
DEVELOPMENT OF IMAGE CLASSIFICATION APPS USING
ANDROID STUDIO

ONG CHEE TENG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF IMAGE CLASSIFICATION APPS USING
ANDROID STUDIO

ONG CHEE TENG

This report is submitted in partial fulfilment of the requirements for
the degree of Bachelor of Computer Engineering Technology

(Computer Systems) with Honours

Faculty of Electronics and Computer Technology and Engineering
Universiti Teknikal Malaysia Melaka

2025

Tajuk Projek : Development of Image Classification Apps using Android
Studio

Sesi Pengajian : 2024/2025

Saya ONG CHEE TENG mengaku membenarkan laporan Projek Sarjana Muda ini
disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.
4. Sila tandakan (9):

SULIT*

(Mengandungi maklumat yang berdarjah
keselamatan atau kepentingan Malaysia
seperti yang termaktub di dalam AKTA
RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang
telah ditentukan oleh organisasi/badan di
mana penyelidikan dijalankan.

 9 TIDAK TERHAD

Disahkan oleh:

(COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh : 16 Januari 2025 Tarikh : 01 Januari 2024

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan
menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

16 Januari 2025

DECLARATION

I declare that this project report entitled “Development of Image Classification Apps using

Android Studio” is the result of my own research except as cited in the references. The

project report has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature :

Student Name : ONG CHEE TENG

Date : 14-01-2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer

Engineering Technology (Computer Systems) with Honours.

Signature :

Supervisor Name :

Date :

Signature :

Co-Supervisor

Name (if any)

:

Date :

Dr. Nor Hafizah binti Hussin

16 January 2025

DEDICATION

To my beloved mother, Long Boon Hui.

i

ABSTRACT

Image classification has emerged as a crucial task in the field of computer vision, facilitating

numerous applications across various domains. It known in this area of study includes the

training of sound and reliable machine learning models to classify the images accordingly

into the categories defined. The problem is image classification application require many

resources to be used and some challenge about reliability of currently available image

classification apps. Those applications cannot classify the object very detailed. For the

objectives of the project, the application needs to provide easy to use UI, detect more specific

items and improve the accuracy of result for the image classification. To complete the project,

the android studio was used to create an android application and TensorFlow Lite were

trained using machine learning that import into the android app. After that, the application

can recognize the image and give the result. The apps should be a simple UI and easy to use.

Since this project is related to image classification, the analysis part will use accuracy testing

to evaluate this app. The results show that developed apps have successfully detected the

correct image up to 90% accuracy. The higher the accuracy, the greater the performance of

model implement in the image classification app. This project presents how mobile apps can

use machine learning to do something that can bring advanced features like real time

classification. The image classification app can be used in many domains like education to

help enthusiasts recognise species or serve as an educational tool for student and

environmental conservation. In business, it could be adapted into specialized software for

industries requiring automated identification.

ii

ABSTRAK

Pengelasan imej telah muncul sebagai tugas penting dalam bidang penglihatan komputer,

memudahkan banyak aplikasi merentas pelbagai domain. Ia dikenali dalam bidang kajian ini

termasuk latihan model pembelajaran mesin yang baik dan boleh dipercayai untuk

mengklasifikasikan imej mengikut kategori yang ditentukan. Masalah ialah aplikasi

pengelasan imej memerlukan banyak sumber yang boleh digunakan dan beberapa cabaran

tentang kebolehpercayaan aplikasi pengelasan imej yang tersedia pada masa ini. Aplikasi

tersebut tidak boleh mengklasifikasikan objek dengan sangat terperinci. Untuk objektif

projek, aplikasi perlu menyediakan UI yang mudah digunakan, mengesan item yang lebih

khusus dan meningkatkan ketepatan keputusan untuk klasifikasi imej. Untuk melengkapkan

projek, Android Studio digunakan untuk mencipta aplikasi android dan TensorFlow Lite

dilatih menggunakan pembelajaran mesin yang mengimport ke dalam aplikasi android.

Selepas itu, aplikasi boleh mengenali imej dan memberikan Keputusan. Aplikasi mesti UI

yang ringkas dan mudah digunakan. Memandangkan projek ini berkaitan dengan klasifikasi

imej, bahagian analisis akan menggunakan ujian ketepatan untuk menilai aplikasi ini. Lebih

tinggi ketepatan, lebih tinggi prestasi model dalam aplikasi klasifikasi imej. Keputusan

menunjukkan bahawa aplikasi yang dibangunkan telah berjaya mengesan imej yang betul

sehingga 90% ketepatan. Projek ini membentangkan cara aplikasi menggunakan

pembelajaran mesin untuk melakukan sesuatu yang boleh membawa ciri lanjutan seperti

pengelasan masa nyata. Aplikasi klasifikasi imej boleh digunakan dalam banyak bidang

seperti pendidikan untuk membantu peminat mengenali spesies atau berfungsi sebagai alat

pendidikan untuk pelajar dan pemuliharaan alam sekitar. Dalam perniagaan, ia boleh

disesuaikan menjadi perisian khusus untuk industri yang memerlukan pengenalan automatik.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, DR. NOR

HAFIZAH HUSSIN for precious guidance, words of wisdom and patient throughout this

project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) and family for

the financial support through my journey which enables me to accomplish the project. Not

forgetting my fellow colleague, for the willingness of sharing his thoughts and ideas

regarding the project.

My highest appreciation goes to my parents, parents in-law, and family members for

their love and prayer during the period of my study.

Finally, I would like to thank all the staffs at the UTeM, fellow colleagues and

classmates, the faculty members, as well as other individuals who are not listed here for

being co-operative and helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS viii

LIST OF ABBREVIATIONS ix

LIST OF APPENDICES x

 INTRODUCTION 11
1.1 Background 11
1.2 Addressing Object Recognition and Detection through Image Classification 12
1.3 Problem Statement 13
1.4 Project Objective 13
1.5 Scope of Project 14

 LITERATURE REVIEW 15
2.1 Introduction 15
2.2 Image Classification Problem 15
2.3 Traditional Image Classification 16

2.3.1 Traditional Neural Network 17
2.4 Deep Learning 19

2.4.1 Convolutional Neural Networks (CNNs) 20
2.5 Similar Project 22

 METHODOLOGY 24
3.1 Introduction 24
3.2 Selecting and Evaluating Tools for Image Classification App Development 24
3.3 Methodology 25

3.3.1 Project Software flowchart 25
3.3.1.1 Phase 1: Design App 27
3.3.1.2 Phase 2: Import TensorFlow Lite into App 30

v

3.3.1.3 Phase 3: Testing Performance of the App 32
3.4 Equipment 33

3.4.1 Android Studio 33
3.4.2 Teachable Machine 34
3.4.3 TensorFlow Lite 35

3.5 Limitation of proposed methodology 36
3.6 Summary 37

 RESULTS AND DISCUSSIONS 38
4.1 Introduction 38
4.2 Preliminary Result 38
4.3 Results and Analysis 41

4.3.1 Result 43
4.3.2 Analysis 44

4.3.2.1 Parrot Model 45
4.3.2.2 Owl Model 51
4.3.2.3 Goose Model 57

4.4 Summary 63

 CONCLUSION AND RECOMMENDATIONS 65
5.1 Conclusion 65
5.2 Future Works 66
5.3 Project Potential 66

REFERENCES 67

APPENDICES 71

vi

LIST OF TABLES

TABLE TITLE PAGE

Table 4.1 Table of Accuracy Result for Accuracy Testing of Parrot Model 45

Table 4.2 Table of Accuracy Result for Accuracy Testing of Owl Model 51

Table 4.3 Table of Accuracy Result for Accuracy Testing of Goose Model 57

vii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1: Artificial Neural Network (ANN) 18

Figure 2.2 Deep Neural Networks (DNNs) 19

Figure 2.3: Convolutional Neural Networks (CNNs) 21

Figure 3.1: Flowchart of project structure 26

Figure 3.2: Flowchart of App design 28

Figure 3.3: Flowchart of model training 30

Figure 3.4: Bug of the App 32

Figure 3.5: Android Studio 33

Figure 3.6: Teachable Machine 34

Figure 2.5: TensorFlow Lite 36

Figure 4.1: Preliminary Result of Amazon Parrot 38

Figure 4.2: Preliminary Result of Caique Parrot 39

Figure 4.3: Preliminary Result of Cockatoo 40

Figure 4.4: Preliminary Result of Conure Parrot 41

Figure 4.5: Example of Training Image 42

Figure 4.6: Example of Testing Image 42

Figure 4.7: UI design for Main Activity 43

Figure 4.8: Model Selection 44

Figure 4.9: Amazon Parrot 51

Figure 4.10: Parrotlet 51

x

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Coding for MainActvity.kt 71

Appendix B Task Schedule of PSM1 76

Appendix C Task Schedule of PSM2 77

11

INTRODUCTION

1.1 Background

Image classification has emerged as a crucial task in the field of computer vision, facilitating

numerous applications across various domains. Given the recent developments in deep

learning especially for the types of convolutional neural networks, the accuracy and the

speed for image classification has increased. What is currently known in this area of study

includes the training of sound and reliable machine learning models to classify the images

accordingly into the categories defined. Furthermore, the exponential rise of portable devices

with high-performance GPUs and software tools such as TensorFlow Lite has creatively

enabled the functionality of image classification on mobiles.

However, there is a significant research gap concerning the construction of efficient,

accurate, and easy to use image classification applications for Android devices given the

improvements in image classification and advancements in the mobile technology. Many

existing solutions have complex interfaces or are computationally intensive and thus

compatible with mobile devices. Furthermore, the diversification and incorporation of

machine learning models into Android applications pose some issues to developers,

especially when it comes to efficiency and compatibility with the different technical

specifications of the devices. These are the areas that need to be filled in order to make image

classification available and easily deployable on mobile devices and for use by users from

different backgrounds.

12

This research seeks to fill this gap by proposing the development of an Image Classification

App developed using Android Studio that will enhance the user experience in image

classification and at the same time ensure high accuracy in classification tasks. It will entail

researching and identifying proper machine learning models that can be implemented on a

mobile device, further, fine-tuning these models for mobile devices, and developing an easy-

to-navigate Android app front-end. Furthermore, some added functionalities in the

application will include live image capturing and presentation of results to the users. This

research aims to assist users to carry out image classification activities with ease using their

Android cellular phones to promote equal use of this capable technology in the development

of mobile applications.

1.2 Addressing Object Recognition and Detection through Image Classification

Object recognition and detection involving image classification are key breakthroughs in

technologies in the field of computer vision, which has significantly affected numerous

industries and uses. Image classification is the process whereby an object or a set of objects

in an image is recognized and classified by using advanced machine learning algorithms

hence providing a host of practical solutions across various fields.

Within the context of visual search engines, Image classification extends the capabilities of

image search by allowing users to search for products, landmarks, or artworks, directly from

the image, thereby improving the quality of the search and providing more natural means of

navigating digital content. Further, in the context of automated surveillance systems, image

classification is central in identifying the objects of interest, including persons of interest or

illicit automobiles, thereby boosting up security and allowing the detection of threats in

advance.

13

In conclusion, image classification is a very flexible and necessary method for solving the

problems of object recognition and detection across various industries and applications.

Through correct naming and categorizing of objects in images, image classification eases

work automation, improves decision making and fosters creative approaches to solved

problems.

1.3 Problem Statement

This issue is rather surprising, given the current trends in machine learning and the

development of mobile applications for Android. However, there are no useful software

applications available for image classification for early. Existing options that are available

are therefore difficult to use or require so many resources to be able to be used. Further, there

is some doubt to the reliability of currently available image classification apps, and it is said

to the information regarding what they are able to classify correctly is not very detailed. This

lack of available alternatives has created a need for a new, efficient Android application with

which preliminary issues can be addressed, while also including accuracy improvements in

areas that existing applications fail to excel.

1.4 Project Objective

The project objectives are as follows:

 To provide a simple and easy-to-use Android application interface for image

classification.

 To detect more specific item according to customer’s needed, for example

the type of cat.

 To improve the accuracy of result for the image classification.

14

1.5 Scope of Project

 Implement an Android application that should be built using Android Studio that

involves freedom to capture an image and choose an image from the gallery and

user can interact especially when involving classification tasks.

 Design a GUI layout for the Android application, which ensures easy handling

of the application and the captured images for viewing the results.

 Implement machine learning models for the recognition of images in the Android

application.

 Enhance its functionality to smoothly run on any android device.

15

LITERATURE REVIEW

2.1 Introduction

Image classification is a part of computer vision that could let machines correctly identify

and understand the images that they see. The process of dividing the images into the classes

that are predefined or into certain categories based on the features of the images is known as

image classification. This basic function has extensive uses for multiple industries including

healthcare and self-driving cars as well as retail and entertainment. When using modern

approaches to artificial intelligence, such as deep learning techniques like convolutional

neural networks, image classification algorithms may efficiently recognize many details and

easily differentiate between various objects and scenes. The feature of image classification

is that it can automate the process of visual recognition with the help of artificial intelligence

to improve the performance of industries and to unlock new possibilities for interaction

between humans and machines in the modern world.

2.2 Image Classification Problem

Some of the difficulties that are met during the teaching process with class or images are

known as image classification. It is still possible to raise several questions by considering

machine learning decision making, for example, bias and impartiality. At times, the data

used to train these systems may be ‘Historically biased’ which implies that during the data

gathering process, the data bias can be intentionally made or can be a result of oversight to

favor the minority. It can lead to biased decisions to either decrease or increase the benefit

of the individuals/ groups because they are not well represented in the data. For example, if

16

a model was worked out with mostly one type of person, then it is likely to be inaccurate

when dealing with persons of a different type.

Another challenge is robustness. It must, however, be noted that such systems are not always

complete in one way, manner or another under different situations. They may not do well in

anything that involves fluctuations in light intensity, casual orientation or anything that is

not straightforward when it comes to pictures. This proves to have real drawbacks in the

extent to which they can be translated into real life scenarios and hence real problems that

they have to face difficulties in terms of accuracy and efficiency in how they are supposed

to work.

Privacy and security are also other considerations of concern. I need to be very careful at

this point lest these systems when not well managed, may put the individuals at risk of

exposing some sensitive information, or cause some form of harm to the people involved.

Namely, if the system has wrong classes for images where people are included, then it may

lead to wrong accusations as well as invasion of privacy.

2.3 Traditional Image Classification

Image classification in fact is an integral part of many computer vision applications in the

related fields as well as in imagine depth processing. Standard image classification operates

in several phases which are pre-processing of the image, feature extraction, classifier

building and training learning. Traditional concept of image classification mostly depends

on the characteristics that are extracted from the image in order to arrive at the classification

and this can be the base by which the rest of the computer-based extraction of the semantic

details of the image can be taken. Traditional image classification typically calculates image

17

characteristics using color, texture, and other data, then applies logistic regression and

support vector machines to achieve image classification. In addition to the retrieved

characteristics, which are a significant factor, the results of picture classification are

impacted by knowledge and experience in related fields [4].

Applying the manually obtained features to image classification is not only challenging, but

it also takes a long time to analyze the feature data. However, traditional machine learning

cannot handle processing large datasets, and optimizing feature design, feature selection, and

model training is a difficult task that yields poor model classification. Therefore, image

classification methods based on traditional machine learning have an impact on many

application fields. Studies indicate that texture, shape, and color attributes are useful for

both image recognition and classification. Traditional image classification techniques

typically extract a single feature or a mixture of features, then use the extracted features as

the support vector machine's input value.

2.3.1 Traditional Neural Network

One of the main components of contemporary machine learning and artificial intelligence is

known as an artificial neural network (ANN). An artificial neural network is made up of

interconnected nodes, or neurons, arranged into layers and modeled after the structure of the

human brain [9].

18

Figure 2.1: Artificial Neural Network (ANN)

Three primary types of layers are shown in Figure 2.1: input, hidden, and output layers. The

original data is received by the input layer and is subsequently processed through the hidden

layers with activation functions and mathematical operations. The output layer generates the

network's computed result at the end [10].

A large dataset of input-output pairs is fed into an artificial neural network (ANN) during

training, and the weights of the connections between neurons are adjusted to minimize the

discrepancy between the desired and actual outputs. The backpropagation can be referred to

as the direction for this process as gradient descent and various other optimization algorithms

are used.

19

Natural language processing, pattern recognition, image and speech recognition have all

been solved using ANNs. However, some disadvantages of traditional ANNs are known, for

instance, the models’ computational cost and their poor performance at processing large

high-dimensional data.

2.4 Deep Learning

This is a branch of machine learning that deals with deep artificial neural networks or deep

neural networks. Compared with other machine learning algorithms, deep learning

algorithms learn these representations from the raw input itself [4].

Figure 2.2 Deep Neural Networks (DNNs)

Another advantage of deep learning is that, compared with other machine learning methods,

deep learning can automatically locate features and other subtle patterns to be learned from

big data. The deep neural network is shown in Figure 2.2. In this research, the deep neural

network is as shown below. 2, they enforce very complex dependencies and in addition they

do this with high accuracy while at the same time learning lower and lower level and very

abstract representations of the input data.

20

As seen, deep learning has shown high potential in various applications including; computer

vision, natural language processing, speech recognition, and reinforcement learning. For

example, there are special types of network like convict ian neural networks (CNNs) which

are inherently in a position to learn some of the feature like edges, textures, shapes etc for

image classification. As a result of this characteristic, it is more suited for managing data

that amass chronologically or successively such as the language translation and the voice to

text conversion [1].

The ability to use large scale Deep Neural Networks through the use of powerful computing

equipment such as GPU and TPU, and open-source deep learning systems like TensorFlow

and Pytorch have helped in increasing the usage of Deep Learning. These frameworks ease

the access of this deep learning technology and take innovation to different fields through

strong and feasible tools and abstractions to develop train and deploy deep learning

models[11].

Therefore, deep learning is a relatively new branch of machine learning, which has changed

how certain ML problems are solved and has even expanded the potential of AI technologies.

2.4.1 Convolutional Neural Networks (CNNs)

To solve tasks related to images and other types of data that are initially visual, people use a

particular type of deep neural networks called convolutional neural networks or CNNs. They

have transformed the field of computer vision as the learning systems can learn

representations of images and the features in the images and make accurate predictions on

their own [3].

21

Figure 2.3: Convolutional Neural Networks (CNNs)

In Figure 2. 3, CNNs have different structures through the fully connected layers, pooling

layers, and convolutional layers. In convolutional layers of the network, filters or also known

as kernels are used to come up with local feature of the input image like edges, texture and

pattern. The convolution layers produce feature maps that are reduced in size by the pooling

layers; they preserve as much data as can be useful in the reduction process by shrinking the

size of the data. The final feature map undergoes prediction on the features using fully

connected layers [3].

There are several advantages associated with CNNs, and one of these is the capability of

learning spatial feature hierarchies. In this manner the network is capable of recognizing

objects and patterns at multiple resolutions and abstraction levels since through the

convolutional and pooling layers, the input image is dissected and higher and higher levels

of features are extracted from it.

CNNs are applied in most computer vision applications including but not limited to object

detection, image segmentation, image generation and classification. CNNs give the optimal

results in the picture recognition tasks such as the task of sorting the pictures under certain

22

classes such as the recognition of handwritten digits in pictures or recognizing different

objects in the photographic images. In object detection, CNN can point out the locations and

also recognize multiple objects within an image, thus it has potential application areas

including auto-mobile, video, and medical imaging. In image segmentation, CNNs can

segment an image through partitioning images into regions of interest as it involves the

analysis of medical images or understanding of a scene.

2.5 Similar Project

“A review of the application of deep learning in medical image classification and

segmentation” written by Lei Cai, Jingyang Gao, Di Zhao in Jun 2020. In this project, they

have 2 methods to create machine learning models [21].

First is TensorFlow. TensorFlow is an open-source software with coding tool by Google

used for computational basic on data flow. In early 2015, TensorFlow was released to the

public, and it has been used as the fundamental tool for machine learning and deep learning

ever since. It implements several deep learning frameworks including CNNs, RNNs, LSTM

as well as other common machine learning algorithms. TensorFlow also possesses a very

good visualization tool known as TensorBoard through which developers can easily produce

very good visual representation of its model in terms of its performance and structure. The

flexibility encompasses distributed heterogeneous computing to complete model training

across different GPUs or systems. Developed using C++, TensorFlow enables efficient

operation to make it a platform of choice for big-data machine learning [21].

Second is PyTorch. PyTorch is another deep learning toolkit, created by the FAIR team at

Facebook, and worked on a dynamic neural network expressed on the GPU. Beginning with

23

its inception on GitHub in January 2017, PyTorch proved popular among researchers

principally because of its dynamic computation graph, which can be modified in real-time

depending on computational requirements. Compared with TensorFlow which uses static

computation graph, PyTorch offers more flexibility for use, which is more suitable for

research purpose and testing. Due to its smooth compatibility with Python language and

simplicity, it is suitable for use by researchers as well as developers [21].

24

METHODOLOGY

3.1 Introduction

This chapter presents the research methodology and the steps that will be followed in this

project. It will be centered on the software components that a beginner needs to master in

order to build an image classification application using Android Studio. The app is also going

to use TensorFlow Lite for on-device machine learning to classify pictures quickly. The

following plan will outline how the app will be created with detailed explanations for how

the user interface will be designed, how the machine learning model will be implemented,

and how the app will be tested for efficacy. The methodologies discussed above are intended

to guarantee that the image classification app is properly developed and implemented on

Android devices.

3.2 Selecting and Evaluating Tools for Image Classification App Development

There are a few tools and technologies that have to be selected and reviewed for design and

deployment of the app that is created out of Android Studio to be used in the classification

of images [13]. This entails a few methodological factors, such as measuring accuracy of the

machine learning models, studying the interaction between different libraries/ frameworks

and ensuring the app responsiveness for mobile gadgets [14]. There is also another

consideration that concerns the app accessibility and interface, always considering who

would find it easily and comfortable to work with it and to find the necessary view or option.

On compatibility for development environment, TensorFlow Lite shall therefore support

compatibility with Android Studio. This involves checking what is compatible with the latest

25

android SDKs, and that the performance of the app is tested across a range of android devices

[15]. Again, this can be done with Android Studio’s layout editor and prototyping tools to

make an app with an appealing interface. Gathering beta testers and making necessary

changes to the design incorporating the opinion of the target market to create a simple user

interface of the app.

3.3 Methodology

The project provides the reader with a broad framework on how to design a simple image

classification application using Android Studio with TensorFlow Lite. To this end, the

proposed methodology is based on convolutional neural networks (CNNs) as the primary

tool for image classification and works efficiently on mobile platforms. The operations

remain both qualitative and quantitative oriented so as to create a viable and easy to use

application.

3.3.1 Project Software flowchart

Figure 3.1 shows the flowchart of project structure. An early stage of this project will involve

a mobile application design, followed by importing the TensorFlow lite and finally will

proceed with performance testing.

26

Figure 3.1: Flowchart of project structure

Phase 1: Design App

The initial phase focuses on designing the app, ensuring it has a user-friendly interface and

seamless functionality. This step needs to identify the app’s objectives and user needs, such

as the types of images to be classified and the expected accuracy and create a new project in

Android Studio, configure project settings, and organize the project structure. Develop the

app’s user interface using XML layout files and the layout editor to design screens for

capturing or selecting images and displaying classification results.

Phase 2: Import TensorFlow Lite into App

In this phase, the trained machine learning model is integrated into the Android application

to enable image classification. This step needs to develop and train a convolutional neural

network (CNN). Once the model achieves satisfactory accuracy, convert it to TensorFlow

Lite format using the TensorFlow Lite Converter. It include TensorFlow Lite dependencies

in the project's Gradle files and Import the TensorFlow Lite model (.tflite file) into the

Android Studio project. Then, implement the TensorFlow Lite Interpreter API to load and

27

run the model within the app. Write code to preprocess input images and pass them through

the model for classification. Implement methods to handle the capture or selection of images,

preprocess them, and interpret the model's results.

Phase 3: Testing Performance of the App

The final phase involves thorough testing to ensure the app’s functionality, performance, and

user experience meet the desired standards. This step tests the app on various Android

devices to ensure compatibility across different screen sizes, resolutions, and hardware

configurations and measure the app’s performance, focusing on the speed and accuracy of

image classification. Optimize the model and app code to enhance performance.

3.3.1.1 Phase 1: Design App

Figure 3.2 shows the flowchart of the App design. In the phase 1, the app was created and

the image input was added in the display area. This step is shown in the flowchart in figure

3.2 below. Next step, users can choose image from gallery or upload image by camera. After

input image, the input image will display on display area. Lastly, the App will predict image

and show the result.

28

Figure 3.2: Flowchart of App design

Step 1: Create App

The initial phase focuses on setting up the Android project and preparing the basic

framework for the application. Open Android Studio and create a new project with a suitable

name and package name. Configure the project settings, including the minimum SDK level

and required dependencies. After that, organize the project structure by creating appropriate

packages for activities, fragments, adapters, and utilities. Set up the necessary libraries,

including TensorFlow Lite.

29

Step 2: Add display area for the image input.

In this phase, design and implement the user interface element where the image will be

displayed. This step creates an XML layout file for the main activity. Add a ImageView

widget to serve as the display area for the image input. Use Android Studio's layout editor

to position the ImageView appropriately within the UI. Ensure it has the necessary properties

to display images clearly.

Step 3: Choose Image from Gallery/Upload Image by Camera

This phase involves adding functionality for users to select an image from the gallery or

capture a new image using the camera. Implement an Intent to open the device's gallery and

allow the user to select an image. Handle the result in the onActivityResult method. Image

Capture via Camera: Implement functionality to launch the device's camera using an Intent,

capture an image, and return it to the app. Handle the result in the onActivityResult method.

Ensure the app requests and handles the necessary permissions for accessing the gallery and

camera.

Step 4: Display image obtained on display area.

After obtaining the image, display it in the designated area within the app. Write code to take

the image URI or bitmap obtained from the gallery or camera and set it to the ImageView

for display.

Step 5: Predict image and show the result.

Integrate the TensorFlow Lite model to classify the displayed image and show the result to

the user. Display the classification result in the UI, such as in a TextView or dialog box.

30

3.3.1.2 Phase 2: Import TensorFlow Lite into App

Figure 3.3 shows the flowchart of model training. Firstly, the data was collected from

internet like picture. After that, Teachable Machine website was used to train model using

data collected. Next step, the accuracy of the model will be tested. Lastly, I will export model

as TensorFlow Lite.

Figure 3.3: Flowchart of model training

Step 1: Collect data.

The first phase focuses on gathering and preparing the dataset required for training the image

classification model. Gather a diverse set of images that represent the different classes you

want the model to classify. Ensure the dataset is comprehensive enough to cover various

scenarios the app might encounter. Label the images accurately to ensure the model learns

from correct examples. Organize the dataset into folders based on their respective classes.

31

Step 2: Use Teachable Machine to train model.

In this phase, leverage Teachable Machine to create and train an image classification model

without writing any code. Import the collected and labelled images into Teachable Machine's

interface. Set up the training parameters, including the number of epochs and batch size, as

per the complexity of the dataset and desired accuracy. Use Teachable Machine's intuitive

interface to train the model. Monitor the training process and adjust parameters if necessary

to improve performance.

Step 3: Testing accuracy of the model

This phase involves evaluating the trained model's accuracy and ensuring it meets the desired

performance criteria. Use a separate set of validation images to test the model's accuracy.

This helps in understanding how well the model generalizes to unseen data. Based on the

performance metrics, refine the model by retraining with adjusted parameters or augmented

data if necessary.

Step 4: export model as TensorFlow Lite

In the final phase, convert the trained model into TensorFlow Lite format for integration into

the Android app. Use Teachable Machine's export functionality to save the trained model as

a TensorFlow Lite model (.tflite file). Optionally apply optimization techniques such as

quantization to reduce the model size and improve inference speed on mobile devices.

Download the TensorFlow Lite model file and prepare it for integration into the Android

app.

32

3.3.1.3 Phase 3: Testing Performance of the App

In the final phase, the performance of the app will test to ensure user can use the app

smoothly.

Figure 3.4: Bug of the App

Figure 3.4 shows the possible variable bug of the app. Button cannot pressed or not respond.

Image cannot show on the display area. Users cannot select image from gallery or take image

form camera. Result will not show after press button. In PSM2, the app may have other bugs

other than those. Those bugs happen can has several reasons like problem of coding, UI

design problem, version of android studio and other. Those bugs can affect the performance

of the app and need to fix those.

33

3.4 Equipment

3.4.1 Android Studio

Figure 3.5: Android Studio

Generically, the tool used for writing Android applications is referred to as Android Studio,

which is the official Integrated Development Environment (IDE) for writing Android

applications. It was developed by Google and it is one of the most versatile platforms

designed to ease the generation of applications; be it the interface or writing codes, or even

the testing phase [16][17].

One of the significant advantages of Android Studio is the presence of a set of bright and

convenient GUI means for designing the application layout, including the set of graphical

editors that allow the layout to be constructed visually, their drag-and-drop functionality,

and the preview pane which helps the developer to observe the application layout as it is

seen on various devices and with different screen resolution.

34

In addition to the above, the IDE that is used by Android Studio has incorporate a powerful

code editor that has characteristics such as the highlighting of syntax, completion of codes

and the manipulation of code combining functions. One of it enables developers to choose a

programming language that is most advisable for a certain application from a range of

favorable languages including Java, Kotlin among others [18].

3.4.2 Teachable Machine

Figure 3.6: Teachable Machine

We can see the Teachable Machine in Figure 3.6. Google created Teachable Machine, an

innovative web-based tool that lets users quickly and easily create custom machine learning

models without requiring any coding knowledge. Designed to be user-friendly, it allows

users to train models for image, sound, and pose classification tasks through a simple,

interactive interface [19][20].

35

3.4.3 TensorFlow Lite

Google came up with TensorFlow Lite (TFLite), which is an open-source machine learning

model made for installation on devices with headers. By extending the same architecture, it

enables developers to directly deploy and execute ML models on smart phones, tablets, IoT

devices and all other edge devices for inferencing on the said devices with least latency and

best optimization in resource usage [7].

Hence, since TFLite is more efficient in terms of performance, speed and hence readiness to

tackle machine learning models on device-like gadgets with less storage and computing

power. This is done through the following techniques such as model quantization in which

the float values of model parameters are trimmed to fewer bits in a bid to use relatively

smaller memory and increase on the inference speed.

Liquid DNNS can be executed on mobile and embedded applications because TensorFlow

Lite (TFLite) can be used to perform the conversion of machine learning models on the

device. TFLite is a quantized version of TensorFlow that is specifically designed to produce

models optimized for mobile and edge use-cases.

The developers can use TFLite to convert the CNN models that they have developed using

TensorFlow or other related tools into the format suitable for performing inference on

embedded and mobile hardware. This conversion process optimizes the model for inference

on apps, smartphones and tablets, IoT particles and edge devices.

TFLite is compatible with various layers of CNN structures like MobileNet, Inception,

EfficientNet and several other structures for specific applications, as well as customized

36

structures. Some of the computer vision applications that could be solved with these models

include semantic analysis, object recognition, image recognition and classification.

Figure 2.5: TensorFlow Lite

Once converted to the TFLite model, the CNN models can be used within mobile

applications using the TFLite runtime library. This library comes with interfaces for loading,

compiling and running TFLite models across operating systems on mobile devices, making

it easy to integrate the machine learning functionality into mobile apps.

In summary, TensorFlow Lite allows developers to deploy CNN models on mobile and edge

platforms and speeds up the development of on-device machine learning applications with

improved privacy, reduced latency, and offline capabilities. TFLite has the potential of

extending the usage of machine learning in smart camera and augmented reality,

recommendation system, Health-tech products, and more.

3.5 Limitation of proposed methodology

a) Data Quality and Quantity

37

The performance of the machine learning model heavily depends on the quality and quantity

of the training data. Insufficient or poor-quality data can lead to inaccurate classifications

and reduced model performance. Moreover, collecting and labelling a large dataset can be

time-consuming and resource intensive.

b) Device Performance

Running machine learning models on mobile devices using TensorFlow Lite can be

constrained by the limitations of these devices. While TensorFlow Lite is optimized for

mobile inference, models with high computational complexity may still experience latency

issues or impact the device's performance and battery life.

3.6 Summary

The procedure for designing an image classification application using Android Studio and

TensorFlow Lite sub-disciplines a well-ordered and systematic process. First of all, there is

an app design with the graphic interface and configuration of a given project in Android

Studio. After that TensorFlow Lite is included into the app; it is the process of training the

convolutional neural network (CNN) using Teachable Machine. After training the model,

the complete model is quantized for the TensorFlow Lite format and integrated into the

Android application framework. The last stage is mainly devoted to the testing that shows

compatibility, efficiency and satisfactory results to the users. These are like ensuring that the

app has been tested on several devices and the performance has been improved. As such,

this means that there will be an end-to-end app that seeks to offer the best solution as a viable

image classification app through the utilization of TensorFlow Lite on Android.

38

RESULTS AND DISCUSSIONS

4.1 Introduction

The conclusion and discussion section of any research report is crucial since it contains the

project's goals and analysis. This section enables the data to be interpreted and provides

evidence of the project's success. This part can also be used to discuss the project's

shortcomings and present the findings of the outcome.

4.2 Preliminary Result

Figure 4.1: Preliminary Result of Amazon Parrot

Figure 4.1 shows the trained model predicting that input image is 100% amazon parrot. The

result is correct.

39

Figure 4.2: Preliminary Result of Caique Parrot

Figure 4.2 shows the trained model predicting that input image is 32% is amazon parrot,

45% is caique parrot and 23% is Conure Parot. The result is correct as the highest percentage

is 45% caique parrot but the accuracy is lower.

40

Figure 4.3: Preliminary Result of Cockatoo

Figure 4.3 shows the trained model predicting that input image is 100% is cockatoo. The

result is correct.

41

Figure 4.4: Preliminary Result of Conure Parrot

Figure 4.4 shows the trained model predicting that input image is 89% is conure parrot. The

result is correct.

Those results are only preliminary results. In PSM2, more types of parrots will be added

inside it and improve the accuracy. The image taken into Teachable Machine has cropped

into fixed size. This means some bigger images cannot be taken fully. For example, only the

body of parrot can be learned by machine learning and the head of parrot cannot. This can

cause a decrease in accuracy of model training.

4.3 Results and Analysis

This section will show the results such as UI design and analysis using accuracy testing.

For image used, there are two sets which are training image set and testing image set. The

training image set used the PNG format which does not include the background, only the

object. The testing image set used the JPG format which include the background. The

training image set was used when training model on the Teachable Machine website. The

testing image set was used when doing the accuracy testing. The testing image set will not

used together with training image set when training model on the Teachable Machine

website.

42

Figure 4.5: Example of Training Image

Figure 4.5 shows the image in the PNG format. This figure only has object only, not

background. This format image was used on training image set only.

Figure 4.6: Example of Testing Image

Figure 4.6 shows the image in the JPG format. This figure has object include background.

This format image was used on testing image set only.

43

4.3.1 Result

Figure 4.7: UI design for Main Activity

Based on figure 4.5, the UI includes the image display area, spinner, button “select image”,

button “camera”, button “make prediction” and text display area. The image display area

shows the image taken from gallery or camera. The spinner can select the model wanted.

The button “select image” selects image from gallery. The button “camera” opens the camera

and take one image. The button “make prediction” is give result according to model. The

text display area will show the result after making predictions.

44

Figure 4.8: Model Selection

Based on figure 4.6, there are 3 models that can choose after clicking the spinner which are

owl, parrot and goose.

4.3.2 Analysis

In this section, each model will run accuracy testing using 10 testing images and produce

accuracy result using formula:

45

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑠𝑠𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝐴𝐴𝑠𝑠𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐴𝐴𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝

10 𝑥𝑥 100%

4.3.2.1 Parrot Model

In this model, there are Amazon parrot, Caique parrot, Cockatoo, Conure parrot, Eclectus

parrot, Lovebird, Macaw, Parrotlet, Quaker Parakeet and Senegal parrot.

Table 4.1 Table of Accuracy Result for Accuracy Testing of Parrot Model

No Output Result

1

Correct.

46

2

Wrong. The result should be

amazon parrot.

3

Correct.

47

4

Correct.

5

Correct.

48

6

Correct.

7

Correct.

49

8

Correct.

9

Correct.

50

10

Correct.

The accuracy of the parrot model:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
9

10 𝑥𝑥 100%

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 90%

51

Figure 4.9: Amazon Parrot

Figure 4.10: Parrotlet

The accuracy of parrot model is 90%. From the figure 4.7 and 4.8, the amazon parrot and

parrotlet have several similar characteristics like shape of body and body colour. It causes

the app wrongly to detect it.

4.3.2.2 Owl Model

In this model, there are Barn owl, Crested owl, Pygmy owl, Snowy owl, and True owl.

Table 4.2 Table of Accuracy Result for Accuracy Testing of Owl Model

No Output Result

52

1

Correct.

2

Correct.

53

3

Wrong. The result should be

barn owl.

4

Correct.

54

5

Correct.

6

Correct.

55

7

Correct.

8

Correct.

56

9

Wrong. The result should be

true owl.

10

Correct.

57

The accuracy of the owl model:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
8

10 𝑥𝑥 100%

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 80%

The accuracy of owl model is 80%. The one of the pygmy owls cannot be detected because

the pattern or the feather are similar with barn owl. The one of the true owls also cannot be

detected because the body shape and color are similar with crested owl.

4.3.2.3 Goose Model

In this model, there are Brent goose, Canada goose, Emperor goose, Red-breasted goose and

Snow goose.

Table 4.3 Table of Accuracy Result for Accuracy Testing of Goose Model

No Output Result

58

1

Correct.

2

Correct.

59

3

Correct.

4

Wrong. The result should

be Canada goose.

60

5

Correct.

6

Correct.

61

7

Correct.

8

Correct.

62

9

Wrong. The result should

be snowy goose.

10

Wrong. The result should

be snowy goose.

63

The accuracy of the goose model:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
7

10 𝑥𝑥 100%

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 70%

The accuracy of the goose model is 70%. The app cannot detect one of the Canada geese and

detect it as brent goose because color of the head and feather similar with brent goose. Beside

Canada goose, two snowy geese cannot detect successfully by app and detected as emperor

goose as the color of feather similar with emperor goose.

4.4 Summary

This chapter discusses the results and provides the performance evaluation on the image

classification app. The user interfaces of the app have been designed successfully to integrate

buttons and an image display area to facilitate users’ usability. These UI elements are easy

to interact with, that users could easily choose models and be able to make prediction and

view the output.

The analysis focused on evaluating the performance of the models trained to classify images

into 3 categories: owl, parrot, and goose. For each model, use 10 testing images to calculate

their accuracy percentage. The results showed that the app could recognize pictures well

highlighting how effective the chosen method was and how TensorFlow Lite worked

smoothly for making predictions on the device itself.

The accuracy of each model is different. It can have many causes. The app detects the image

by characteristics like shape, colour, texture, pattern and others. If two objects have high

similarity for the characteristics, the app can detect it wrongly. For parrot model, it has

64

slightly similarity and obtain 90% accuracy. For owl model, it has low similarity and obtain

80% accuracy. For goose model, it has moderate similarity and obtain 70% accuracy. From

the 3 models, we can discuss that the higher similarity, the lower the accuracy.

65

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This project successfully developed an image classification app using Android Studio and

TensorFlow Lite, capable of classifying images into three categories: owl, parrot, and goose.

The app also incorporates necessary user-friendly features like buttons and a specific image

display area for a better usability and to make the interaction with the app smoother for the

user. This involved building models with Teachable Machine, converting them into

TensorFlow Lite format, and including them in the app for lightning fast on device

prediction. The models were evaluated through testing and analysis using 10 testing images

per category to find the accuracy percentage each model produced. The results showed that

the proposed methodology succeeded in improving image classification ability with good

accuracy.

Using this case study, we present how mobile based machine learning applications can bring

advanced features like real time classification directly to the users’ devices. With

TensorFlow Lite, the app can provide low latency predictions as well as get the best

performance for while on the go image classification tasks.

Overall, this project successfully developed a functional and productive image classification

tool by integrating the machine learning and mobile app development and creates a broad

basis for future innovations in this field.

66

5.2 Future Works

For future improvements, accuracy of the image classification could be enhanced as follows:

 Increasing data training size and data training diversity.

 Rotation, flipping, cropping, and brightness adjustments applied as data

augmentation techniques.

 It is possible to expand the app, to classify other objects or animals.

5.3 Project Potential

The image classification app developed in this project can be utilized in various domains,

including wildlife monitoring, education, and environmental conservation. For example, by

classifying birds such as owls, parrots, and geese, the app could assist in ecological studies,

help enthusiasts identify species, or serve as an educational tool for students learning about

biodiversity. Additionally, the app can be extended to classify other objects, making it

applicable in fields like retail, healthcare, and security.

The app's core functionality of real-time image classification offers a scalable business

opportunity. It could be adapted into specialized software for industries requiring automated

identification, such as agriculture (for identifying crops and pests) or manufacturing (for

quality control). Its integration with mobile devices ensures accessibility, and with further

development, it could be marketed as a standalone application or integrated into larger

systems.

67

REFERENCES

[1] Sharma, N., Jain, V., & Mishra, A. (2018). An analysis of convolutional neural networks

for image classification. Procedia Computer Science, 132, 377–384.

https://doi.org/10.1016/j.procs.2018.05.198

[2] Luo, L. (2021). Research on image classification algorithm based on convolutional neural

network. Journal of Physics. Conference Series, 2083(3), 032054.

https://doi.org/10.1088/1742-6596/2083/3/032054

[3] Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., & Miao, Y. (2021). Review of image

classification algorithms based on convolutional neural networks. Remote Sensing, 13(22),

4712. https://doi.org/10.3390/rs13224712

[4] Lv, Q., Zhang, S., & Wang, Y. (2022). Deep Learning model of image classification

using Machine learning. Advances in Multimedia, 2022, 1–12.

https://doi.org/10.1155/2022/3351256

[5] Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for

improving classification performance. International Journal of Remote Sensing, 28(5), 823–

870. https://doi.org/10.1080/01431160600746456

[6] Olimov, B., Subramanian, B., Ugli, R. a. A., Kim, J. S., & Kim, J. (2023). Consecutive

multiscale feature learning-based image classification model. Scientific Reports, 13(1).

https://doi.org/10.1038/s41598-023-30480-8

[7] Özçevik, Y., & Sönmez, F. (2024). An embedded TensorFlow lite model for

classification of chip images with respect to chip morphology depending on varying feed.

Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-023-02320-z

68

[8] Shah, Vishal & Sajnani, Neha. (2020). Multi-Class Image Classification using CNN and

Tflite. International Journal of Research in Engineering, Science and Management. 3. 65-68.

10.47607/ijresm.2020.375.

[9] Senthilkumar, M. (2010). Use of artificial neural networks (ANNs) in colour

measurement. In Elsevier eBooks (pp. 125–146).

https://doi.org/10.1533/9780857090195.1.125

[10] Madhiarasan, M., & Louzazni, M. (2022). Analysis of artificial Neural network:

architecture, types, and forecasting applications. Journal of Electrical and Computer

Engineering, 2022, 1–23. https://doi.org/10.1155/2022/5416722

[11] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A. Q., Duan, Y., Al-Shamma, O.,

Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning:

concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data,

8(1). https://doi.org/10.1186/s40537-021-00444-8

[12] Aggarwal, C. C. (2023). Neural networks and deep learning. In Springer eBooks.

https://doi.org/10.1007/978-3-031-29642-0

[13] R. K. Deshmukh, S. Markandey, and P. Sahu, “Mobile Application Development with

Android,” International Journal of Advances in Applied Sciences, vol. 7, no. 4, p. 317, Dec.

2018, doi: 10.11591/ijaas.v7.i4.pp317-321.

[14] G. B. Hertantyo, W. E. Putra, and M. W. B. Fahrizal, “DEVELOPMENT OF AN

ANDROID APPLICATION-BASED ACADEMIC INFORMATION SYSTEM AT

IMMIGRATION POLYTECHNIC,” Technology Management and Informatics Research

Journals, vol. 3, no. 2, pp. 23–53, Dec. 2021, doi: 10.52617/tematics.v3i2.331.

69

[15] “TensorFlow: A system for large-scale machine learning.”

https://research.google/pubs/tensorflow-a-system-for-large-scale-machine-learning/

[16]L. Ma, L. Gu, and J. Wang, “Research and development of mobile application for

Android platform,” 2014. https://www.semanticscholar.org/paper/Research-and-

Development-of-Mobile-Application-for-Ma-

Gu/f859f00ed7bf29f3660c1b0474bc2d2639311150

[17] “What is Android Studio IDE (Integrated Development Environment) | IGI Global.”

https://www.igi-global.com/dictionary/an-empirical-study-of-mobilehandheld-app-

development-using-android-platforms/60617

[18] P. Liu, L. Li, K. Liu, S. McIntosh, and J. Grundy, “Understanding the quality and

evolution of Android app build systems,” Journal of Software, Aug. 2023, doi:

10.1002/smr.2602.

[19] P. M. Andreae and J. H. Andreae, “A teachable machine in the real world,”

International Journal of Man-machine Studies, vol. 10, no. 3, pp. 301–312, May 1978, doi:

10.1016/s0020-7373(78)80048-0.

[20] H. Jeong, “Feasibility Study of Google’s Teachable Machine in Diagnosis of Tooth-

Marked Tongue,” Chiwi’saeng’gwa Haghoeji/Chiwisaeng Gwahakoeji, vol. 20, no. 4, pp.

206–212, Dec. 2020, doi: 10.17135/jdhs.2020.20.4.206.

70

[21] Cai, L., Gao, J., & Zhao, D. (2020). A review of the application of deep learning in

medical image classification and segmentation. Annals of Translational Medicine, 8(11),

713. https://doi.org/10.21037/atm.2020.02.44

71

APPENDICES

 Appendix A Coding for MainActvity.kt

package com.example.imageclassification

import android.content.Intent
import android.content.pm.PackageManager
import android.graphics.Bitmap
import android.graphics.Color
import android.os.Bundle
import android.provider.MediaStore
import android.util.Log
import android.view.View
import android.widget.AdapterView
import android.widget.ArrayAdapter
import android.widget.Button
import android.widget.ImageView
import android.widget.Spinner
import android.widget.TextView
import android.widget.Toast
import androidx.appcompat.app.AppCompatActivity
import com.example.imageclassification.ml.Goosemodel
import com.example.imageclassification.ml.Owlmodel
import com.example.imageclassification.ml.Parrotmodel
import org.tensorflow.lite.DataType
import org.tensorflow.lite.support.image.TensorImage
import org.tensorflow.lite.support.tensorbuffer.TensorBuffer

class MainActivity : AppCompatActivity() {

 lateinit var select_image_button : Button
 lateinit var make_prediction : Button
 lateinit var img_view : ImageView
 lateinit var text_view : TextView
 lateinit var bitmap: Bitmap
 lateinit var camerabtn : Button

 public fun checkandGetpermissions(){
 if(checkSelfPermission(android.Manifest.permission.CAMERA) ==
PackageManager.PERMISSION_DENIED){
 requestPermissions(arrayOf(android.Manifest.permission.CAMERA), 100)
 }
 else{
 Toast.makeText(this, "Camera permission granted",
Toast.LENGTH_SHORT).show()
 }

72

 }

 override fun onRequestPermissionsResult(
 requestCode: Int,
 permissions: Array<out String>,
 grantResults: IntArray
) {
 super.onRequestPermissionsResult(requestCode, permissions, grantResults)
 if(requestCode == 100){
 if(grantResults[0] == PackageManager.PERMISSION_GRANTED)
 {
 Toast.makeText(this, "Camera permission granted",
Toast.LENGTH_SHORT).show()
 }
 else{
 Toast.makeText(this, "Permission Denied", Toast.LENGTH_SHORT).show()
 }
 }
 }

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)

 select_image_button = findViewById(R.id.button)
 make_prediction = findViewById(R.id.button2)
 img_view = findViewById(R.id.imageView2)
 text_view = findViewById(R.id.textView)
 camerabtn = findViewById<Button>(R.id.camerabtn)

 val spinner = findViewById<Spinner>(R.id.select)

 // handling permissions
 checkandGetpermissions()

 val labels = application.assets.open("parrot_labels.txt").bufferedReader().use
{ it.readText() }.split("\n")

 select_image_button.setOnClickListener(View.OnClickListener {
 Log.d("mssg", "button pressed")
 var intent : Intent = Intent(Intent.ACTION_GET_CONTENT)
 intent.type = "image/*"

 startActivityForResult(intent, 250)
 })

 // Spinner setup
 val options = listOf("Owl", "Parrot", "Goose")
 val adapter = ArrayAdapter(this, android.R.layout.simple_spinner_item, options)

73

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item)
 spinner.adapter = adapter

 spinner.onItemSelectedListener = object : AdapterView.OnItemSelectedListener {
 override fun onItemSelected(parent: AdapterView<*>, view: View, position: Int,
id: Long) {
 spinner.post {
 (spinner.selectedView as? TextView)?.apply {
 textSize = 20f
 setTextColor(Color.WHITE)
 }
 }
 }

 override fun onNothingSelected(parent: AdapterView<*>) {
 Log.d("Spinner", "Nothing selected")
 }
 }

 make_prediction.setOnClickListener(View.OnClickListener {
 if (!::bitmap.isInitialized) {
 Log.d("Error", "No picture submitted")
 Toast.makeText(this, "Please submit a picture first",
Toast.LENGTH_SHORT).show()
 return@OnClickListener
 }

 // Resize the bitmap
 val resized = Bitmap.createScaledBitmap(bitmap, 224, 224, true)
 val tbuffer = TensorImage.fromBitmap(resized)
 val byteBuffer = tbuffer.buffer

 // Load the appropriate model based on the selected item in the spinner
 val selectedModel = spinner.selectedItem.toString()
 val model: Any
 val labels: List<String>
 try {
 when (selectedModel) {
 "Owl" -> {
 model = Owlmodel.newInstance(this)
 labels = application.assets.open("owl_labels.txt").bufferedReader().use
{ it.readText() }.split("\n")
 }
 "Parrot" -> {
 model = Parrotmodel.newInstance(this)
 labels = application.assets.open("parrot_labels.txt").bufferedReader().use
{ it.readText() }.split("\n")
 }

74

 "Goose" -> {
 model = Goosemodel.newInstance(this)
 labels = application.assets.open("goose_labels.txt").bufferedReader().use
{ it.readText() }.split("\n")
 }
 else -> {
 Log.d("Error", "Invalid model selected")
 Toast.makeText(this, "Invalid model selected",
Toast.LENGTH_SHORT).show()
 return@OnClickListener
 }
 }
 } catch (e: Exception) {
 Log.e("ModelError", "Failed to load model: ${e.message}")
 Toast.makeText(this, "Error loading model",
Toast.LENGTH_SHORT).show()
 return@OnClickListener
 }

 // Create input feature and run model inference
 val inputFeature0 = TensorBuffer.createFixedSize(intArrayOf(1, 224, 224, 3),
DataType.UINT8)
 inputFeature0.loadBuffer(byteBuffer)

 val outputs = when (model) {
 is Owlmodel -> model.process(inputFeature0).outputFeature0AsTensorBuffer
 is Parrotmodel ->
model.process(inputFeature0).outputFeature0AsTensorBuffer
 is Goosemodel ->
model.process(inputFeature0).outputFeature0AsTensorBuffer
 else -> null
 }

 if (outputs != null) {
 val max = getMax(outputs.floatArray)
 text_view.text = labels[max]
 Log.d("Prediction", "Predicted: ${labels[max]}")
 } else {
 Log.e("PredictionError", "Failed to process model outputs")
 }

 // Close the model to release resources
 when (model) {
 is Owlmodel -> model.close()
 is Parrotmodel -> model.close()
 is Goosemodel -> model.close()
 }
 })

75

 camerabtn.setOnClickListener(View.OnClickListener {
 var camera : Intent = Intent(MediaStore.ACTION_IMAGE_CAPTURE)
 startActivityForResult(camera, 200)
 })

 }

 override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent?) {
 super.onActivityResult(requestCode, resultCode, data)

 if (requestCode == 250 && resultCode == RESULT_OK) {
 data?.data?.let { uri ->
 img_view.setImageURI(uri)
 bitmap = MediaStore.Images.Media.getBitmap(this.contentResolver, uri)
 } ?: run {
 Log.d("Error", "No image selected")
 Toast.makeText(this, "No image selected", Toast.LENGTH_SHORT).show()
 }
 } else if (requestCode == 200 && resultCode == RESULT_OK) {
 data?.extras?.get("data")?.let { imageData ->
 bitmap = imageData as Bitmap
 img_view.setImageBitmap(bitmap)
 } ?: run {
 Log.d("Error", "No image captured")
 Toast.makeText(this, "No image captured", Toast.LENGTH_SHORT).show()
 }
 }
 }

 fun getMax(arr: FloatArray): Int {
 var ind = 0
 var max = arr[0]

 for (i in arr.indices) {
 if (arr[i] > max) {
 max = arr[i]
 ind = i
 }
 }
 return ind
 }

}

76

A
ppendix B

T

ask Schedule of P
SM

1

N
o

Task
PSM

1

W
eeks

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

1
Create project title

2
D

o research about project title

3
Briefing w

ith supervisor

4
Fill nam

e and title to thesis tem
plate

5
Research about Chapter 1 Introduction

6
D

rafting Chapter 1: Introduction

7
Checking Chapter 1: Introduction

8
D

rafting Chapter 2: Literature Review

9
Checking Chapter 2: Literature Review

10
D

rafting Chapter 3: M
ethodology

11
Checking Chapter 3: M

ethodology

77

A
ppendix C

T

ask Schedule of P
SM

2

N
o

Task
PSM

2

W
eeks

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

1
Collect training im

age and testing im
age

data

2
D

esign U
I and w

rite code.

3
Train m

odel using Teachable M
achine

4
Testing accuracy of m

odel

5
Im

plem
ent m

odel into A
ndroid Studio

6
D

rafting Chapter 4: Results and

D
iscussions

7
Checking Chapter 4: Results and

D
iscussions

8
D

rafting Chapter 4: Conclusion and

Recom
m

endations

9
Checking Chapter 4: Conclusion and

Recom
m

endations

78

