
DEVELOPMENT OF REALTIME PATIENT HEALTH TRACKER

WEBSITE USING

MICROCONTROLLER AND LARAGON

SHAZWAN HAZMI BIN SHAMSHIR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Bachelor of Electronics Engineering Technology (Industrial Electronics) with

Honours

2025

DEVELOPMENT OF REALTIME PATIENT HEALTH

TRACKER

WEBSITE USING

MICROCONTROLLER AND LARAGON

SHAZWAN HAZMI BIN SHAMSHIR

A project report is submitted in partial fulfilment of the

requirements for the degree of Bachelor of Electronics Engineering

Technology (Industrial Electronics) with Honours

Faculty of Electronics and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2025

Tajuk Projek :

Sesi Pengajian :

Development of realtime patient health tracker website

using Microcontroller and Laragon.

2025

Saya SHAZWAN HAZMI BIN SHAMSHIR mengaku membenarkan laporan Projek

Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti

berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang telah

ditentukan oleh organisasi/badan di mana

penyelidikan dijalankan.

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh : 07 February 2025 Tarikh : 10 February 2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan

menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled “Project Title” is the result of my own research

except as cited in the references. The project report has not been accepted for any degree

and is not concurrently submitted in candidature of any other degree.

Signature :

Student Name :

Date :

SHAZWAN HAZMI BIN SHAMSHIR

07 FEBRUARY 2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical

Engineering Technology with Honours.

Signature :

Supervisor Name : TS. NIZA BINTI MOHD IDRIS

Date :

Signature :

Co-Supervisor

Name (if any)

:

Date :

60136
Typewriter
10/2/25

DEDICATION

My parents' unwavering love and support, along with their sacrifices and encouragement,

have been the cornerstone of my academic journey. This project is dedicated to them. I am

so appreciative of your financial support because it has made it possible for me to pursue my

dreams.

Futhermore, I would like to express my sincere gratitude to Ts. Niza Binti Mohd Idris that

the nice supervisor. Your direction, tolerance, and unwavering support throughout this

project's inception and completion have been crucial to its success. Your guidance has been

invaluable, and I sincerely appreciate the knowledge and abilities I have acquired as a result

of your instruction.

I also want to express my gratitude to my friends for being my rock and for their friendship,

which helped me to overcome the difficulties. Your inspirational support has helped to make

this semester at Universiti Teknikal Malaysia Melaka unforgettable. This accomplishment

is the result of a team effort as much as mine, and I am appreciative of everyone's priceless

contributions.

i

ABSTRACT

The goal of this research project is to create a web-based platform that combines Laragon

and microcontroller technology to provide a comprehensive real-time patient health

monitoring solution. The main goal is to develop an intuitive system that can track and

monitor patient health parameters continuously and in real-time. The goal of the project is

to give medical professionals accurate and timely information about patients' health status

by using microcontrollers for data acquisition and transmission and Laragon’s powerful data

management features. The process entails designing and implementing the system after

doing extensive research to determine the best web development frameworks and

microcontroller technologies. Prototyping, testing, and iterative refinement are among the

research methods used to make sure the system is secure, dependable, and functional. The

creation of a real-time patient health tracker website prototype, which successfully illustrates

the viability and effectiveness of the suggested solution, is one of the primary outcomes. The

study's findings demonstrate how web development and microcontroller technology can be

combined to enhance patient care and healthcare administration. Additional features and

functionalities to expand the system's capabilities should be investigated, and usability

testing involving medical professionals should be done to gauge the system's applicability

in clinical settings.

ii

ABSTRAK

Matlamat projek penyelidikan ini adalah untuk mencipta platform berasaskan web yang

menggabungkan Laragon dan teknologi mikropengawal untuk menyediakan penyelesaian

pemantauan kesihatan pesakit masa nyata yang komprehensif. Matlamat utama adalah untuk

membangunkan sistem intuitif yang boleh menjejak dan memantau parameter kesihatan

pesakit secara berterusan dan dalam masa nyata. Matlamat projek adalah untuk memberi

profesional perubatan maklumat yang tepat dan tepat pada masanya tentang status kesihatan

pesakit dengan menggunakan mikropengawal untuk pemerolehan dan penghantaran data dan

ciri pengurusan data yang berkuasa Laragon. Proses tersebut memerlukan mereka bentuk

dan melaksanakan sistem selepas melakukan penyelidikan yang meluas untuk menentukan

rangka kerja pembangunan web dan teknologi mikropengawal terbaik. Prototaip, ujian dan

penghalusan berulang adalah antara kaedah penyelidikan yang digunakan untuk memastikan

sistem selamat, boleh dipercayai dan berfungsi. Penciptaan prototaip tapak web pengesan

kesihatan pesakit masa nyata, yang berjaya menggambarkan daya maju dan keberkesanan

penyelesaian yang dicadangkan, adalah salah satu hasil utama. Penemuan kajian

menunjukkan bagaimana pembangunan web dan teknologi mikropengawal boleh

digabungkan untuk meningkatkan penjagaan pesakit dan pentadbiran penjagaan kesihatan.

Ciri dan fungsi tambahan untuk mengembangkan keupayaan sistem harus disiasat, dan ujian

kebolehgunaan yang melibatkan profesional perubatan harus dilakukan untuk mengukur

kebolehgunaan sistem dalam tetapan klinikal.

iii

ACKNOWLEDGEMENTS

In order to finish this final year project, I would like to express my sincere gratitude to a

number of people who have contributed significantly to its realization. First and foremost, I

owe my parents a debt of gratitude for their steadfast financial and emotional support. Their

support and selflessness have been the cornerstones of my academic career, and this

accomplishment is a direct result of their unwavering faith in my potential.

My supervisor, Ts. Niza Binti Mohd Idris, deserves special recognition for her guidance,

knowledge, and patience throughout the project. I gained priceless insights and a successful

framework from her mentoring. I am really appreciative of the chance she gave me to

develop as a student and learn.

In addition, I would like to thank my peers and friends for their moral support. Because of

our encouragement and shared experiences, this semester's challenges were easier to handle.

Furthermore, I would like to express my gratitude to Universiti Teknikal Malaysia Melaka

for its resources and support, which were instrumental in the progress and accomplishment

of this project and i want to thank everyone who has been mentioned and the larger network

of supporters who have helped to make this project possible.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv-vi

LIST OF TABLES vii

LIST OF FIGURES viii-ix

LIST OF DIAGRAMS x

LIST OF APPENDICES xi

INTRODUCTION 12

1.1 Background 12

1.2 Problem Statement 13

1.3 Project Objective 13

1.4 Scope of Project 14-15

LITERATURE REVIEW 16

2.1 Introduction 16

2.2 Previous of Related Project 17

2.2.1 Internet of Things (IoT) 17

2.2.2 E Patient Monitoring System Using Arduino 18

2.2.3 CarePro: A Complete Arduino and Android-based Elderly Care

Health and Security Monitoring System 19

2.2.4 Multi-Parameter Smart Health Monitoring System using Arduino-

UNO 20-21

2.2.5 Design and Implementation of Remote Health Monitoring System

using IoT 21

2.2.6 Development of Smart Healthcare Monitoring System in IoT

Environment 22

2.2.7 Real-time Location Tracker for Critical Health Patient using Arduino,

GPS Neo6m and GSM Sim800L in Health Care 23

2.2.8 The NIST Definition of Cloud Computing 24

v

2.2.9 Development of Application based Health Monitoring System using

GSM

module 25-26

2.2.10 Implementation of Wireless Body Area Network Based Patient

Monitoring 27

2.3 Comparison of previous related projects 28-31

2.4 Summary 32

METHODOLOGY 33

3.1 Introduction 33

3.2 Methodology 33-34

3.3 Elaboration of Process Flow 34

3.3.1 Project Block Diagram 34-35

3.3.2 Project Flowchart 36-39

3.4 Equipment Requirements 40

3.4.1 Hardware Equipment 40-41

3.4.2 Software Requirement 42

3.4.2.1 Arduino IDE 42-47

3.4.2.2 Laragon Laravel V2 48

3.4.2.3 ThingSpeak 49

3.5 Summary 50

RESULTS AND DISCUSSIONS 51

4.1 Introduction 51

4.2 Results and Analysis 52

4.2.1 Design of Software 53

4.2.1.1 Landing Page 53

4.2.1.2 Login and Register Page Layout 54-55

4.2.1.3 About Me Page 56-57

4.2.1.4 Admin Dashboard Page 58

4.2.1.5 Patients and Consult Page 59-60

4.2.1.6 Reading Information 61-63

4.2.1.7 Details of Consultation Patient 63-64

4.2.1.8 Data Temperature Patient 65

4.2.1.9 Data Blood Pressure Patient 66

4.2.2.1 Database Laragon 67-69

4.2.2.2 Data Size 70

4.2.2.3 Database Temperature Patient 71

4.2.2.4 Database Blood Pressure Patient 72

4.2.3 Hardware Configuration Results and Analysis 73-76

4.2.4 Preliminary Results 77

4.2.4.1 Preliminary Results XD-58C Heart Pulse Sensor 77-85

4.2.4.2 Data Analysis for XD-58C Heart Pulse Sensor 85-87

4.2.4.3 Preliminary Results MLX90614 Non-Contact Infrared

Temperature Sensor 88-90

4.2.4.4 Data Analysis for MLX90614 Non-Contact Infrared

Temperature Sensor 90-91

4.2.5 Circuit Wiring 92-93

vi

4.2.5.1 Prototype Hardware 93

4.2.5.2 Model 94

4.3 Summary 95

CONCLUSION AND RECOMMENDATIONS 96

5.1 Conclusion 96

5.2 Future Recommendations 97

5.2.1 Integration of additional sensors

5.2.2 Better data analysis

5.2.3 Integration with wearable technology

5.2.4 Integration with electronic health records

5.2.5 Enhanced security

5.3 Future Works 98

REFERENCES 99-100

APPENDICES 101

APPENDICES 102

APPENDICES HARDWARE 103

APPENDICES CODING 104-129

vii

LIST OF TABLES

FIGURE TITLE PAGE

Table 2.1 Remote health management system architecture 25

Table 2.2 Comparison of Previous related Projects 28-31

Table 3.1 List of Components 40-41

Table 3.2 The layered structure table of Web application framework

based on Laravel Framework 48

Table 4.1 Functional Comparison 62

Table 4.2 User Interface Comparison 62

Table 4.3 Usability Comparison 63

Table 4.4 Survey comparison of Analysis REST API 69

Table 4.5 Comparison of Similar Database Systems 69

Table 4.6 Connection of Hardware Microcontroller 74

Table 4.7 Preliminary Results XD-58C 77-81

Table 4.8 Preliminary Results MLX90614 Non-Contact Infrared Temperature

Sensor 83-84

Table 4.9 System Functional Analysis 87

viii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 Application domains of IoT cloud platforms 17

Figure 2.2 The Arduino UNO R3 board 18

Figure 2.3 Hardware modules in CarePro 19

Figure 2.4 Example Pulse Rate 20

Figure 2.5 Block Diagram 21

Figure 2.6 System architecture of the healthcare monitoring system 22

Figure 2.7 Pin Diagram of GSM Module 26

Figure 2.8 Three-tier architecture of the proposed system 27

Figure 3.1 Flowchart of the system 36

Figure 3.2 Flowchart to Connected Wi-Fi 38

Figure 3.3 Flowchart for DS18B20 sensor 39

Figure 3.4 Plot with arbitrary analogue value. 47

Figure 3.5 Thing Speak IoT Cloud Output results 49

Figure 4.1 Landing Page 53

Figure 4.2 Login Page 54

Figure 4.3 Registration Page 54

Figure 4.4 Front Page About Me 56

Figure 4.5 The Detail About Me 56

Figure 4.6 Admin Dashboard Page 58

Figure 4.7 Patients Page 59

Figure 4.8 Patients Consult Page 59

Figure 4.9 Reading Information 61

ix

Figure 4.10 Details of Consultation Patient 63

Figure 4.11 Data Temperature Patient 65

Figure 4.12 Data Blood Pressure Patient 66

Figure 4.13 Database Laragon 67

Figure 4.14 Data Size 70

Figure 4.15 Database Temperature Patient 71

Figure 4.16 Database Blood Pressure Patient 72

Figure 4.17 Hardware Configuration Results and Analysis 73

Figure 4.18 LCD Result 75

Figure 4.19 Result in Arduino IDE 76

Figure 4.20 Circuit Wiring 86

Figure 4.21 Prototype Hardware 87

Figure 4.22 Combination Hardware and Software 88

x

LIST OF DIAGRAMS

TABLE TITLE PAGE

Diagram 3.1 Block Diagram Arduino UNO 34

Diagram 3.2 Block Diagram Microcontroller 34

xi

LIST OF APPENDICES

TABLE TITLE PAGE

Appendix A Gantt Chart of PSM 1 95

Appendix B Gantt Chart of PSM 2 96

Appendix Appendix Ha r dwar e ESP32 97

Appendix Coding Arduino IDE and PHP 98-122

12

CHAPTER 1

INTRODUCTION

1.1 Background

Real-time heart rate tracker is the less manageable it has gotten, the harder it has become to

keep track of. Hospitals need to communicate with patients' families in order to treat them. However,

patients sometimes forget and afraid to tell doctors vital information about their health in the midst

of the chaos that comes with being sick. It can be intimidating to keep track of the people a patient

sees and their movements. Especially, if they've ever been sick and have visited multiple doctors as

a result. There may occasionally be a line even though a patient is scheduled to see a new specialist

on time due to an issue. Either they have realized what had forgotten their records as soon as they sat

down with a bunch of forms. Now, they cannot just waste a great deal of time, and the appointment

needs to be rescheduled.

Nowadays, the innovation and the introduction of information technology (IT), the

healthcare sector is currently one of the largest and fastest-growing industries in the world. The

healthcare industry is more productive and appealing thanks to the introduction of IT, which also

increases the effectiveness and efficiency of business processes and activities. The needs of

individuals and populations are met by interdisciplinary teams of trained professionals and

paraprofessionals in the modern healthcare industry, which is divided into several sections.

13

1.2 Problem Statement

Real-time patient health monitoring outside of clinical settings is limited in traditional

healthcare systems, which causes subpar results and delays in intervention. Widespread adoption of

current solutions is hampered by their frequent lack of seamless integration, affordability, and

accessibility. An innovative strategy is desperately needed to improve patient care and well-being by

enabling continuous health tracking and prompt intervention.

1.3 Project Objective

The objective of this project is to revolutionize remote health monitoring by creating a real-

time patient health tracker website with Laragon and a microcontroller. The system will make it

possible for patient health data to be seamlessly collected, transmitted, stored, and visualized,

enabling prompt intervention and individualized treatment.

The objective of this project:

1. To develop a user-friendly interface for interactive real-time data visualization.

2. To produce a system that can monitor health signs, such as blood pressure and temperature.

3. To manage databases for efficient storage of patient health data.

14

1.4 Scope of Project

The primary objective of the project is to develop a web-based platform with the following

crucial components that tracks patients' health in real time:

Hardware Context:

1. Using ESP32, NodeMCU V2 Expansion Board, XD-58D XD58C Pulse sensor, Non-Contact

Infrared Temperature Sensor, and Push Button Switch.

2. Choosing assembling microcontroller devices that can transfer and acquire sensor data.

3. Creation of interfaces to link sensors and microcontrollers so that key health indicators can

be recorded.

Software Development:

1. The creation and execution of a flexible online interface enabling instantaneous data

visualization and interaction.

2. Creating algorithms to validate, preprocess, and transfer data from the microcontroller to the

web server.

3. Laragon integration for database administration, encompassing data storage, retrieval, and

schema design features.

15

Data Management:

1. Building a safe database architecture with Laragon to house patient health information. For

example, using Laragon and Laravel v10.

2. Putting in place backup plans, access restrictions, and data encryption to guarantee data

confidentiality and integrity.

Authentication and User Access:

1. Putting in place user authentication procedures to restrict access to patient data according to

roles and authorization.

2. Creation of intuitive user interfaces that make the system easy for patients and healthcare

professionals to use.

16

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 Real-time patient health tracking systems have become more common in recent years as a

result of the integration of technology into healthcare systems. These systems use web-based

databases such as Laragon and microcontroller-based sensors to continuously monitor various patient

health parameters. The purpose of this review of the literature is to investigate the state of the art

regarding the approaches, tools, and results related to these systems. The technological frameworks

for choosing microcontrollers and integrating sensors, web-based database management platforms,

clinical applications that show promise for patient monitoring and disease management, as well as

obstacles and potential future directions for innovation in the field, are some of the main areas of

focus. This review contributes to the advancement of technology-enabled healthcare solutions by

offering insights for researchers and practitioners involved in the development and implementation

of real-time patient health tracking systems, by synthesizing findings from pertinent studies.

2.2 Previous of Related Project

2.2.1 Internet of Things (IoT)

Figure 2.1 Application domains of IoT cloud platforms

According to Figure 2.1, The internet's integration has changed many industries in the

modern digital age, including healthcare. Our understanding of healthcare has completely changed

as a result of the introduction of Internet of Things (IoT) technology in health monitoring systems

[1]. With the widespread usage of the internet, the increasing efficiency of gadgets and devices and

the widespread use of the internet, we can now use Internet of Things (IoT)-based health

monitoring systems to continuously monitor patients. These gadgets continuously analyze factual

information and generate vital signs that can be viewed online from a distance. This makes it

possible to monitor patients in real time and to provide quick crisis response services. Therefore,

devices powered by the Internet of

17

Things (IoT) offer emergency response and recognition capabilities, both of which are essential for

guaranteeing the best possible patient care.

2.2.2 E Patient Monitoring System using Arduino

Figure 2.2 The Arduino UNO R3 board.

The authors of this paper discussed the various applications of IoT in healthcare and also

detailed the challenging circumstances that IoT in healthcare must overcome. The primary concern

with IoT use is security [2]. In the Figure 2.2, the Arduino Uno R3 serves as an interface for a

variety of sensors that gather vital signs like temperature and pulse rate. It then processes,

filters, and aggregates this data for analysis that makes sense. It then uses communication protocols

like HTTP or MQTT to send the processed data to the web server that hosts the patient health

tracker website. The Arduino Uno R3 makes it easier to safely store patient data in a MySQL

database for effective management and retrieval by integrating with Laragon.

18

2.2.3 CarePro: A Complete Arduino and Android-based Elderly Care Health and Security

Monitoring System

Figure 2.3 Hardware modules in CarePro.

The Arduino Mega is the main hardware module in the CarePro band, coordinating a number

of smaller modules to improve its performance. The Arduino Mega is coupled to sub-modules such

as body temperature sensors, GPS, accelerometer, GSM, Bluetooth, buzzer, and vibration motor [3].

While the buzzer and vibration motor provide tactile and auditory feedback, the accelerometer detects

motion and changes in orientation, the GSM enables communication for alerts and notifications, the

Bluetooth technology makes wireless connectivity possible, and the pulse rate and body

temperature sensors monitor vital signs that show in Figure 2.3. Futhermore, all of these parts

work together to make the CarePro band a complete health monitoring and assistance tool. It can

track vital signs, offer location-based services, facilitate communication, and send out timely alerts

to ensure the safety and wellbeing of its wearer.

19

20

2.2.4 Multi-Parameter Smart Health Monitoring System using Arduino-UNO

Figure 2.4 Example Pulse Rate.

Patient values were displayed on monitor desktop. Additionally, these same values were

added to the Laravel v10 website. We used the EP8266 WiFi module to transfer measured data to the

website, thereby making the project IoT based. Through internet connectivity, the sensor

measurements were directly displayed on a website [4]. Also, the IoT platform ThingSpeak is

essential allows to create a real-time patient health tracker website with Laragon and a

microcontroller. ThingSpeak functions as a bridge between the microcontroller and the web server,

facilitating the smooth transfer of sensor data from gadgets such as body temperature, pulse rate, and

GPS to its cloud-based platform for analysis and storage. ThingSpeak's integrated real-time

visualization tools enable the creation of individualized graphs and charts that show important health

metrics right on the patient health tracker website. It accomplish thorough data management, analysis,

and visualization by utilizing ThingSpeak in conjunction with Laragon. This will enable to develop

a strong solution for managing and monitoring patient health in real time. Also, the focus of the health

care plan is on measuring and tracking the biological parameters of the patient's body, such as heart

rate, blood oxygen saturation level, and temperature, using an Android application and web server.

This allows the doctor to continuously check the patient's condition on his smartphone.The patients'

collected blood pressure and pulse signals are the primary source of information used by Wang et

al.'s intelligent system to operate the heart automatically [5]. By offering thorough monitoring, this

seamless integration of technology not only improves patient care but also gives healthcare

professionals insightful information for individualized treatment plans and preventative measures.

2.2.5 Design and Implementation of Remote Health Monitoring System using IoT

Figure 2.5 Block Diagram.

By referring to [6], this Figure 2.5 shows the block diagram for remote health monitoring

system using IoT. The system as a whole receives its power from the power supply. The max30100,

which measures the patient's blood oxygen level (SpO2) and pulse rate, and the DS18B20, which

measures the patient's body temperature, are connected to the Node MCU. The processing unit that

will gather and handle sensor data is called the Node MCU. After processing, the data will be

moved to a web server or cloud server and stored in a database. In the prototype, the LCD 20X4

and Node MCU are connected via an I2C module to enable patient-side health data display. Lastly,

a webpage allows a doctor to remotely monitor the data that has been collected.

21

2.2.6 Development of Smart Healthcare Monitoring System in IoT Environment

Figure 2.6 System architecture of the healthcare monitoring system.

Referring Figure 2.6, the sensors that are used to gather data from the hospital

environment make up the system architecture of the healthcare monitoring system [7]. These sensors

are positioned strategically throughout the hospital to continuously monitor various

parameters, including equipment status, temperature, humidity, and patient vitals. The collected

data is sent in real-time to a central processing unit for analysis and storage via a variety of

communication networks, including wired, Bluetooth, Zigbee, and WiFi. The Data Acquisition

Layer with sensors, the Communication Network for data transmission, the Data Processing Layer

for analysis, the Data Storage Layer for archiving historical records, the User Interface Layer for

informing medical professionals, and the Security Layer for safeguarding private health

information are the main elements of this architecture. The efficient monitoring and management of

the hospital environment made possible by this well-integrated system improves both operational

efficiency and patient care.

22

23

2.2.7 Real-time Location Tracker for Critical Health Patient using Arduino, GPS Neo6m

and GSM Sim800L in Health Care

The Quality of Service (QoS) in terms of communication, routing, energy, and processing

should be maintained by the Internet of Things (IoT) based wireless system with a limited number of

sensors. Because the quality of service (QoS) deteriorates when a random defective node enters the

system [8]. Maintaining Quality of Service (QoS) in an Internet of Things (IoT) based wireless system

is crucial to ensuring dependable communication, efficient routing, economical energy use, and

timely data processing. Randomly defective nodes can lead to processing bottlenecks, energy

depletion, routing inefficiencies, and communication disruptions, which poses a serious threat to

quality of service (QoS). To lessen these risks, proactive measures like fault-tolerance mechanisms,

dynamic routing algorithms, energy-saving methods, and dependable communication protocols must

be implemented. By addressing these problems, IoT-based wireless systems can ensure consistent

and efficient performance across a variety of scenarios and applications, thereby maintaining the

necessary QoS levels. Different types of sensors are connected to the various human boundaries

within this framework body. The GPS area locater communicates with a sequential pin on a

microcontroller. Every sensor will examine every one of the body's boundaries and indicators. The

sensor will communicate with the microcontroller by sending data based on that body boundary [9].

In addition to improving the granularity of data collection, this distributed sensor network makes it

possible to provide individualized healthcare solutions and focused interventions that are catered to

each patient's unique needs.

24

2.2.8 The NIST Definition of Cloud Computing

Software as a Service (SaaS)

 By reffering of SaaS, the applications can be accessed via a program interface or a thin client

interface, like a web browser (for example, web-based email), from a variety of client devices [10].

With the possible exception of certain user-specific application configuration settings, the has no

management or control over the underlying cloud infrastructure, including the network, servers,

operating systems, storage, or even the capabilities of individual applications.

Platform as a Service (PaaS)

 An extra abstraction level can be provided by cloud systems: rather than offering a virtualized

infrastructure, they can offer the software platform that hosts systems. The amount of hardware

resources required to carry out the services is scaled transparently. Platform as a Service is the term

for this (PaaS) [11]. Furthermore, PaaS solutions frequently come with integrated features like

resource provisioning, load balancing, and automated scaling, which further streamline the

development and deployment process while maximizing resource efficiency and cost effectiveness.

Infrastructure as a Service (IaaS)

With this capability, service providers (SPs) can design ad hoc systems that are customized

to meet the unique needs of their customers without having to invest in specialized physical

infrastructure. IaaS allows SPs to concentrate on effectively deploying and managing software stacks

by abstracting away the complexity of hardware management [11].

2.2.9 Developement of Application based Health Monitoring Sytem using GSM module

Table 2.1 Remote health management system architecture.

By refer to Table 2.1, time division multiple access (TDMA) is a digital mobile telephony

system that is used by the GSM (Global System for Mobile communication). Of the three digital

wireless telephony technologies (TDMA, GSM, and CDMA), it is the most commonly used. GSM

digitalizes and data is first compressed before being sent over a channel with two additional user data

streams, each running in a separate time slot [12]. The underlying technology that makes this time

slot allocation possible is called Time Division Multiple Access (TDMA), which guarantees that

users can access the network in a coordinated and orderly fashion. Since it has been shown to be

dependable, scalable, and effective at allocating network resources, TDMA especially in the context

of GSM implementation has become the most extensively used standard in digital wireless telephony

when compared to other technologies like Code Division Multiple Access (CDMA). Futhermore,

SIM 908-C is the GSM module that was used in this project. The purpose of this module is to cover

the worldwide market. It is paired with an extremely powerful GSM engine. It operates at GSM

25

26

850MHz frequency [13]. Else, The project's goal is to create a dependable and stable communication

link between the Raspberry Pi device, sensor nodes, and external systems by utilizing the SIM 908-

C module. This will allow real-time data transmission and monitoring for healthcare applications.

Example pin diagram of GSM Module based on Figure 2.7.

Figure 2.7 Pin Diagram of GSM Module

2.2.10 Implementation of Wireless Body Area Network Based Patient Monitoring

Figure 2.8 Three-tier architecture of the proposed system

By follow the Figure 2.8, the Raspberry Pi (RPi) device functions as the focal point of every ward

and the base station for gathering sensor data. The RPi continuously receives messages from the

sensor nodes placed throughout the ward thanks to Bluetooth communication technology [14].

Essential components of every message include sensor data (e.g., temperature or pulse rate) and

accompanying metadata (e.g., date, time, sensor code, "PR" for pulse rate, "T" for temperature), as

well as unique ID numbers for identification. The RPi receives these messages, extracts the data,

separates it, and processes it appropriately. After processing, the data is arranged and kept in

appropriate tables either in the memory of the Raspberry Pi or on external storage.

27

28

2.3 Comparison of previous related projects

Table 2.2 Comparison of Previous related Projects

No. Reference Components Purpose Advantages Disadvantages

1. [1] Automation

Module:

-Pulse sensor

-Arduino

-Temperature

sensor

Monitoring

module:

-Laptop
-Web server

- To provide

early detection

of health issues,

timely

intervention in

case of

emergency, and

enable proactive

management of

chronic

conditions.

-Allows for

constant

observation

and prompt

abnormality

detection.

- Lowers

expenses,

minimizes in

person visits,

and

streamlines

healthcare

procedures.

-Data leaks

and device

failures.

-Difficult

implementatio

n and

management

tasks on a

technical

level.

2. [3] -Photodetectors

are among the

components

that make up

biometric

sensors.

-A CPU, memory,

input/output ports,

and

communication

interfaces make

up a

microcontroller.

- Processors,

memory, network

interfaces, and

security features

are all parts of a

gateway.

-The heart rate,

blood oxygen

saturation,

temperature,

and other

physiological

parameters are

measured by

the sensors, and

microcontroller

s handle sensor

data

processing,

algorithm

execution, and

external device

communication

.

- Gateways

carry out

preprocessing

operations,

further

aggregate

sensor data,

and help local

sensors

communicate

with distant

-Give vital

sign

monitoring in

real time.

-Permit the

early

identification

of anomalies

in health.

-Assign

decision-

making and

processing

powers in

real-time.

-Allow for

flexibility and

customization

when

implementing

software.

-At the

network's

edge, enable

data filtering

- Patients may

find certain

sensors

bothersome or

invasive.

-vulnerability to

malfunctions in

software or

hardware.

-The expense and

intricacy

involved in

setting up and

maintaining

gateway

infrastructure.

29

servers or cloud

platforms.

and

aggregation.

-Ensure
interoperability
and protocol
translation
amongst
heterogeneous
devices.

3. [4] -WIFI Module:

Wirelessly

transmits patient

data to a mobile

application and

website.

-Microcontroller:

Handles sensor

communication

and processes

patient data.

-Web server:

Provides a

website on which

medical

professionals can

access patient

data.

-IoT Platform:

Allows data

analysis and

storing by

connecting

sensors to a web

-To use IoT

technology to

continuously

monitor

patients' health,

giving medical

professionals

access to vital

signs like

temperature and

heart rate.

-To provide
physicians with
access to patient
data via a mobile
app and web-
based platform,
allowing for
better patient care
and prompt
intervention.

- Real-time

monitoring:

Assists

physicians in

immediately

monitoring

the health of

their patients.

-Accessibility:

Provides

doctors with

anytime,

anywhere

access to

patient data.

- Problems

with

connectivity

: Depends

on a reliable

internet

connection,

which isn't

always

available.

- Security

Concerns:

There are

privacy and

security issues

when

transmitting

patient data

online.

30

server.

-Using a

smartphone app,

doctors can

remotely check

on their patients'

health.

4. [5] -Consists of a

web server or

cloud server for

data storage, an

LCD 20X4

display, a Node

MCU for data

processing, and

sensors such as

the Max30100

and DS18B20.

- To use Internet

of Things (IoT)

technology to

remotely

monitor patient

health, allowing

for the

continuous

tracking of vital

signs like body

temperature,

pulse rate, and

blood oxygen

level.

- Real-time

monitoring

gives you

immediate

access to patient

health

information so

you can take

appropriate

action.

- Accessibility:

Enables medical

professionals to

remotely check

on patients'

conditions from

any place.

-Dependency

on

Connectivity:

Data

transmission

requires a

reliable

internet

connection,

which isn't

always

available.

-Security

Concerns:

There are

privacy and

security

issues when

transmitting

patient data

online.

5. [12,14] - Used in

digital

mobile

telephony

through the

GSM

(Global

System for

Mobile

Communic

ation).

- divides

time into

slots so

that several

users can

- Allows users to

connect to the

network in a

coordinated and

orderly manner.

- Guarantees the

effective use of

network

resources.

- Establishes a

communication

channel between

external

systems, sensor

nodes, and

- Scalable and

dependable

for digital

wireless

phone

systems.

- Efficient in

assigning

resources

within the

network.

- Broadens its

market reach

due to its

global

- Possibly

unable to

handle heavy

traffic

volumes.

- For certain

applications,

extra

configurations

might be

needed.

-Depends on

steady network

coverage in

order to

31

access the

network.

- Hardware

that was

employed

in the

undertakin

g.

- operates at the

GSM 850MHz

frequency and

serves the global

market.

Raspberry Pi.

- Permits real-

time data

monitoring and

transmission for

applications

related to

healthcare.

compatibility.

-Matched with a

strong GSM

engine to

facilitate

effective

communication.

communicate

consistently.

32

2.4 Summary

After a thorough reading and observation done on the previous related projects, how the rise in real-

time patient health tracking systems is a result of the healthcare industry's adoption of technology.

With an emphasis on technological frameworks like microcontrollers and sensors, web-based

databases like Laragon, and clinical applications, the review seeks to examine the current state of

these systems. It also discusses obstacles and potential avenues for innovation in the future. The

review aims to advance technology-enabled healthcare solutions by synthesizing findings from

pertinent studies and providing insights for researchers and practitioners involved in developing in

systems.

33

CHAPTER 3

METHODOLOGY

3.1 Introduction

 The project development and goal-achieving strategy is presented on this chapter. The three

sections of this chapter are the hardware and software specification, the study design, and the process

flow elaboration. In order to have a clear vision, better understanding of how to handle it, and the

best model to use for this project, extensive research on the hardware used was carried out. This will

help to ensure that the project runs smoothly. Gaining a general understanding of the project flowchart

created is another important goal of this chapter. Following the detailed description of the process

flow, the hardware specifications will follow. Lastly, this chapter concludes with a brief discussion

and display of the project's connection diagram.

3.2 Methodology

By start by identifying stakeholders and gathering requirements such as real-time health data

collection, storage, user authentication, data visualization, and alerts in order to develop a real-time

patient health tracker website using a microcontroller and Laragon. The system has been create the

architecture using PHP for the backend, MySQL via Laragon for the database, HTML, CSS, and

JavaScript for the frontend, and a microcontroller ESP32 for data collection. With configure the

microcontroller to read sensor data and transmit it via HTTP requests to the server and create the

frontend to offer user interfaces for data visualization and chart libraries manage data submission,

validation, and database interactions. Utilizing Laragon to manage the database will guarantee

effective indexing and schema design. The unit, integration, and user acceptability testing should be

34

carried out prior to system deployment and server, domain, hosting, and SSL configuration for secure

communication. With that, the system is maintained through extensive technical documentation, user

manuals, updates, frequent monitoring, and user feedback. Elaboration of Process Flow

3.3 Elaboration of Process Flow

3.3.1 Project Block Diagram

Diagram 3.1 Block Diagram Arduino UNO

Diagram 3.2 Block Diagram Microcontroller

35

Based on Diagram 3.1, which talks to the Arduino and transmits data to Thing-Speak. This data on

the Thing-Speak is accessible via the internet from any location and is presented in a graph format

that includes historical readings as well. The connected LCD displays the BPM as well [15]. The

Arduino serves as the main hub, gathering information from multiple sensors that track the vital signs

of patients, including heart rate (BPM). The IoT analytics platform ThingSpeak receives this real-

time data and uses it to create interactive graphs that show the data in addition to storing it. With the

help of these graphs, healthcare professionals can monitor past trends and decide wisely by looking

at long-term data patterns. Moreover, by integrating an LCD that is directly connected to the Arduino,

vital information is readily available at a glance and instantaneous, on-site feedback is provided by

the display of the current BPM. This all-inclusive configuration guarantees easy access to historical

and real-time data, making them actionable and improving patient monitoring and care.

36

3.3.2 Project Flowchart

Figure 3.1 Flowchart of the system.

37

Figure 3.3 shows the stages that went into creating this system. First and foremost, the project's

required hardware components were carefully chosen. The software platform for coding was selected

to be the Arduino Integrated Development Environment (IDE) because of its intuitive interface and

capacity to process input signals and produce matching output signals [16]. This choice ensured

seamless communication and facilitated the integration of various sensors and modules, such as

temperature sensors and wireless communication modules. Additionally, the system's flow chart at

the time of system initialization. Ethier examines the health rate parameters and looks for any

symptoms that the patient may be experiencing. When it detects any symptoms, it will notify

physicians and patients' families along with the patient's location. Furthermore, all of the data you

obtain will be saved on the cloud, allowing the server to verify the patient information once more.

Following that, the system will display a graph showing the patient's rate value. Additionally, the

IDE's ability to interface with other software platforms made functionality possible such as data

logging, automated alerts, and remote monitoring and control via IoT platforms. Extensive testing

and validation were done to ensure the accuracy and dependability of both hardware and software

components as well as the system's consistent performance under a variety of conditions. This

meticulous approach, in conjunction with the carefully selected hardware and a powerful software

development environment, laid the groundwork for the project's successful implementation and

scalability.

38

Figure 3.2 Flowchart to Connected Wi-Fi

Based on Figure 3.4, it shows the flowchart for the Wi-Fi connected system using the ESP32 module

begins with the initialization of the ESP32 to establish a Wi-Fi connection. Following this, the system

checks whether the Wi-Fi connection is successfully established. If the connection is successful, the

system proceeds to the next step. It then moves into the main loop, where it gathers information from

linked sensors, verifies the accuracy of the data, and looks for situations that might alert users. The

prepared processed data is sent over the Wi-Fi connection to a designated endpoint or cloud server

for remote monitoring and analysis. The system ensures continuous monitoring and effective

operation by entering a wait period after data transmission to conserve power before repeating the

main loop.

Start

Connecting to Wi-Fi

Connected?

Initialize LCD

1 2 3

Yes

No

39

Figure 3.3 Flowchart for Non-Contact Infrared Temperature Sensor

The Non-Contact Infrared Temperature Sensor (NCIT) detects the target's temperature by detecting

infrared radiation that is emitted, as shown in Figure 3.5. The sensor records, processes, and displays

the data on an LCD after being triggered (by a button or automated event). The system logs the data,

resets for the subsequent measurement cycle, and sounds an alert, such as an LED or buzzer, if the

temperature rises above predetermined thresholds.

Temperature ≥

38 degree

Celsius

End

Yes

No

Start

Turn ON or OFF

Buzzer and Fan

Temperature ≤

38 degree

Celsius

Read Non-Contact

Infrared Temperature

Display temperature

sensor in website

Yes

No

No

40

3.4 Equipment Requirements

3.4.1 Hardware Requirement

Table 3.1 List of Components

No. Components Description Quantity

1. NodeMCU ESP32

The NodeMCU-ESP32's

breadboard-compatible design,

easy programming using Luascript

or the Arduino IDE makes

comfortable prototyping possible.

This board has a BT wireless

connection in addition to dual-

mode 2.4 GHz WiFi.

1

2. NodeMCU ESP32 Expansion

Board

In this breakout pins for connecting

to different components, an ESP32

expansion board is a tool that

facilitates prototyping projects.

Both the narrow and wide versions

of the ESP32 development kits are

compatible with it.

1

3. XD58C Pulse Sensor

Heart rates are measured using the

XD-58C pulse sensor module.

Creating interactive works related

to heart rate is a common

application for students, artists,

athletes, inventors, game

developers, and mobile terminal

designers. The sensor can be worn

on your finger or earlobe, and

Arduino can be connected to it.

1

41

4. Temperature Sensor Non-

contact

Range of temperature

measurements:

-70°C to 382.2°C

Error in temperature measurement:

At room temperature, ±0.5°C

0.02°C resolution

Voltage used for operation:

3.3V to 5V

The temperature of the

surroundings:

-40 to 125 degrees Celsius

It is simple to install and repair

thanks to the M3 fixing screw

holes.

1

5. Push Button Switch

A push-button switch is a basic

electrical part that, when pressed,

opens or closes a circuit. There are

two primary varieties: normally

closed (NC) and normally open

(NO). It either completes or breaks

the connection when pressed,

causing power to be controlled or

actions to be triggered.

1

42

3.4.2 Software Requirement

3.4.2.1 Arduino IDE

Cloud computing and the Internet of Things (IoT) are essential components of the modern

telemonitoring health system. This technique uses a microcontroller to collect data from

body sensors to monitor the physiological parameters of the patient. The physicians create

the patient's health card, which is then posted on a website so that patients and physicians

can interact virtually even when they are not in the same room [17]. Together with a design

plan that would use IOT-based pulse sensors to produce a heart rate condition, the Arduino

IDE software was used to simulate running a system. The device for gathering data was a

laptop (PC) or smartphone, Thing Speak, inventor, and Arduino IDE software version 1.8.3

were utilized to analyze sensor output data.

Example code for Arduino IDE:

#define samp_siz 4

#define rise_threshold 4

// Pulse Monitor Test Script

int sensorPin = 0;

void setup() {

 Serial.begin(9600);

}

43

void loop ()

{

 float reads[samp_siz], sum;

 long int now, ptr;

 float last, reader, start;

 float first, second, third, before, print_value;

 bool rising;

 int rise_count;

 int n;

 long int last_beat;

 for (int i = 0; i < samp_siz; i++)

 reads[i] = 0;

 sum = 0;

 ptr = 0;

 while(1)

 {

 // calculate an average of the sensor

 // during a 20 ms period (this will eliminate

 // the 50 Hz noise caused by electric light

 n = 0;

 start = millis();

 reader = 0.;

44

 do

 {

 reader += analogRead (sensorPin);

 n++;

 now = millis();

 }

 while (now < start + 20);

 reader /= n; // we got an average

 // Add the newest measurement to an array

 // and subtract the oldest measurement from the array

 // to maintain a sum of last measurements

 sum -= reads[ptr];

 sum += reader;

 reads[ptr] = reader;

 last = sum / samp_siz;

 // now last holds the average of the values in the array

 // check for a rising curve (= a heart beat)

 if (last > before)

 {

 rise_count++;

 if (!rising && rise_count > rise_threshold)

 {

45

 // Ok, we have detected a rising curve, which implies a heartbeat.

 // Record the time since last beat, keep track of the two previous

 // times (first, second, third) to get a weighed average.

 // The rising flag prevents us from detecting the same rise more than once.

 rising = true;

 first = millis() - last_beat;

 last_beat = millis();

 // Calculate the weighed average of heartbeat rate

 // according to the three last beats

 print_value = 60000. / (0.4 * first + 0.3 * second + 0.3 * third);

 Serial.print(print_value);

 Serial.print('\n');

 third = second;

 second = first;

 }

 }

 else

 {

 // Ok, the curve is falling

 rising = false;

46

 rise_count = 0;

 }

 before = last;

 ptr++;

 ptr %= samp_siz;

 }

}

Explanation from the coding:

Using a pulse sensor attached to sensor Pin, this Arduino code is made to track and determine

the heartbeat rate. The serial communication is first initialized at a baud rate of 9600. The

sensor data is continuously read in the main loop, and noise is reduced by averaging multiple

readings over a 20 ms period. In order to make it simple to calculate the current average,

these averaged readings are kept in a rolling array of the previous four readings. In order to

confirm a heartbeat, the code counts consecutive rising values after searching for a rising

edge in the averaged signal. When a heartbeat is detected, a weighted average heart rate is

calculated by taking note of the time elapsed since the last beat and calculating the intervals

between the last three beats. The serial monitor is then printed with this heart rate. Real-time

heart rate monitoring is ensured by the code, which updates and verifies the computed

averages and sensor values continuously.

47

Figure 3.4 Plot with arbitrary analogue value.

Based on Figure 3.4 show entails gathering real-time data from an analogue sensor, using a

microcontroller to convert it to a digital format, and presenting the data graphically so that

it can be examined. Real-time data collection from the pulse sensor was sent to the IoT

analytics platform Thing Speak, where it was processed, stored, and visualized. With this

configuration, heart rate data could be continuously monitored and analysed. The successful

monitoring and analysis of heart rate conditions made possible by the integration of these

tools showcases the potential of IoT in health monitoring applications. The visualization of

trends and patterns in sensor data depends on this process.

48

3.4.2.2 Laragon Laravel V2

The multi-layer architecture of this Laravel-based web application improves scalability,

maintainability, and security by keeping concerns separate between the presentation,

business logic, and data layers. The business logic layer receives requests from the

presentation layer, which manages the user interface and interactions, and uses controllers

and services to process them in accordance with business rules [18]. Database interactions

are abstracted in the data layer by Eloquent ORM, which is part of Laravel. In addition to

managing HTTP requests and providing resources, the web server serves as the client's

"proxy" and communicates with the database by sending and receiving queries. Complex

web applications can be easily maintained and have reliable performance thanks to this

configuration, which offers dynamic, real-time, and interactive customer information

services. Based on table given, there are the structure layered of Web application framework.

Table 3.2 The layered structure table of Web application framework based on Laravel

Framework.

First layer Second layer Third layer

Laravel core component

extension

Laravel label extension Batch Query for Analysis

page

Laravel framework Persistence layer of

database

Common data persistence

framework

49

3.4.2.3 Thing Speak

Thing Speak is an open-source Internet of Things application and Application Programme

Interface (API) that uses a Local Area Network (LAN) or the Hyper Text Transfer Protocol

(HTTP) on the internet to store and retrieve databases from objects. Thing Speak triggers the

creation of detector logs for an application, places applications for identification, and creates

a social network of things with current conditions [19]. Enabling users of Thing Speak to

assess and visualize uploaded databases through the use of the software tool. The whole

collection of Thing Speak documents has been set up to be located in Math Works, and it

has even been made possible to register Math Works users' accounts with the correct login

and password on the Thing Speak website [20] . Based on the Figure 3.5, it shows that the

output results work on the program.

Figure 3.5 Thing Speak IoT Cloud Output results.

50

3.5 Summary

This chapter describes the whole process of using Laragon and a microcontroller to create a

real-time patient health tracker website. As part of the methodology, stakeholders are

identified and requirements for the collection, storage, user authentication, data

visualization, and alerting of real-time health data are gathered. The system architecture

makes use of an ESP32 microcontroller for data collection, HTML, CSS, and JavaScript for

the frontend, MySQL via Laragon for the database, and PHP for the backend. Accurate data

collection and transmission are made possible by the hardware, which includes parts like the

DS18B20 temperature sensor, Node MCU ESP32, Node MCU V2 Expansion Board,

Arduino UNO R3, and XD58C pulse sensor. Real-time data visualization and analysis are

made possible by Thing Speak; while prototyping and troubleshooting are supported by

software tools like the Arduino IDE. A reliable system for managing health-related data with

secure online access and patient authentication is made possible by the integration of PHP

and SQL by Laragon. The system's dependability is ensured by thorough testing, validation,

and secure server configurations, which makes it a useful tool for tracking and evaluating

patient health metrics instantly.

51

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

 The "Development of Real-time Patient Health Tracker Website Using

Microcontroller and Laragon" offers a thorough description of how hardware and software

are integrated in the chapter on implementation and development. Three sections make up

this chapter: Data Analysis, Hardware Development, and Software Development. The

project's goal is to develop a comprehensive system that can track patients' vital signs in real

time and present the data on an easy-to-use web interface. The device uses the capabilities

of microcontrollers to gather information from a variety of patient-affixed sensors, including

blood pressure, temperature, and heart rate monitors. After that, this data is sent to a web

server that has been configured with Laragon, where it is processed, saved, and made

available to healthcare providers.

 In the Software Development section, critical patient health metrics can receive

real-time updates and alerts thanks to the application's highly interactive and responsive

design. The choice and setup of microcontrollers and sensors, which guarantee precise and

trustworthy data collection, are covered in the Hardware Development section. Lastly, the

Data Analysis section covers how the gathered data was processed and interpreted, including

how algorithms were put into place to find anomalies and produce reports. With this all-

encompassing approach, the system is guaranteed to track patient health metrics in real-time

and to offer insightful data that can facilitate prompt medical interventions.

52

4.2 Results and Analysis

As the result, this project's build show that how outcomes a web-based platform combining

Laragon and microcontroller technology can be developed step-by-step for real-time patient

health monitoring. The prototype successfully illustrates its potential to offer a complete

health monitoring solution, stressing both its advantages and shortcomings prior to full

implementation.

In order to ensure dependable and real-time performance, the analysis determined either the

most accurate or not configuration for tracking patient health data and body temperature.

The user-friendly interface made it possible to visualize data in real time with ease.

Furthermore, the system effectively managed patient health data in a structured database

while monitoring vital health indicators like heart rate and temperature.

These findings support the suggested methodology and show that using Laragon and

microcontroller technology together is a practical strategy for applications involving real-

time health monitoring. The efficacy and accuracy of the classification models are

demonstrated by a thorough analysis of their performance, which also offers insights into

potential areas for additional optimization to improve system reliability.

53

4.2.1 Design of Software

4.2.1.1 Landing Page

Figure 4.1 Landing Page

To create a unified and useful interface, the "Healthy" healthcare platform incorporates

important design elements such as architectural systems, styles, displays, and materials [21].

The close-up of a stethoscope in Figure 4.1 represents health monitoring, and the serene blue

background communicates dependability and professionalism qualities crucial to healthcare

services. The tagline, "A platform to communicate with certified doctors to monitor your

health!" emphasizes the platform's goal of enabling real-time communication between

patients and medical professionals, while the platform's name, "HEALTHY," is presented in

a contemporary white font for clarity and brand emphasis. The "Healthy" platform

successfully strikes a balance between functional requirements and a user-friendly design to

foster trust and usability. It does this by adhering to best practices like simplicity, clear

messaging, and professional aesthetics when compared to similar designs covered in related

articles.

54

4.2.1.2 Login and Register Page Layout

Figure 4.2 Login Page

Figure 4.3 Registration Page

The patient health tracker system's user authentication and registration procedure are made

to guarantee safe access while offering an easy-to-use interface. Users are taken to a

registration page on their first visit, where they must enter their email address, password,

and full name, among other necessary details which that show at Figure 4.3 and Figure 4,2.

55

New users can quickly register and access the system's features thanks to this simplified

approach, which makes navigation simple.

Laragon's incorporation into this authentication procedure improves efficiency and security.

Laragon uses strong security protocols to safeguard user credentials, making sure that private

data is encrypted prior to storage. In particular, the user's password is protected from

unwanted access by being encrypted using Laragon's built-in features. This degree of

security is essential, especially for applications in the healthcare industry where patient data

confidentiality is critical. Compared to other web-based authentication systems, Laragon

provides clear benefits. Due to their reliance on conventional database management systems

that lack built-in security features, many traditional web applications may leave user data

vulnerable. On the other hand, Laragon's all-inclusive framework strengthens the

authentication procedure with cutting-edge encryption methods while also streamlining it.

Because users can be sure that their information is being handled with the highest care, this

leads to a more secure and effective user experience.

Additionally, the patient health tracker system's use of Shared Preferences for data storage

makes key-value pair management effective and facilitates rapid user data access. In

contrast, other web applications might use more sophisticated data storage solutions, which

could result in slower performance and more complicated data retrieval. All things

considered, the patient health tracker system is positioned as a dependable and effective

platform for managing patient health information thanks to Laragon's security features and

the simple registration process. The benefits of utilizing Laragon over alternative web-based

solutions are emphasized in this analysis, especially with regard to user experience,

efficiency, and security.

56

4.2.1.3 About Me Page

Figure 4.4 Front Page About Me

Figure 4.5 The Detail About Me

As seen in Figure 4.4, the health monitoring system's profile page offers an aesthetically

pleasing and intuitive user interface. A straightforward white header that prominently

displays the title "About Me" and the user's current status as a University Technology Melaka

student contrast with the design's blue backdrop. In addition to improving readability, this

57

design decision makes the site feel more inviting to users. The system's emphasis on health

and wellness is further reinforced by the addition of a heart icon with the label "Healthy" in

the upper left corner. Furthermore, the image of a person dressed in traditional Malay

clothing on the right side of the page, surrounded by a wooden house and verdant

surroundings, exudes friendliness and approachability. With a cartoon image of a man using

a laptop to further emphasize the digital aspect of the health monitoring system, the website

successfully conveys the project's goals and highlights the integration of technology and

healthcare.

This platform's user-centric design and integration of Internet of Things (IoT) technologies

set it apart from other web-based health monitoring systems. The absence of a visually

appealing interface in many conventional health monitoring systems may make it more

difficult for users to interact and become involved. On the other hand, this system's use of a

vivid color scheme and relatable imagery creates a more welcoming user experience.

Furthermore, this health monitoring system is positioned as a progressive solution due to the

integration of contemporary data collection and processing technologies. This platform's use

of IoT technologies enables more effective data handling and real-time analytics, whereas

other systems might rely on traditional data management techniques. All things considered,

the examination of the profile page and the features of the health monitoring system shows

a well-designed platform that puts the user experience first and uses contemporary

technology to enhance patient outcomes, potentially making it a useful tool for increasing

healthcare efficiency.

58

4.2.1.4 Admin Dashboard Page

Figure 4.6 Admin Dashboard Page

In the Figure 4.6, web application dashboard that was probably created for a hospital or

medical office and provides important metrics and data points for physicians and nurses to

monitor patient data, consultations, and other pertinent activities. A chart showing patient

trends over time, a distribution of patients by age group, indicators for the number of active

nurses and doctors, and the total number of patients seen today are among the features.

59

4.2.1.5 Patients and Consult Page

Figure 4.7 Patients Page

Figure 4.8 Patients Consult Page

As seen in Figure 4.7, the patient management system has a well-organized web application

interface that makes it easier to manage patient records and consultations effectively. With

60

key navigation options like "Dashboard," "Patients," "Consultations," "Doctors," "Nurses,"

and "Profile," the sidebar makes it simple for users to access various application sections.

The primary section presents an extensive table with patient data, such as "No.," "Name,"

"IC No.," "Occupation," "Industry," and "Actions." This design suggests that managing

patient records, viewing consultations, and possibly making appointments are the main

functions of the application. Furthermore, usability is improved by the inclusion of a search

function and a button for adding new patients, which makes it simple for medical

professionals to effectively manage patient data.

This application's user-friendly interface and extensive functionality set it apart from other

web-based patient management systems. An interface that further helps doctors efficiently

manage and view patient consultations is shown in Figure 4.8. In addition to a table with

important data like consultation ID, patient name, queue position, assigned doctor, and

current status, it has a dashboard that shows the number of ongoing consultations. Physicians

can rapidly prioritize tasks and evaluate their workload with this level of detail. Additionally,

the application makes patient profiles, doctor schedule management, and nurse-related data

accessible, facilitating smooth provider coordination. This patient management system

unifies necessary tools in a single interface, enabling doctors to effectively update

consultation statuses, take notes, and schedule follow-up appointments unlike many

traditional systems that might have limited functionality or require multiple logins to access

different features. Overall, the analysis shows how this patient management system is a

useful tool for improving healthcare delivery because of its benefits in terms of functionality,

integration, and user experience.

61

4.2.1.6 Reading Information

Figure 4.9 Reading Information

As the given Figure 4.9 Label "Healthy," the web application that is visible in the picture

seems to be a system for keeping track of patient medical records. With an emphasis on

patient-specific data, including blood pressure and temperature readings, the interface offers

an easy-to-understand layout. Medical practitioners can monitor changes over time because

blood pressure readings are displayed in a tabular format and the temperature is expressed

as a numeric value. The "Healthy" application exhibits simplicity and ease of use in contrast

to a more feature-rich system, like "MedTrack," but it is devoid of sophisticated

functionalities. For example, "MedTrack" provides dynamic visualizations like graphs and

trends, which make it simpler for medical professionals to interpret data over time, whereas

"Healthy" displays patient data in static formats. Both systems have fields for diagnosing

and tracking patient symptoms, but "MedTrack" improves on these features by storing

patient history and sending out medication reminders [22].

62

Table 4.1 Functional Comparison

Feature Healthy MedTrack

Temperature Display

Yes Yes

Blood Pressure Data Tabular Format Tabular and

Graphical options

Medication Info Basic, Text-based Advanced, with

reminders

Diagnosis Status Stated explicitly Includes additional

history

Search Functionality Basic Advanced, with

filters

Multi-User Support Doctors and Nurses Doctors, Nurses, and

Admins

Table 4.2 User Interface Comparison

Aspect Healthy MedTrack

Layout

Minimalistic and

structured

Advanced, with

analytics panels

Visual Elements Simple charts and

tables

Graphs, heatmaps,

and charts

Customization Limited Highly customizable

Device

Responsiveness

Moderate Fully responsive

63

Table 4.3 Usability Comparison

Aspect Healthy MedTrack

Ease of use

Beginner-friendly

Advanced, with

analytics panels

Documentation Basic, linked in the

sidebar

Graphs, heatmaps,

and charts

Integration Options Unknown Supports third-party

Data Export

API CSV, PDF, and API

4.2.1.7 Details of Consultation Patient

Figure 4.10 Details of Consultation Patient

A well-structured "Consultation Details" section that contains vital information like the

patient's name (Shazwan Hazmi), IC number, patient ID, consultation ID, status “Complete”,

assigned doctor, queue number, and room number is part of the "Healthy" web-based

healthcare management system, which is intended to optimize patient consultation

workflows see in Figure 4.18. With its professional purple and white colour scheme and

64

well-organized navigation menus for dashboard access, patient records, consultations, and

profile management, as well as a search bar and a "Sign Out" button for safe use, the system

boasts a simple and easy-to-use interface. "Healthy" improves operational efficiency, lessens

administrative burden, and streamlines queue and room management to improve the overall

patient experience by automating the storage and display of consultation details. The system

is excellent at its core functions and simplicity, but it is devoid of sophisticated features that

are frequently found in other systems, such as "MediFlow." These features include data

visualization, dynamic queue tracking, real-time updates, and integration with telemedicine

platforms. "Healthy" might become more competitive and appropriate for larger healthcare

settings with the addition of these features, as well as improved responsiveness and data

visualization capabilities.

65

4.2.1.8 Data Temperature Patient

Figure 4.11 Data Temperature Patient

The temperature reading module housed in a Laragon MySQL database that is controlled by

the Laravel framework is depicted in the figure 4.11. The ESP32 microcontroller and

hardware sensors are successfully integrated in the system to collect temperature data in real

time. This data is then organized and stored in a database for quick access. Even though it

works, reading anomalies like extreme values point to possible problems with calibration or

testing conditions. While Laravel streamlines data handling and connectivity, Laragon's

lightweight server environment guarantees seamless database operations. This setup

prioritizes simplicity and real-time data management over other database solutions, but it

could use some extra features like data validation and visualization.

66

4.2.1.9 Data Blood Pressure Patient

Figure 4.12 Data Blood Pressure Patient

Figure 4.11 shows the blood pressure reading module, which is managed by the Laravel

framework and stored in a Laragon MySQL database. In order to efficiently monitor patient

health metrics, this system efficiently combines hardware sensors and the ESP32

microcontroller to gather blood pressure data in real time. It then arranges and stores this

data in a database for easy access. Even though the system functions well, reading anomalies

like extreme values could be a sign of possible problems with the testing or calibration

conditions. The lightweight server environment of Laragon guarantees smooth database

operations, while Laravel improves data handling and connectivity. Unlike other database

solutions that might provide more complicated configurations, this setup places a higher

priority on simplicity and real-time data management. The current implementation, however,

might use some extra features, like data validation and visualization tools, to increase the

accuracy of the readings and give medical professionals a better understanding of patient

health trends, which would ultimately result in better patient care decisions.

67

4.2.2.1 Database Laragon

Figure 4.13 Database Laragon

A real-time data storage solution that can manage structured health-related data, including

blood pressure readings, ambient temperature, and adjusted body temperature, is integrated

into the database system shown in Figure 4.13. The ESP32-WROOM microcontroller is used

by the system to gather data from hardware elements, such as the MLX90614 infrared

temperature sensor and a pulse sensor. Laragon, a lightweight local server environment,

processes and sends this data to the backend. In order to ensure accurate data storage and

retrieval for real-time or historical analysis, the database structure comprises key tables like

bp_readings, temp_readings, and patients. These tables contain fields like patient ID (p_id),

consultation ID (c_id), readings, timestamps (created_at, updated_at), and time.

68

With its model-based methodology and sophisticated query builder, the Laravel PHP

framework-powered backend increases efficiency by automating CRUD (Create, Read,

Update, Delete) operations [23]. This removes a large portion of the manual SQL code

writing that is usually needed for tasks like creating queries, processing query results, and

setting up database connections. Laravel speeds up development and lowers the chance of

errors by eliminating repetitive code structures and minimizing manual handling at every

stage. The Arduino IDE enables ESP32-WROOM programming for data processing and

transmission, and the system efficiently combines hardware and software components. This

demonstrates a smooth transition between secure database storage and real-time data

collection, resulting in a stable, scalable, and reliable ecosystem for medical applications.

69

Table 4.4 Survey comparison of Analysis REST API

No. Analysis PHP Native Laravel Framework

1 Rest API Speed 18.3 ms 344.52 ms

2 Code efficiency in creating

REST APIs

7 processes 1 process

3 URL structure in REST API 3 paths 2 paths

Table 4.5 Comparison of Similar Database Systems

Feature Laragon and Laravel

Framework

Firebase Real-

Time Database

AWS RDS

Database Type Structured SQL NoSQL SQL

Data Retrieval

Speed

Fast Very Fast Moderate

Integration

with ESP32

Direct via ARDUINO

IDE

Additional SDKs Custom API

integration

Ease of

Deployment

Moderate Easy Complex

Scalability Local Server Highly scalable Highly scalable

Timestamps

Support

Yes Built-in Built-in

Backend

Framework

Laravel PHP SDKs provided Requires Custom

middleware

70

4.2.2.2 Data Size

Figure 4.14 Data Size

According to the Figure 4.14 that was supplied, the database called "fyp" has multiple tables

with notably different data sizes. With 394 KB of data, the largest table, bp_readings, is the

one that contains the most records or detailed entries, most likely corresponding to extensive

or frequent blood pressure readings. Smaller tables, like announcements (0 KB) and

failed_jobs (0 KB), on the other hand, either contain few or no entries or no data at all. Other

tables, such as patients (22 KB) and farm_medications (15 KB), indicate moderate data

volumes, perhaps because they are used to store information that is less frequent or at the

summary level. Reliability and performance are prioritized, especially for transactions, as

evidenced by the effective arrangement and usage of InnoDB as the storage engine across

all tables. Critical health metrics take up more space in this distribution, which emphasizes

the data priorities of the health monitoring system and is consistent with the system's

emphasis on tracking and analysing health trends.

71

4.2.2.3 Database Temperature Patient

Figure 4.15 Database Temperature Patient

Effective hardware-software integration is demonstrated by the temperature reading

database that show at Figure 4.15, which was constructed with MySQL for management and

Laragon as the server environment. Accurate tracking is ensured by storing real-time sensor

data in the temp_readings table, which includes fields for temperature, timestamps, patient

and consultation IDs. The system effectively manages real-time storage and retrieval,

confirming its functionality, even though some reading anomalies point to calibration

problems or testing situations. MySQL and Laragon offer a scalable, lightweight solution

that makes it possible for healthcare applications to have reliable database operations.

72

4.2.2.4 Database Blood Pressure Patient

Figure 4.16 Database Blood Pressure Patient

The figures 4.16, show a simplified pipeline that uses a hardware device coupled with a web

application and a MySQL database run by Laragon to gather, transmit, store, and display

blood pressure readings. With timestamps, the bp_readings table effectively saves patient

and consultation data, guaranteeing safe storage and easy retrieval. This integration

demonstrates Laragon MySQL's dependability in handling real-time healthcare data by

showcasing the effective use of communication protocols and intuitive user interfaces to

bridge hardware and software. A hardware device provides the readings, which are then sent

to a web application and kept in a MySQL database under Laragon's management.

73

4.2.3 Hardware Configuration Results and Analysis

Figure 4.17 Connection of Hardware

An infrared non-contact digital temperature sensor and a heart rate monitor are integrated

into the ESP32-WROOM-based real-time physiological monitoring system to gather and

process critical data. The heart rate monitor uses the ESP32's ADC for digital processing

after detecting electrical signals from heartbeats and converting them into analog voltage

levels. It is connected to the ESP32 via an analog pin (such as GPIO34). In order to provide

accurate digital temperature readings without physical contact, the infrared temperature

sensor simultaneously uses GPIO21 (SDA) and GPIO22 (SCL) to communicate with the

ESP32 via the I²C protocol. The ESP32, which is programmed using the Arduino IDE,

combines inputs from both sensors for real-time analysis and guarantees synchronized data

acquisition. Continuous monitoring is made possible by the wireless transmission of the

processed data via Bluetooth or Wi-Fi to distant servers or display devices. Because it can

non-invasively measure heart rate and body temperature, this configuration is ideal for health

74

monitoring applications. It is also scalable for Internet of Things applications like fitness

tracking and remote patient monitoring.

The connections based shown in the Figure 4.10, with the following points in Table 4.6:

Table 4.6 Connection of Hardware Microcontroller

Metric Connection

Heart Rate Tracker: - An analog pin (such as GPIO34 or GPIO35)

connects the heart rate monitor to the ESP32,

which interprets and transforms electrical signals

produced by heartbeats into analog voltage levels.

- The ESP32's Analog-to-Digital Converter (ADC)

processes these analog signals, digitizing the data

for sophisticated analysis, such as signal filtering

and beats per minute (BPM) computation,

guaranteeing precise and trustworthy heart rate

monitoring.

Non-Contact Digital

Infrared Temperature

Sensor:

- The ESP32's GPIO19 and GPIO22 are connected

to the temperature sensor's SDA (Data Line) and

SCL (Clock Line), which use the I²C protocol for

communication. This configuration guarantees

dependable and effective data transfer between

the microcontroller and the sensor.

- The sensor is made to operate without making

contact and provides a highly accurate remote

measurement of body or surface temperature. The

digital data from the sensor is processed by the

ESP32, allowing for precise and smooth

integration into the physiological monitoring

system in real time.

75

Figure 4.18 LCD Result

Real-time visualization of critical health metrics is made possible by the integration of a

16x2 LCD module, which improves the system's usability and functionality. The first row

of the display is designed to show the pulse rate, expressed in beats per minute (BPM), and

the second row analyses the temperature status, classifying it as "Normal," "Low," or "High"

according to preset thresholds which show at Figure 4.18. This classification makes rapid

health evaluations easier. The ESP32 microcontroller interprets data by processing input

from the pulse sensor and the MLX90614 infrared temperature sensor. The LCD is then

dynamically updated with the processed data. By removing the need for extra hardware, this

direct interface guarantees the system's usability and accessibility. Users can effectively

monitor vital metrics thanks to the system's clear and concise representation of health

parameters. The structured display format facilitates efficient real-time data communication,

which enhances health status decision-making.

76

Figure 4.19 Result in Arduino IDE

The Arduino IDE's Serial Monitor output verifies the system's operation through the ESP32-

WROOM module's real-time monitoring of body temperature and heart rate data, as seen in

Figure 4.19. The output shows the target temperature, ambient temperature, adjusted body

temperature, and calculated beats per minute (BPM). Accurate heartbeat detection is shown

by the message "♥ A HeartBeat Happened!" and the current heart rate, and the adjusted body

temperature is evaluated to determine whether it is within the normal range, as shown by the

message "Body temperature is normal." These outcomes show how precisely the sensors and

processing algorithms work, guaranteeing accurate, real-time health metrics and proving the

system's usefulness in physiological monitoring applications.

77

4.2.4 Preliminary Results

4.2.4.1 Preliminary Results XD-58C Heart Pulse Sensor

Table 4.7 Preliminary Results XD-58C

Id. Patient Result BP Picture of Chart

1 Shazwan Hazmi

78

2 Darwisy

79

3 Asyraf

80

4 Mizan

5 Fidauddin

81

6. Aishah

82

7. Shazwan Hazmi

83

8. Asyraf

84

9. Darwisy

10. Amir

4.2.4.2 Data Analysis for XD-58C Heart Pulse Sensor

 This section will calculate the data for the blood pressure reading value in units of seconds and demonstrate how the heart pulse has

been reading. Ten readings are obtained from patients varying in age and the medications they wish to discuss with their physician. Using

device hardware that can detect the reading, the nurse will take the patient's blood pressure. It will be necessary to make some adjustments to the

heart rate sensor or install a capacitor to lessen any detection interruptions if the value is not accurate.

85

86

The table below show how to calculate BPM convert into BPS:

BPS =
𝐵𝑃𝑀

60

Example:

Time BPM BPS

10 47 0.733

11 49 0.817

11 51 0.850

12 53 0.883

13 63 1.050

14 72 1.200

14 79 1.317

15 91 1.517

15 90 1.500

16 89 1.483

17 88 1.467

17 88 1.467

18 78 1.300

87

Beats per minute (BPM) data collected over a 10-second period was converted to beats per second (BPS) for a more thorough analysis. The results

ranged from 0.733 to 1.517, reflecting small, normal variations over time. While the trend line showed that heart rate stayed within normal

physiological ranges, lower BPS readings could indicate bradycardia, which is linked to electrolyte imbalances, hypothyroidism, or problems with

heart conduction, while higher BPS readings might indicate conditions like tachycardia, which is linked to stress, fever, or cardiac arrhythmias.

According to these findings, the system consistently captures heart rate data in real time with accuracy but not all get the right value of accuracy.

Allowing for the precise monitoring required to identify minute variations in cardiovascular activity and offer trustworthy health insights for early

intervention.

88

4.2.4.3 Preliminary Results MLX90614 Non-Contact Infrared Temperature Sensor

Table 4.8 Preliminary Results MLX90614

Id. Patient Result Temperature Calculation

1 Shazwan

Hazmi Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
30.0 +32.93

2
 = 31.47℃

2 Darwisy

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
33.45 +36.69

2
 = 35.07℃

3 Asyraf

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
30.22 +32.57

2
 = 31.40℃

4 Mizan

89

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
30.0 +32.77

2
 = 31.40℃

5 Fidauddin

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
33.34 +37.47

2
 = 35.41℃

6. Asyraf

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
33.40 +37.29

2
 = 35.34℃

7. Shazwan

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
34.00 +37.35

2
 = 35.68℃

8. Amir

90

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
35.00 +36.37

2
 = 35.69℃

9. Aishah

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
32.48 +35.87

2
 = 34.18℃

10. Darwisy

Body Temperature =
𝑂𝑏𝑗𝑒𝑐𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2

Body Temperature =
31.55 +46.77

2
 = 39.16℃

4.2.4.4 Data Analysis for MLX90614 Non-Contact Infrared Temperature Sensor

 Data analysis was done using readings from patients with a variety of medical conditions in order to evaluate the accuracy and reliability

of the temperature sensor in determining body temperature in Celsius. These included differences in COVID-19 status, symptom severity, and

length of illness. Without the need for calibration adjustments or extra hardware, the sensor continuously recorded precise readings, proving its

91

sturdy construction and dependability in practical situations. In addition to tracking temperature, the sensor offered insightful information about

clinical patterns, such as establishing links between the highest temperatures ever recorded and diseases like COVID-19 or influenza. Additionally,

it monitored blood pressure (BP) readings, establishing normal ranges for both metrics. Lowered BP is frequently linked to fatigue or dehydration.

By allowing medical practitioners to promptly spot alarming patterns, like a rising fever accompanied by unusual blood pressure readings, this

enhanced monitoring capability further supports the device's value in clinical settings.

The sensor's reliability for healthcare applications, where precise data is essential for diagnosis and treatment decisions, is demonstrated by its

consistent and accurate readings that are free of significant errors. Its real-time monitoring features facilitate easy integration with more extensive

health systems and provide useful information to enhance patient care and guide evidence-based procedures. The sensor's ability to function without

the need for external adjustments demonstrates its suitability for clinical use, particularly in identifying temperature and blood pressure

abnormalities that may signal the start of disease or complications. In addition to directing future developments in sensor technology to improve

the accuracy and effectiveness of health monitoring devices, these findings support the sensor's function as a dependable tool in healthcare settings.

92

4.2.5 Circuit Wiring

Figure 4.20 Circuit Wiring

As shown in Figure 4.20, the goal of this project is to create a sophisticated health monitoring

system using an ESP32 microcontroller, LCD display, push button, non-contact infrared

temperature sensor, and heart rate sensor. Capacitors and ceramic components, which are

essential for reducing noise and stabilizing sensor readings, are incorporated into the system

to guarantee accurate and trustworthy health metrics.

Table 4.9 System Functional Analysis

Heart Rate Monitoring The heart rate sensor provides vital information about the

user's cardiovascular health by precisely detecting pulse

signals. This feature is essential for evaluating

physiological performance in real time.

Temperature Measurement Without making physical contact, the non-contact infrared

temperature sensor is used to measure body temperature

93

hygienically. This method guarantees a more hygienic and

convenient experience.

4.2.5.1 Prototype Hardware

Figure 4.21 Prototype Hardware

An integrated LCD display provides health metrics in an easy-to-read format, improving the

user's comprehension of their physiological state, and a push button lets the user interact

with the system and initiate measurements as needed. These characteristics, which are shown

in Figure 4.21, demonstrate how effectively the gadget can provide useful health

information. Additionally, the design incorporates ceramic components and capacitors,

which are essential for stabilizing signal output and lowering electrical noise. The overall

efficacy and dependability of the system are enhanced by this optimization, which

guarantees that the sensor readings stay precise and trustworthy under a variety of

circumstances.

94

4.2.5.2 Model

Figure 4.22 Combination Hardware and Software

The function of Laragon in overseeing the backend software, specifically the database that

houses recorded health data for analysis, is depicted in Figure 4.22. A thorough assessment

of individual health patterns is supported by the database's ability to identify trends in users'

health metrics over time. Visual Studio is used for the system's development and debugging,

which guarantees smooth hardware and software integration. Also, the real-time data updates

and remote accessibility are made possible by the ESP32's Wi-Fi capability, which makes it

easier to synchronize data with the database or distant platforms. This health monitoring

system offers a data-driven approach to managing personal health by combining real-time

measurements, reliable data storage, and user-friendly features. By analysing past and

current health data, this promotes proactive care, raises health awareness, and aids in making

well-informed decisions.

95

4.3 Summary

The project "Development of Real-time Patient Health Tracker Website Using

Microcontroller and Laragon" is presented in this chapter along with its discussions and

findings. The project's goal is to create a comprehensive system that can monitor patients'

vital signs in real time and display the information on a user-friendly website. The system

sends data to a web server set up with Laragon using microcontrollers to collect data from a

variety of patient-affixed sensors, such as blood pressure, temperature, and heart rate

monitors. Patients can register and log in, view their health metrics, and connect with

licensed doctors using the website's user-friendly interface. Doctors can also track

symptoms, diagnose patients, and view real-time patient health metrics with this system.

Also, the project's outcomes are shown in this chapter, which includes the landing page,

login, registration, about me, patients, readings, reading information, and symptom pages of

the website. The simulation results are also covered in this chapter, along with how to

connect a heart rate monitor to an ESP32-WROOM, code for Arduino IDE, and connect to

Database Laragon.

96

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In the conclusion, utilizing Laragon and a microcontroller to create a real-time patient health

tracker website has shown to be an effective strategy for overcoming the shortcomings of

conventional healthcare systems. The system has proven to be capable of gathering, sending,

storing, and visualizing patient health data in real-time, which allows for timely intervention

and customized care. The system can reliably and efficiently gather and process sensor data

thanks to the usage of microcontroller technology. The management of patient health data

has been made easier by the integration of Laragon, assuring safe and effective storage,

retrieval, and analysis. Additionally, the system's interfaces have been made to be user-

friendly for both healthcare providers and patients. The system's capacity to deliver efficient

and timely care has been further improved by the use of alerts and notifications. All things

considered, the real-time patient health tracker website has proven that it has the ability to

completely transform remote health monitoring by enabling patients and medical

professionals to access vital health information at anytime, anyplace. Due to its affordability,

scalability, and dependability, the system holds great promise for broad industry adoption

and impact.

97

5.2 Future Recommendations

Integration of additional sensors:

To give a more complete picture of the patient's health, the system can be enhanced by

integrating additional sensors, such as blood pressure, blood glucose, and oxygen saturation

sensors. Additionally, the most expensive sensors will provide an accurate reading compared

to the least expensive ones.

Better data analysis:

To identify abnormalities and anticipate possible health problems, the system can be

enhanced by integrating cutting-edge data analysis techniques, such as machine learning

algorithms.

Integration with wearable technology:

To provide real-time health monitoring and alerts, the system can be enhanced by integrating

with wearable technology, such as fitness trackers and smartwatches.

Integration with electronic health records:

To give healthcare providers a more comprehensive picture of their patients' medical

histories and to help them make better decisions, the system can be enhanced by integrating

with electronic health records.

Enhanced security:

To safeguard patient information and maintain privacy, the system can be enhanced by

adding cutting-edge security features like encryption and multi-factor authentication.

98

5.3 Future Works

Potential future works for the real-time patient health tracker website using PHPMyAdmin

and a microcontroller:

Integration with other healthcare systems:

Link the system to HIS and EHRs to get a complete picture of the health of your patients.

Algorithms for machine learning:

Use these to identify trends and anticipate possible health problems.

Create a mobile application:

To facilitate effortless access to the system from smartphones.

Integration with wearable technology:

For real-time health monitoring, establish connections with fitness trackers and

smartwatches.

Platform for telemedicine:

Enlarge it to incorporate online medical advice and consultations.

Enable patients:

To speak with the system in their own language through natural language processing.

Chatbot:

Provide a chatbot that offers medical guidance and assistance.

99

REFERENCES

[1] P. Bora, P. Kanakaraja, B. Chiranjeevi, M. Jyothi Sri Sai, and A. Jeswanth,

“Smart real time health monitoring system using Arduino and Raspberry Pi,” in

Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 3855–3859. doi:

10.1016/j.matpr.2021.02.290.

[2] A. Unawane, S. Jadhav, S. Jagtap, and U. G. Students, “E PATIENT

MONITORING SYSTEM USING ARDUINO,” 1498. [Online]. Available:

www.irjmets.com

[3] R. Sarkar et al., “CarePro: A Complete Arduino and Android-based Elderly

Care Health and Security Monitoring System,” in 2021 International

Conference on Computational Performance Evaluation, ComPE 2021, Institute

of Electrical and Electronics Engineers Inc., 2021, pp. 97–102. doi:

10.1109/ComPE53109.2021.9752318.

[4] P. N. Banu and P. J. MahaVinu Shree, “MULTI-PARAMETER SMART

HEALTH MONITORING SYSTEM USING ARDUINO-UNO,” 1684.

[Online]. Available: www.irjmets.com

[5] T. Chaikijurajai, L. J. Laffin, and W. H. Wilson Tang, “Artificial intelligence

and hypertension: Recent advances and future outlook,” Nov. 01, 2020, Oxford

University Press. doi: 10.1093/ajh/hpaa102.

[6] R. H. Rangaswamy and B. Larago, “Design and Implementation of Remote

Health Monitoring System Using IoT,” 2022. [Online]. Available:

https://journals.ddu.edu.et/index.php/HJET

[7] M. M. Islam, A. Rahaman, and M. R. Islam, “Development of Smart

Healthcare Monitoring System in IoT Environment,” SN Comput Sci, vol. 1,

no. 3, May 2020, doi: 10.1007/s42979-020-00195-y.

[8] Vaigai College of Engineering and Institute of Electrical and Electronics

Engineers, Proceedings of the International Conference on Intelligent

Computing and Control Systems (ICICCS 2020) : 13-15 May, 2020.

[9] “REAL-TIME LOCATION TRACKER FOR HEALTH PATIENT IN CRISIS

VADDURI AKSHITA, APARNA POLAVARAM, PUJITHA PUDOTA,”

International Research Journal of Engineering and Technology, 2022,

[Online]. Available: www.irjet.net

[10] P. Mell and T. Grance, “The NIST Definition of Cloud Computing

Recommendations of the National Institute of Standards and Technology.”

[11] S. Goyal, “Volume 1.No3 Software as a Service, Platform as a Service,

Infrastructure as a Service − A Review,” 2013, [Online]. Available:

http://www.ijcsns.com

[12] T. Khan and A. Chakrabarty, “Development of Application based Health

Monitoring System using GSM module Anika Tasniem 12101081 Nura Jamil

12101007.”

[13] M. W. Alam, T. Sultana, and M. S. Alam, “A heartbeat and temperature

measuring system for remote health monitoring using wireless body area

network,” International Journal of Bio-Science and Bio-Technology, vol. 8, no.

1, pp. 171–190, Feb. 2016, doi: 10.14257/ijbsbt.2016.8.1.16.

100

[14] H. Hassan, A. Kamal Taqi, H. J. Hassan, and K. Hadi, “Implementation of

Wireless Body Area Network Based Patient Monitoring System,” vol. 8, no. 4,

2018, [Online]. Available: www.iiste.org

[15] H. Narayan and & Rijhi, “A HEARTBEAT DETECTION METHOD BASED

ON IOT AND MONITORING SYSTEM USING ARDUINO UNO AND

THING-SPEAK.” [Online]. Available: www.tjprc.org

[16] J. Abedalrahim Jamil Alsayaydeh, M. Faizal bin Yusof, M. Zulhakim Bin

Abdul Halim, M. Noorazlan Shah Zainudin, and S. Gazali Herawan, “Patient

Health Monitoring System Development using ESP8266 and Arduino with IoT

Platform.” [Online]. Available: www.ijacsa.thesai.org

[17] M. V Dole and V. V Yerigeri, “ESP8266 BASED HEALTH MONITORING

SYSTEM USING ARDUINO,” International Research Journal of Engineering

and Technology, 2020, [Online]. Available: www.irjet.net

[18] H. Y. Ren, “Design and implementation of web based on Laravel framework,”

2015.

[19] L. De Nardis, G. Caso, and M. G. Di Benedetto, “ThingsLocate: A

ThingSpeak-Based Indoor Positioning Platform for Academic Research on

Location-Aware Internet of Things,” Technologies (Basel), vol. 7, no. 3, Sep.

2019, doi: 10.3390/technologies7030050.

[20] Sharmad Pasha, “Thingspeak Based Sensing and Monitoring System for IoT

with Matlab Analysis.” [Online]. Available: www.ijntr.org

[21] A. Perdana, N. A. Farhana, P. Harliana, and I. M. Karo Karo, “Web-Based

Application Development using PHP-Native Framework on Agent of Change

Integrity Zone Information System,” sinkron, vol. 8, no. 4, pp. 2458–2468, Oct.

2024, doi: 10.33395/sinkron.v8i4.14118.

[22] J. Woo, E. Kim, T. E. Sung, J. Lee, K. Shin, and J. Lee, “Developing an

improved risk-adjusted net present value technology valuation model for the

biopharmaceutical industry,” Journal of Open Innovation: Technology, Market,

and Complexity, vol. 5, no. 3, Sep. 2019, doi: 10.3390/joitmc5030045.

[23] Y. Ariyanto, M. Farhan, F. Rachmad, and D. Puspitasari, “Issue 2 Year 2024

Pages 66-73 Jurnal Manajemen Teknologi dan Informatika,” Matrix: Jurnal

Manajemen Teknologi dan Informatika, vol. 14, pp. 66–73, 2024, doi:

10.31940/matrix.v14i2.66-73.

101

APPENDICES

Appendix A Gantt Chart of PSM 1

No Project Activity
Week

1 2 3 4 5 6 7

M
ID

 S
E

M
 B

R
E

A
K

8 9 10 11 12 13 14

1
Final Year Project

briefing by JK PSM

2
Topic confirmation and

discussion with

supervisor

3
Meeting with
supervisor for

Introduction (Week 1)

4

Study on project

background and

writing on Chapter 1

5

Meeting with SV for
chapter 1 correction and

chapter 2 briefing

6
Make a Research and

Writing on chapter 2

7

Meeting with SV for

chapter 2 corrections and
chapter 3 briefing

8
Make a Research and

Writing on chapter 3

with doing Full Report

9 Report Draft Submission

10 PSM Presentation

102

APPENDICES

Appendix B Gantt Chart of PSM 2

No Project Activity
Week

1 2 3 4 5 6 7

M
ID

 S
E

M
 B

R
E

A
K

8 9 10 11 12 13 14

1
Starting Final Year
Project for PSM2

2
Final Year Project

briefing by JK PSM

3
Meeting with

supervisor for Progress
(Week 3)

4

PSM Claim

Submission (Week 5)

5

Progress Work 2
Evaluation (ePSM)

(Week 10)

6
Meeting with SV for

Show the results of
Chapter 4 and 5

7

Student BDP2 Report
Submission (Week 11)

8
BDP2 Presentation

& Evaluation

(ePSM) (Week 12)

9 PSM2 Report

Evaluation (ePSM) &

IIDEX2025 Student

Shortlist (Week 13)

10 Final Thesis Submission
(eThesis) (Week 14)

103

APPENDICES

Appendix H ardware ESP32

104

APPENDICES

Coding for Arduino IDE

#define USE_ARDUINO_INTERRUPTS true // Set-up low-level interrupts for most

accurate BPM math

#include <PulseSensorPlayground.h> // Includes the PulseSensorPlayground Library

#include "VEGA_MLX90614.h" // Include the MLX90614 library

#include <Wire.h> // Include Wire library for I2C communication

#include <LiquidCrystal_I2C.h> // Include the I2C LCD library

// Pulse Sensor setup

const int PulseWire = 34; // 'S' Signal pin connected to A0

int Threshold = 550; // Determine which Signal to "count as a beat" and

which to ignore

PulseSensorPlayground pulseSensor; // Creates a PulseSensor object

// MLX90614 setup

VEGA_MLX90614 mlx(26, 25); // SDA, SCL for MLX90614

const double SKIN_DETECTION_TEMP = 30.0; // Threshold to detect skin presence

const double NORMAL_BODY_TEMP_MIN = 36.5; // Normal body temperature range

(in °C)

const double NORMAL_BODY_TEMP_MAX = 37.5;

// LCD setup with custom SDA and SCL pins

105

LiquidCrystal_I2C lcd(0x27, 16, 2); // Address 0x27, 16 columns, 2 rows

// Button setup

const int buttonPin = 21; // Button connected to digital pin 21

int lastButtonState = HIGH; // Variable to store the previous button state

// Patient and Consult ID setup

int patientID = 1; // Start with patient ID 1

int consultID = 1; // Start with consult ID 1

// State flag for skin detection

bool skinDetected = false;

void setup() {

 Serial.begin(9600); // Start serial communication

 delay(2000); // Allow time for the sensor to stabilize

 // Initialize I2C with custom SDA and SCL pins

 Wire.begin(19, 22); // SDA = 19, SCL = 22

 // LCD initialization

 lcd.init(); // Initialize the LCD

 lcd.backlight(); // Turn on the backlight

 lcd.setCursor(0, 0);

106

 lcd.print("Initializing...");

 delay(2000); // Wait for initialization message to display

 lcd.clear();

 // Button setup

 pinMode(buttonPin, INPUT_PULLUP); // Set button pin as input with internal pull-

up resistor

 // Pulse Sensor initialization

 pulseSensor.analogInput(PulseWire);

 pulseSensor.setThreshold(Threshold);

 if (pulseSensor.begin()) {

 Serial.println("PulseSensor object created!");

 lcd.setCursor(0, 0);

 lcd.print("PulseSensor OK!");

 } else {

 Serial.println("PulseSensor failed to initialize.");

 lcd.setCursor(0, 0);

 lcd.print("Pulse FAIL");

 }

 // MLX90614 initialization

 Serial.println("+-----[MLX90614 Temp Sensor]-----+");

107

 lcd.setCursor(0, 1);

 lcd.print("Temp Sensor OK!");

 delay(2000);

 lcd.clear();

}

void loop() {

 // Check button press to switch patient and consult IDs

 int buttonState = digitalRead(buttonPin); // Read the button state

 if (buttonState == LOW && lastButtonState == HIGH) { // Detect button press

 patientID++; // Increment patient ID

 consultID = patientID; // Synchronize consult ID with patient ID

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("ID: ");

 lcd.print(patientID); // Display the current patient ID

 lcd.setCursor(0, 1);

 lcd.print("Consult: ");

 lcd.print(consultID); // Display the consult ID

 skinDetected = false; // Reset the skin detection flag for the new patient

 delay(500); // Debounce delay

 }

 lastButtonState = buttonState; // Update the last button state

108

 // Read MLX90614 temperatures

 double ambientTemp = mlx.mlx90614ReadAmbientTempC(); // Read ambient

temperature

 double targetTemp = mlx.mlx90614ReadTargetTempC(); // Read target temperature

 // Skin detection and display temperature only once

 if (!skinDetected && targetTemp >= SKIN_DETECTION_TEMP) {

 skinDetected = true; // Set flag to true to indicate detection

 double adjustedTargetTemp = targetTemp + 2.0; // Adjust to approximate body

temperature

 Serial.print("Skin detected for Patient ID: ");

 Serial.println(patientID);

 // Display patient ID, consult ID, and temperature on LCD

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("ID: ");

 lcd.print(patientID);

 lcd.print(" C: ");

 lcd.print(consultID);

 lcd.setCursor(0, 1);

 lcd.print("Temp: ");

109

 lcd.print(adjustedTargetTemp, 1); // Display temperature with 1 decimal place

 // Log temperature range

 if (adjustedTargetTemp >= NORMAL_BODY_TEMP_MIN &&

adjustedTargetTemp <= NORMAL_BODY_TEMP_MAX) {

 Serial.println("Body temperature is normal.");

 } else if (adjustedTargetTemp < NORMAL_BODY_TEMP_MIN) {

 Serial.println("Body temperature is low. Possible hypothermia or

undercooling.");

 } else {

 Serial.println("Body temperature is high. Possible fever or hyperthermia.");

 }

 }

 // Pulse Sensor processing

 int myBPM = pulseSensor.getBeatsPerMinute(); // Calculates BPM

 if (pulseSensor.sawStartOfBeat()) { // Check if a beat happened

 Serial.println("♥ A HeartBeat Happened ! ");

 Serial.print("BP: ");

 Serial.println(myBPM); // Print the BPM value

 lcd.setCursor(0, 0); // Display BPM on the LCD

 lcd.print("BP: ");

110

 lcd.print(myBPM);

 lcd.print(" "); // Clear remaining characters

 }

 delay(2000); // Delay to avoid flickering updates on the LCD

}

Coding connection ARDUINO IDE to LARAGON

#include <WiFi.h>

#include <HTTPClient.h>

#include <PulseSensorPlayground.h>

#include "VEGA_MLX90614.h"

#include <Wire.h>

#include <LiquidCrystal_PCF8574.h>

#include <ArduinoJson.h>

// Wi-Fi credentials

const char* ssid = "Realme1";

const char* password = "040601sophia";

// API endpoints

const char* apiGetID = "http://192.168.243.68/api/getID";

const char* apiUploadTP = "http://192.168.243.68/api/uploadTP";

const char* apiUploadBP = "http://192.168.243.68/api/uploadBP";

111

// Function prototypes

void sendTempToServer(double temp);

void sendBPToServer(int bp[], int second[], int size);

void fetchTemperature();

void startBPRecording();

void recordBPData();

void fetchIDs();

void handleButtonPress(int pressCount);

// Pulse Sensor setup

const int PulseWire = 34; // 'S' Signal pin connected to A0

int Threshold = 550;

PulseSensorPlayground pulseSensor;

// MLX90614 setup

VEGA_MLX90614 mlx(26, 25);

const double SKIN_DETECTION_TEMP = 30.0;

// LCD setup

LiquidCrystal_PCF8574 lcd(0x27);

// Button setup

const int buttonPin = 21;

112

int lastButtonState = HIGH;

// Patient and Consult IDs

int patientID = 1;

int consultID = 1;

int buttonPressCount = 0;

// BP Recording setup

const int RECORD_DURATION = 30; // Duration in seconds

int bpData[30];

int seconds[30];

int bpIndex = 0;

unsigned long startTime = 0;

bool isRecordingBP = false;

void setup() {

 Serial.begin(9600);

 Wire.begin(19, 22); // SDA, SCL for I2C

 lcd.begin(16, 2);

 lcd.setBacklight(255);

 lcd.setCursor(0, 0);

 lcd.print("Connecting WiFi");

113

 // Connect to Wi-Fi

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("\nWiFi connected");

 lcd.setCursor(0, 1);

 lcd.print("WiFi Connected");

 delay(2000);

 lcd.clear();

 // Pulse sensor setup

 pulseSensor.analogInput(PulseWire);

 pulseSensor.setThreshold(Threshold);

 if (pulseSensor.begin()) {

 Serial.println("PulseSensor initialized!");

 } else {

 Serial.println("PulseSensor failed to initialize!");

 }

 // Button setup

 pinMode(buttonPin, INPUT_PULLUP);

114

 // Fetch initial IDs

 fetchIDs();

}

void loop() {

 int buttonState = digitalRead(buttonPin);

 if (buttonState == LOW && lastButtonState == HIGH) {

 buttonPressCount++;

 handleButtonPress(buttonPressCount);

 delay(500); // Debounce delay

 }

 lastButtonState = buttonState;

 // Handle BP recording

 if (isRecordingBP) {

 recordBPData();

 }

 delay(500);

}

void handleButtonPress(int pressCount) {

 switch (pressCount % 4) {

115

 case 1:

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Fetching Temp");

 fetchTemperature();

 break;

 case 2:

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Recording BP");

 startBPRecording();

 break;

 case 3:

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Fetching IDs");

 fetchIDs();

 break;

 case 0:

 lcd.clear();

 lcd.setCursor(0, 0);

116

 lcd.print("Next Patient");

 lcd.setCursor(0, 1);

 lcd.print("ID: " + String(patientID));

 break;

 }

}

void fetchIDs() {

 if (WiFi.status() == WL_CONNECTED) {

 HTTPClient http;

 http.begin(apiGetID);

 int httpResponseCode = http.GET();

 if (httpResponseCode > 0) {

 String response = http.getString();

 Serial.println("Response: " + response);

 DynamicJsonDocument doc(512);

 DeserializationError error = deserializeJson(doc, response);

 if (error) {

 Serial.print("JSON Deserialization failed: ");

 Serial.println(error.f_str());

 } else {

117

 patientID = doc["p_id"];

 consultID = doc["c_id"];

 Serial.println("Patient ID: " + String(patientID));

 Serial.println("Consult ID: " + String(consultID));

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("p_id: " + String(patientID));

 lcd.setCursor(0, 1);

 lcd.print("c_id: " + String(consultID));

 }

 } else {

 Serial.println("HTTP Error: " + String(httpResponseCode));

 }

 http.end();

 } else {

 Serial.println("Wi-Fi not connected");

 }

}

void fetchTemperature() {

 double targetTemp = mlx.mlx90614ReadTargetTempC();

 Serial.println("Raw Temperature: " + String(targetTemp)); // Debugging log

118

 if (targetTemp >= SKIN_DETECTION_TEMP) {

 double adjustedTemp = targetTemp + 2.0;

 sendTempToServer(adjustedTemp);

 Serial.println("Adjusted Temperature: " + String(adjustedTemp));

 } else {

 Serial.println("Temperature below threshold: " +

String(SKIN_DETECTION_TEMP));

 sendTempToServer(targetTemp); // Uncomment for testing purposes

 }

}

void startBPRecording() {

 isRecordingBP = true;

 startTime = millis();

 bpIndex = 0;

 Serial.println("Started BP recording");

}

void recordBPData() {

 int bpm = pulseSensor.getBeatsPerMinute();

 unsigned long currentTime = millis();

 int elapsedSeconds = (currentTime - startTime) / 1000;

119

 if (elapsedSeconds < RECORD_DURATION) {

 if (pulseSensor.sawStartOfBeat() && bpIndex < RECORD_DURATION) {

 bpData[bpIndex] = bpm;

 seconds[bpIndex] = elapsedSeconds;

 bpIndex++;

 Serial.println("BPM: " + String(bpm) + ", Time: " + String(elapsedSeconds) +

"s");

 }

 } else {

 isRecordingBP = false;

 sendBPToServer(bpData, seconds, bpIndex);

 }

}

void sendTempToServer(double temp) {

 if (WiFi.status() == WL_CONNECTED) {

 HTTPClient http;

 http.begin(apiUploadTP);

 http.addHeader("Content-Type", "application/json");

 String payload = String("{\"c_id\":\"") + consultID + "\",\"p_id\":\"" + patientID +

"\",\"temp\":\"" + temp + "\"}";

 http.addHeader("X-HTTP-Method-Override", "PATCH");

120

 int httpResponseCode = http.POST(payload);

 if (httpResponseCode > 0) {

 String response = http.getString();

 Serial.println("Response: " + response);

 } else {

 Serial.println("HTTP Error Code: " + String(httpResponseCode));

 }

 http.end();

 } else {

 Serial.println("Wi-Fi not connected");

 }

}

void sendBPToServer(int bp[], int second[], int size) {

 if (WiFi.status() == WL_CONNECTED) {

 HTTPClient http;

 http.begin(apiUploadBP);

 http.addHeader("Content-Type", "application/json");

 http.addHeader("X-HTTP-Method-Override", "PATCH");

 DynamicJsonDocument doc(1024);

 JsonArray timeArray = doc.createNestedArray("time");

 JsonArray bpArray = doc.createNestedArray("reading");

121

 for (int i = 0; i < size; i++) {

 timeArray.add(String(second[i]));

 bpArray.add(String(bp[i]));

 }

 doc["c_id"] = String(consultID);

 doc["p_id"] = String(patientID);

 String payload;

 serializeJson(doc, payload);

 int httpResponseCode = http.POST(payload);

 if (httpResponseCode > 0) {

 String response = http.getString();

 Serial.println("Response: " + response);

 } else {

 Serial.println("HTTP Error Code: " + String(httpResponseCode));

 }

 http.end();

 } else {

 Serial.println("Wi-Fi not connected");

 }

122

}

Code PHP Script

<?php

namespace App\Http\Controllers;

use App\Models\BpReading;

use App\Models\Consult;

use App\Models\TempReading;

use Illuminate\Http\Request;

class ApiController extends Controller

{

 //

 public function getID()

 {

 try {

 // Fetch the record by ID and select the specified columns

123

 $data = Consult::where('status', 'upload')

 ->orderBy('created_at', 'asc')

 ->select('id', 'p_id')

 ->first();

 if (!$data) {

 // Return a 404 response if the record is not found

 return response()->json(['error' => 'No consultation found'], 404);

 }

 // Return the selected columns

 return response()->json([

 'c_id' => $data['id'],

 'p_id' => $data['p_id']

], 200);

 } catch (\Exception $e) {

 // Handle any unexpected errors

 return response()->json([

 'error' => 'Failed to retrieve the record',

 'message' => $e->getMessage(),

], 500);

 }

 }

 public function reading(Request $request)

124

 {

 try {

 $cred = $request->input(

 'c_id', // validation for 'consult ID'

 'p_id', // validation for 'consult ID'

);

 $temperature = $request->validate([

 'temp' => 'required|string', // validation for 'temperature'

]);

 $validated = $request->validate([

 'time' => 'required|array', // 'time' must be an array

 'reading' => 'required|array', // 'reading' must be an array

 'time.*' => 'required|string', // Each 'time' must be a string

 'reading.*' => 'required|string', // Each 'reading' must be a string

]);

 // Create a new item with the validated data

 $consult = TempReading::create([

 'c_id' => $cred['c_id'],

 'p_id' => $cred['p_id'],

 'temp' => $temperature['temp'],

]);

125

 // Ensure the arrays have the same length

 if (count($validated['time']) !== count($validated['reading'])) {

 return response()->json([

 'error' => 'Time or reading is missing.',

], 400); // Bad Request

 }

 // Create readings from time and reading arrays

 $readings = array_map(function ($time, $reading) use ($cred) {

 return [

 'c_id' => $cred['c_id'],

 'p_id' => $cred['p_id'],

 'time' => $time,

 'reading' => $reading,

 'created_at' => now(),

];

 }, $validated['time'], $validated['reading']);

 $bp = BpReading::insert($readings);

 // Return the generated ID as a response

 return response()->json(['message' => 'Successfully Uploaded'], 201);

 } catch (\Exception $e) {

 // Return a failure response if something goes wrong

 return response()->json([

126

 'error' => 'Failed to upload!',

 'message' => $e->getMessage(),

], 500); // Internal Server Error

 }

 }

 public function uploadTP(Request $request)

 {

 try {

 $temperature = $request->validate([

 'c_id' => 'required|string', // validation for 'consult ID'

 'p_id' => 'required|string', // validation for 'consult ID'

 'temp' => 'required|string', // validation for 'temperature'

]);

 // Create a new item with the validated data

 $consult = TempReading::create([

 'c_id' => $temperature['c_id'],

 'p_id' => $temperature['p_id'],

 'temp' => $temperature['temp'],

]);

 // Return the generated ID as a response

 return response()->json(['id' => $consult->id], 201);

 } catch (\Exception $e) {

127

 // Return a failure response if something goes wrong

 return response()->json([

 'error' => 'Failed to create item',

 'message' => $e->getMessage(),

], 500); // Internal Server Error

 }

 }

 public function uploadBP(Request $request)

 {

 try {

 $validated = $request->validate([

 'c_id' => 'required|string', // Validation for 'consult ID'

 'p_id' => 'required|string', // Validation for 'patient ID'

 'time' => 'required|array', // 'time' must be an array

 'reading' => 'required|array', // 'reading' must be an array

 'time.*' => 'required|string', // Each 'time' must be a string

 'reading.*' => 'required|string', // Each 'reading' must be a string

]);

 // Ensure the arrays have the same length

 if (count($validated['time']) !== count($validated['reading'])) {

 return response()->json([

 'error' => 'Time or reading is missing.',

], 400); // Bad Request

128

 }

 // Create readings from time and reading arrays

 $readings = array_map(function ($time, $reading) use ($validated) {

 return [

 'c_id' => $validated['c_id'],

 'p_id' => $validated['p_id'],

 'time' => $time,

 'reading' => $reading,

 'created_at' => now(),

];

 }, $validated['time'], $validated['reading']);

 // Assuming you have a 'Reading' model for storing the readings

 $bp = BpReading::insert($readings);

 Consult::whereKey($validated['c_id'])->update(['status' => 'new']);

 // Return the generated ID as a response

 return response()->json(['message' => 'Data successfully added!'], 201);

 } catch (\Exception $e) {

 // Return a failure response if something goes wrong

 return response()->json([

 'error' => 'Failed to create item',

 'message' => $e->getMessage(),

], 500); // Internal Server Error

 }

129

 }

}

