
FACULTY OF ELECTRONICS AND COMPUTER TECHNOLOGY
AND ENGINEERING

DEVELOPMENT OF INTELLIGENT BASED ON IOT FOR
SECURITY LOCK USING QR CODE SPECIALIZE FOR

HOMESTAY

MUHD ARIFF BIN ZULKIFLI TEOH

BACHELOR OF COMPUTER ENGINEERING TECHNOLOGY
(COMPUTER SYSTEMS) WITH HONOURS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DEVELOPMENT OF INTELLIGENT BASED ON IOT FOR

SECURITY LOCK KEY USING QR CODE SPECIALIZE FOR

HOMESTAY

MUHD ARIFF BIN ZULKIFLI TEOH

This report is submitted in partial fulfilment of the requirements for

the degree of Bachelor of Computer Engineering Technology

(Computer Systems) with Honours

Faculty of Electronics and Computer Technology and

Engineering

Universiti Teknikal Malaysia Melaka

2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Tajuk Projek : Development of Intelligent Based on IoT for Security

Lock Key using QR Code Specialize for Homestay

Sesi Pengajian : 2024/2025

Saya MUHD ARIFF BIN ZULKIFLI TEOH mengaku membenarkan laporan Projek

Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti

berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan ():

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

/ TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh : 10 Januari 2025 Tarikh : 20 Januari 2025

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan

menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled “Development of Intelligent Based on IoT for

Security Lock Key using QR Code Specialize for Homestay” is the result of my own research

except as cited in the references. The project report has not been accepted for any degree

and is not concurrently submitted in candidature of any other degree.

Signature :

Student Name : MUHD ARIFF BIN ZULKIFLI TEOH

Date : 10/1/2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer

Engineering Technology (Computer Systems) with Honours.

Signature :

Supervisor Name : MA TIEN CHOON

Date : 20/1/2025

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

To my beloved mother, Normala Binti Mohamad, and father, Zulkifli Teoh Bin Abdullah,,

who have been the source of inspiration and strength when I’m feeling down and giving

up, who continually provide their moral, spiritual, emotional, and financial support

And

To Nur Ain Teoh, Nurshafiqah, Muhd Aliff, Iena Zalina, Mohd Hafizi,Aiman, Batrisyah,

Delisya, Aisar, Raisya, Faizal Ali, Adzlan Dannish, Daniyal Iskandar and Aisy who shared

their words of advice

And encouragement to finish this project

And

To my friends, Fidauddin, Asyrafudin, Mus’ab, Iwan,Taufiq, Bobok, Bob, NoMercyGang,

Syazwan, Hamizan, Darwisy, Khaliff, Fakrullah, Amir, Irfan, Faiz,Ng Chin Huan,

Roobakanthan, Qayyum , Zaim, Lan, Ammar, Haziq, Haikal Hafiz, Nazrul and Saifuddin

whose has contributed and guide me in completing my work, giving their thoughts, idea

and solution that greatly help me in solving all the problems that occur in my journey to

finish this project.

And lastly,

To the Allah S.W.T, thank you for the guidance, strength, power of mind, protection and

skills and for giving me a healthy life. It is because of your mighty power, I was able to

finish this project successfully

i

ABSTRACT

This project presents the development of an IoT-based smart lock system that uses QR codes

as digital keys, specifically designed for homestays. The system integrates IoT components,

including the ESP32 microcontroller, QR code scanner, and Firebase database, to provide

secure and contactless access control. A smartphone application allows property owners to

generate unique QR codes for guests, enabling seamless check-ins without the need for

physical interaction. The system's design emphasizes real-time synchronization with

Firebase, ensuring efficient data validation and granting access only to authorized users.

Unlike traditional lock-and-key mechanisms or RFID cards, QR code authentication

eliminates risks such as key duplication, loss, or unauthorized sharing of credentials. The

solution also incorporates features like real-time door status updates, user-friendly

application interfaces, and customizable access duration. This project demonstrates a

practical application of IoT to enhance the security and operational efficiency of homestays,

addressing the demand for cost-effective and scalable solutions in the hospitality industry.

The proposed system not only provides a robust security framework but also enhances the

user experience for property owners and guests, paving the way for broader adoption of

smart technologies in property management.

ii

ABSTRAK

Projek ini membentangkan pembangunan sistem kunci pintar berasaskan IoT yang

menggunakan kod QR sebagai kunci digital, yang direka khusus untuk homestay. Sistem ini

menyepadukan komponen IoT, termasuk mikropengawal ESP32, pengimbas kod QR dan

pangkalan data Firebase, untuk menyediakan kawalan akses yang selamat dan tanpa

sentuhan. Aplikasi telefon pintar membolehkan pemilik hartanah menjana kod QR unik

untuk tetamu, membolehkan daftar masuk yang lancar tanpa memerlukan interaksi fizikal.

Reka bentuk sistem menekankan penyegerakan masa nyata dengan Firebase, memastikan

pengesahan data yang cekap dan memberikan akses hanya kepada pengguna yang

dibenarkan. Tidak seperti mekanisme kunci dan kunci tradisional atau kad RFID,

pengesahan kod QR menghapuskan risiko seperti penduaan kunci, kehilangan atau

perkongsian bukti kelayakan yang tidak dibenarkan. Penyelesaian ini juga menggabungkan

ciri-ciri seperti kemas kini status pintu masa nyata, antara muka aplikasi mesra pengguna

dan tempoh akses yang boleh disesuaikan. Projek ini menunjukkan aplikasi praktikal IoT

untuk meningkatkan keselamatan dan kecekapan operasi inap desa, menangani permintaan

untuk penyelesaian kos efektif dan berskala dalam industri hospitaliti. Sistem yang

dicadangkan bukan sahaja menyediakan rangka kerja keselamatan yang teguh tetapi juga

meningkatkan pengalaman pengguna untuk pemilik dan tetamu hartanah, membuka jalan

kepada penggunaan teknologi pintar yang lebih meluas dalam pengurusan hartanah..

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Ma Tien

Choon for his precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) and my mother

Normala Binti Mohamad, my father Zulkifli Teoh bin Abdullah and my whole family for

the financial support through PSM 1 and PSM 2 which enables me to accomplish the project.

Not forgetting my fellow colleague and long time friend, Fidauddin, Amirhalizan, Irfan,

Asyrafudin, Mus’ab, Iwan, Syazwan, Hamizan, Darwisy, Khaliff, Fakrullah, Faiz, Ng Chin

Huan, Roobakanthan, Qayyum, Lan, Ammar, Haziq, Hafiz, Nazrul and Saifuddin for the

willingness of sharing their thoughts and ideas regarding the project.

My highest appreciation goes to my parents, and family members for their love and

prayer during the period of my study.

Finally, I would like to thank all the fellow colleagues and classmates, the Faculty

members, as well as other individuals who are not listed here for being co-operative and

helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

LIST OF APPENDICES xii

INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 2

1.3 Project Objective 2

1.4 Scope of Project 2

LITERATURE REVIEW 4

2.1 Introduction 4

2.2 QR Code (Quick Response Code) 5

2.2.1 The Application of QR code in IOT System 6

2.2.2 Key Use Cases of QR Codes for IoT Security Solution 7

2.2.3 QR Codes Safeguarding Product Authenticity and Combating

Counterfeiting 7

2.2.4 QR Codes Improving Device Pairing and Provisioning 7

2.2.5 QR Codes contribution in Equipment Maintenance Tracking 8

2.2.6 QR Codes in access control and Authentication 8

2.2.7 QR Codes ensuring Secure Firmware/Software Updates 9

2.3 Microcontroller 9

2.3.1 Hardware 9

2.3.1.1 ESP 32 Microcontroller 9

2.3.1.2 Arduino Uno Microcontroller 10

2.3.1.3 Raspberry Pi Controller 11

v

2.3.2 Microcontroller Software 11

2.3.2.1 Arduino IDE 11

2.3.2.2 Raspberry Pi 12

2.3.3 Comparison between microcontrollers 14

2.4 Past project 18

2.4.1 “Automated Barrier Gate for Housing Estate Security System Using

QR Code Based on Android Application” 18

2.4.2 Development of Web-Based Smart Security Door Using QR Code

System 19

2.4.3 Smart door access control system based on QR Code 20

2.4.4 QR Code Based Door Opening System 21

2.4.5 Design and development of smart lock system based QR Code for

library's locker at Faculty of Engineering 22

2.4.6 QR Code DOOR Project: Access Control Application using QR Code

Image 23

2.4.7 Door Lock Security System Using Raspberry Pi & QR Code 24

2.5 Project Comparison 25

2.6 Summary 29

METHODOLOGY 30

3.1 Introduction 30

3.2 Selecting and Evaluating Tools for a Sustainable Development 30

3.3 Methodology 31

3.3.1 Workflow 32

3.4 Flowchart 32

3.4.1 Project Flowchart 33

3.4.2 Application Flowchart 34

3.4.3 System Flowchart 35

3.5 Experimental Setup 36

3.6 Equipment Use 37

3.6.1 ESP 32 37

3.6.2 Arduino Uno 37

3.6.3 Mini QR code scanner 38

3.6.4 MC-38 Door Sensor 39

3.6.5 Relay 40

3.6.6 Solenoid Lock 40

3.6.7 LCD 16 x 2 41

3.7 Software Use 41

3.7.1 Android Studio 41

3.7.2 Flutter 42

3.7.3 Arduino IDE 43

3.7.4 Firebase 44

3.8 Summary 45

RESULTS AND DISCUSSIONS 46

4.1 Introduction 46

4.2 Result and Analysis 47

4.2.1 Initial Hardware 48

4.2.2 Project Prototype 49

vi

4.2.3 Project Application 50

4.2.4 Project Database 51

4.2.5 Generating new QR code for added user 52

4.2.6 Removing the existing booking. 53

4.2.7 Accessing the homestay with the correct QR code 54

4.2.8 Accessing the homestay with incorrect QR code 55

4.2.9 Real-time update on door status 56

4.3 Data Analysis 57

4.3.1 Distance vs Time taken 57

4.3.2 Fetching error analysis 59

4.4 Summary 62

CONCLUSION AND RECOMMENDATIONS 63

5.1 Conclusion 63

5.2 Potential for commercialization 63

5.3 Future Works 64

REFERENCES 65

APPENDICES 67

vii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 The comparison of Arduino Uno, ESP 32 and Raspberry Pi 14

Table 2.2 The comparison of project of the past 25

Table 4.1: Table for relay delation 57

Table 4.2 : Fetching error table 60

Table 5.1 Project progress by week 67

viii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1: QR Code 6

Figure 2.2: The Structure of QR Code 6

Figure 2.3: ESP 32 10

Figure 2.4: Arduino Uno[10] 10

Figure 2.5: Raspberry Pi 11

Figure 2.6: The Arduino IDE logo [12] 12

Figure 2.7: Arduino IDE Interface 12

Figure 2.8: Running Raspberry Pi program using Geany[14] 13

Figure 2.9 System Architecture and Design 18

Figure 2.10: The component used for Development of Web-Based Smart Security

Door Using QR Code System 19

Figure 2.11: The simulation of a project with Arduino Uno 20

Figure 2.12: Block Diagram of QR Code Based Door Opening System 21

Figure 2.13: The design of smart lock system based QR Code for library's locker at

Faculty of Engineering 22

Figure 2.14: The architecture QR Code DOOR Project 23

Figure 2.15: The Block diagram Door Lock Security System using Raspberry Pi &

QR code 24

Figure 3.1: Block Diagram of the project 31

Figure 3.2: Project flowchart 33

Figure 3.3: The application flowchart 34

Figure 3.4: System Flowchart 35

Figure 3.5: ESP 32 37

Figure 3.6: Arduino Uno 38

ix

Figure 3.7: Mini QR scanner 39

Figure 3.8: MC-38 39

Figure 3.9: Relay 40

Figure 3.10: Solenoid Lock 40

Figure 3.11: LCD 16x2 41

Figure 3.12: Android studio logo 42

Figure 3.13: Fluter on Android Studio 43

Figure 3.14: Coding in Arduino IDE 44

Figure 3.15: The interface of Firebase in the website 45

Figure 4.1: Initial project hardware 48

Figure 4.2: Final result of project 49

Figure 4.3: Application homepage Figure 4.4: Homestay Detail 50

Figure 4.5: List Booking Figure 4.6: List door 50

Figure 4.7: Firebase's Firestore 51

Figure 4.8: Firebase's reatime database 51

Figure 4.9: User added image partition from left to right in sequence 52

Figure 4.10: QR code data deletion image partition from left to right in sequence 53

Figure 4.11: Authorized user gaining access with a correct QR code 54

Figure 4.12: Unauthorized user attempt to access with a invalid QR code 55

Figure 4.13: Door status locked Figure 4.14: Door status

unlocked 56

Figure 4.15 : Histogram for Distance vs Time taken 58

Figure 4.16 : Method use to record data 58

Figure 4.17 : Fetching error pie chart 61

x

LIST OF SYMBOLS

V = Voltage angle

% = Percentage

xi

LIST OF ABBREVIATIONS

𝑉 - Voltage

xii

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Project Progress by week 53

1

INTRODUCTION

1.1 Background

In the realm of residential security, ensuring the safety of occupants and

safeguarding property remains a top priority. Technological advancements continue to offer

innovative solutions, particularly in response to emergencies. One such innovation is the

Homestay Security Code Using QR code. Traditionally, accessing a homestay or rental

property involves physical keys or passcodes, which can be cumbersome to manage and

potentially insecure. However, with the advent of QR code technology, a streamlined and

secure access solution emerges. Much like how a semi-outdoor heat-driven fire

extinguishing system enhances response times in emergencies, the Homestay Security Code

Using QR code revolutionizes the way homeowners grant access to their properties. With

the idea of making an application for key access using a QR code, the homeowner can

generate QR code from the said application which works as a digital key. For example, if the

homeowner has made a deal with the client regarding renting, the homeowner can generate

a newly create QR code on their phone which later the QR code will share through any

communication platform or application such as email, WhatsApp, Telegram and many more.

Once the customer arrives at the homestay, he may now scan the given QR code on the

scanner available at the door. This idea not only applies to the advantage of existing

technology, but it also improves the security measure of the homestay.

2

1.2 Problem Statements

In modern times, there are emerging concerns for homestay owners about property

security and the facilitation of guest access. Traditional lock-and-key systems are quite

dated; the risks involve unauthorized duplication, loss of keys, and the efficiency of having

to replace locks for every guest. Electronic keycards enhance the level of security yet face

their own challenges like theft, loss, and expensive installation. Such systems also involve

physical contact, which, during the pandemic, had been inconvenient and risky for health

reasons. Homestay owners need an inexpensive, safe, and easy-to-operate solution that

reduces operational hassles and allows guests frictionless access. This means there is a need

for a new kind of system that provides safety with convenience for both hosts and guests.

1.3 Project Objective

The purpose is one of the most crucial things that need to be thought out and

acknowledged effectively as it shall serve as a guideline in designing a project. For this

project, the major purpose is to present a systematic and practical methodology to enhance

security and convenience in homestays utilizing IoT technology. Specifically, the objectives

are as follows:

 To create a security door sytem using QR code as a key to avoid key duplication

 Creating a homestay project that doesn’t require owner and client to meet face-to-face.

1.4 Scope of Project

This project focuses on developing a smartphone app that generates QR codes as digital keys

for rental properties. Homeowners can create QR codes to grant access to family, friends, or

clients.The system is secure because it verifies the scanned QR code for validity to avoid

3

unauthorized access. It also allows for time-limited access, whereby a homeowner can set

the expiration time of the QR code according to the duration of the rental.Additionally, the

results of the project will contribute to the improvement of the system to maintain its

relevance; therefore, it will be a reliable and secure solution for property access.

4

LITERATURE REVIEW

2.1 Introduction

The availability of the Internet of Things also known as IoT has help improved the

standard of living in daily life in this modern era that surrounded with digital innovation.

Out all of existing technology, stands security system domain has seen drastic improvement

and approached of protecting residences, real estate, and also possessions. This drastic

change had help increase a couple number of advanced development yet approachable

solutions that suited to today’s security requirments. In this case, the usage of QR code

technology seems to be the most potential path of improving security protocols especially in

the business such as hotel and homestay.The QR code technology is used as a key access.

This development guarantee the strong security measure for both homeowner and client.

Through the utilization of QR codes and Internet of Things connectivity, this novel solution

has the potential to completely transform access control within the hotel industry. The goal

of this research is to address contemporary security concerns by leveraging the inventive

momentum of solar energy technologies, which have experienced a revolutionary evolution

as recorded in previous literature. It is influenced by these swift advances in technology. The

need for intelligent security system development is growing as society transitions to a

digitally connected future. Living spaces will be safer, more efficient, and equipped with

cutting-edge technology as a result.

5

Figure 2.1.1 Example of an IoT System [1]

Figure 2.1.1 shows An IoT system collects data from sensors installed in IoT devices

and transfers that data through an IoT gateway for it to be analyzed by an application or

back-end system

2.2 QR Code (Quick Response Code)

Quick Response codes, or QR codes for short, are a kind of two-dimensional matrix

barcode that were created in 1994 by the Japanese business Denso Wave [2]. A mobile phone

can swiftly scan or recognize a QR code. Unlike a traditional bar code, which only has one

data orientation, it offers information in both horizontal and vertical directions.

6

Figure 2.1: QR Code

Figure 2.3.1 show a pattern of QR code. With 7,089 characters for numeric data, 4,296

characters for alphanumeric data, 2,953 bytes for binary (8 bits), and 1,817 characters for

Kanji / Kana symbols in Japan, a QR code can store a far bigger volume of data than an ID

barcode[3].

Figure 2.2: The Structure of QR Code

2.2.1 The Application of QR code in IOT System

One technology that has emerged as a beacon of safety in the constantly changing

world of IoT security is QR codes. In the IoT Security Solutions sector, QR codes quickly

and efficiently verify login credentials and authenticate user accounts [4] . These codes,

which include network information such as SSID, password, and encryption type, also make

Wi-Fi connecting easier by streamlining connections. Deployments of QR codes increased

7

by 23% in 2023. Furthermore, a majority of US consumers (67%)have scanned QR codes,

demonstratng the broad adoption and familiarity with this technology.

2.2.2 Key Use Cases of QR Codes for IoT Security Solution

It was discovered that there are 5 key use cases of QR Codes in IoT Secuirty solution

[4]. Starting from product authentication and anti-counterfeiting, secure device pairing and

provisioning, maintenance tracking, access control and authentication and lastly securing

firmware/software update.

2.2.3 QR Codes Safeguarding Product Authenticity and Combating Counterfeiting

By including these codes, producers give customers and companies a trustworthy

way to confirm the authenticity of their items, hence lowering the possibility that fake goods

will enter the market[4]. It's interesting to note that 70% of IoT device manufacturers now

include QR code-based authentication in their products, indicating the industry's confidence

in this technology to enhance security protocols. Moreover, research indicates that this

methodology might effectively curtail instances of counterfeit goods by up to 50%,

signifying a noteworthy advancement in guaranteeing the genuineness of the product.

2.2.4 QR Codes Improving Device Pairing and Provisioning

A use case centered on using QR codes to improve equipment monitoring and

maintenance in IoT contexts is Optimizing Equipment Maintenance monitoring with QR

Codes for IoT Security Solutions. This technique greatly enhances security standards by

making maintenance schedule more precise and effective. Remarkably, QR code-based

technologies have been included by 75% of industrial facilities to improve their maintenance

8

protocols and guarantee the safe and effective operation of their equipment[4] . Additionally,

using QR codes to track maintenance has resulted in a 40% decrease in downtime,

demonstrating a significant improvement in operational dependability and efficiency.

2.2.5 QR Codes contribution in Equipment Maintenance Tracking

Using QR codes to strengthen access control and authentication procedures is the

main goal of the use case "Strengthening IoT Device Security: Access Control and

Authentication with QR Codes for IoT Security Solutions." This application aims to make

IoT devices more secure. With 85% of IoT security solution vendors utilizing QR code

solutions to strengthen device security, this tactic is quickly gaining support[4] .

Furthermore, implementing QR code-based authentication techniques has shown to be

successful in reducing instances of unwanted access by up to 60%, thus raising the bar for

IoT device security.

2.2.6 QR Codes in access control and Authentication

Safeguarding Unauthorized Changes during Firmware/Software Updates for IoT

Devices: Using QR Codes for IoT Security Solutions is a use case that focuses on using QR

codes to secure IoT device firmware and software update processes. This approach is

extensively used; to guarantee that updates are deployed and sent safely, 90% of IoT security

solution providers use QR code-based methods[4] . This strategy has been demonstrated to

dramatically minimize update-related vulnerabilities by up to 70%, strengthening the IoT

device security architecture as a whole.

9

2.2.7 QR Codes ensuring Secure Firmware/Software Updates

By streamlining the procedure, this method makes it simpler to oversee every aspect

remotely. Use QR codes to unlock the potential of indoor farming technology's remote

monitoring, allowing for easy supervision and increased output. Through resource allocation

optimization and downtime minimization, QR code-enabled remote monitoring may yield

an astounding 80% boost in operational efficiency[4] .

2.3 Microcontroller

A microcontroller is a small yet powerful computer system with integrated circuit

that contains a processor core, memory, and input/output peripherals[5] . It serves as the

brain of embedded systems, capable of executing programmed instructions to control various

electronic devices and systems. Microcontrollers are commonly used in a wide range of

applications, from consumer electronics to industrial automation, due to their compact size,

low cost, and versatility. Microcontroller plays a crucial role in implementing the intelligent

security lock key system.

2.3.1 Hardware

2.3.1.1 ESP 32 Microcontroller

The ESP32 is a powerful microcontroller that has gained widespread popularity in

the IoT and embedded systems community due to its advanced features and capabilities [6],

[7]. Developed by Espressif Systems, the ESP32 is based on a dual-core Xtensa LX6

processor with integrated Wi-Fi and Bluetooth connectivity, making it well-suited for a

variety of applications requiring wireless communication and internet connectivity.

10

Figure 2.3: ESP 32

2.3.1.2 Arduino Uno Microcontroller

The Arduino Uno is an open-source microcontroller board based on the Microchip

ATmega328P microcontroller (MCU) and developed by Arduino.cc and initially released in

2010 [8]. The microcontroller board is equipped with sets of digital and analog input/output

(I/O) pins that may be interfaced to various expansion boards (shields) and other circuits.

The board has 14 digital I/O pins (six capable of PWM output), 6 analog I/O pins, and is

programmable with the Arduino IDE (Integrated Development Environment), via a type B

USB cable[9]. It can be powered by a USB cable or a barrel connector that accepts voltages

between 7 and 20 volts, such as a rectangular 9-volt battery.

Figure 2.4: Arduino Uno[10]

11

2.3.1.3 Raspberry Pi Controller

The Raspberry Pi is a small card sized computer, function almost as similar as the

regular computer people know, which run on Linux operating system. The Raspberry Pi has

a borad com BCM 2835 SoC, which comprises of an advanced RISC Machine 76JZF-S 700

MHz processor, video core IV GPU, and was originally distributed with 256 megabytes of

RAM, and which the upgraded version to 512 MB (Model B & Model B+) [11]. It doesn’t

come with a hard disk or solid-state drive, but it uses an SD card for booting and data storage.

Figure 2.5: Raspberry Pi

2.3.2 Microcontroller Software

2.3.2.1 Arduino IDE

Arduino IDE is an open-source platform for prototyping built on user-friendly

hardware and software [12]. Arduino boards have the ability to take inputs, such as a light

from a sensor, a finger pressing a button, or a message from Twitter, and convert them into

outputs, such as starting a motor, turning on an LED, or posting content to the internet. By

delivering a set of instructions to the microcontroller on the board, you can instruct your

board on what to do. You use the Arduino Software (IDE), based on Processing, and the

12

Arduino programming language, which is based on Wiring, to accomplish this. ESP 32 is

also compatible with Arduino IDE.

Figure 2.6: The Arduino IDE logo [12]

Figure 2.7: Arduino IDE Interface

2.3.2.2 Raspberry Pi

The Raspberry Pi software ecosystem is diverse and robust, facilitating a broad

range of uses, including professional growth, DIY projects, teaching, and prototyping

[13].Raspberry Pi is quite different compared to Arduino and ESP 32 as it development

environment is wide. Several type of IDE’s that can execute the Raspberry Pi is Thonny,

Geanny, Visual Studio Code, and PyCharm .

13

Figure 2.8: Running Raspberry Pi program using Geany[14]

14

2.3.3 Comparison between microcontrollers

Table 2.1 The comparison of Arduino Uno, ESP 32 and Raspberry Pi

Parameter Arduino Uno (R1 to R3) ESP 32 Raspberry Pi

Microcontroller/

Processor

Microchip Atmega328P Tensilica Xtensa LX6

dual-core

Broadcom BCM2711,

Quad-core Cortex-A72

Operating Voltage 5V 3.3V 5V

InputVoltage

(Recommended)

7-12V 5V (via USB) 5V/3A DC via USB-C

Digital I/O Pins 14 (6 PWM) 34 40

15

Analog Input Pins 14 18 Requires additional

hardware

PWM Channels 6 16 Yes

Flash Memroy 32 KB 4 MB Depends on MicroSD

card

SRAM 2 KB 520 KB 2GB, 4GB, or 8GB

LPDDR4

EEPROM 1 KB - -

Clock Speed 16 MHz 160 MHz (up to 240

MHz)

1.5 GHz

16

Wi-Fi No 802.11 b/g/n 2.4Ghz and 5GHz IEEE

802.11 b/g/n/ac

Bluetooth No V4.2 BR/EDR and BLE Bluetooth 5.0, BLE

USB ports 1 x USB 2.0 Varies by board 2 x USB 3.0, 2 x USB

2.0

Networking No Wi-Fi, Bluetooth Gigabit Ethernet, Wi-Fi,

Bluetooth

GPIO 14 34 40

Video Output No No 2 x micro-HDMI (up to

4Kp60)

17

Audio Output No No 4-pole stereo audio and

composite video port

Power Consumption Low Medium High

Dimensions 68.6 mm x 53.4 mm Varies by board (e.g, 18

mm x 25.5 mm)

85.6 mm x 56.5 mm

Weight 25 g Varies by board 46 g

18

2.4 Past project

2.4.1 “Automated Barrier Gate for Housing Estate Security System Using QR Code

Based on Android Application”

Based on the [15], the authors conduct research on automatic barrier gates that use

an Android-based QR Code that is only accessible by the housing unit's homeowners in order

to enhance the security system. Subsequently, the portal will be connected to the QR Code

on the Android app and the database's current data. Every enrolled member of the home

owner's account will generate a unique QR Code, which will be distinct from one another.

The ATmega2S60, which is used by the portal control system center, receives data from the

QR Code scanner and compares it with the database. By employing the absolute difference

method, the system checks the visitors with data matching. The GM66 QR Code Scanner's

functionality test result shows an error value of 7.14% and a system running time of 13.6

seconds overall.

Figure 2.9 System Architecture and Design

19

2.4.2 Development of Web-Based Smart Security Door Using QR Code System

The work of this author [16] This work demonstrates the construction of a secure

door lock system that allows authorized personnel to monitor who has access to the

university laboratory or classroom. The system makes use of Quick Response (QR)

technology and a Raspberry Pi processor. The purpose of the data recording system is to

monitor all incoming and outgoing activity that occurs when a user logs in to the security

door from the web server. In a similar spirit, the only people who will be granted entry to

the doors are the approved ones. This is preliminary work to test the functionality of the

system for usage in various assets and facilities, including offices, labs, and classrooms. The

testbed development has been successful as an early research to give a smart security door

employing QR code technology, based on the results and data collecting.

Figure 2.10: The component used for Development of Web-Based Smart Security

Door Using QR Code System

20

2.4.3 Smart door access control system based on QR Code

This work uses Python, Arduino, and QR code technology to build an automated

access control system that uses codes. The QR scanner at the entry gathers and compares the

user's unique identification (UID) with the UID entered into the system after it scans a QR

code [17] . The outcomes demonstrate that this system is able to promptly, effectively, and

dependably give or prohibit entry to a secured area. Security systems keep unauthorized

people out of a place, protecting both intellectual and physical property. Many door locks,

including electronic and mechanical ones, were developed to satisfy fundamental security

requirements, but they also aid in organizing data files listing the individuals who are

permitted.

Figure 2.11: The simulation of a project with Arduino Uno

21

2.4.4 QR Code Based Door Opening System

The writer proposed a project for accessing a gate using QR code. The writer also

mentioned that in his home country, India has a huge population[18]. By having a huge

population India faced a problem in traffic congression. The writer mentioned, by designing

a control system for traffic by utilizing IoT idea through QR code which generated in the

webpage for the respective person can help solved the congestion problem.

Figure 2.12: Block Diagram of QR Code Based Door Opening System

22

2.4.5 Design and development of smart lock system based QR Code for library's

locker at Faculty of Engineering

The writer of this project designed of an intelligent lock system in the Library of the

Faculty of Engineering, Universitas Riau, that uses QR code scanning as a locker key is

covered in this paper [19] . The device system comprises a single ESP8266 Node MCU

module, a single 12V Power Switch Adapter, a single AMS 1117 module with 3.3V and 5V

output voltages, three 5V relay parts, and three 12V solenoid components. In comparison to

the current security systems, the security system has been upgraded. Features like email

notifications, level login to treat theft notifications, and personal data verification have all

been added. This study also examined the device system's delay. The average delay obtained,

based on measurement data, is 1.66 seconds.

Figure 2.13: The design of smart lock system based QR Code for library's locker at

Faculty of Engineering

23

2.4.6 QR Code DOOR Project: Access Control Application using QR Code Image

The research suggests a new approach to access management that involves attaching

a WebCam to an electric door lock and developing an embedded key for smartphones that

uses two different forms of cryptography to create a QR Code image [20].

This paper presents the architectural model of the access device, the encryption procedure,

the elaboration of the QR Code reading device using a Raspberry Pi 2 CPU, and the

generation of a QR Code image using encrypted users' data.

Figure 2.14: The architecture QR Code DOOR Project

24

2.4.7 Door Lock Security System Using Raspberry Pi & QR Code

The writer [21] stated that the device designed in this project can be installed in the

main entrance of a house. With the use of a USB webcam and a PIR sensor, it can detect any

movement from a visitor and begin taking pictures.The photographs are uploaded to the

Google Cloud and sent as an email notice to the home owner after being momentarily stored

on the Raspberry Pi. Thus, the user receives the visitor's photographs by email right away,

which he can view on his smartphone. Through the TCP-IP stack, the Raspberry Pi and

Google Cloud are connected. One of the IoT boards that has an on-board TCP/IP stack is the

Raspberry Pi 3, which makes connecting to an IoT network easy. The Pi utilizes the OpenCV

library to take pictures with the webcam and transmit them to the user's registered email

account.

Figure 2.15: The Block diagram Door Lock Security System using Raspberry Pi & QR

code

25

2.5 Project Comparison

Table 2.2 The comparison of project of the past

NO Author Project Name Microcontroller/processor

Used

Additional

component

Output

1. F.

Istiqomah, D. K.

Nuurul Izza, J.

Susila, B. A. Kindhi,

E. Indasyah and F. I.

Adhim

Automated Barrier

Gate for Housing Estate

Security System Using QR

Code Based on Android

Application

Atmega 2560 ESP-8266 GM66 QR

Code Scanner, HC-

SR04 Sensor, Servo

motor, relay and COB

Strip LED

- The Red LED will lights

up if the system reject

the QR code, Green LED

will light up if the QR

code valid.

2. A. F. M.

Fauzi, N. N.

Mohamed, H.

Development of

Web-Based Smart Security

Door Using QR Code

System

Raspberry Pi 3 B+ Camera Pi, QR

scanner,Electromagnetic

Lock

- The Lock will activate

and unlock once it

receive the valid QR

code

26

 Hashim and M. A.

Saleh

3. Jain, Agrim

& Panwar, Abhinav

& Azam, Mohd &

Khanam, Ruqaiya

Smart door access

control system based on QR

code

Arduino UNO Servo motor,

QR code Scanner, Light

dependent resistor

(LDR), Light emitting

diode (LED)

- The voltage value

changing depending on

the brightness of

surrounding light

- Servo motor rotates to 90

degree to left once it

receeive the correct QR

code.

4. Nethrasri P,

Nethrasri P

QR Code Based

Door Opening System

Arduino UNO ESP8266EX,

L293D (moto

driver),DC motor

- When the QR code being

scanned match that of

the server, the DC motor

will run thus unlocking

the door

27

5. Yusnita

Rahayu, Luthfi Afif ,

Ping Jack Soh

Design and

development of smart lock

system based QR Code for

library's locker at Faculty of

Engineering, Universitas

Riau

Node MCU ESP 8266 AC voltage

220V, DC-DC step

down (module

AMS1117) with output

of 3.3V, 5V relay,12V

Solenoid

- The selectinve QR code

will triggered a specific

solenoid given there are

three of them. The

solenoid will activate the

indicating that the door

has been unlock

6. Luis Antonio Pereira QRCode DOOR

Project: Access Control

Application using QR Code

Image

Raspberry Pi 2 LED, Digital

camera with 5

megapixels Resolution

connected via USB

- LED will lights on

indicating that the door

has been open

7. Dr. Badugu

Suresh

Door Lock Security

System Using Raspberry Pi

& QR Code

Raspberry Pi Camera Tilt sensor, Red

LED, Green LED

- Red LED light on when

QR being scanned is

rejected, Green Light on

28

 when QR being scanned

accepted.

29

2.6 Summary

Most of the completed project, been done by referring to projects of the past.

Reviewing the past project is very important as a lesson can be learnt from past attempts,

which may spark the development of fresh concepts or improvements for later undertakings.

Even though every project is different and has its own features and designs, it is important

to recognize and value the contributions of earlier work because cooperation and the

exchange of knowledge frequently lead to success. To further foresee and lessen potential

roadblocks in the development process, in-depth study and comprehension of pertinent

theories, concepts, ideas, and technologies are essential. This thorough evaluation guarantees

that the project draws on prior expertise and understanding to produce a reliable and efficient

security solution designed for homestay settings.

30

METHODOLOGY

3.1 Introduction

In general, accuracy and effectiveness are among the most crucial elements in

developing a project, especially one that involves security and access control. To address

these issues and improve the general security and convenience of the homestay environment,

the project that is executed must include all necessary characteristics. The on-going

evaluation made toward the project being build help ensure that the system, database,

hardware, and part produce is suitable and match a certain standards. The information need

to be absord quickly, program the continuing duty, and continue to funciton for certain

amount of time. Each stage is important in order to build and implement an advanced yet

user-frinedly system that consisting the usage of QR code that based on IoT technology

specialized for homestay.

3.2 Selecting and Evaluating Tools for a Sustainable Development

A careful tool selection is necessary for the integration of IoT technologies and QR

codes in the building of a security lock key system for homestays. While advanced tools

have advantages, they can also add complexity and waste resources if features are

mismatched. On the other hand, excessively basic tools could require regular updates, which

could cause downtime. Finding the right balance in tool selection is essential, ensuring that

functionality is neither compromised or overshadowed. Every tool is carefully examined for

31

support for QR codes, IoT integration, and secure data transmission. Scalability and

compatibility are crucial. The project minimizes maintenance while ensuring optimal

performance through thorough tool selection and evaluation. This strategy ensures that

homestays will have a solid, safe, and effective security solution that lasts over time.

3.3 Methodology

This documentation outlines an innovative approach to improving homestay

security by using an IoT-based smart lock system that uses QR codes. The goal of this system

is to offer safe, contactless entry control, guaranteeing the comfort and safety of both visitors

and property owners. The procedure for registering new visitors and how the system

validates QR codes before granting access are shown in the flowchart and comprehensive

procedures that follow.

Figure 3.1: Block Diagram of the project

The block diagram above shows a QR code security door system using ESP32,

Arduino Uno microcontroller. The system include QR code scanner to decode data from

32

scanned QR code and MC-38 sensor to indicate if the door is open or close. These component

help collect and send data to ESP32 to interact with database and will activate the LED, relay

to trigger solenoid and Arduino Uno to help LCD display the output in real-time. The

Arduino Uno is used as a memory extension due to the limitation of ESP32 flash memory to

help LCD functioning.

3.3.1 Workflow

This system uses QR codes for secure access control. The process starts with the

homeowner generating a QR code through a smartphone application. The code is saved on

a database server for validation. When the QR code is scanned, the scanner sends the data to

a microcontroller, which forwards it to the server to check its validity. If the server confirms

the QR code is valid, the microcontroller activates a relay that unlocks the solenoid lock,

granting access. If the QR code is invalid, the door remains locked. This method provides

secure, automated access control, ensuring only authorized users can unlock the door.

3.4 Flowchart

The flowchart will outline the development process. This ensures that the project is

organized and executed according to the plan. The flowchart will demonstrate how the

experiment was carried out and highlight significant features.

33

3.4.1 Project Flowchart

Figure 3.2: Project flowchart

Figure 3.2 shows the flowchart on how this project were build. Starting from

understanding the objective to perform initialization. If there’s an error, back to the defining

system requirement until there’s no error. Only then the project is consider complete.

34

3.4.2 Application Flowchart

Figure 3.3: The application flowchart

On Figure 3.3 shows the UI (User Interface) of the application on the User phone.

On the selection part, there are 3 options which is Homestay detail, List door and list

booking. The homestay detail basically contain the detail of the address such as address. For

List door, it shows a status of door either it is locked or not. For list booking, it contain all

the detail regarding the booking such as creating a booking for new customer or existing

one. The homeowner can also terminate the existing QR code as well as share the QR code

up to his liking.

35

3.4.3 System Flowchart

Figure 3.4: System Flowchart

Figure 3.4 shows the flowchard of the system. It shows that when QR code is

scanned, the system will decode QR code data and will parse the data through database to

server to check check in-check out timing and it validity. If the QR code is valid, then the

door will be open. Otherwise, the LCD will display that the QR code is invalid and the door

will remained lock.

36

3.5 Experimental Setup

The ESP32 is the main microcontroller utilized in this project. Its functions include

processing data from QR codes, interacting with the database, and managing system

operations. The ESP32 can process data entries from the QR code scanner, record them in

real-time, and communicate with the database to validate the scanned codes thanks to

algorithm codes that can be implemented on the Arduino IDE.

A Mini QR code scanner module is used for scanning QR codes. This module sends

the data to the ESP32 for processing after scanning the QR codes that visitors present. After

scanning, the device obtains the necessary information from Firebase, a real-time cloud

database that is used to hold visitor data and the QR codes that correspond with it. Firebase

is a database server that help to communicate and update with the ESP 32 for confirmation

and matching the QR code so the system may or may not grant acsess.

A solenoid locks is the lock mechanism used in and work it function in accordance

to the system outcomes. The Solenoid door will be activate thus unlok the door once it is

confirm by the system that the scanned QR code is valid. The door will simply remain as it

is if the QR code scanned is invalid.

The software used in this project consist of Arduino IDE to programme the ESP 32

while syncing it to the real-time connection with Firebase. Furthermore, an application that

was develop by Android Studio that help homeowner generate QR codes which will be

shared to the guest. This application also have a real-time connection with Firebase and the

data saved will be accessed by the ESP 32 to grant access of the validity of QR code. The

QR code ensure the integration between mobile platform and the IoT system.

37

3.6 Equipment Use

3.6.1 ESP 32

Because of its built-in Wi-Fi and Bluetooth capabilities, the ESP32 microcontroller

is perfect for an Internet of Things (IoT)-based security lock door system that uses QR codes

for homestays. These features allow for seamless real-time interaction with cloud databases

like Firebase. It can handle duties like data processing and QR code scanning with efficiency

because to its dual-core processor and plenty of memory. It is reasonable to use the ESP32

to create a dependable, safe, and easy-to-use access control system for homestays because

of its affordable price and sophisticated capabilities.

Figure 3.5: ESP 32

3.6.2 Arduino Uno

Arduino Uno Boards are based on the ATmega328P chip, designed for simplicity,

ease of use, and versatility in various electronic projects. As part of the open-source Arduino

platform, the boards are equipped with 14 digital input/output pins, six analog inputs, a USB

connection for programming, and a power jack for an external power supply. The Arduino

Uno Boards operate at a clock speed of 16MHz, making it suitable for handling various

sensors, motors, LEDs, and communication modules. The Arduino Uno supports digital and

analog interfacing, enabling applications ranging from basic LED blinking to complex

38

robotics and Internet of Things (IoT) systems. Its simplicity and broad community support

make it a favored choice among hobbyists, educators, and professionals for prototyping and

developing embedded systems, interactive devices, automation solutions, and more.

Figure 3.6: Arduino Uno

3.6.3 Mini QR code scanner

QR scanners are highly suitable for Internet of Things (IoT)-based

security lock systems for guest houses due to their high-speed decoding, compact

size, and durability. Their compatibility with various interfaces, such as USB,

UART, and others, simplifies integration with microcontrollers like the ESP32.

Additionally, their low power consumption ensures reduced maintenance

requirements and extended operational life. These characteristics make QR

scanners an ideal choice for reliable and efficient access control in homestay and

similar settings, offering a seamless and secure experience for users.

39

Figure 3.7: Mini QR scanner

3.6.4 MC-38 Door Sensor

MC-38 Magnetic Contact Switch Sensor can be used as a door or window security

system. It produces a signal when moved away from each other which can be fed to the

microcontroller (e.g Arduino) to perform the desired action as per requirement. This sensor

is suitable to use for trigger alarm or ON/OFF light inside a cupboard sliding door. This

wired sensor is triggered by the magnet. When the magnet is closed by, the circuit is closed

or open if the magnet is far from the sensor.

Figure 3.8: MC-38

40

3.6.5 Relay

In this project, the high-power door locking mechanism is controlled by the relay.

By acting as a switch, it enables the low-power ESP32 to securely regulate the higher

voltage/current required for door locking and unlocking. As shown in Figure 3.7.

Figure 3.9: Relay

3.6.6 Solenoid Lock

A solenoid lock is ideal for this project due to its reliability, ease of integration, and

secure locking mechanism. When powered, it offers strong, rapid locking and unlocking, in

line with the system's requirement for quick access control. Smooth integration is ensured

by the solenoid lock's simple operation and compatibility with microcontrollers such as the

ESP32. Furthermore, it is appropriate for the frequent use anticipated in homestays due to

its longevity and low maintenance requirements, which improves overall security and user

convenience. As shown in Figure 3.8.

Figure 3.10: Solenoid Lock

41

3.6.7 LCD 16 x 2

A common kind of display module used in many electronic projects and embedded

systems is a 16x2 LCD (Liquid Crystal Display). The display can show up to 32 characters

at a time since it contains 16 columns and 2 rows, as indicated by the "16x2" designation. In

this project, this is used to show the output whenever the QR code scanned to indicate if the

QR code received is valid or invalid. As shown in Figure 3.9

Figure 3.11: LCD 16x2

3.7 Software Use

3.7.1 Android Studio

An extensive set of tools designed especially for Android app development is provided by

Android Studio. It offers a feature-rich Integrated Development Environment (IDE) with

tools for debugging, testing, and code editing that are all tailored to make Android

applications run smoothly. Android Studio benefits from a vast developer community and

extensive documentation. This ecosystem provides access to libraries, APIs, and support

forums, facilitating faster development cycles and easier troubleshooting. Developers can

leverage these resources to implement advanced features, ensure app stability, and optimize

performance for the specific requirements of a homestay security system.

42

Figure 3.12: Android studio logo

3.7.2 Flutter

Flutter is Google's portable UI toolkit for crafting beautiful, natively compiled

applications for mobile, web, and desktop from a single codebase. Flutter works with

existing code, is used by developers and organizations around the world, and is free and open

source. Flutter also use a coding language called Dart language. Though it name is quiet

unknown to most, it easy to learn. You can build apps with Flutter using any text editor or

integrated development environment (IDE) combined with Flutter's command-line tools.

The Flutter team recommends using an editor that supports a Flutter extension or plugin, like

VS Code and Android Studio. These plugins provide code completion, syntax highlighting,

widget editing assists, run & debug support, and more. The Flutter plugin only works with

Android Studio.

43

Figure 3.13: Fluter on Android Studio

3.7.3 Arduino IDE

Arduino (IDE) is an application for the platform (Windows, macOS, Linux) written

in the Java programming language. It is used to write and upload programs to Arduino

boards. The source code for the IDE is released under the GNU General Public License,

version 2. Arduino supports the C and C++ languages using special rules for structuring

code. Arduino provides software libraries from the Wiring project, which offer many

common input and output procedures. User-written code only requires two basic functions

to initialize the sketch and the main program loop. These are compiled and linked with the

main program included in the executable cycle, which can be executed with GNU tools, also

included with the IDE distribution.

44

Figure 3.14: Coding in Arduino IDE

3.7.4 Firebase

Firebase is a great choice for the database server because of its scalability, real-time

capabilities, and ease of integration. With Firebase's real-time synchronization feature,

devices may instantly get updates anytime new QR codes are created or viewed. This feature

improves responsiveness and security by ensuring that decisions about access control are

rapidly relayed to the security system. The mobile application was developed using Android

Studio, which is one of the platforms and programming environments that Firebase

seamlessly integrates with. Its simple integration SDKs and APIs cut down on development

time and effort by making the deployment of data store and retrieval operations easier. The

QR code that been produce by the android studio application will directly link up with

Firebase sauthentication and access control mechanisms, ensuring that guest QR code data

remains protected from unauthorized access.

45

Figure 3.15: The interface of Firebase in the website

3.8 Summary

This chapter outlines the methodology adopted for the development of an IoT-based

security lock door system using QR codes specialized for homestays. It describes how to

choose and integrate key parts such the Firebase database, Mini QR code scanner, and ESP32

microcontroller. The process entails analyzing system requirements, choosing components

based on compatibility and performance standards, and creating a comprehensive system

design to guarantee smooth functionality and integration. Limitations are also covered,

including the need for consistent internet connectivity and possible problems with QR code

readability. Through effective access control based on QR codes, the initiative seeks to

improve homestay security while guaranteeing user-friendliness and dependability for both

hosts and visitors.

46

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the results, analysis, and evaluation of the Development Of

Intelligent Based On IoT For Security Lock Key using QR Code Specialize For Homestay.

The system integrates components such as the ESP32 and Arduino Uno microcontroller,

Mini QR code scanner, and Firebase database to facilitate secure access control through QR

code verification. The system's performance is assessed in terms of its capacity to scan QR

codes quickly, the dependability of its access control systems, and its interface with Firebase

for real-time data synchronization. The usefulness of the system in boosting homestay

security is discussed, along with any implementation-related issues and suggestions for

enhancements for further editions. The outcomes demonstrate how the system can manage

guest and host access conveniently and securely, all the while maintaining dependability and

user-friendliness.

47

4.2 Result and Analysis

IoT-based QR code security system projects have great potential for changing the

face of access management in property. This therefore proposed a project that embedded the

QR code system within a homestay management application that could allow homeowners

to create QR codes for secure and easy access. These are actually digital keys whose idea

prevents the use of real keys or even electronic keycards, which might be costly and less

practical.The system adopts the policy of security and verifies the QR code through the

Firebase database. Provided the QR code matches against the booking details and is within

the valid check-in and check-out times, the system will unlock the door through an IoT-

connected solenoid lock. Advanced IoT technologies ensure reliability in real-time

monitoring and control for enhanced convenience and security to users.The project deals

with some of the major challenges in managing access to homestays by automating the

access, including remote control, timestamp validation, and database synchronization. This

ensures a more scalable, user-friendly, and secure solution to the changing needs of property

owners and their guests.

48

4.2.1 Initial Hardware

By referring Figure 4.1 below, it shows hardware configuration required initially

consists of an ESP32 module, Arduino Uno, relay module, a pair of 9V battery for powering

other Solenoid lock, and few connecting wires. Inprevious approaches, a breadboard was

used to create the connections of ESP32 withotherequipment. For this project setting, the

connection of a hardware is without the usage of breadboard as the ESP32 extension board

is good enough. It contains ar elay module to provide control over high-powered devices and

has the ESP32 as its central processing unit, which is capable of doing the processing of

logics and also establishes communication. This kind of refined hardware opens up

opportunities in IoT for various applications such as the QR code security door for

prototyping to deployment without fail and in an efficient way

Figure 4.1: Initial project hardware

49

4.2.2 Project Prototype

Figure 4.2: Final result of project

Figure 4.2 illustrates the outcome of the QR code-based smart security door system.

This project represents an advanced IoT-enabled solution that integrates cutting-edge

technology with enhanced security features. As shown in the Figure above, the prototype

contains QR scanner beside of door. That’s where the QR code will be scanned. On top of

the prototype, there’s a red and green LED and LCD.

50

4.2.3 Project Application

The interface of the application is shown in the figure below starting from Figure

4.3 to Figure 4.6. Figure 4.3 is the homepage of the application consisting of navigation to

Homestay detail, List booking and list door. Figure 4.4 show interface of homestay detail,

Figure 4.5 shows the booking detail page and figure 4.6 shows the status of the door.

Figure 4.3: Application homepage Figure 4.4: Homestay Detail

Figure 4.5: List Booking Figure 4.6: List door

51

4.2.4 Project Database

This project required the usage of database to ensure application interact with the hardware

even in long distances. We use Firebase as the database platform where the QR code data is

stored. The hardware will interact with the database using ESP32 with internet connection.

Figure 4.7: Firebase's Firestore

Figure 4.8: Firebase's reatime database

Figure 4.7 shows the Firebase’s Firestore that stored QR code data that were generated on

applications. This is where the hardware will parse the QR code scanned on QR code

scanner. In figure 4.8 is the real-time database of the Firebase. This part is interacted with

52

List door page on the application. It shows the status of the door either it is close or open.

This data is updated in real-time.

4.2.5 Generating new QR code for added user

Figure 4.3 – Figure 4.6 shows the flow of QR code authentication in QR code security lock

system ensures secure and reliable access control. When a new user wants to gain access,

the homeowner generates a unique QR code on the application.

Figure 4.9: User added image partition from left to right in sequence

In Figure 4.9 1st partition, shows the page of list booking. If you look at the bottom

corner, there’s a plus button. The button when pressed will pop up the booking log as shown

in 2nd partition. The booking log is where we add a client data like name, IC number, phone

number, and check-in and check-out. Once submit, the system will generate QR data shown

in third partition. In the last partition, it shows the total booking is added as there’s a total of

7 compared to the 1st image partition.

53

4.2.6 Removing the existing booking.

This feature allows homeowners to remove specific QR codes and their associated booking

records from the Firebase database without affecting other active codes. This function is

particularly useful when access for a specific user needs to be revoked due to expired

bookings or changes in access permissions. By deleting only the required QR code, the

system maintains flexibility and avoids the need for a full reset. This selective deletion

ensures that access remains secure and organized while allowing the homeowner to manage

credentials. The Figure 4.10 shows a sequence of deleting the existing QR code. When the

selecting data booking is pressed, it will navigate to the booking detail. There the user can

terminate the QR code and thus the number of booking will decrease as shown.

Figure 4.10: QR code data deletion image partition from left to right in sequence

54

4.2.7 Accessing the homestay with the correct QR code

Figure 4.11 shows an authorized user accessing the QR code security lock key system with

a valid QR code in demonstrating effectiveness and reliability concerning the QR based

security door system. Once the QR is scanned, the information is cross checked in real time

with the Firebase database. Once the QR code has been verified to be correct, it triggers the

turning on of the solenoid lock and the user may enter. It will display on the LCD, upon

successful authentication, "Door is UNLOCKED". This approach provides evidence of the

security and convenience in QR code authentication since it ensures that only pre-approved

users with valid QR codes unlock the door, preventing unauthorized entry and increasing

overall security.

Figure 4.11: Authorized user gaining access with a correct QR code

55

4.2.8 Accessing the homestay with incorrect QR code

Figure 4.12 Shows unauthorized user trying to access the system with an invalid/unregistered

QR code. The system immediately checks the QR code data by comparing it to the records

present on Firebase once it has been scanned. It sends negative logic to the solenoid lock if

there is no matching entry in the Firebase. The lock will remain securely locked.

Figure 4.12: Unauthorized user attempt to access with a invalid QR code

56

4.2.9 Real-time update on door status

Since the system is compatible with the database, User can see the status of the door. This is

because the system will update the door status in real-time. You can see the door status

locked on Figure 4.13 while in Figure 4.14 shows the door status unlocked.

Figure 4.13: Door status locked Figure 4.14: Door status unlocked

57

4.3 Data Analysis

For the data analysis, the table will explain about the functionality of QR code

scanner and the relay of the solenoid lock. It will also explain about the limitation of the QR

code scanner with fetching error table.

4.3.1 Distance vs Time taken

The table below summarize the delation of the relay once the QR code is scanned

based on the distance. It’s basically a time taken for the relay before activating the solenoid

Lock. This table shows the factor play by the QR scanner limitation on scanning the QR

code from certain distance. Therefore, the delation of the relay can be related with the

distance when the QR code is scanned.

Attempt (Relay Delation(s))

Distance 1 2 3 4 5 Average

5 0 0 3.57 0 3.74 1.46

10 6.48 5.24 4.85 5.46 6.19 5.644

15 4.99 6.51 4.82 4.25 5.33 5.18

20 5.18 4.56 6.57 6.17 4.25 5.346

25 6.81 4.18 5.81 8.25 4.88 5.986

Table 4.1: Table for relay delation

58

Figure 4.15 : Histogram for Distance vs Time taken

In Figure 4.15 shows that in the first and second attemps, for 5 cm distance is invalid

when it comes to scanning the QR code. When the QR code is too closed with the QR

scanner, It will become hard for it to read the data.

Figure 4.16 : Method use to record data

Figure 4.16 shows a method used to measure the distance from phone to QR code

scanner using measuring tapes. The time taken is based on the relay reaction.

ANALYSIS OF QR SCANNER DISTANCE VS
TIME TAKEN

5 cm 10 cm 15 cm 20 cm 25 cm

1 2 3 4 5 A V E R A G E

ATTEMPTS

TI
M

E
TA

KE
N

 (
S)

0

6.
48

4.

99

5.
18

6.
81

0
5.

24

6.
51

4.
56

4.

18

3.
57

4.

85

4.
82

6.
57

5.

81

0
5.

46

4.
25

6.

17

8.
25

3.
74

6.
19

5.

33

4.
25

4.

88

1.
46

5
.6

4
4

5.
18

5
.3

4
6

5
.9

8
6

59

4.3.2 Fetching error analysis

Table 4.2 and Figure 4.16 shows some of the major contributors, based on error rate

analysis for the QR code-based smart security system, are as follows: The most significant

contributor is QR codes with a black background, accounting for 10 errors. This is primarily

due to challenges in scanning caused by poor contrast between the QR code and its

background. Slow Internet is responsible for 4 errors, leading to delays in QR code validation

and access authorization. Distance-related issues contribute 3 errors, typically occurring

when the QR code is scanned from an improper or excessive range. Environmental factors,

such as poor lighting or cable management for 2 error. Finally, QR codes with a white

background have the least impact, contributing to just 1 error. These findings highlight the

need to improve QR code design, optimize environmental conditions, and ensure reliable

internet connectivity to reduce errors and enhance system performance.

60

Error Type Description Frequency

Slow internet The internet connection

plays a huge part of the

system as the hardware and

software are interacting

through database.

4

Distance The QR code scanner

distance limitation of

scanning the QR code

3

QR code with black

background

The QR code with the Black

background is causing the

big problem of the scanner

to scan it

10

QR code with white

background

QR code with white

background are less likely to

cause an error compared to

the black background

1

Environment The cable management can

cause a multiple error if not

connect correctly. If the

Esp32 is damaged, it could

lead for the same thing.

2

Table 4.2 : Fetching error table

61

Figure 4.17 : Fetching error pie chart

Figure 4.17 shows a that QR code with a black background become a huge factor of

the error. This is due to the lack of capability of the QR code scanner. Changing it with the

expensive or better one might decrease the amount of error.

Analysis of Fetching Error

10%

5%
20%

15%

50%

Slow Internet

Distance

QR with black bg

QR with white bg

Environment

62

4.4 Summary

In summary, development of intelligent based on iot for security lock key using QR

code specialize for homestay improved security and convenience. The system demonstrated

it effectiveness in preventing the unauthorize user as shown in Figure 4.12. IoT integration

allows me to monitor the status of the door as shown in Figure 4.13 and Figure 4.14. Lastly,

the data analysis that i’ve collect shows even with the error, it still does not effect the safety

of the homestay.In the data analysis also conclcude that in order to improve the system, a

better QR code scanner or better internet can be implemented

63

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the development of the IoT-based security lock system using QR

codes for homestays has proven to be an innovative and effective solution for modern access

control challenges. The project's first objective, creating a functional security system, was

successfully achieved through the integration of IoT components such as the ESP32

microcontroller, QR code scanner, and Firebase database. This system provides secure,

contactless access control, ensuring convenience for both guests and property owners.The

second objective, evaluating the system's performance, was fulfilled through tests that

demonstrated the reliability of QR code scanning, real-time data synchronization, and secure

door locking mechanisms. Results indicate the system's robustness in preventing

unauthorized access and its potential scalability to meet future needs. Overall, the project

showcases the effective implementation of IoT technology to enhance security and

operational efficiency in homestay settings.

5.2 Potential for commercialization

In the smart home security market, this project ability to generate, validate, and

revoke QR codes for home access, this sytem can cater the growing demand for smart home

solutions. It can be comercialize in property management and rentals too. The system is ideal

for short-term homestay renting or rental platforms. Hosts can issue temporary QR code keys

64

to guests, ensuring secure and controlled access that expires automatically after the stay

period.

5.3 Future Works

For future improvements, The development of Intelligent based IoT for security

door using QR Code specialize for homestay could be enhace as follows:

a) Instead of only homeowner using the application, it would be great if the

customer side also it’s own interface of choosing the homestay that their like.

Basically the same application but on the customer side.

b) The QR code being generate on the customer phone instead of the homeowner

phone as long they were grant permission by the owner.

c) There can be multiple QR code produce that allows people to access to the house

with their information shown to the homeowner.

d) The QR code produce on the customer will be valid only for a short time like 1

minute only to avoid duplication

e) There should also an option for the customer to make a payment so in case if

there’s a scammer, they can make a report and ask for a refunds.

65

REFERENCES

[1] “What is IoT (Internet of Things) and How Does it Work? | Definition from

TechTarget.” Accessed: Jun. 10, 2024. [Online]. Available:

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

[2] M. B. Hoy, “An introduction to QR codes: Linking libraries and mobile patrons,”

Med Ref Serv Q, vol. 30, no. 3, 2011, doi: 10.1080/02763869.2011.590423.

[3] M. H. Tseng and H. C. Wu, “A cloud medication safety support system using QR

code and Web services for elderly outpatients,” Technol Health Care, vol. 22, no. 1,

pp. 99–113, 2014, doi: 10.3233/THC-140778.

[4] “QR Codes for IoT Security Solutions: Reinforce Safety | My QR Code.” Accessed:

Jun. 10, 2024. [Online]. Available: https://myqrcode.com/industry/iot-security-

solutions

[5] “Microcontroller: Types, Functions, Uses, Challenges, and Solutions.” Accessed:

Jun. 10, 2024. [Online]. Available: https://www.shiksha.com/online-

courses/articles/microcontroller-types-functions-uses-challenges-and-solutions-

blogId-155711

[6] A. Maier, A. Sharp, and Y. Vagapov, “Comparative analysis and practical

implementation of the ESP32 microcontroller module for the internet of things,”

2017 Internet Technologies and Applications, ITA 2017 - Proceedings of the 7th

International Conference, pp. 143–148, Nov. 2017, doi:

10.1109/ITECHA.2017.8101926.

[7] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer

Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010, doi:

10.1016/J.COMNET.2010.05.010.

[8] “What is an Arduino? - SparkFun Learn.” Accessed: Jun. 10, 2024. [Online].

Available: https://learn.sparkfun.com/tutorials/what-is-an-arduino/all

[9] A. G. Smith, “Introduction to Arduino A piece of cake! Introduction to Arduino: A

piece of cake!,” 2011, Accessed: Jun. 10, 2024. [Online]. Available:

http://www.amazon.com

[10] “Adafruit Learning System.” Accessed: Jun. 10, 2024. [Online]. Available:

https://learn.adafruit.com/assets/3199

[11] “Raspberry Pi based Smart Phone (Bluetooth) Controlled Home Automation.”

Accessed: Jun. 10, 2024. [Online]. Available:

https://circuitdigest.com/microcontroller-projects/raspberry-pi-smart-phone-home-

automation

[12] A. Modules, S. P. Micro, and A. Mega, “Arduino IDE : Introduction,” [online].

Disponible en: https://www.arduino.cc/en/Guide/Introduction, 2015.

[13] “What is a Raspberry Pi? | Opensource.com.” Accessed: Jun. 10, 2024. [Online].

Available: https://opensource.com/resources/raspberry-pi

[14] “Hello Raspberry Pi: Geany - small and fast Editor/IDE.” Accessed: Jun. 10, 2024.

[Online]. Available: https://helloraspberrypi.blogspot.com/2013/11/geany-small-

and-fast-editoride.html

[15] F. Istiqomah, D. K. Nuurul Izza, J. Susila, B. Al Kindhi, E. Indasyah, and F. I.

Adhim, “Automated Barrier Gate for Housing Estate Security System Using QR

Code Based on Android Application,” 2021 International Conference on Advanced

Mechatronics, Intelligent Manufacture and Industrial Automation, ICAMIMIA 2021

- Proceeding, pp. 293–297, 2021, doi: 10.1109/ICAMIMIA54022.2021.9809801.

http://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
http://www.shiksha.com/online-
http://www.amazon.com/
http://www.arduino.cc/en/Guide/Introduction

66

[16] A. F. M. Fauzi, N. N. Mohamed, H. Hashim, and M. A. Saleh, “Development of

Web-Based Smart Security Door Using QR Code System,” 2020 IEEE International

Conference on Automatic Control and Intelligent Systems, I2CACIS 2020 -

Proceedings, pp. 13–17, Jun. 2020, doi: 10.1109/I2CACIS49202.2020.9140200.

[17] A. Jain, A. Panwar, M. Azam, and R. Khanam, “Smart door access control system

based on QR code,” International Journal of Informatics and Communication

Technology, vol. 12, no. 2, pp. 171–179, Aug. 2023, doi:

10.11591/IJICT.V12I2.PP171-179.

[18] Nethrasri P and A. Venkataramana, “QR code based door opening system,” vol. 11,

no. 11, 2020, Accessed: Jun. 10, 2024. [Online]. Available:

www.jespublication.com

[19] Y. Rahayu, L. Afif, and P. J. Soh, “Design and development of smart lock system

based QR-Code for library’s locker at Faculty of Engineering, Universitas Riau,”

vol. 26, no. 3, pp. 379–384, 2022, doi: 10.22441/sinergi.2022.3.013.

[20] L. Antonio Pereira Neves, K. Santos Martins, W. Ricardo Santos Lima, and G.

Antonio Giraldi, “QRCode DOOR Project: Access Control Application using QR

Code Image”.

[21] B. Suresh, A. S. Kalyan, B. Bharat, T. Raju, and M. Venkatesh, “Door Lock

Security System Using Raspberry Pi & QR Code,” International Research Journal

of Engineering and Technology, 2021, Accessed: Jun. 10, 2024. [Online]. Available:

www.irjet.net

http://www.jespublication.com/
http://www.irjet.net/

67

APPENDICES

s Week

Activity

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14

1 CHAPTER 1

2 CHAPTER 2

3 CHAPTER 3

4 CHAPTER 4

5 CHAPTER 5

6 MEETING WITH

SUPERVISOR

7 DRAFT

SUBMISSION

8 REPORT

SUBMISSION

9 PRESENTATION

PSM 1 Project progress by week

68

s Week
Activity

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14

1 CHAPTER 3 & 4

2 HARDWARE

SETUP

3 DATABASE

SETUP

4 APPLICATION

DEVELOPMENT

5 CREATING

POSTER

6 MEETING WITH

SUPERVISOR

7 DRAFT

SUBMISSION

8 REPORT

SUBMISSION

9 PRESENTATION

10 IIDEX

PRESENTATION

PSM 2 Project progress by week

69

Appendix C Coding

ESP32 coding

#include <WiFi.h>

#include <FirebaseESP32.h>

#include <HardwareSerial.h>

#include <HTTPClient.h>

#include <time.h>

#include <ArduinoJson.h>

#define RXD2 16 // ESP32 RX pin connected to Scanner TX

#define TXD2 17 // ESP32 TX pin connected to Scanner RX

#define MC38_PIN 4 // Pin connected to the MC38 sensor

#define RED_LED_PIN 32 // Pin connected to the Red LED

#define GREEN_LED_PIN 33 // Pin connected to the Green LED

#define RELAY_PIN 26 // ESP32 pin connected to the relay module

const char* ssid = "Mamat";

const char* password = "mamatpower08";

#define FIREBASE_HOST "qr-security-door-default-rtdb.asia-

southeast1.firebasedatabase.app"

#define FIREBASE_API_KEY

"AIzaSyBN_3XuVhzeewMGuwMi1CwGTm9m4K1ZbFo"

const String projectId = "qr-security-door";

const String apiKey = "AIzaSyBN_3XuVhzeewMGuwMi1CwGTm9m4K1ZbFo";

const String collectionPath = "QRCode";

const String homestay_id = "RxzgTb7WvfsQFi3X93qi";

const char* ntpServer = "time.google.com"; // NTP server

const long gmtOffset_sec = 8 * 3600; // Singapore is UTC+8

const int daylightOffset_sec = 0; // No daylight saving in Singapore

const char* deviceID = "Device_ID1";

FirebaseConfig config;

FirebaseAuth auth;

FirebaseData firebaseData;

HardwareSerial scannerSerial(2); // Use UART2 for the scanner

bool qrApprove = false; // QR code approved

bool mc38CycleComplete = false; // Door open/close cycle
bool isDoorLocked = true; // Door lock state

void setup() {

Serial.begin(9600);

70

scannerSerial.begin(9600, SERIAL_8N1, RXD2, TXD2);

pinMode(MC38_PIN, INPUT_PULLUP); // MC38 sensor

pinMode(RED_LED_PIN, OUTPUT);

pinMode(GREEN_LED_PIN, OUTPUT);

pinMode(RELAY_PIN, OUTPUT);

digitalWrite(RED_LED_PIN, HIGH); // Start with door locked

digitalWrite(GREEN_LED_PIN, LOW);

digitalWrite(RELAY_PIN, LOW);

connectToWiFi();

initializeFirebase();

configTime(gmtOffset_sec, daylightOffset_sec, ntpServer);

}

void loop() {

int mc38State = digitalRead(MC38_PIN);

if (scannerSerial.available()) {

String qrData = readScannerData();

processQRData(qrData);

}

if (qrApprove) {

handleDoorCycle(mc38State);

}

updateSolenoidState();

delay(100);

}

/**

* Connects to the specified WiFi network.

*/

void connectToWiFi() {

sendToLCD("Connecting to WiFi...");

WiFi.begin(ssid, password);

int attempts = 0;

while (WiFi.status() != WL_CONNECTED && attempts < 20) {

delay(1000);

attempts++;

sendToLCD("Attempting to connect...");

}

if (WiFi.status() == WL_CONNECTED) {

sendToLCD("WiFi connected.");

} else {

71

sendToLCD("WiFi failed.");

while (true);

}

}

/**

* Initializes the Firebase connection.

*/

void initializeFirebase() {

sendToLCD("Initialized Firebase...");

config.host = FIREBASE_HOST;

config.api_key = FIREBASE_API_KEY;

Firebase.begin(&config, &auth);

Firebase.reconnectWiFi(true);

if (Firebase.signUp(&config, &auth, "", "")) {

sendToLCD("Firebase connected");

} else {

sendToLCD("Fail to connect Firebase");

while (true);

}

}

/**

* Reads data from the QR code scanner.

* @return The data read from the scanner.

*/

String readScannerData() {

sendToLCD("Reading QR...");

String qrData = "";

unsigned long startTime = millis();

while (millis() - startTime < 500) {

while (scannerSerial.available()) {

char incomingByte = scannerSerial.read();

qrData += incomingByte;

startTime = millis();

}

}

return qrData;

}

/**

* Processes the QR code data.

* @param qrData The data read from the QR code.

*/

void processQRData(String qrData) {

sendToLCD("Processing QR...");

DynamicJsonDocument doc(2048);

DeserializationError error = deserializeJson(doc, qrData);

72

if (error) {

sendToLCD("QR parse fail");

return;

}

const char* qrId = doc["qr_id"];

const char* bookId = doc["book_id"];

if (qrId && bookId) {

if (getBookingData(String(qrId), String(bookId))) {

sendToLCD("Access granted");

qrApprove = true;

digitalWrite(GREEN_LED_PIN, HIGH);

digitalWrite(RED_LED_PIN, LOW);

isDoorLocked = true; // Door remains locked until opened and closed

} else {

sendToLCD("Validation fail");

}

} else {

sendToLCD("Invalid QR data");

}

}

/**

* Fetches booking data from the Firebase database.

* @param qrId The QR code ID.

* @param bookId The booking ID.

* @return True if the booking data is valid, false otherwise.

*/

bool getBookingData(String qrId, String bookId) {

sendToLCD("Fetching data...");

HTTPClient http;

String url = "https://firestore.googleapis.com/v1/projects/" + projectId +

"/databases/(default)/documents/Booking/" + bookId + "?key=" + apiKey;

http.begin(url);

int httpResponseCode = http.GET();

if (httpResponseCode > 0) {

String payload = http.getString();

Serial.println("Response Payload: " + payload);

DynamicJsonDocument doc(2048);

DeserializationError error = deserializeJson(doc, payload);

if (error || doc.containsKey("error")) {

http.end();

return false;

}

73

const char* homestay_id = doc["fields"]["Homestay_ID"]["stringValue"];

const char* qr_id = doc["fields"]["QR_ID"]["stringValue"];

const char* check_in = doc["fields"]["CheckIn"]["stringValue"];

const char* check_out = doc["fields"]["CheckOut"]["stringValue"];

const char* status = doc["fields"]["Status"]["stringValue"];

http.end();

if (String(qr_id) == qrId) {

if (String(status) == "Active" && String(homestay_id) == homestay_id) {

if (validateDate(String(check_in), String(check_out))) {

unlockDoor();

return true;

}

} else {

sendToLCD("Wrong House!");

}

}

} else {

http.end();

}

return false;

}

/**

* Handles the door open/close cycle based on the MC38 sensor state.

* @param mc38State The current state of the MC38 sensor.

*/

void handleDoorCycle(int mc38State) {

static bool waitingForOpen = true;

static bool doorOpened = false;

static bool waitingForClose = false;

if (waitingForOpen && mc38State == LOW) {

doorOpened = true;

waitingForOpen = false;

waitingForClose = true; // Start waiting for door to close

sendToLCD("Door is Unlocked");

}

if (waitingForClose && mc38State == HIGH) {

lockDoor();

qrApprove = false; // Reset QR approval status

waitingForClose = false;

waitingForOpen = true; // Reset and wait for the next open event

doorOpened = false;

sendToLCD("Door locked");

}

}

/**

74

* Locks the door and updates the database.

*/

void lockDoor() {

Serial.println("Locking door...");

digitalWrite(RED_LED_PIN, HIGH);

digitalWrite(GREEN_LED_PIN, LOW);

digitalWrite(RELAY_PIN, LOW);

isDoorLocked = true;

sendToLCD("Door Locked");

updateDatabaseLockState(true);

}

/**

* Unlocks the door and updates the database.

*/

void unlockDoor() {

Serial.println("Unlocking door...");

unsigned long startUnlockTime = millis(); // Record the start time

digitalWrite(RED_LED_PIN, LOW);

digitalWrite(GREEN_LED_PIN, HIGH);

digitalWrite(RELAY_PIN, HIGH);

isDoorLocked = false;

sendToLCD("Door Unlocked");

unsigned long endUnlockTime = millis(); // Record the end time

unsigned long unlockDuration = endUnlockTime - startUnlockTime;

Serial.print("Time taken to unlock the door: ");

Serial.print(unlockDuration);

Serial.println(" ms");

updateDatabaseLockState(false);

}

/**

* Updates the lock state in the Firebase database.

* @param isLocked The current lock state.

*/

void updateDatabaseLockState(bool isLocked) {

Serial.println("Updating database lock state...");

if (WiFi.status() == WL_CONNECTED) {

HTTPClient http;

String url = "https://" + String(FIREBASE_HOST) + "/Device/" +

String(deviceID) + ".json?auth=" + String(FIREBASE_API_KEY);

http.begin(url);

http.addHeader("Content-Type", "application/json");

75

String jsonPayload = "{\"isLocked\":" + String(isLocked ? "true" : "false") +

"}";

int httpResponseCode = http.PATCH(jsonPayload);

if (httpResponseCode > 0) {

String response = http.getString();

sendToLCD("Database Update OK");

} else {

sendToLCD("Database Update Fail");

}

http.end(); // Free resources

} else {

sendToLCD("WiFi Disconnected");

}

}

/**

* Validates the current date against the check-in and check-out dates.

* @param checkIn The check-in date.

* @param checkOut The check-out date.

* @return True if the current date is within the valid range, false otherwise.

*/

bool validateDate(String checkIn, String checkOut) {

Serial.println("Validating date...");

struct tm timeinfo;

if (!getLocalTime(&timeinfo)) {

sendToLCD("Time Fail");

return false;

}

time_t now = mktime(&timeinfo);

Serial.print("Current timestamp: ");

Serial.println(now);

time_t checkInTime = parseDate(checkIn);

Serial.print("Check-in timestamp: ");

Serial.println(checkInTime);

time_t checkOutTime = parseDate(checkOut);

Serial.print("Check-out timestamp: ");

Serial.println(checkOutTime);

if (now >= checkInTime && now <= checkOutTime) {

Serial.println("Current time is within the valid range.");

return true;

} else {

76

Serial.println("Current time is outside the valid range.");

return false;

}

}

/**

* Parses a date string into a time_t object.

* @param dateStr The date string to parse.

* @return The parsed time_t object.

*/

time_t parseDate(String dateStr) {

struct tm tm;

memset(&tm, 0, sizeof(struct tm));

tm.tm_year = dateStr.substring(0, 4).toInt() - 1900;

tm.tm_mon = dateStr.substring(5, 7).toInt() - 1;

tm.tm_mday = dateStr.substring(8, 10).toInt();

if (dateStr.length() > 10) {

tm.tm_hour = dateStr.substring(11, 13).toInt();

tm.tm_min = dateStr.substring(14, 16).toInt();

tm.tm_sec = dateStr.substring(17, 19).toInt();

}

return mktime(&tm);

}

/**

* Updates the solenoid state based on the LED states.

*/

void updateSolenoidState() {

if (digitalRead(RED_LED_PIN) == HIGH) {

digitalWrite(RELAY_PIN, HIGH); // Lock door

} else if (digitalRead(GREEN_LED_PIN) == HIGH) {

digitalWrite(RELAY_PIN, LOW); // Unlock door

}

}

/**

* Sends a message to the Arduino Uno to be displayed on the LCD.

* @param message The message to send.

*/

void sendToLCD(String message) {

Serial.println(message); // Send message to Arduino Uno

}

77

Arduino Uno coding to display LCD

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Set the LCD address to 0x27 for a 24 chars and 4 line display

LiquidCrystal_I2C lcd(0x27, 16, 2);

void setup() {

// Initialize serial communication

Serial.begin(9600);

// Initialize the LCD

lcd.begin(16, 2);

lcd.backlight();

lcd.setCursor(0, 0);

lcd.print("Waiting for ESP32");

}

void loop() {

// Check if there is data available on the serial port

if (Serial.available()) {

// Read a line of data from the serial port

String message = Serial.readStringUntil('\n');

// Clear the LCD and print the message

lcd.clear();

// Display the message on the LCD

displayMessage(message);

}

}

/**

* Displays a message on the LCD, handling messages longer than 16 characters.

*/

void displayMessage(String message) {

// If the message is longer than 16 characters, split it across lines

if (message.length() > 16) {

// Display the first 16 characters on the first line

lcd.setCursor(0, 0);

lcd.print(message.substring(0, 16));

// Display the remaining characters on the second line

lcd.setCursor(0, 1);

lcd.print(message.substring(16));

} else {

// Display the message on the first line

lcd.setCursor(0, 0);

lcd.print(message);

}

78

Flutter coding using Dart language on Android Studio.

Main.dart

import 'package:firebase_core/firebase_core.dart';

import 'package:flutter/material.dart';

import 'package:flutter/services.dart';

import 'package:flutter_screenutil/flutter_screenutil.dart';

import 'package:securitydoor/screen/root.dart';

import 'constant/color.dart';

void main() async {

WidgetsFlutterBinding.ensureInitialized(); // Ensure bindings are initialized

await Firebase.initializeApp(); // Initialize Firebase

runApp(const QRSecurityDoorApp());

}

class QRSecurityDoorApp extends StatelessWidget {

const QRSecurityDoorApp({super.key});

// This widget is the root of your application.

@override

Widget build(BuildContext context) {

SystemChrome.setPreferredOrientations([

DeviceOrientation.portraitUp,

DeviceOrientation.portraitDown,

]);

SystemChrome.setSystemUIOverlayStyle(

const SystemUiOverlayStyle(statusBarBrightness: Brightness.dark));

return ScreenUtilInit(

designSize: const Size(360, 690),

minTextAdapt: true,

splitScreenMode: true,

builder: (_, child) => MaterialApp(

theme: ThemeData(

fontFamily: 'HelveticaNeueRegular',

colorScheme: ColorScheme.fromSwatch().copyWith(

primary: secondaryColor,

secondary: primaryColor,

background: primaryColor,

surfaceTint: primaryColor)),

supportedLocales: const [

Locale('en'),

],

debugShowCheckedModeBanner: false,

title: 'QR Security Door',

home: child,

),

}

79

child: const RootScreen(),

);

}

}

Firebase_service.dart

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:uuid/uuid.dart';

class FirebaseService {

final FirebaseFirestore _firestore = FirebaseFirestore.instance;

var uuid = Uuid();

Future<Map<String, String>> createBooking({

required String clientName,

required String clientIcNo,

required String clientTelNo,

required String homestayId,

required String checkInDate,

required String checkOutDate,

}) async {

String generatedQRCode = uuid.v4();

// process 1: Create a new guest document

DocumentReference guestRef = await _firestore.collection('Guest').add({

'Name': clientName,

'IC_Number': clientIcNo,

'Tel_No': clientTelNo,

});

// process 2: steCreate a new booking document

DocumentReference bookingRef = await _firestore.collection('Booking').add({

'Guest_ID': guestRef.id,

'Homestay_ID': homestayId,

'CheckIn': checkInDate,

'CheckOut': checkOutDate,

'QR_ID': generatedQRCode,

'Status': 'Active',

});

// process 3: Create a new QRCode document

return {

'bookingId': bookingRef.id,

'qrId': generatedQRCode,

80

};

}

Future<String?> getBookingId(String qrId) async {

DocumentSnapshot qrCodeDoc = await

_firestore.collection('QRCode').doc(qrId).get();

String bookingId = qrCodeDoc['Book_ID'];

return bookingId;

}

Future<List<Map<String, dynamic>>> fetchHomestays() async {

List<Map<String, dynamic>> homestays = [];

QuerySnapshot homestaySnapshot = await

_firestore.collection('Homestay').get();

for (var homestayDoc in homestaySnapshot.docs) {

String homestayId = homestayDoc.id;

QuerySnapshot bookingSnapshot = await _firestore

.collection('Booking')

.where('Homestay_ID', isEqualTo: homestayId)

.get();

int totalBookings = bookingSnapshot.docs.length;

homestays.add({

'id': homestayDoc.id,

'name': homestayDoc['Name'],

'location': homestayDoc['Address'],

'totalBookings': totalBookings,

});

}

return homestays;

}

Future<Map<String, dynamic>?> fetchBookingDetails(String bookingId) async {

DocumentSnapshot bookingDoc = await

_firestore.collection('Booking').doc(bookingId).get();

if (bookingDoc.exists) {

Map<String, dynamic> bookingData = bookingDoc.data() as Map<String,

dynamic>;

String guestId = bookingData['Guest_ID'];

DocumentSnapshot guestDoc = await

_firestore.collection('Guest').doc(guestId).get();

if (guestDoc.exists) {

Map<String, dynamic> guestData = guestDoc.data() as Map<String,

dynamic>;

return {

81

...bookingData,

'GuestDetails': guestData,

};

}

}

return null;

}

Future<String?> getQRCodeIdByBookingId(String bookID) async {

DocumentSnapshot bookingDoc = await

_firestore.collection('Booking').doc(bookID).get();

if (bookingDoc.exists) {

return bookingDoc['QR_ID'];

} else {

return null;

}

}

Future<void> terminateQRCodeAndBooking(String bookingId) async {

await _firestore.collection('Booking').doc(bookingId).delete();

}

Future<List<Map<String, dynamic>>> fetchBookings(String homestayId) async {

List<Map<String, dynamic>> bookings = [];

QuerySnapshot bookingSnapshot = await _firestore

.collection('Booking')

.where('Homestay_ID', isEqualTo: homestayId)

.get();

for (var bookingDoc in bookingSnapshot.docs) {

var bookingData = bookingDoc.data() as Map<String, dynamic>;

bookingData['id'] = bookingDoc.id; // Add the bookingDoc.id to the map

bookings.add(bookingData);

}

return bookings;

}

}

82

qr_screen.dart

import 'dart:convert';

import 'package:flutter/material.dart';

import 'package:phosphor_flutter/phosphor_flutter.dart';

import 'package:qr_flutter/qr_flutter.dart';

import 'package:securitydoor/constant/color.dart';

import 'package:securitydoor/constant/text.dart';

import 'package:securitydoor/constant/widget/avatar.dart';

import 'package:securitydoor/services/firebase_service.dart';

import '../constant/widget/custom_alert.dart';

import '../constant/widget/custom_appbar.dart';

import '../constant/widget/custom_button.dart';

import '../constant/widget/custom_icon_button.dart';

import '../controller/share_qr_controller.dart';

class QrScreen extends StatefulWidget {

final String homestayUnit;

final String bookingId;

final String homestayName;

const QrScreen(

{super.key,

required this.homestayUnit,

required this.bookingId,

required this.homestayName});

@override

State<QrScreen> createState() => _QrScreenState();

}

class _QrScreenState extends State<QrScreen> {

Root.dart

import 'package:flutter/material.dart';

import 'homestay_screen.dart';

class RootScreen extends StatelessWidget {

const RootScreen({super.key});

@override

Widget build(BuildContext context) {

return const HomestayScreen();

}

}

83

final GlobalKey qrKey = GlobalKey();

Map<String, dynamic>? bookingDetails;

final FirebaseService _firebaseService = FirebaseService();

Future<void> fetchBookingDetails() async {

Map<String, dynamic>? details =

await _firebaseService.fetchBookingDetails(widget.bookingId);

setState(() {

bookingDetails = details;

});

}

@override

void initState() {

super.initState();

fetchBookingDetails();

}

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: CustomAppbar(title: widget.homestayUnit),

body: Padding(

padding: const EdgeInsets.all(20),

child: FutureBuilder<String?>(

future: _firebaseService.getQRCodeIdByBookingId(widget.bookingId),

builder: (context, snapshot) {

if (snapshot.connectionState == ConnectionState.waiting) {

return const CircularProgressIndicator();

} else if (snapshot.hasError) {

return Text('Error: ${snapshot.error}');

} else if (!snapshot.hasData || snapshot.data == null) {

return const Text('No QR Code found for this booking');

} else {

String qrId = snapshot.data!;

Map<String, String> qrDataMap = {

"qr_id": qrId,

"book_id": widget.bookingId,

};

String qrData = jsonEncode(qrDataMap);

return Column(

children: [

const SizedBox(height: 30),

const Avatar(),

const SizedBox(height: 10),

if (bookingDetails != null) ...[

Text(

bookingDetails!['GuestDetails']['Name']?.toUpperCase() ??

84

'Unknown Client',

textAlign: TextAlign.center,

style: textMediumSecondary.copyWith(fontSize: 16),

),

Text(

bookingDetails!['GuestDetails']['Tel_No'] ??

'Unknown Tel No',

style: textMediumSecondary.copyWith(fontSize: 16),

),

const SizedBox(height: 10),

Row(

mainAxisAlignment: MainAxisAlignment.center,

children: [

Icon(PhosphorIcons.calendarBlank(),

size: 18, color: secondaryColor),

const SizedBox(width: 10),

Text(

"Check-In: ${bookingDetails!['CheckIn']}",

style: textRegularSecondary.copyWith(fontSize: 14),

),

],

),

Row(

mainAxisAlignment: MainAxisAlignment.center,

children: [

Icon(PhosphorIcons.calendarBlank(),

size: 18, color: secondaryColor),

const SizedBox(width: 10),

Text(

"Check-Out: ${bookingDetails!['CheckOut']}",

style: textRegularSecondary.copyWith(fontSize: 14),

),

],

),

] else ...[

const CircularProgressIndicator(),

],

const SizedBox(height: 20),

Container(

padding: const EdgeInsets.all(20.0),

decoration: BoxDecoration(

border: Border.all(color: Colors.grey, width: 2),

borderRadius: BorderRadius.circular(20),

),

child: Center(

child: QrImageView(

data: qrData,

version: QrVersions.auto,

size: 250.0,

),

85

),

),

const SizedBox(height: 30),

Row(

mainAxisAlignment: MainAxisAlignment.center,

children: [

CustomButton(

text: "Terminate QR Code",

onPressed: () {

showDialog(

context: context,

builder: (BuildContext context) {

return CustomAlert(

text: "Are you sure u want to terminate this QR Code?",

onPressed: () async {

await _firebaseService

.terminateQRCodeAndBooking(

widget.bookingId);

Navigator.pop(context,

true); // Pass true to indicate success

Navigator.pop(context,

true); // Pass true to indicate success

},

);

},

);

},

),

const SizedBox(width: 10),

CustomIconButton(

onTap: () async {

String? qrId = await _firebaseService

.getQRCodeIdByBookingId(widget.bookingId);

if (qrId != null) {

await ShareQrController.generateAndShareQRCode(

qrData, widget.homestayName);

} else {

ScaffoldMessenger.of(context).showSnackBar(

const SnackBar(

content: Text(

'QR Code not found for this booking')),

);

}

},

icon: PhosphorIcons.shareFat(),

),

],

),

],

);

86

}

},

),

),

);

}

}

Qr_dialog.dart

import 'dart:convert';

import 'package:flutter/material.dart';

import 'package:phosphor_flutter/phosphor_flutter.dart';

import 'package:qr_flutter/qr_flutter.dart';

import 'package:securitydoor/constant/strings.dart';

import '../constant/color.dart';

import '../constant/widget/custom_button.dart';

import '../constant/widget/custom_icon_button.dart';

import '../controller/share_qr_controller.dart';

class QRDialog extends StatefulWidget {

final String qrId, bookingId, homestayName;

const QRDialog(

{super.key,

required this.qrId,

required this.bookingId,

required this.homestayName});

@override

State<QRDialog> createState() => _QRDialogState();

}

class _QRDialogState extends State<QRDialog> {

final GlobalKey qrKey = GlobalKey();

@override

Widget build(BuildContext context) {

Map<String, String> qrDataMap = {

"qr_id": widget.qrId,

"book_id": widget.bookingId,

};

String qrData = jsonEncode(qrDataMap);

return PopScope(

87

canPop: false,

child: AlertDialog(

shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(10)),

backgroundColor: primaryColor,

content: Column(

mainAxisAlignment: MainAxisAlignment.center,

mainAxisSize: MainAxisSize.min,

children: [

SizedBox(

width: 200,

height: 200,

child: QrImageView(

data: qrData,

version: QrVersions.auto,

size: 250.0, // Ensure size fits within the container

),

),

Row(

mainAxisAlignment: MainAxisAlignment.center,

children: [

CustomButton(

text: "Done",

onPressed: () {

Navigator.pop(context);

}),

const SizedBox(

width: 10,

),

CustomIconButton(

onTap: () async {

await ShareQrController.generateAndShareQRCode(

qrData, widget.homestayName);

},

icon: PhosphorIcons.shareFat())

],

),

],

),

),

);

}

}

List_door_screen.dart

import 'package:firebase_core/firebase_core.dart';

import 'package:flutter/material.dart';

import 'package:phosphor_flutter/phosphor_flutter.dart';

import 'package:securitydoor/constant/color.dart';

88

import 'package:securitydoor/constant/widget/door_tile.dart';

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:firebase_database/firebase_database.dart';

import '../constant/widget/custom_appbar.dart';

class ListDoorScreen extends StatefulWidget {

final String homestayId;

final String homestayName;

const ListDoorScreen({

super.key,

required this.homestayId,

required this.homestayName,

});

@override

State<ListDoorScreen> createState() => _ListDoorScreenState();

}

class _ListDoorScreenState extends State<ListDoorScreen> {

final FirebaseFirestore _firestore = FirebaseFirestore.instance;

final FirebaseDatabase _database = FirebaseDatabase.instanceFor(

app: Firebase.app(),

databaseURL: 'https://qr-security-door-default-rtdb.asia-

southeast1.firebasedatabase.app',

);

List<Map<String, dynamic>> doors = [];

bool isLoading = true;

@override

void initState() {

super.initState();

_fetchDoors();

}

Future<void> _fetchDoors() async {

try {

// Fetch door document IDs from Homestay collection

DocumentSnapshot homestaySnapshot = await

_firestore.collection('Homestay').doc(widget.homestayId).get();

List<dynamic> doorIds = homestaySnapshot['Door'];

// Fetch door details from Door collection

for (String doorId in doorIds) {

DocumentSnapshot doorSnapshot = await

_firestore.collection('Door').doc(doorId).get();

Map<String, dynamic> doorData = doorSnapshot.data() as Map<String,

dynamic>;

89

// Fetch data from Realtime Database using Device_ID

String deviceId = doorData['Device_ID'];

DatabaseReference deviceRef = _database.ref().child('Device').child(deviceId);

// Listen for changes in the Realtime Database

deviceRef.onValue.listen((DatabaseEvent event) {

setState(() {

doorData['deviceData'] = event.snapshot.value;

});

});

doors.add(doorData);

}

setState(() {

isLoading = false;

});

} catch (e) {

print('Error fetching doors: $e');

setState(() {

isLoading = false;

});

}

}

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: CustomAppbar(title: widget.homestayName),

body: isLoading

? Center(child: CircularProgressIndicator())

: Padding(

padding: const EdgeInsets.all(10),

child: ListView.builder(

itemCount: doors.length,

itemBuilder: (context, index) {

final deviceData = doors[index]['deviceData'];

final isLocked = deviceData != null && deviceData['isLocked'] == true;

return DoorTile(

name: doors[index]['Name'],

status: isLocked ? "Locked" : "UnLocked",

statusColor: isLocked ? lock : unlock,

trailing: isLocked

? Icon(

PhosphorIcons.lockKey(),

color: lock,

size: 30,

)

: Icon(

90

List_booking_screen.dart

import 'package:flutter/material.dart';

import 'package:securitydoor/constant/color.dart';

import 'package:securitydoor/constant/strings.dart';

import 'package:securitydoor/screen/qr_screen.dart';

import 'package:securitydoor/services/firebase_service.dart';

import '../constant/widget/booking_tile.dart';

import '../constant/widget/custom_appbar.dart';

import '../constant/widget/floating_action_button.dart';

import 'booking_form_dialog.dart';

class ListBookingScreen extends StatefulWidget {

final String homestayName;

final String homestayId;

const ListBookingScreen({

super.key,

required this.homestayName,

required this.homestayId,

});

@override

State<ListBookingScreen> createState() => _ListBookingScreenState();

}

class _ListBookingScreenState extends State<ListBookingScreen> {

final FirebaseService _firebaseService = FirebaseService();

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: CustomAppbar(title: widget.homestayName),

body: FutureBuilder<List<Map<String, dynamic>>>(

PhosphorIcons.lockKeyOpen(),

color: unlock,

size: 30,

),

);

},

),

),

);

}

}

91

future: _firebaseService.fetchBookings(widget.homestayId),

builder: (context, snapshot) {

if (snapshot.connectionState == ConnectionState.waiting) {

return const Center(child: CircularProgressIndicator());

} else if (snapshot.hasError) {

return Center(child: Text('Error: ${snapshot.error}'));

} else if (!snapshot.hasData || snapshot.data!.isEmpty) {

return Center(child: Text(noHomestay));

} else {

List<Map<String, dynamic>> bookings = snapshot.data!;

return Padding(

padding: const EdgeInsets.all(10),

child: ListView.builder(

itemCount: bookings.length,

itemBuilder: (context, index) {

var booking = bookings[index];

return BookingTile(

name: "Booking ${index + 1}",

status: booking['Status'],

onTap: booking['Status'] != 'Terminate'

? () async {

bool? result = await Navigator.push(

context,

MaterialPageRoute(

builder: (context) => QrScreen(

homestayUnit: "Booking ${index + 1}",

bookingId: booking['id'],

homestayName: widget.homestayName,

),

),

);

if (result == true) {

setState(() {}); // Refresh the booking list

}

}

: null,

statusColor: booking['Status'] == 'Active'

? active

: booking['Status'] == 'Booked'

? booked

: terminate,

);

},

),

);

}

},

),

floatingActionButton: FAB(onPressed: () async {

bool? result = await showDialog(

92

Homestay_screen.dart

import 'package:flutter/material.dart';

import 'package:securitydoor/screen/homestay_detail_dialog.dart';

import 'package:securitydoor/screen/list_door_screen.dart';

import 'package:securitydoor/services/firebase_service.dart';

import '../constant/strings.dart';

import '../constant/text.dart';

import '../constant/widget/homestay_tile.dart';

import 'list_booking_screen.dart';

class HomestayScreen extends StatefulWidget {

const HomestayScreen({super.key});

@override

State<HomestayScreen> createState() => _HomestayScreenState();

}

class _HomestayScreenState extends State<HomestayScreen> {

final FirebaseService _firebaseService = FirebaseService();

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text(appTitle, style: textMediumSecondary),

centerTitle: true,

),

body: FutureBuilder<List<Map<String, dynamic>>>(

future: _firebaseService.fetchHomestays(),

builder: (context, snapshot) {

if (snapshot.connectionState == ConnectionState.waiting) {

context: context,

builder: (BuildContext context) {

return BookingFormDialog(

homestayId: widget.homestayId,

homestayName: widget.homestayName,

);

},

);

if (result == true) {

setState(() {}); // Refresh the booking list

}

}),

);

}

}

93

return const Center(child: CircularProgressIndicator());

} else if (snapshot.hasError) {

return Center(child: Text('Error: ${snapshot.error}'));

} else if (!snapshot.hasData || snapshot.data!.isEmpty) {

return Center(child: Text(noHomestay));

} else {

List<Map<String, dynamic>> homestays = snapshot.data!;

return Padding(

padding: const EdgeInsets.all(10),

child: ListView.builder(

itemCount: homestays.length,

itemBuilder: (context, index) {

var homestay = homestays[index];

return HomestayTile(

name: homestay['name'],

totalbooking: homestay['totalBookings'].toString(),

trailing: PopupMenuButton(

onSelected: (value) {

// your logic

},

itemBuilder: (BuildContext bc) {

return [

PopupMenuItem(

value: '/detail',

onTap: () {

showDialog(

context: context,

builder: (BuildContext context) {

return HomestayDetailDialog(

homestayName: homestay['name'],

homestayLoc: homestay['location'],

);

},

);

},

child: Text(homestayDetail),

),

PopupMenuItem(

value: '/listbooking',

onTap: () async {

bool? result = await Navigator.push(

context,

MaterialPageRoute(

builder: (context) => ListBookingScreen(

homestayName: homestay['name'],

homestayId: homestay['id'],

),

),

);

if (result == true) {

94

setState(() {});

}

},

child: Text(listBooking),

),

PopupMenuItem(

value: '/listdoor',

onTap: () {

Navigator.push(

context,

MaterialPageRoute(

builder: (context) => ListDoorScreen(

homestayName: homestay['name'],

homestayId: homestay['id'],

),

),

);

},

child: Text(listDoor),

)

];

},

),

);

}),

);

}

},

));

}

}

Homestay_detail_dialog.dart

import 'package:flutter/material.dart';

import 'package:phosphor_flutter/phosphor_flutter.dart';

import 'package:securitydoor/constant/text.dart';

import '../constant/color.dart';

class HomestayDetailDialog extends StatefulWidget {

final String homestayName, homestayLoc;

const HomestayDetailDialog(

{super.key, required this.homestayName, required this.homestayLoc});

@override

State<HomestayDetailDialog> createState() => _HomestayDetailDialogState();

}

95

class _HomestayDetailDialogState extends State<HomestayDetailDialog> {

@override

Widget build(BuildContext context) {

return PopScope(

canPop: true,

child: AlertDialog(

shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(10)),

backgroundColor: primaryColor,

title: Text(

widget.homestayName,

style: textMediumSecondary.copyWith(fontSize: 16),

),

content: Column(

mainAxisAlignment: MainAxisAlignment.center,

mainAxisSize: MainAxisSize.min,

children: [

Row(

children: [

Icon(

PhosphorIcons.mapPin(),

size: 16,

color: secondaryColor,

),

const SizedBox(

width: 5,

),

Expanded(

child: Text(

widget.homestayLoc,

style: textRegularSecondary.copyWith(fontSize: 16),

),

),

],

),

],

),

),

);

}

}

Booking_form_dialog.dart

import 'package:cloud_firestore/cloud_firestore.dart';

import 'package:flutter/material.dart';

import 'package:phosphor_flutter/phosphor_flutter.dart';

import 'package:securitydoor/screen/qr_dialog.dart';

import '../constant/color.dart';

96

import '../constant/strings.dart';

import '../constant/text.dart';

import '../constant/widget/custom_button.dart';

import '../constant/widget/custom_textfield.dart';

import '../services/firebase_service.dart';

class BookingFormDialog extends StatefulWidget {

final String homestayId, homestayName;

const BookingFormDialog(

{super.key, required this.homestayId, required this.homestayName});

@override

State<BookingFormDialog> createState() => _BookingFormDialogState();

}

class _BookingFormDialogState extends State<BookingFormDialog> {

TextEditingController clientNameController = TextEditingController();

TextEditingController clientIcNoController = TextEditingController();

TextEditingController clientTelNoController = TextEditingController();

TextEditingController checkInDateTimeController = TextEditingController();

TextEditingController checkOutDateTimeController = TextEditingController();

final _key = GlobalKey<FormState>();

final FirebaseService _firebaseService = FirebaseService();

Future<bool> _isDateAvailable(String homestayId, DateTime checkIn, DateTime

checkOut) async {

QuerySnapshot bookingSnapshot = await FirebaseFirestore.instance

.collection('Booking')

.where('Homestay_ID', isEqualTo: homestayId)

.get();

for (var bookingDoc in bookingSnapshot.docs) {

DateTime existingCheckIn = DateTime.parse(bookingDoc['CheckIn']);

DateTime existingCheckOut = DateTime.parse(bookingDoc['CheckOut']);

if (checkIn.isBefore(existingCheckOut) && checkOut.isAfter(existingCheckIn))

{

return false;

}

}

return true;

}

@override

Widget build(BuildContext context) {

return PopScope(

canPop: false,

child: AlertDialog(

97

shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(10)),

backgroundColor: primaryColor,

content: Form(

key: _key,

child: SingleChildScrollView(

// Wrap the Column with SingleChildScrollView

child: Container(

padding: const EdgeInsets.all(10),

child: Column(

mainAxisSize: MainAxisSize.min,

children: [

Text(

newBooking,

style: textMediumSecondary.copyWith(fontSize: 20),

),

const SizedBox(

height: 20,

),

CustomTextField(

controller: clientNameController,

hintText: clientName,

keyboardType: TextInputType.text,

),

CustomTextField(

controller: clientIcNoController,

hintText: icNumber,

keyboardType: TextInputType.number,

),

CustomTextField(

controller: clientTelNoController,

hintText: phoneNumber,

keyboardType: TextInputType.phone,

),

CustomTextField(

controller: checkInDateTimeController,

hintText: checkIn,

readOnly: true,

icon: PhosphorIcons.calendarBlank(),

onPressedIconButton: () async {

DateTime? pickedDate = await showDatePicker(

context: context,

initialDate: DateTime.now(),

firstDate: DateTime(2000),

lastDate: DateTime(2101),

);

if (pickedDate != null) {

setState(() {

checkInDateTimeController.text =

"${pickedDate.toLocal()}".split(' ')[0];

});

98

}

},

),

CustomTextField(

controller: checkOutDateTimeController,

hintText: checkOut,

readOnly: true,

icon: PhosphorIcons.calendarBlank(),

onPressedIconButton: () async {

DateTime? pickedDate = await showDatePicker(

context: context,

initialDate: DateTime.now(),

firstDate: DateTime(2000),

lastDate: DateTime(2101),

);

if (pickedDate != null) {

setState(() {

checkOutDateTimeController.text =

"${pickedDate.toLocal()}".split(' ')[0];

});

}

},

),

const SizedBox(

height: 30,

),

Row(

mainAxisSize: MainAxisSize.min,

mainAxisAlignment: MainAxisAlignment.spaceBetween,

children: [

CustomButton(

text: cancel,

onPressed: () {

Navigator.pop(context);

}),

CustomButton(

text: submit,

onPressed: () async {

if (_key.currentState!.validate()) {

if (clientNameController.text.isNotEmpty &&

checkInDateTimeController.text.isNotEmpty &&

checkOutDateTimeController.text.isNotEmpty) {

DateTime checkInDate =

DateTime.parse(checkInDateTimeController.text);

DateTime checkOutDate =

DateTime.parse(checkOutDateTimeController.text);

bool isAvailable = await _isDateAvailable(widget.homestayId,

checkInDate, checkOutDate);

99

if (isAvailable) {

Map<String, String> bookingData = await

_firebaseService.createBooking(

clientName: clientNameController.text,

clientIcNo: clientIcNoController.text,

clientTelNo: clientTelNoController.text,

homestayId: widget.homestayId,

checkInDate: checkInDateTimeController.text,

checkOutDate: checkOutDateTimeController.text,

);

Navigator.pop(context, true);

showDialog(

context: context,

builder: (BuildContext context) {

return QRDialog(

qrId: bookingData['qrId']!,

bookingId: bookingData['bookingId']!,

homestayName: widget.homestayName,

);

},

);

} else {

ScaffoldMessenger.of(context).showSnackBar(

SnackBar(content: Text('Selected dates are not available.')),

);

}

}

}

},

),

],

)

],

),

),

),

),

),

);

}

}

100

Share_qr_controller.dart

import 'dart:io';

import 'dart:typed_data';

import 'package:flutter/material.dart';

import 'package:path_provider/path_provider.dart';

import 'package:qr_flutter/qr_flutter.dart';

import 'package:share_plus/share_plus.dart';

class ShareQrController {

static Future<void> generateAndShareQRCode(String data, homestayName) async

{

try {

// Generate QR code as ByteData

ByteData? qrBytes = await QrPainter(

data: data,

version: QrVersions.auto,

gapless: true,

emptyColor: Colors.white,

).toImageData(878);

// Convert ByteData to Uint8List

Uint8List pngBytes = qrBytes!.buffer.asUint8List();

// Get temporary directory

final tempDir = await getTemporaryDirectory();

// Save the image as a temporary file

final filePath = '${tempDir.path}/qr_code.png';

final qrFile = File(filePath);

await qrFile.writeAsBytes(pngBytes);

// Share the file using ShareXFile

Share.shareXFiles([XFile(filePath)], text: "$homestayName");

} catch (e) {

debugPrint("Error generating or sharing QR code: $e");

}

}

}

Booking_form_controller.dart

import 'package:uuid/uuid.dart';

class BookingFormController {

static String generateRandomID() {

var uuid = const Uuid();

return uuid.v4();

101

}

}

PSM2_B082110432
by Turnitin.my

Submission date: 13-Feb-2025 05:38PM (UTC+0900)

Submission ID: 2587429198

File name: PSM2_B082110432.pdf (2.69M)

Word count: 16158

Character count: 94504

	MUHD ARIFF BIN ZULKIFLI TEOH
	DECLARATION
	APPROVAL
	DEDICATION
	ABSTRACT
	ABSTRAK

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	INTRODUCTION
	1.1 Background
	1.2 Problem Statements
	1.3 Project Objective
	1.4 Scope of Project
	LITERATURE REVIEW
	2.1 Introduction
	Figure 2.1.1 Example of an IoT System [1]
	2.2 QR Code (Quick Response Code)
	Figure 2.1: QR Code
	Figure 2.2: The Structure of QR Code
	2.2.1 The Application of QR code in IOT System
	2.2.2 Key Use Cases of QR Codes for IoT Security Solution
	2.2.3 QR Codes Safeguarding Product Authenticity and Combating Counterfeiting
	2.2.4 QR Codes Improving Device Pairing and Provisioning
	2.2.5 QR Codes contribution in Equipment Maintenance Tracking
	2.2.6 QR Codes in access control and Authentication
	2.2.7 QR Codes ensuring Secure Firmware/Software Updates
	2.3 Microcontroller
	2.3.1 Hardware
	2.3.1.1 ESP 32 Microcontroller
	Figure 2.3: ESP 32
	2.3.1.2 Arduino Uno Microcontroller
	Figure 2.4: Arduino Uno[10]
	2.3.1.3 Raspberry Pi Controller
	2.3.2 Microcontroller Software
	2.3.2.1 Arduino IDE
	2.3.2.2 Raspberry Pi
	2.3.3 Comparison between microcontrollers
	2.4 Past project
	Figure 2.9 System Architecture and Design
	Figure 2.10: The component used for Development of Web-Based Smart Security Door Using QR Code System
	2.4.3 Smart door access control system based on QR Code
	Figure 2.11: The simulation of a project with Arduino Uno
	2.4.4 QR Code Based Door Opening System
	Figure 2.12: Block Diagram of QR Code Based Door Opening System
	2.4.5 Design and development of smart lock system based QR Code for library's locker at Faculty of Engineering
	Figure 2.13: The design of smart lock system based QR Code for library's locker at Faculty of Engineering
	2.4.6 QR Code DOOR Project: Access Control Application using QR Code Image
	Figure 2.14: The architecture QR Code DOOR Project
	2.4.7 Door Lock Security System Using Raspberry Pi & QR Code
	2.5 Project Comparison
	2.6 Summary
	METHODOLOGY
	3.1 Introduction
	3.2 Selecting and Evaluating Tools for a Sustainable Development
	3.3 Methodology
	Figure 3.1: Block Diagram of the project
	3.3.1 Workflow
	3.4 Flowchart
	3.4.1 Project Flowchart
	3.4.2 Application Flowchart
	3.4.3 System Flowchart
	3.5 Experimental Setup
	3.6 Equipment Use
	Figure 3.5: ESP 32
	3.6.2 Arduino Uno
	Figure 3.6: Arduino Uno
	3.6.3 Mini QR code scanner
	Figure 3.7: Mini QR scanner
	3.6.4 MC-38 Door Sensor
	Figure 3.8: MC-38
	3.6.5 Relay
	Figure 3.9: Relay
	3.6.6 Solenoid Lock
	Figure 3.10: Solenoid Lock
	3.6.7 LCD 16 x 2
	3.7 Software Use
	3.7.1 Android Studio
	Figure 3.12: Android studio logo
	3.7.2 Flutter
	Figure 3.13: Fluter on Android Studio
	3.7.3 Arduino IDE
	Figure 3.14: Coding in Arduino IDE
	Figure 3.15: The interface of Firebase in the website
	3.8 Summary
	RESULTS AND DISCUSSIONS
	4.1 Introduction
	4.2 Result and Analysis
	4.2.1 Initial Hardware
	4.2.2 Project Prototype
	4.2.3 Project Application
	4.2.4 Project Database
	Figure 4.7: Firebase's Firestore
	4.2.5 Generating new QR code for added user
	Figure 4.9: User added image partition from left to right in sequence
	4.2.6 Removing the existing booking.
	Figure 4.10: QR code data deletion image partition from left to right in sequence
	4.2.7 Accessing the homestay with the correct QR code
	Figure 4.11: Authorized user gaining access with a correct QR code
	4.2.8 Accessing the homestay with incorrect QR code
	Figure 4.12: Unauthorized user attempt to access with a invalid QR code
	4.2.9 Real-time update on door status
	Figure 4.13: Door status locked Figure 4.14: Door status unlocked
	4.3 Data Analysis
	4.3.1 Distance vs Time taken
	Table 4.1: Table for relay delation
	Figure 4.16 : Method use to record data
	4.3.2 Fetching error analysis
	Table 4.2 : Fetching error table
	4.4 Summary
	CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Potential for commercialization
	5.3 Future Works
	REFERENCES
	APPENDICES
	if (qrApprove) { handleDoorCycle(mc38State);
	updateSolenoidState(); delay(100);
	* Connects to the specified WiFi network.
	* Initializes the Firebase connection.
	* Reads data from the QR code scanner.
	return qrData;
	* Processes the QR code data.
	} else {
	} else { (1)
	} else { http.end();
	return false;
	* Handles the door open/close cycle based on the MC38 sensor state.
	* Locks the door and updates the database.
	* Unlocks the door and updates the database.
	* Updates the lock state in the Firebase database.
	return mktime(&tm);
	* Updates the solenoid state based on the LED states.
	* Sends a message to the Arduino Uno to be displayed on the LCD.
	void sendToLCD(String message) { Serial.println(message); // Send message to Arduino Uno
	* Displays a message on the LCD, handling messages longer than 16 characters.
	debugShowCheckedModeBanner: false, title: 'QR Security Door',
	Future<String?> getBookingId(String qrId) async { DocumentSnapshot qrCodeDoc = await
	return homestays;
	@override
] else ...[
	@override (1)
	doors.add(doorData);
	setState(() { isLoading = false;
	@override (2)
	if (result == true) {
	child: Text(homestayDetail),
	return false; (1)
	return true;
	const SizedBox(height: 20,
	CustomTextField(
	CustomTextField((1)
	if (pickedDate != null) { setState(() {
	if (pickedDate != null) { setState(() { (1)
	const SizedBox(height: 30,
	Submitted to Universiti Teknikal Malaysia Melaka
	digitalcollection.utem.edu.my
	Submitted to University of Greenwich
	gitlab.sliit.lk
	www.researchgate.net
	Submitted to Ibra College of Technology
	Submitted to Fiji National University
	Submitted to Saint Laurence's College
	github.com
	core.ac.uk
	Submitted to International Islamic University Malaysia
	dev.to
	Submitted to University of Northampton
	bengkelkoding.dinus.ac.id
	utpedia.utp.edu.my
	Submitted to University of Glamorgan
	Submitted to Higher Education Commission Pakistan
	apcpedagogie.com
	personales.upv.es
	scholar.its.ac.id
	Submitted to Asia Pacific University College of Technology and Innovation (UCTI)
	appdesign.readthedocs.io
	forum.arduino.cc
	Submitted to City University
	ijict.iaescore.com
	Submitted to South Tyneside College, Tyne & Wear
	ftkek.utem.edu.my
	learn.adafruit.com
	stackoverflow.com
	www.techtarget.com
	Submitted to Singapore Institute of Technology
	Submitted to Universiti Teknologi MARA
	hal.archives-ouvertes.fr
	Submitted to Chester College of Higher Education
	Submitted to Universiti Teknologi Petronas
	Submitted to Middle East College of Information Technology
	Submitted to Nottingham Trent University
	Submitted to University College London
	Submitted to University of Sheffield
	Submitted to Quezon City University
	Submitted to St. Andrew's International School
	elartu.tntu.edu.ua
	Submitted to Visayas State University
	gitea.dsv.su.se
	Fivitria Istiqomah, Della Khansa Nuurul Izza, Joko Susila, Berlian Al Kindhi, Enny Indasyah, Fauzi Imaduddin Adhim. "Automated Barrier Gate for Housing Estate Security System Using QR Code Based on Android Application", 2021 International Conference o...
	Submitted to Griffith College Dublin
	beyondnlptraining.com
	community.element14.com
	www.pvsm.ru
	Submitted to Arab Open University
	Submitted to Canadian International School of Hong Kong
	Submitted to INTI Universal Holdings SDM BHD
	Submitted to Jabatan Pendidikan Politeknik Dan Kolej Komuniti
	Submitted to Notre Dame of Marbel University
	medium.com
	www.coursehero.com
	Fu Cheng. "Flutter Recipes", Springer Science and Business Media LLC, 2019
	ijeecs.iaescore.com
	5dok.org
	Submitted to HELP UNIVERSITY
	Submitted to University of Hertfordshire
	codemonkey.link
	git.informatik.hs-mannheim.de
	Arvind Dagur, Dhirendra Kumar Shukla,
	Submitted to Coventry University
	docplayer.net
	Submitted to Technological University of the Shannon
	Submitted to University of Western Australia
	codelabs.developers.google.com
	fabacademy.org
	"Inherited ThrombophiliasMultiple Choice Questions for Vol. 17, No. 3", Best Practice & Research Clinical Obstetrics & Gynaecology, 2003
	Submitted to iGroup
	Ton Duc Thang University
	Submitted to University of Salford
	acikbilim.yok.gov.tr
	create.arduino.cc
	www.96boards.org
	www.etechnophiles.com
	www.iaescore.com
	www.memsnet.org
	www.raspberrypi.com.tw
	Submitted to De Montfort University
	Submitted to Federal University of Technology
	Submitted to University of Strathclyde
	Submitted to Zambia Centre for Accountancy Studies
	codeclimate.com
	Submitted to American University of Kuwait
	Submitted to Institute of Technology Blanchardstown
	git.pvv.ntnu.no
	codeberg.org
	dlibrary.univ-boumerdes.dz:8080
	www.hackster.io
	www.kora.dk
	Chakraborty, Shashwata. "Behavior of Glass/Carbon Fiber Hybrid Composites Under Impact Loading for Aerospace Applications.", North Carolina Agricultural and Technical
	Submitted to National Open University of Nigeria
	Submitted to Teaching and Learning with Technology
	amslaurea.unibo.it
	jespublication.com
	myfik.unisza.edu.my
	repository.usta.edu.co
	www.seeedstudio.com
	Submitted to Escuela Politecnica Nacional
	Submitted to Harper Adams University College
	Jasson Lwangisa Domition, Rogers Philip Bhalalusesa, Selemani Ismail. "Improved Mechanism for Detecting Examinations Impersonations in Public Higher Learning Institutions: Case of the Mwalimu Nyerere Memorial Academy (MNMA)", Journal of
	Submitted to The Hong Kong Polytechnic University
	arduino-collector.info
	blog.odsi.co.uk
	components101.com
	mafiadoc.com
	openknowledgemaps.thescipub.com
	raw.githubusercontent.com
	tools.ages.pucrs.br
	www.c-sharpcorner.com
	www.e-gizmo.net
	www.ijirset.com
	Alexander Maier, Andrew Sharp, Yuriy Vagapov. "Comparative analysis and practical implementation of the ESP32 microcontroller module for the internet of things", 2017 Internet Technologies and Applications (ITA), 2017
	ela.kpi.ua
	publikasi.mercubuana.ac.id
	Dr Sudha L K, Ajay R, Manu Gowda S H, Poornima V B, Vaibhav S. "Smart Stick For Visually Impaired On Streets Using Arduino UNO", international journal of engineering technology and management sciences, 2023
	Erken, Bilal Ayberk. "Visualizing and Monitoring of Environmental Data Using Various Sensors", Southern University and Agricultural and Mechanical College, 2024
	Shaik Mazhar Hussain, Suhaib Abdul Hameed Saif Al Shukairi, Rolito Asuncion, Madhav Prabhu. "Smart Security: An IoT-NFC Lock System for Efficient Access Management", Malaysian Journal of Science and Advanced Technology, 2024
	arduinogetstarted.com
	Submitted to islingtoncollege

