine A and G (frequencies: 1 + 1 = 2).

II. Generate a new node with a frequency of 2 and reintegrate it into the queue.

Figure 33: Combine A&G

c) Step 3:

I. Combine M and T (frequencies: 1 + 1 = 2).

II. Generate a new node with a frequency of 2 and reintegrate it into the queue.

Figure 34: Combine M&T

48

d) Step 4:

I. Combine E and H (frequencies: 2 + 2 = 4).

II. Generate a new node with a frequency of 4 and reintegrate it into the queue.

Figure 35: Combine E&H

e) Step 5:

I. Combine (A-G) and (M-T) (frequencies: 2 + 2 = 4).

II. Generate a new node with a frequency of 4 and reintegrate it into the queue.

Figure 36: Combine 2&2

f) Step 6:

I. Combine (A-G) (M-T) and (E-H) (frequencies: 4 + 4 = 8).

II. Generate a new node with a frequency of 8 and reintegrate it into the queue.

Figure 37: Combine 4&4

49

g) Step 7:

I. Combine (- and I) and (- -I) and (S) (frequencies: 6 + 5 = 11).

II. Generate a new node with a frequency of 11 and reintegrate it into the queue.

Figure 38: Combine 6&5

g) Step 8:

I. Combine (frequencies: 8 + 11 = 19).

II. Generate a new node with a frequency of 19 and reintegrate it into the queue.

Figure 39: Combine 8&11

III. Note that the “19” was the root for this tree.

50

h) Step 9:

Figure 40: Assigned the left edges as ‘0’ & Assigned the right edges as

'1’

4.2.2 Detail explanation for Huffman tree

1. Given the string was ‘go go gophers’.

2. Then convert the given characters into ASCII code.

 Table 4: ASCII Code

51

3. Convert ASCII to binary.

a) Each ASCII code is then converted into an 8-bit binary representation:

b) Count the frequency of each characters.

Figure 42: Frequency of Characters

c) Constructing the Huffman tree

I. Combined r & s

Figure 43: Step 1

II. Combined h & e

Figure 44: Step 2

104 bits

13x8 = 104

Figure 41: Hex to Binary

52

III. Combined - & p

Figure 45: Step 3

IV. Combined 2 & 2

Figure 46: Step 4

V. Combined g & o

Figure 47: Step 5

VI. Combined 3 & 4

Figure 48: Step 6

53

VII. Combined 6 & 7

Figure 49: Step 7

d) Assign Binary Codes

I. Once the Huffman Tree is constructed:

Left branches are assigned 0.

Right branches are assigned 1.

Figure 50: Step 8

54

e) Generate Binary Codes for Characters

I. The binary codes for the characters in the string "go go gophers" are

as follows:

Figure 51: Step 9

II. The codes are generated from the Huffman Tree by tracing the path

from the root to each character's leaf node.

f) Compress the string

I. Original ASCII binary representation (13 characters × 8 bits each):

104 bits.

Figure 52: Original: 104 bits

55

Figure 53: New: 37 bits

II. The encoded binary string after Huffman coding is significantly

shorter than the original, demonstrating the efficiency of Huffman

coding. With the binary bits: 37 bits.

g) Convert Binary to Hex (Preparation for Decompression code)

I. After encoding, the compressed binary string is divided into 8-bit

segments (1 byte each).

Figure 54: From Binary to Hex

h) This code binary will be saved into .bin file.

I. The binary representation is stored in a compressed .bin file for

storage or transmission.

Figure 55: Binary In .bin File

56

i) Decompression (Reading the .bin File)

I. The .bin file is analyzed and decoded to recreate the original text.

Figure 56: Step For Decoding

4.3 Binary Encoding and File Size Reduction

This section assesses the efficacy of the Huffman Coding system by contrasting file

sizes prior to and subsequent to compression. The table below encapsulates the results,

emphasizing the dimensions of input files, their associated compressed .bin files, and the

decompressed outputs.

 Table 5: File Size Comparison Before and After

57

The table demonstrates the efficacy of the Huffman Coding system in compressing files of

diverse sizes and types.

a) The file testing.txt, originally 47,189 KB, was compressed to 25,203 KB. This

indicates a compression ratio of roughly 46.6%.

b) Files of lesser size, such as styles.css (4 KB) and main.css (5 KB), exhibited minimal

decreases in size (from 5 KB to 3 KB for main.css and from 4 KB to 3 KB for

styles.css).

c) The decompressed sizes of all files correspond to the original sizes, thereby

validating the lossless characteristics of the Huffman Coding system. This illustrates

that the algorithm effectively preserves all original information throughout the

compression and decompression processes.

d) The .bin files produced during compression are concise and effectively represent the

input data through the binary encoding derived from the Huffman Tree. The file

originalfile.txt was compressed from 9 KB to 6 KB while preserving its content

integrity.

This is how to calculate compression ratio and compression percentage (Reduction):

 Compression Ratio =
Compressed Size

Original Size
 𝑥 100

 Compression Percentage (Reduction) = 100−Compression Ratio (%)

58

4.4 Summary

This chapter outlined the findings and assessment of the Huffman Coding system

for compressing text files. The chapter commenced by demonstrating the sequential

construction of the Huffman Tree, an essential element of the compression process.

Characters from the input string were systematically amalgamated using a priority

queue according to their frequencies to construct a complete binary tree. The tree structure

enabled the creation of variable-length binary codes, assigning shorter codes to more

frequent characters to ensure optimal compression efficiency.

The binary encoding process was examined, emphasizing the decrease in file size

relative to the original ASCII format. The results indicated the system's proficiency in

compressing files, attaining a compression ratio of roughly 46.6% for larger text files. The

decompression process was validated, confirming that the system precisely reconstructed the

original text from the compressed .bin files. The results highlighted the lossless

characteristics of Huffman Coding, establishing it as a dependable and efficient method for

text file compression.

59

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The project effectively created a Huffman Coding-based system for compressing

text files, resulting in substantial reductions in file size while maintaining data integrity. The

system proved to be efficient, scalable, and reliable, rendering it appropriate for data storage

and transmission applications. Huffman Coding optimizes storage and transmission costs by

assigning shorter codes to frequently occurring characters, preserving the integrity of the

original data. The results confirm the system's ability to manage diverse text file formats and

highlight its potential for wider application.

5.2 Potential for Commercialization

The Huffman Coding-based text compression system provides an efficient and

lossless method for handling text files, rendering it suitable for commercial applications

across various industries.

Principal benefits comprise:

I. Huffman coding significantly reduces text file sizes, lowering storage costs and

improving efficiency.

II. Compressed files require less bandwidth, making data transmission faster and

cost- effective.

III. Ideal for embedded systems and IoT devices with limited memory, enabling

efficient data management

60

5.3 Future Works

To enhance the system's functionalities, multiple areas for enhancement have been

recognized:

I. Design adaptive Huffman algorithms to process real-time data streams for

applications including live video feeds or sensor data.

II. Enhance the compression algorithm to reduce energy consumption,

especially in large-scale data centres.

III. Optimize the system to effectively handle exceptionally large files or

datasets, potentially employing parallel computing or distributed systems.

IV. Incorporate encryption and error-correction methods to guarantee secure and

dependable data management during compression and decompression.

62

REFERENCES

[1] "Text File Compression And Decompression Using Huffman Coding," 10 May 2024.

[Online]. Available: https://www.geeksforgeeks.org/text-file-compression-and-

decompression-using-huffman-coding/.

[2] Andysah Putera Utama Siahaan, "Huffman Text Compression Technique," SSRG

International Journal of Computer Science and Engineering, vol. 3, no. 8, 2016.

[3] D. A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes," 9

September 1952. [Online]. Available: https://ieeexplore.ieee.org/document/4051119.

[4] D.Jasmine Shoba, Dr.S.Sivakumar, "A Study on Data Compression Using Huffman

Coding," International Journal of Computer Science Trends and Technology, vol. 5,

no. 1, 2017.

[5] Ian H. Witten, Alistair Moffat, and Timothy C. Bell , "Managing

Gigabytes:Compressing and Indexing documents and images," 1999.

[6] David Salomon, Data Compression: The Complete Reference, Springer Science &

Business Media, 2007.

[7] C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical

Journal, vol. 27, no. 3, pp. 379-423, July 1948.

63

[8] Virendra Nikam, Sheetal Dhande, "A Historical Perspective on Approaches to Data

Compression," Mathematics and Computer Science, vol. 8, no. 3, pp. 68-72, 2023.

[9] Timothy C. Bell, John G. Cleary, Ian H. Witten, Text Compression, the University of

Michigan: Prentice Hall, 1990, 20 Nov 2007.

[10

]

JACOB ZIV, ABRAHAM LEMPEL, "Universal Algorithm for Sequential Data

Compress," IEEE TRANSACTIONS ON INFORMATION THEORY, p. NO. 3, 1977.

[11

]

J. Ziv; A. Lempel, "Compression of individual sequences via variable-rate coding,"

IEEE Transactions on Information Theory , pp. 530 - 536, 1978.

[12

]

Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, Wiley-

Interscience, 7 April 2005.

[13

]

Andrew J Elliot 1, Markus A Maier, "Color psychology: effects of perceiving color

on psychological functioning in humans," Annual Review of Psychology, vol. 65, pp.

95-120, 2014.

[14

]

Witzel, C.; Gegenfurtner, K. R, "Color Perception: Objects, Constancy, and

Categories," Annual Review of Vision Science, vol. 4, no. 1, pp. 475-499, 2018.

[15

]

World Wide Web Consortium (W3C), "HTML Standard," World Wide Web

Consortium (W3C), 16 January 2023. [Online]. Available:

https://html.spec.whatwg.org/. [Accessed 16 January 2025].

[16

]

M. Burrows and D.J. Wheeler, "A Block-sorting Lossless," Systems Research Center,

May 10, 1994.

64

[17

]

M. Nelson, and J. Gailly., The Data Compression Book, 2nd Edition, M&T Books,

1996.

[18

]

K Sayood , Introduction to data compression, Morgan Kaufmann, 2017.

[19

]

Welch, "A Technique for High-Performance Data Compression," Computer, pp. 8 -

19, 1984 .

[20

]

J. J. Rissanen, "Generalized Kraft Inequality and Arithmetic Coding," IBM Journal of

Research and Development, vol. 20, no. 3, pp. 198 - 203, May 1976.

[21

]

G. G. Langdon, "An Introduction to Arithmetic Coding," IBM Journal of Research

and Development, vol. 28, no. 2, pp. 135 - 149, March 1984.

[22

]

Ian Witten.,Ian H., Neal, J. G., "Arithmetic Coding for Data Compression," January

1987.

[23

]

Donald Knuth , Art of Computer Programming, The: Sorting and Searching, Volume

3, Addison-Wesley Professional; 2nd edition, (April 24, 1998).

[24

]

Alistair Moffat , Andrew Turpin, Compression and Coding Algorithms, Springer

New York, NY, 2002.

[25

]

"GeeksforGeeks," 10 may 2024. [Online]. Available:

https://www.geeksforgeeks.org/text-file-compression-and-decompression-using-

huffman-coding/.

65

[26

]

"Text File Compression And Decompression Using Huffman ..," 10 May 2024.

[Online]. Available: https://www.geeksforgeeks.org/text-file-compression-and-

decompression-using-huffman-coding/.

[27

]

GeeksforGeeks, "Huffman Coding in C," GeeksforGeeks, 19 July 2024. [Online].

Available: https://www.geeksforgeeks.org/huffman-coding-in-c/. [Accessed 16

January 2025].

[28

]

GeeksforGeeks, "Huffman Coding in C++," GeeksforGeeks, 14 July 2024. [Online].

Available: https://www.geeksforgeeks.org/huffman-coding-in-cpp/. [Accessed 16

January 2025].

[29

]

David A. Huffman, "A Method for the Construction of Minimum-Redundancy

Codes," Proceedings of the IRE, vol. 40, no. 9, pp. 1098 - 1101, 1952.

[30

]

Ian H. Witten, Radford M. Neal, John G. Cleary, "Arithmetic coding for data

compression," Communications of the ACM, vol. 30, no. 6, pp. 520-540, 1987.

[31

]

Computer Hope, "David Huffman," Computer Hope, 30 Desember 2019. [Online].

Available: https://www.computerhope.com/people/david_huffman.htm. [Accessed 16

January 2025].

[32

]

Wikipedia, "Huffman Codding," Wikipedia, 15 January 2025. [Online]. Available:

https://en.wikipedia.org/wiki/Huffman_coding. [Accessed 16 January 2025].

[33

]

wscubetech, "Huffman Code: Example, Algorithm, Time Complexity," wscubetech,

16 January 2025. [Online]. Available:

https://www.wscubetech.com/resources/dsa/huffman-code. [Accessed 16 January

2025].

66

[34

]

Trung Tran, "Huffman coding," UC Santa Cruz, 31 July 2024. [Online]. Available:

https://www.ucsc.edu/timeline/huffman-coding/. [Accessed 16 January 2025].

[35

]

AmazingAlgorithms., "Huffman Coding," AmazingAlgorithms., 2025. [Online].

Available: https://amazingalgorithms.com/definitions/huffman-coding/. [Accessed 16

Jun 2025].

[36

]

GeeksforGeeks, "Huffman Coding | Greedy Algo-3," GeeksforGeeks, [Online].

Available: https://www.geeksforgeeks.org/huffman-coding-greedy-algo-3/. [Accessed

16 January 2025].

[37

]

Neeraj Mishra, "Huffman Coding Algorithm With Example," thecrazyprogrammer,

2025. [Online]. Available: https://www.thecrazyprogrammer.com/2014/09/huffman-

coding-algorithm-with-example.html. [Accessed 16 Jun 2025].

[38

]

Yuriy Georgiev, "Lossless compression - Huffman Coding & RLE," Yuriy Georgiev,

3 February 2024. [Online]. Available: https://yuriygeorgiev.com/2024/02/03/lossless-

compression-huffman-coding-rle/. [Accessed 16 January 2025].

[39

]

Eva SongPaul CuffH. Vincent PoorH. Vincent Poor, "The Likelihood Encoder for

Lossy Source Compression," IEEE Transactions on Information Theory, 2014.

[40

]

K. W. ROBERT SEDGEWICK, "DATA COMPRESSION," Princeton University,

2021. [Online]. Available:

https://www.cs.princeton.edu/courses/archive/spring21/cos226/lectures/55DataCompr

ession.pdf. [Accessed 16 January 2025].

67

APPENDICES

Appendix A Project Planning(Gantt Chart)

 J. PERANCANGAN PROJEK

PROJECT PLANNING (GANTT CHART)

 Senaraikan aktiviti-aktiviti yang berkaitan bagi projek yang dicadangkan dan nyatakan jangkamasa yang

diperlukan bagi setiap aktiviti.

List all the relevant activities of the proposed project and mark the period of time that isneeded for each of

the activities.

 PSM II

Aktiviti Projek

Project Activities

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Design initial UI, install necessary tools

(e.g., Visual Studio), and implement the

basic Huffman coding algorithm.

Debug the Huffman coding algorithm and

conduct edge-case testing.

Research improvements for the Huffman

algorithm and its application.

Design and develop the website interface,

including interactive functionalities.

Optimize the Huffman coding algorithm for

better compression results.

Implement and test the decompression

68

functionality.

Troubleshoot file handling issues and refine

error handling in compression and

decompression.

Validate the full workflow, including file

compression and decompression.

Set up Flask web application and integrate

compression functionalities.

Perform comprehensive testing and finalize

the project.

Perform comprehensive testing and finalize

the project.

Make preparation for presentation, do poster

Make preparation for presentation, do poster

Make any correction on thesis, based on

discussion with supervisor

69

Appendix B Contents Language

HuffCompressProject.cpp

#include <iostream>
#include <unordered_map>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <filesystem>

using namespace std;
namespace fs = std::filesystem;

unordered_map<char, string> hashmap;

struct huffnode {
 char character;
 unsigned int freq;
 huffnode* left;
 huffnode* right;
 ~huffnode() { delete left; delete right; } // Destructor for cleanup
};

huffnode* new_node(char c, unsigned int freq, huffnode* left = nullptr,
huffnode* right = nullptr) {
 return new huffnode{ c, freq, left, right };
}

void assign_codes(huffnode* root, string code) {
 if (!root->left && !root->right) {
 hashmap[root->character] = code;
 return;
 }
 if (root->left) assign_codes(root->left, code + "0");
 if (root->right) assign_codes(root->right, code + "1");
}

int main(int argc, char* argv[]) {
 if (argc != 3) {
 cerr << "Usage: HuffCompressProject.exe <input file> <output
file>\n";
 return 1;
 }

 FILE* input;
 if (fopen_s(&input, argv[1], "rb") != 0) {
 cerr << "Error: Failed to open input file: " << argv[1] << "\n";
 return 2;
 }

 // Ensure the output directory exists
 fs::path output_path = argv[2];
 fs::create_directories(output_path.parent_path());

70

 FILE* output;
 if (fopen_s(&output, argv[2], "wb") != 0) {
 cerr << "Error: Failed to create output file at: " << argv[2] <<
"\n";
 fclose(input);
 return 3;
 }

 cout << "Processing file: " << argv[1] << "\n";
 cout << "Output file will be saved to: " << argv[2] << "\n";

 // Step 1: Frequency analysis
 unsigned int freq[256] = { 0 };
 char c;
 while (fread(&c, 1, 1, input)) {
 freq[(unsigned char)c]++;
 }
 rewind(input);

 // Step 2: Build Huffman Tree
 vector<huffnode*> nodes;
 for (int i = 0; i < 256; i++) {
 if (freq[i] > 0) {
 nodes.push_back(new_node((char)i, freq[i]));
 }
 }

 while (nodes.size() > 1) {
 sort(nodes.begin(), nodes.end(), [](huffnode* a, huffnode* b) {
return a->freq > b->freq; });
 huffnode* left = nodes.back(); nodes.pop_back();
 huffnode* right = nodes.back(); nodes.pop_back();
 nodes.push_back(new_node('\0', left->freq + right->freq, left,
right));
 }
 assign_codes(nodes[0], "");

 // Save the original filename and extension as metadata
 string original_filename = fs::path(argv[1]).filename().string();
 uint32_t filename_length = original_filename.size();
 fwrite(&filename_length, sizeof(uint32_t), 1, output); // Write filename
length
 fwrite(original_filename.c_str(), 1, filename_length, output); // Write
filename

 // Step 3: Write Huffman map
 uint32_t num_entries = hashmap.size();
 fwrite(&num_entries, sizeof(uint32_t), 1, output);
 for (const auto& pair : hashmap) {
 fwrite(&pair.first, 1, 1, output);
 uint32_t code_length = pair.second.size();
 fwrite(&code_length, sizeof(uint32_t), 1, output);

 unsigned char byte = 0;
 int bit_count = 0;
 for (char bit : pair.second) {
 byte = (byte << 1) | (bit - '0');
 bit_count++;
 if (bit_count == 8) {

71

 fwrite(&byte, 1, 1, output);
 byte = 0;
 bit_count = 0;
 }
 }
 if (bit_count > 0) {
 byte <<= (8 - bit_count);
 fwrite(&byte, 1, 1, output);
 }
 }

 // Step 4: Write encoded data
 unsigned char byte = 0;
 int bit_count = 0;
 while (fread(&c, 1, 1, input)) {
 string code = hashmap[c];
 for (char bit : code) {
 byte = (byte << 1) | (bit - '0');
 bit_count++;
 if (bit_count == 8) {
 fwrite(&byte, 1, 1, output);
 byte = 0;
 bit_count = 0;
 }
 }
 }
 if (bit_count > 0) {
 byte <<= (8 - bit_count);
 fwrite(&byte, 1, 1, output);
 }

 fclose(input);
 fclose(output);
 delete nodes[0]; // Clean up dynamically allocated memory

 cout << "Compression completed successfully.\n";
 return 0;
}

72

HuffDecompressProject.cpp

#include <iostream>
#include <unordered_map>
#include <string>
#include <cstdint>
#include <cstdio>
#include <filesystem>
#include <vector>
#include <cassert>

using namespace std;
namespace fs = std::filesystem;

unordered_map<string, char> reverse_hashmap;

struct BitReader {
 FILE* file;
 uint8_t buffer;
 int bits_left;

 explicit BitReader(FILE* file) : file(file), buffer(0), bits_left(0) {}

 int read_bit() {
 if (bits_left == 0) {
 if (fread(&buffer, 1, 1, file) != 1) return -1; // End of file
or error
 bits_left = 8;
 }
 return (buffer >> --bits_left) & 1;
 }
};

int main(int argc, char* argv[]) {
 if (argc != 3) {
 cerr << "Usage: HuffDecompressProject.exe <input file> <output
folder>\n";
 return 1;
 }

 // Debug: Print input and output paths
 cout << "Input file: " << argv[1] << "\n";
 cout << "Output folder: " << argv[2] << "\n";

 // Open the input file
 FILE* input;
 if (fopen_s(&input, argv[1], "rb") != 0) {
 cerr << "Error: Failed to open input file: " << argv[1] << "\n";
 return 2;
 }
 assert(input != nullptr);

 // Read the original filename length
 uint32_t filename_length;
 if (fread(&filename_length, sizeof(uint32_t), 1, input) != 1) {
 cerr << "Error: Failed to read filename length.\n";
 fclose(input);
 return 3;

73

 }

 // Read the original filename
 vector<char> original_filename(filename_length + 1);
 if (fread(original_filename.data(), 1, filename_length, input) !=
filename_length) {
 cerr << "Error: Failed to read original filename.\n";
 fclose(input);
 return 4;
 }
 original_filename[filename_length] = '\0';

 // Debug: Print original filename
 cout << "Original filename: " << original_filename.data() << "\n";

 // Create the decompressed file path
 fs::path decompressed_filepath = fs::path(argv[2]) /
original_filename.data();
 fs::create_directories(decompressed_filepath.parent_path());

 // Debug: Print decompressed file path
 cout << "Decompressed file path: " << decompressed_filepath << "\n";

 // Open the decompressed output file
 FILE* decompressed_output;
 if (fopen_s(&decompressed_output,
decompressed_filepath.string().c_str(), "wb") != 0) {
 cerr << "Error: Failed to create decompressed output file: " <<
decompressed_filepath << "\n";
 fclose(input);
 return 5;
 }
 assert(decompressed_output != nullptr);

 // Read the number of Huffman map entries
 uint32_t num_entries;
 if (fread(&num_entries, sizeof(uint32_t), 1, input) != 1) {
 cerr << "Error: Failed to read Huffman map entries.\n";
 fclose(input);
 fclose(decompressed_output);
 return 6;
 }

 // Read the Huffman map
 for (uint32_t i = 0; i < num_entries; i++) {
 char character;
 uint32_t code_length;
 if (fread(&character, 1, 1, input) != 1 || fread(&code_length,
sizeof(uint32_t), 1, input) != 1) {
 cerr << "Error: Failed to read Huffman map entry.\n";
 fclose(input);
 fclose(decompressed_output);
 return 7;
 }

 string code;
 unsigned char byte = 0;
 int bits_read = 0;
 for (uint32_t j = 0; j < code_length; j++) {
 if (bits_read == 0) {

74

 if (fread(&byte, 1, 1, input) != 1) {
 cerr << "Error: Failed to read Huffman code bits.\n";
 fclose(input);
 fclose(decompressed_output);
 return 8;
 }
 bits_read = 8;
 }
 code.push_back(((byte >> --bits_read) & 1) ? '1' : '0');
 }
 reverse_hashmap[code] = character;
 }

 // Debug: Print Huffman map size
 cout << "Huffman map size: " << reverse_hashmap.size() << "\n";

 // Decode the compressed content
 BitReader reader(input);
 string current_code;
 int bit;
 while ((bit = reader.read_bit()) != -1) {
 current_code.push_back(bit ? '1' : '0');
 if (reverse_hashmap.find(current_code) != reverse_hashmap.end()) {
 char decoded_char = reverse_hashmap[current_code];
 fwrite(&decoded_char, 1, 1, decompressed_output);
 current_code.clear();
 }
 }

 // Check for leftover bits
 if (!current_code.empty()) {
 cerr << "Warning: Extra bits in the encoded file were ignored.\n";
 }

 // Close the files
 fclose(input);
 fclose(decompressed_output);

 // Reset permissions for the decompressed file
 fs::permissions(decompressed_filepath, fs::perms::owner_all |
fs::perms::group_all | fs::perms::others_all, fs::perm_options::add);

 cout << "Decompression completed successfully. File saved at: " <<
decompressed_filepath << "\n";
 return 0;
}

75

HuffmanPython.py

import os
import uuid
from flask import Flask, render_template, request, send_file
import subprocess

Configure Application
app = Flask(__name__)

Base directory of the project
BASE_DIR = os.path.abspath(os.path.dirname(__file__))

Upload and Download folder paths
UPLOAD_FOLDER = os.path.join(BASE_DIR, "uploads")
DOWNLOAD_FOLDER = os.path.join(BASE_DIR, "downloads")

Executable paths
COMPRESSION_EXE =
r"C:\Users\Dell\source\repos\HuffmanCodingSolution\x64\Debug\HuffCompressPro
ject.exe"
DECOMPRESSION_EXE =
r"C:\Users\Dell\source\repos\HuffmanCodingSolution\x64\Debug\HuffDecompressP
roject.exe"

Create folders if they do not exist
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(DOWNLOAD_FOLDER, exist_ok=True)

app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
app.config["DOWNLOAD_FOLDER"] = DOWNLOAD_FOLDER

Allowed file extensions
ALLOWED_EXTENSIONS = {'txt', 'bin', 'html', 'css', 'js'}

def allowed_file(filename):
 """Check if the file extension is allowed."""

 return '.' in filename and filename.rsplit('.', 1)[1].lower() in
ALLOWED_EXTENSIONS

@app.route("/")
def home():

 """Render the home page."""
 return render_template("home.html")

@app.route("/compress", methods=["GET", "POST"])
def compress():

 """Handle file compression."""
 if request.method == "POST":

 uploaded_file = request.files.get("file")

 if uploaded_file and uploaded_file.filename and
allowed_file(uploaded_file.filename):

 original_filename = uploaded_file.filename
 filename = f"{uuid.uuid4()}-{original_filename}"
 save_path = os.path.join(app.config["UPLOAD_FOLDER"], filename)

76

 # Save uploaded file to uploads folder
 try:
 uploaded_file.save(save_path)
 print(f"File saved to: {save_path}")

 # Verify the file exists
 if os.path.exists(save_path):
 print(f"Uploaded file exists at: {save_path}")
 else:
 print(f"Uploaded file does not exist at: {save_path}")
 return render_template("compress.html", check=-1,
message="File upload failed.")
 except Exception as e:
 print(f"Error saving file: {e}")
 return render_template("compress.html", check=-1,
message="File upload failed.")

 # Path for compressed file in downloads folder
 compressed_file = f"{os.path.splitext(original_filename)[0]}-
compressed.bin"
 compressed_path = os.path.join(app.config["DOWNLOAD_FOLDER"],
compressed_file)

 # Check if compression executable exists
 if not os.path.exists(COMPRESSION_EXE):
 print("Compression executable not found.")
 return render_template("compress.html", check=-1,
message="Compression executable not found.")

 # Run compression executable
 command = [COMPRESSION_EXE, save_path, compressed_path]
 print(f"Running command: {command}")
 try:
 result = subprocess.run(command, check=True,
capture_output=True, text=True)
 print(f"Subprocess output: {result.stdout}")
 print(f"Subprocess error: {result.stderr}")

 # Check if compressed file was successfully created
 if os.path.exists(compressed_path):
 print("Compression successful.")
 return render_template("compress.html", check=1,
filename=os.path.basename(compressed_path))
 else:
 print("Compressed file not found.")
 return render_template("compress.html", check=-1,
message="Compressed file not created.")
 except subprocess.CalledProcessError as e:
 print(f"Subprocess failed with error: {e}")
 return render_template("compress.html", check=-1,
message="Compression failed. Please try again.")
 else:
 print("Invalid file or no file selected.")
 return render_template("compress.html", check=-1,
message="Invalid or no file selected.")
 else:
 return render_template("compress.html", check=0)

@app.route("/decompress", methods=["GET", "POST"])

77

def decompress():
 """Handle file decompression."""
 if request.method == "POST":
 uploaded_file = request.files.get("file")

 if uploaded_file and uploaded_file.filename and
allowed_file(uploaded_file.filename):
 temp_filename = f"{uuid.uuid4()}-{uploaded_file.filename}"
 save_path = os.path.join(app.config["UPLOAD_FOLDER"],
temp_filename)

 try:
 uploaded_file.save(save_path)
 print(f"File saved to: {save_path}")
 except Exception as e:
 print(f"Error saving file: {e}")
 return render_template("decompress.html", check=-1,
message="File upload failed.")

 decompressed_file =
f"{os.path.splitext(uploaded_file.filename)[0]}-decompressed.txt"
 decompressed_path = os.path.join(app.config["DOWNLOAD_FOLDER"],
decompressed_file)

 # Check if decompression executable exists
 if not os.path.exists(DECOMPRESSION_EXE):
 print("Decompression executable not found.")
 return render_template("decompress.html", check=-1,
message="Decompression executable not found.")

 # Run decompression executable
 command = [DECOMPRESSION_EXE, save_path,
app.config["DOWNLOAD_FOLDER"]]
 print(f"Running command: {command}")
 print(f"Expected decompressed file path: {decompressed_path}")

 try:
 result = subprocess.run(command, check=True,
capture_output=True, text=True)
 print(f"Subprocess output: {result.stdout}")
 print(f"Subprocess error: {result.stderr}")

 # Additional logging to verify file paths and contents
 print("Files in the download directory after
decompression:")
 for root, dirs, files in
os.walk(app.config["DOWNLOAD_FOLDER"]):
 for file in files:
 print(f"Found file: {os.path.join(root, file)}")

 # Extract the actual decompressed file path from the
subprocess output if available
 decompressed_file_actual = None
 for line in result.stdout.splitlines():
 if "Decompressed file path:" in line:
 decompressed_file_actual = line.split("Decompressed
file path:")[-1].strip().strip('"')
 print(f"Actual decompressed file path from output:
{decompressed_file_actual}")
 break

78

 if decompressed_file_actual and
os.path.exists(decompressed_file_actual):
 print("Decompression successful.")

 # Remove uploaded .bin file after decompression
 if os.path.exists(save_path):
 os.remove(save_path)

 os.chmod(decompressed_file_actual, 0o777)
 return render_template("decompress.html", check=1,
filename=os.path.basename(decompressed_file_actual))
 else:
 print("Decompressed file not found.")
 return render_template("decompress.html", check=-1,
message="Decompressed file not created.")
 except subprocess.CalledProcessError as e:
 print(f"Subprocess failed with error: {e}")
 print(f"Command output: {e.stdout}")
 print(f"Error output: {e.stderr}")
 return render_template("decompress.html", check=-1,
message="Decompression failed. Please try again.")
 else:
 print("Invalid file or no file selected.")
 return render_template("decompress.html", check=-1,
message="Invalid or no file selected.")
 else:
 return render_template("decompress.html", check=0)

@app.route("/download/<filename>")
def download_file(filename):
 """Handle file download."""
 download_path = os.path.join(app.config["DOWNLOAD_FOLDER"], filename)

 if os.path.exists(download_path):
 return send_file(download_path, as_attachment=True)
 else:
 return render_template("error.html", message="File not found.")

if __name__ == "__main__":
 print(f"Starting server. Upload folder: {UPLOAD_FOLDER}, Download
folder: {DOWNLOAD_FOLDER}")
 app.run(debug=True)

