
DEVELOPMENT OF A BOOK-TRACKING SYSTEM IN THE
LIBRARY USING MICROCONTROLLER AND RFID

NUR FAZIMA BINTI CHE ADNAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF A BOOK-TRACKING SYSTEM IN THE

LIBRARY USING A MICROCONTROLLER AND RFID

NUR FAZIMA BINTI CHE ADNAN

This report is submitted in partial fulfilment of the requirements for

the degree of Bachelor of Computer Engineering Technology

(Computer Systems) with Honours

Faculty of Electronics and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Tajuk Projek : DEVELOPMENT OF A BOOK-TRACKING SYSTEM

IN THE LIBRARY USING A MICROCONTROLLER

AND RFID

Sesi Pengajian : 2024/2025

Saya NUR FAZIMA BINTI CHE ADNAN mengaku membenarkan laporan Projek

Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti

berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

/ TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh : 8 February 2025 Tarikh : 08 Februari 2025

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan
menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled “Development of a Book Tracking System in a

Library Using a Microcontroller and RFID” is the result of my own research except as cited

in the references. The project report has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature :

Student Name : NUR FAZIMA BINTI CHE ADNAN

Date : 8 February 2025

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer

Engineering Technology (Computer Systems) with Honours.

Signature :

Supervisor Name : Ts. IMRAN BIN HINDUSTAN

Date :
8 Februari 2025

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

This project entitled Development of a Book Tracking System in the Library Using a

Microcontroller and RFID is dedicated to the following people and companies, who gave

strong support and inspiration for the development of this thesis:

To my parents, for their unconditional love, support, and encouragement in all my

endeavors. Your belief in me has been my greatest motivation. To my sisters and brother,

thank you for your continuous encouragement and mental/daily support, and financial

support, without which, the completion of this work would not be realized. I do thank you

from the very bottom of my heart.

To my supervisor, Ts. Imran Bin Hindustan, thanks a lot for the contribution, moral and

encouragement that helped me to complete this study successfully. Your insights, patience,

and teachings have significantly contributed to my academic and personal growth.

Lastly, I am very thankful to my friends and housemates, who have been with me, giving

me moral support and continuing their journey. Your help and encouragement have

propelled me to complete this challenging journey without any hitches. I find this

experience very enjoyable and fulfilling because with all of your supports, I am able to go

out of the comfort zone.

i

ABSTRACT

Libraries play a crucial role in managing extensive collections of books and resources, but

traditional book-tracking systems are often inefficient, error-prone, and labor-intensive. This

project addresses these challenges by integrating RFID technology and the NodeMCU

ESP8266 microcontroller to develop an automated and cost-effective book-tracking system.

The system uses RFID tags attached to books, which are detected by RFID readers

(MFRC522 modules). These readers communicate with the NodeMCU ESP8266, a

microcontroller chosen for its built-in Wi-Fi capabilities, enabling real-time data

transmission. The collected data is processed and stored in a MySQL database, hosted on a

local server set up using XAMPP. A dynamic web platform, developed with PHP and

managed through phpMyAdmin, allows librarians and users to track books' locations and

access relevant details such as title, author, and timestamp.

The project’s methodology involved not only hardware integration but also the development

of software tools for efficient communication between components. Tools like the Arduino

IDE were used to program the NodeMCU, while Visual Studio Code facilitated web

development and debugging. Extensive testing was conducted to evaluate the system’s

performance, including tests for detection range, tag orientation, and reader interference. The

results showed the system effectively tracks books, providing real-time updates on their

locations. By automating inventory management, reducing manual effort, and integrating

both hardware and software seamlessly, the project delivers a scalable and efficient solution

to modernize library operations and enhance user satisfaction.

ii

ABSTRAK

Perpustakaan memainkan peranan penting dalam menguruskan koleksi buku dan sumber

yang besar, tetapi sistem penjejakan buku tradisional sering kali tidak cekap, terdedah

kepada kesilapan, dan memerlukan banyak tenaga kerja. Projek ini menangani cabaran ini

dengan mengintegrasikan teknologi RFID dan mikropengawal NodeMCU ESP8266 untuk

membangunkan sistem penjejakan buku yang automatik dan kos efektif. Sistem ini

menggunakan tag RFID yang dilekatkan pada buku, yang dikesan oleh pembaca RFID

(modul MFRC522). Pembaca ini berkomunikasi dengan NodeMCU ESP8266, sebuah

mikropengawal yang dipilih kerana keupayaan Wi-Fi terbina dalamnya, membolehkan

penghantaran data masa nyata. Data yang dikumpulkan diproses dan disimpan dalam

pangkalan data MySQL, yang dihoskan pada pelayan tempatan yang disediakan

menggunakan XAMPP. Platform web dinamik, yang dibangunkan dengan PHP dan

diuruskan melalui phpMyAdmin, membolehkan pustakawan dan pengguna menjejaki lokasi

buku dan mengakses maklumat penting seperti tajuk, pengarang, dan cap masa.

Metodologi projek ini melibatkan bukan sahaja integrasi perkakasan tetapi juga

pembangunan alat perisian untuk komunikasi yang cekap antara komponen. Alat seperti

Arduino IDE digunakan untuk memprogram NodeMCU, manakala Visual Studio Code

digunakan untuk pembangunan dan penyahpepijatan laman web. Ujian yang komprehensif

dijalankan untuk menilai prestasi sistem, termasuk ujian jarak pengesanan, orientasi tag, dan

gangguan pembaca. Hasilnya menunjukkan sistem ini berfungsi dengan cekap untuk

menjejaki buku dan menyediakan kemas kini lokasi masa nyata. Dengan mengautomasikan

pengurusan inventori, mengurangkan usaha manual, dan mengintegrasikan perkakasan dan

iii

perisian dengan lancar, projek ini menawarkan penyelesaian yang skalabel dan cekap untuk

memodenkan operasi perpustakaan serta meningkatkan kepuasan pengguna.

iv

ACKNOWLEDGEMENTS

I am indebted to many people for seeing to the completion of my project, Book Tracking

System Development in Library Using Microcontroller and RFID System.

Above all, I would like to take this opportunity to thank my supervisor, Ts. Imran Bin

Hindustan, for his guidance, expertise, and patience during my whole journey of study, from

which I benefited greatly. The insight, encouragement, and motivation you have given me

throughout my research period have greatly contributed to my increase in academic

knowledge and personal development.

Words would fail to express my deepest and sincere appreciation for the sacrifice of my

parents. Your love, encouragement, and not giving up on me during this hard period have

been a source of inspiration and motivation. Sisters and brother, whom I will always treasure,

thank you for encouraging me always, mentally, and sometimes offering me that financial

support during this project. It has been very fruitful for this work.

Special thanks go to my friends and housemates, who have been the most incredulous people

for great support and cooperation all through the way. Your readiness to give your time and

awake with me late at night during the testing sessions has remained instrumental. But for

your company and encouragement, the road would have been harder to tread.

v

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xii

LIST OF ABBREVIATIONS xiii

LIST OF APPENDICES xiv

INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 2

1.3 Project Objective 2

1.4 Scope of Project 3

LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Previous of Related Projects 5

2.2.1 RFID Function 5

2.2.2 Logic Structure Design 6

2.2.3 Flowchart of the System 7

2.2.4 Reader Module 8

2.2.5 Maintaining Database and Notification 9

2.2.6 Existing Model and Propose System Design 10

2.2.7 Nodemcu and MFRC522 Wiring Diagram 11

2.2.8 Comparison between Barcode, QR Code and RFID 12

2.2.9 Block Diagram 13

2.2.10 Overview of Library Automation 15

2.3 Comparison of Previous Related Project 16

2.4 Summary 18

vi

METHODOLOGY 19

3.1 Introduction 19

3.2 Selecting and Evaluating Tools for a Sustainable Development 19

3.3 Methodology 21

3.3.1 Project Planning 22

3.3.2 Elaboration of System Flow 23

3.3.3 Schedule 25

3.4 Equipment 26

3.4.1 Hardware Equipment 26

3.4.1.1 NFC Sticker 26

3.4.1.2 RFID Reader 27

3.4.1.3 NodeMCU ESP8266 28

3.4.1.4 Wire Jumper 29

3.4.1.5 Breadboard 30

3.4.2 Software Requirement 31

3.4.2.1 Arduino IDE 31

3.4.2.2 Visual Studio Code 32

3.4.2.3 Phpmyadmin 34

3.4.2.4 Xampp 35

3.4.2.5 MySQL 36

3.4.3 Bill of Material (BOM) 38

3.5 Hardware Setup 39

3.6 Test Method 41

3.6.1 Wi-fi Connectivity Test 41

3.6.2 Server Communication Test 41

3.6.3 Edge Case Handling Test 41

3.6.4 Distance Test 42

3.6.5 Reader Overlap and Interference Test 42

3.6.6 Orientation Test 43

3.7 Summary 45

RESULTS AND DISCUSSIONS 47

4.1 Introduction 47

4.2 Results 48

4.2.1 Prototype 48

4.2.2 Software Development 50

4.2.2.1 Home Page 50

4.2.2.2 Registration 51

4.2.2.3 Admin Record 52

4.2.2.4 User Data Edit 53

4.2.2.5 User Data Delete 53

4.2.2.6 Book Display 54

4.2.2.7 Book Record 55

4.2.3 Database 56

4.2.3.1 table_nodemcu_rfidrc522_mysql 56

4.2.3.2 page_data 57

4.2.4 Coding 58

vii

4.2.4.1 Arduino IDE 58

4.2.4.2 PHP Script 59

4.2.6.1 Serial Monitor Arduino IDE 77

4.3 Analysis 78

4.3.1 Data Testing 78

4.3.1.1 Wi-Fi Connectivity 78

4.3.1.2 Server Communication Test 79

4.3.1.3 Edge Case Handling Test 80

4.3.1.4 Distance Test between RFID Reader and NFC Sticker 81

4.3.1.5 Reader Overlap and Interference Test 83

4.3.1.6 Orientation Test 85

4.3.2 Challenge in Completing the Project 87

4.3.2.1 Arduino IDE Coding 87

4.3.2.2 Php Script 88

4.4 Summary 88

CONCLUSION AND RECOMMENDATIONS 90

5.1 Conclusion 90

5.2 Potential for Commercialization 91

5.3 Future Works 91

REFERENCES 93

APPENDICES 96

viii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Comparison between barcode, QR code and RFID. [8] 12

Table 2.2 Comparison Table. 16

Table 3.1 Gantt Chart of the Project 25

Table 3.2 Bill of Material table 38

Table 3.3 Hardware Connection 40

Table 4.1 Wi-fi Test 78

Table 4.2 Server Test 79

Table 4.3 edge Test 80

Table 4.4 Distance Test 81

Table 4.5 Reader Overlap and Interference Test 83

Table 4.6 Orientation Test 85

ix

 LIST OF FIGURES

FIGURE

TITLE

PAGE

Figure 1.1 Block Diagram of the Project 3

Figure 2.1 The Smart Library Management System [1] 5

Figure 2.2 Entity Relational (E-R) diagram [2] 6

Figure 2.3 Flow Diagram of the Proposed System [3] 7

Figure 2.4 Circuit of Communication Interface [4] 8

Figure 2.5 Flowchart for Maintaining Database and Notification [5] 9

Figure 2.6 RFID Based Library Books Management Model and System Flow [6] 10

Figure 2.7 Nodemcu and RFID Module Wiring Diagram [7] 11

Figure 2.8 Smart Library Management System [9] 13

Figure 2.9 Circuit Diagram [10] 15

Figure 3.1 Project Planning 22

Figure 3.2 Book Tracking Flowchart 24

Figure 3.3 NFC Sticker 26

Figure 3.4 RFID Reader 27

Figure 3.5 ESP8266 28

Figure 3.6 Wire Jumper 29

Figure 3.7 Breadboard 30

Figure 3.8 Arduino IDE 31

Figure 3.9 Visual Studio Code 32

Figure 3.10 phpMyAdmin 34

Figure 3.11 Xampp Control Panel 35

Figure 3.12 MySQL 8.0 Command Line Client 36

x

Figure 3.13 Hardware Connection 39

Figure 3.14 0° orientation test 43

Figure 3.15 30° orientation test 43

Figure 3.16 60° orientation test 44

Figure 3.17 90° orientation test 44

Figure 4.2 Prototype 48

Figure 4.3 Inside Prototype 49

Figure 4.4 NFC Sticker Attached to the Book 49

Figure 4.5 Home Page 50

Figure 4.6 Registration 51

Figure 4.7 Book Data Table 52

Figure 4.8 Edit Book Data 53

Figure 4.9 Remove Book 53

Figure 4.10 Book Display 54

Figure 4.11 Book Record 55

Figure 4.12 Database table_nodemcu_rfidrc522_mysql 56

Figure 4.13 Database page_data 57

Figure 4.14 Book Detected at Shelf A 70

Figure 4.15 Registration Book 71

Figure 4.16 Book Data Table 71

Figure 4.17 Book Detected at Shelf B 72

Figure 4.18 Registration Book 72

Figure 4.19 Book Data Table 73

Figure 4.20 Book Data Table 73

Figure 4.21 Book Display 74

xi

Figure 4.22 Book Display 75

Figure 4.23 Book Data Table 75

Figure 4.24 Book Data Table 76

Figure 4.25 Serial Monitor of Arduino Ide 77

Figure 4.26 Data Chart 81

Figure 4.27 Data Chart 84

Figure 4.28 Data Chart 86

xii

LIST OF SYMBOLS

◦ - Degree

xiii

LIST OF ABBREVIATIONS

𝑉 - Voltage
Cm - Centimetre

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Arduino IDE

96

Appendix B Arduino IDE

103

Appendix C Home.php 105

Appendix D User data.php 107

Appendix E User data edit page.php 110

Appendix F User data edit tb.php 112

Appendix G User data delete page.php 113

Appendix H Registration.php 115

Appendix I Read tag.php 118

Appendix J Read tag user data.php 123

Appendix K Book record.php 125

Appendix L Database.php 128

Appendix M getUID.php 130

Appendix N insertDB.php 130

Appendix O UIDContainer.php 131

Appendix P readerContainer.php 131

Appendix Q ESP8266 pintout 132

Appendix R RFID reader pinout 132

Appendix S Turnitin Report 133

1

INTRODUCTION

1.1 Background

Libraries are the custodians of the dissemination of knowledge. They possess great diversity

in different books and resources. It becomes really overwhelming for large libraries to

manage extensive book collections and keep an eye on them. The libraries also cannot

manage laborious traditional systems for book tracking. Traditional book tracking systems

in place are highly ineffective, full of inherent errors, and very labor-intensive. There is a

high probability of books getting misplaced in the libraries; every so often, frustrated

librarians wonder how the book managed to get out of their sight.

Digital technology has presented a temping solution to the situation. Libraries can enhance

their inventory management capacity by integrating Radio Frequency Identification (RFID)

technology with modern microcontrollers. Tags, containing embedded RFID tags, when

pasted on books could be sensed through RFID readers placed all over the library. On sensing

an RFID, the reader passes the information to a microcontroller, like NodeMCU ESP8266,

which then updates a web-based inventory system in real-time. The system will help

precisely track the locations of books, save manual effort, and increase customer satisfaction.

The implementation of this system in a nutshell includes steps, such as tagging the books

with RFID tags, getting the RFID readers up and running, programming the microcontroller,

setting up the web-platform, and comprehensive testing to make sure the system is robust

and accurate. The expected outcomes in terms of increased efficiency in inventory

2

management, real-time update on book locations, reduced time for both employees and users

in book location, improved system robustness, and man-hour manual management relief.

1.2 Problem Statement

The problem statement of this project revolves around the lack of a book tracking

mechanism, especially in large libraries. With hundreds or even thousands of books spread

across various shelves and sections, keeping track of each book's location becomes a

daunting task. This leads to situations where the librarian has to manually search the library

to find misplaced books, often relying on memory or incomplete records. Additionally, the

whereabouts of books are not recorded in the library system, causing visitors difficulties in

accessing the materials they need, leading to frustration, wasted time, and decreased user

satisfaction.

1.3 Project Objective

The objective of this project is to develop a cost-effective and efficient library management

system that uses RFID technology and NodeMCU ESP8266 to:

a) Construct a book tracking system consisting of an RFID tag, RFID reader,

microcontroller and web-platform

b) To validate the data acquisition and data recording

c) To analyze the performance of the project.

3

1.4 Scope of Project

This project, "Development of a Book Tracking System in the Library Using a

Microcontroller and RFID" addresses the challenges of book tracking in a large library

setting. This project presents the design, development, and implementation of a system that

uses RFID technologies and an NodeMCU ESP8266 for efficient library operations. The

scopes of the project include the following:

a) RFID tags. In this project, 4 RFID tags that will attach to the front of the page

of books. These tags will act as a sensor that will communicate with the RFID

reader

b) RFID reader. 2 RFID reader that will place separately. This reader will receive

the signal from RFID tags and update the data on the web page.

c) NodeMCU. Will act as interface between RFID reader and webpage. Displaying

the book status and display the where the misplace book location

d) Website. This website will display updated book receive from RFID reader,

helping the librarian and visitors to keep track of the book location efficiently.

Figure 1.1 Block Diagram of the Project

4

LITERATURE REVIEW

2.1 Introduction

Today, in the digital age, traditional library systems need to be upgraded by integrating

modern technologies. Libraries, being knowledge repositories, cannot escape this

development. The mainstream library management systems currently in place, whose most

organizational operations are either manual or through barcode technology, grapple with

time-consuming inventory management, inaccuracy in book tracking, inefficiency in user

service delivery, etc. This study first seeks to highlight the existing research in this area of

RFID and microcontroller advancement, paying strict heed to its application in library

management systems. Through a critical analysis of the benefits and deficiencies of current

systems, and the technological needs for a devised comprehensive book tracking solution,

the project lays the foundation for the development of an innovative solution that will cater

to the changing needs of growing modern libraries.

5

2.2 Previous of Related Projects

2.2.1 RFID Function

Figure 2.1 The Smart Library Management System [1]

According to [1], An RFID system consists of a reader containing a transmitter, receiver,

and an antenna and a transponder tag containing the antenna. The transmitter sends a radio

signal that the tag, if in its range receives and responds to by sending a response. The receiver

receives the response. The modern RFID tags are usually batteryless and derive power from

the radio signal of the transmitter, making them economical and environmentally friendly.

These tags can be put in different materials including books, and each of them has a unique

code that talks in the circulation database of the library to inform on the location of the

materials. The library can then locate misfiled items by scanning the shelves with hand-held

readers that use radio pulses. A chip is powered whenever it passes a reading station by the

radio field, allowing the reading of information on the chips of the materials tagged for the

library.

6

2.2.2 Logic Structure Design

Figure 2.2 Entity Relational (E-R) diagram [2]

The Entity Relational Model (ERM) from [2] is designed to ensure order and consistency

within the database of the library, avoiding any related chaos. In this model, the book in the

library is uniquely identified and categorized based on its ISBN. These books have Attributes

such as Title, Copyright Year, and Edition, whereas categories are identified by Category

IDs and Category Names. Authors, on the other hand, are uniquely identified by Author IDs,

and their details include First Name, Last Name, and Country. Users in the library are

basically of two types: Student and Staff. These two types of members are registered and

also have attributes such as RFID Card ID and Mobile Phone. The access rights are identified

in terms of Privilege IDs and names, and they are used to control user access. Further, there

is a specific time period allocated based on the type of user, that is, whether the user is a

Student or Staff. Borrowing is also carefully designed in the form of associating entities

identified as \"Borrowed,\" which also details some of the key Identifiers such as Issued Date

7

and Due Date. The status of the book is decided by Status IDs and some of its attributes,

such as Status Name and RFID Tag Number.

2.2.3 Flowchart of the System

Figure 2.3 Flow Diagram of the Proposed System [3]

Dharani Devi, P., Mirudhula, S., & Devi, A. [3] emphasize the crucial need to

encourage the habit of reading in students. They point out how habitual reading not only

promotes understanding among students in other subjects but also improves vocabulary and

enhances overall learning. Moreover, reading literature from established authors helps

students gain experience as well as expertise. Libraries have maintained their existence since

ancient times, when clay tablet archives were in use about 4,000 years ago. The British

Museum Library and the Bodleian Library are among such libraries. The invention of digital

libraries has not necessarily curtailed the significance of the library of materials for those

seeking self-learning. It still serves as a place for exploring oneself and spending free time

productively. It is laborious to maintain a library, as the number of inventory and transaction

records is humongous, and librarians are required to maintain a catalog and records. Though

smart systems and software for libraries are developed for this purpose, the need for human

input does exist, as challenges such as the failure of electronic devices do occur.

8

2.2.4 Reader Module

Figure 2.4 Circuit of Communication Interface [4]

According to He He, Tao Liu and Ershen Wang [4], the Reader Module is designed

for positioning books and statistical applications. The RFID chip PR9000 is adopted in this

module. This chip is characterized by its fast reading and writing capabilities and high speed

in line with the ISO18000-6C standard. This chip implements a high- performance RF

section, a sufficient memory, a baseband processor, and an improved 8052 microcontroller,

which greatly reduces the peripheral component. This module uses the CP2102 chip for the

PC communication. The CP2102 chip is a USB to UART bridge. The device not only

converts USB to RS232 but also integrates the USB 2.0 full-speed function controller and

transceiver crystal, EEPROM, and UART. It does not require adding any USB transceiver

outside to support full modem signal. Considering some shortcomings of the CP2102 chip,

the current limiting resistor R1 and R2 are added to the design. The communication interface

circuit is as shown in figure 2.4.

9

2.2.5 Maintaining Database and Notification

Figure 2.5 Flowchart for Maintaining Database and Notification [5]

The Reader Module functions within the framework of a Library Management System

(LMS) by Rujan Khadgi, Subin Dangol, Sujan Lamsal and Suman Shrestha [5], maintaining

a database that enables users and administrators to communicate through mobile devices by

sending and receiving text notifications. This system utilizes Twilio's REST API platform,

which serves as a communication bridge between the web application and mobile devices.

When the web application sends an HTTP request to Twilio, Twilio responds and sends the

requested message to the user. A REST API (Representational State Transfer Application

Programming Interface) facilitates consistent data and functionality exchange over the

internet, typically accessed via HTTP protocol at predefined URLs.

10

2.2.6 Existing Model and Propose System Design

Figure 2.6 RFID Based Library Books Management Model and System Flow [6]

RFID technology has replaced bar-coding in libraries, using RFID tags, readers, and a

Raspberry Pi. Each book has an RFID tag with unique information, which the reader scans

and displays on screens. The Raspberry Pi handles borrowing and returning books, updating

the main database in Firebase efficiently. The system scans books, updates their status, and

notifies staff about fines and notifications. It analyzes data to provide insights into book

circulation and inventory, predicts which books to remove based on usage, and organizes

book placements to avoid redundancy. Additional features include tracking book

availability, managing checkouts and returns, user registration via a web page, predicting

book popularity, and simplifying fine calculations, greatly improving library management.

11

2.2.7 Nodemcu and MFRC522 Wiring Diagram

Figure 2.7 Nodemcu and RFID Module Wiring Diagram [7]

According to [7] NodeMCU and MFRC522 wiring diagram, the VCC pin is responsible for

supplying power to the module, which operates within a voltage range of 2.5 to 3.3 volts. It

can be connected directly to the 3.3V output pin of the NodeMCU microcontroller. The RST

pin serves as an input for resetting and powering down the module. When this pin is set to

low, it enables power-down mode, turning off all internal current sinks and disconnecting

the module's input pins from external connections. The GND pin is the module's ground

connection and should be linked to the ground pin of the NodeMCU microcontroller. The

IRQ pin functions as an interrupt, alerting the microcontroller to wake up the module when

an RFID tag enters its range, thus enabling the module to enter sleep mode to conserve

power.

Depending on the type of the user interface, the MISO/SCL/Tx pin has a SPI role of Master-

In-Slave-Out, an I2C serial clock, and a UART serial data output. MOSI allows

communication from Master to Slave in the SPI mode. SCK is the Serial Clock pin and

receives the clock pulse from the SPI bus Master, which is the NodeMCU in this case.

SS/SDA/RX is again a triple-role pin: during SPI communication, the Arduino will consider

12

this pin as a Serial Input (SS), during I2C it will be an SDA line, and during UART it will

be Rx. Types of data are transmitted using General Purpose Input/Output (GPIO) pins; in

this case, those are the D3 to D7 pins on the NodeMCU.

2.2.8 Comparison between Barcode, QR Code and RFID

Table 2.1 Comparison between barcode, QR code and RFID. [8]

According to table 1 in [8], The comparison of technologies such as Barcode, QR code, and

RFID for library systems demonstrates that RFID is the most efficient option, especially

passive RFID tags, which are cost-effective, compact, and battery-free. These tags are

particularly suitable for library applications as they enable scanning multiple books

simultaneously with a fixed reader. Tools like Node-RED further enhance the functionality

of such systems. Node-RED, an open-source IoT platform, is widely used for visual

programming, data analytics, and dashboard integration. It supports various applications,

including library management, by providing features such as data monitoring, alarming, and

remote access via web browsers. Additionally, Fusion360, a CAD software, is utilized in

system design for modeling, simulation, and optimization, adding value in areas like robotics

and manufacturing.

13

In Malaysia, research on library management systems highlights the need for integrated

hardware and software solutions but also reveals challenges such as cost, limited tracking

capabilities, and portability. For instance, RFID-based systems have been proposed for theft

prevention and book tracking but face high implementation costs. QR-based systems focus

on book borrowing but are limited to single-book scanning without data tracking capabilities.

Shelf management systems using RFID are practical but lack GUIs and portability, while

barcode-based systems primarily focus on computerizing manual processes and are limited

to software-only solutions. These studies suggest that leveraging RFID alongside advanced

tools like Node-RED can lead to more comprehensive and user-friendly library systems.

2.2.9 Block Diagram

Figure 2.8 Smart Library Management System [9]

The block diagram from [9] illustrates the smart RFID library management system, which

comprises two ESP8266 microcontrollers, a keyboard, an OLED display, an RFID reader,

and RFID tags. The system is designed to manage library operations, including storing book

details, issuing and returning books, and enabling internet access using individual user IDs.

The ESP8266 serves as both the microcontroller and the Wi-Fi module, while a MySQL

14

database server manages data storage and updates, organized into tables like books, students,

admin, issue, return, and fine, with SQL facilitating database operations.

The system incorporates a high-resolution OLED display, which initially shows the NIT

Puducherry logo when powered on. The RFID reader detects unique tag IDs for student cards

and book labels. When a student tag is scanned, details such as name, roll number, and email

are retrieved and sent to the ESP8266, which forwards them to the MySQL database for

verification. The student’s name and roll number are then displayed on the OLED.

To authenticate transactions, a one-time password (OTP) is sent to the student’s registered

email. The student enters the OTP via a keypad, and it is verified through the database.

Successful authentication allows the student to scan the book tag for issuing or returning the

book, with transaction details updated in the database and displayed on the OLED. The return

process is similar but does not require OTP verification.

15

2.2.10 Overview of Library Automation

Figure 2.9 Circuit Diagram [10]

To issue a book from the library, a student inserts their smart card into a Smart Card Reader.

The system creates by [10], using a microcontroller, verifies the student's membership

through serial communication. If the card is valid, the student can proceed; if not, a buzzer

sound. The RFID-tagged book is scanned, and its details are captured by the microcontroller,

displayed on an LCD, and stored in EEPROM. When returning the book, the RFID reader

verifies its validity, with a buzzer sounding if there is an issue.

The system has three main sections: the microcontroller section, the power supply section,

and the DC regulated power supply section. The microcontroller section includes an 89C51

microcontroller and an 11.0592 MHz crystal oscillator, operating on a +5V DC power

supply. The RFID module connects to the microcontroller via an RS232 serial port,

facilitated by a MAX232 driver. The LCD interfaced with the microcontroller displays

information about issued books.

16

2.3 Comparison of Previous Related Project

Table 2.2 Comparison Table.

No Reference Similarity Difference Remark

1 [1] Use RFID for book-

tracking and using

web-based interface

for interaction

Include borrowing and

returning books and using

IoT

Easy to use

since using IoT

2 [2] Use RFID for book-

tracking and using

web-based interface

for interaction

This project used biometric

technology, buzzer and IoT

Enhance

security to avoid

theft

3 [3] Use RFID for book-

tracking and using

web-based interface for

interaction

This article uses RFID tags

attached to the identity card

of every individual user

including borrowing and

returning the book using

IoT

Easy to use

since using IoT

4 [4] Use RFID for book-

tracking and using

web-based interface for

interaction

user-searching books using

inventory system

User friendly

5 [5] Use RFID for book-

tracking and using

web-based interface for

interaction

Use an alarm system to

avoid theft

Enhance

security to avoid

theft

17

6 [6] Use RFID for book-

tracking and using

web-based interface for

interaction

Use Raspberry Pi and

including borrowing and

returning books in the

system

The component

use is expensive

7 [7] Use RFID for book-

tracking and using

web-based interface for

interaction

Include borrowing and

returning books for user

and searching books using

inventory system

User-friendly

8 [8] Use RFID for book

tracking, real-time

update to database

that also use web-

based interface for

interaction. This

reference also used

centralized database,

MySQL

Use Node-RED for IoT

integration, emphasizes

reader angle

optimization for

performance, portable

RFID reader and

complex IoT-based

architecture

Both seek to

reduce manual

effort and

provide accurate

and real time

book location

data

9 [9]

Use RFID for book

tracking, real time

update to a database,

web-based interface

for interaction and

used centralized

database, MySQL

Use feature-rich web

portal with feedback, fine

calculation, and trend

analysis, OTP verification

for security and

emphasizes IoT-based

automation and data

visualization with google

chart

Both provide

web-base access

to manage book

10 [10] Use RFID to manage

the book and

inventory system

Use an alarm system to

avoid theft

Complex circuit

18

2.4 Summary

From this chapter, it is evident that integrating RFID technology and microcontroller

advancements into modern library management systems addresses key challenges such as

inefficiency in inventory management, inaccuracies in book tracking, and slow service

delivery. RFID systems, utilizing tags and readers, enable precise book tracking,

simultaneous scanning, and real-time data updates, significantly enhancing library

operations.

The systems reviewed incorporate components like ESP8266 microcontrollers and MySQL

databases to facilitate efficient book issuing, returning, and fine management while

maintaining portability and cost-effectiveness. Comparative analyses confirm RFID's

superiority over barcodes and QR codes in terms of efficiency, scalability, and automation.

Additionally, the chapter highlights IoT-enabled solutions, such as Node-RED integration

and web-based portals, which improve user interaction and introduce advanced security

measures like OTP verification. Despite challenges such as high implementation costs and

hardware limitations, the adoption of IoT, predictive analytics, and sophisticated software

tools demonstrates the potential to transform libraries into fully automated, user-friendly

systems that align with the demands of the digital age.

19

METHODOLOGY

3.1 Introduction

The methodology section of the project, "Development of a Book Tracking System in the

Library Using a Microcontroller and RFID" provides a guideline for the implementation of

the proposed solution. It details the procedures involved in the creation and implementation

of a book tracking system. The general objective of the methodology section is to link the

project's objectives with a concise manner in which library goals can be systematically

achieved using microcontroller technology and RFID. The methodology has been

orchestrated to provide the project team with a clear roadmap that navigates them through

the theoretical research, prototyping, testing, and iterative refinement processes, ultimately

leading to the production of a solution relevant to the user requirement in current library

management systems.

3.2 Selecting and Evaluating Tools for a Sustainable Development

When implementing a library book tracking system using a microcontroller and RFID,

careful consideration is necessary to ensure sustainability, efficiency, and reliability. The

choice of tools is guided by their purpose, compatibility, affordability, maintainability,

scalability, and ease of use. RFID readers and tags are ideal for this system as they uniquely

identify books using distinct frequencies, making them reliable for handling a variety of

book volumes and transactions.

20

The NodeMCU ESP8266 was selected for this project instead of Arduino due to its built-in

Wi-Fi capabilities, making it more suitable for IoT-based applications. It is highly cost-

effective, readily available, and widely supported by an active user community, which

provides robust documentation and resources. This microcontroller allows seamless

integration with the RFID RC522 reader, enabling communication between the RFID reader

and the library database.

For programming and development, Visual Studio Code was used due to its flexibility,

extensive library support, and compatibility with the ESP8266 platform. The database and

web application were developed using MySQL and XAMPP, which provide a reliable

environment for database management and hosting. These tools work in tandem to create a

dynamic website that displays book details such as BookID, Title, Author, Date, Time, and

Location.

The NodeMCU ESP8266 reads the UID from the RFID RC522 reader and appends metadata

such as timestamps and locations before transmitting this data to the web application. The

website, developed with tools like PHP and hosted on XAMPP, updates in real time to reflect

any changes in a book's location or status. This system ensures efficient inventory

management, scalability, and ease of use, meeting the library's operational requirements and

goals.

21

3.3 Methodology

The steps used in the creation of a book tracking system in a library using RFID and a

microcontroller can be highlighted as follows. The equipment used in the system includes

RFID tags affixed to the books, RFID readers placed at strategic points within the library,

NodeMCU ESP8266 analyzing the received information, and the web-based inventory

tracking platform. This includes placing tags on the books, installing the RFID readers,

writing firmware for the microcontroller, designing the web interface, and conducting

extensive testing. It should be noted that this system aims to increase the speed of book

tracking, minimize the need for employee intervention, and enhance library’s visitor

satisfaction by providing detailed information about the exact location of books. The system

comprises RFID tags and readers, the NodeMCU ESP8266, computers, and networks for

communication. The inventory platform is developed using web development tools, while

the microcontroller firmware is programmed specifically for the NodeMCU ESP8266 to

handle real-time communication between the RFID readers and the web-based system. This

methodology simplifies library operations and enhances service delivery to library patrons.

22

3.3.1 Project Planning

Figure 3.1 Project Planning

23

Figure 3.1 illustrates the overall project planning framework, outlining the sequential steps

to estimate and guide the project's progression within the project environment.

3.3.2 Elaboration of System Flow

The flowchart helps to assist the developer find some part of project that can be improve and

determine what and where the modification can be done to enhance the performance of the

system. Base on figure 3.2 below, the flowchart shows how the overall system intended for

tracing the book. The RFID tag will be place on the book. Inside RFID tag, there are small

chip that store information and antenna that help tag to communicate with RFID reader. Then

the RFID reader that is connected to microcontroller, emit radio signal. When the RFID tag

enters the signal range, it gets power up. The RFID tag send its stored information to RFID

reader. After that the RFID reader will decode it and send to system for use. The

24

microcontroller will receive the UID from RFID reader and determine the timestamp and

location of the book and send this information to database.

Figure 3.2 Book Tracking Flowchart

25

3.3.3 Schedule

 Project Planning PSM2

Week
Activities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Final year project briefing

by JK PSM

M
id

term
 b

reak

Planning and Research

Define Requirement and

Feature

Research Component

Circuit Assembly

Verify Circuit

Implement project

Develop Webpage

Integrating Hardware and

Software

Functional Testing

Preliminary Result

Performance Testing

Data Collection and

Analysis

Update Report

Submit report to panel

BDP presentation

Submit full report

Table 3.1 Gantt Chart of the Project

The Gantt chart is utilized to allocate an appropriate time frame for all project workflow

tasks. Table 3.1 presents the Gantt chart for the project. Proper scheduling of activities is

26

crucial to prevent delays and ensure timely project completion. Furthermore, effective

planning and scheduling can enhance overall productivity.

3.4 Equipment

3.4.1 Hardware Equipment

3.4.1.1 NFC Sticker

Figure 3.3 NFC Sticker

An NFC sticker, Figure 3.3 is a small, adhesive-backed tag embedded with a Near Field

Communication (NFC) chip and an antenna, enabling wireless communication when brought

close to an NFC-enabled device, such as a smartphone or an RFID reader. These stickers are

thin and flexible, making them easy to attach to various surfaces like books, cards, posters,

or packaging. The embedded NFC chip stores data, which can include unique identifiers

(UIDs), URLs, text, or commands, and this data can be read or written by compatible devices

within a short range (typically 1-4 cm).

NFC stickers are powered passively, meaning they do not require a battery, instead, they

draw power from the electromagnetic field generated by the reader device during interaction.

This makes them cost-effective, maintenance-free, and ideal for numerous applications.

27

Common uses include contactless payment systems, access control, inventory tracking, and

enhancing product interactivity through smart labels. Their compact design and

programmability make NFC stickers versatile tools for enabling seamless and innovative

digital interactions.

3.4.1.2 RFID Reader

Figure 3.4 RFID Reader

An RFID reader, Figure 3.4 is an electronic device designed to communicate with RFID

(Radio Frequency Identification) tags to read or write data stored on them. It consists of an

antenna and a transceiver that emits radio waves to power and interact with RFID tags within

its range. When an RFID tag enters the reader's electromagnetic field, the tag is activated

and transmits its unique identifier (UID) or other stored information back to the reader. RFID

readers can operate at different frequencies, including low frequency (LF), high frequency

(HF), and ultra-high frequency (UHF), depending on the application and range requirements.

RFID readers come in various forms, including handheld devices, fixed-mounted units, and

embedded modules for integration into larger systems. They are widely used in applications

such as access control, inventory management, supply chain tracking, and contactless

payment systems. Some RFID readers, like the MFRC522, are compact and suitable for DIY

projects and small-scale implementations. These readers are often interfaced with

28

microcontrollers like Arduino or ESP8266 to build custom solutions. Overall, RFID readers

provide a reliable, fast, and efficient way to identify and track objects wirelessly, making

them essential in modern identification and automation systems.

3.4.1.3 NodeMCU ESP8266

Figure 3.5 ESP8266

The NodeMCU ESP8266, Figure 3.5 is a compact, low-cost microcontroller board based on

the ESP8266 Wi-Fi module, designed for IoT (Internet of Things) applications. It combines

a powerful 32-bit microcontroller with integrated Wi-Fi connectivity, making it an ideal

choice for building connected devices. The board features GPIO pins that support digital and

analog input/output, enabling the connection of sensors, actuators, and other peripherals. Its

compact size and built-in Wi-Fi allow it to communicate wirelessly with other devices,

access cloud services, or act as a web server.

The NodeMCU ESP8266 is programmed using the Arduino IDE, Lua script, or other

platforms, offering flexibility and ease of use for beginners and professionals alike. It

includes essential components like a USB-to-serial converter for easy programming, a 3.3V

29

voltage regulator, and reset/flash buttons. Its versatility makes it popular in applications like

home automation, weather monitoring, smart appliances, and more. With its affordability

and robust feature set, the NodeMCU ESP8266 is a go-to solution for developing IoT

projects.

3.4.1.4 Wire Jumper

Figure 3.6 Wire Jumper

Jumper wires, Figure 3.6 are insulated electrical wires with connectors or pins at each end,

designed to create temporary or permanent connections between components on a

breadboard, microcontroller, or other electronic devices. They come in three types: male-to-

male, male-to-female, and female-to-female, allowing versatile connections between pins,

headers, or terminals. Jumper wires are typically made of thin, flexible copper conductors

encased in plastic insulation, ensuring durability and ease of use in prototyping.

These wires are essential tools in electronics projects, enabling the transfer of signals or

power without the need for soldering. Their compatibility with breadboards and

development boards like Arduino and NodeMCU makes them invaluable for testing and

debugging circuits. Jumper wires are color-coded to help identify connections easily,

simplifying the process of designing and troubleshooting complex circuits. Their reusability

30

and simplicity make them a fundamental component in electronics prototyping and

experimentation.

3.4.1.5 Breadboard

Figure 3.7 Breadboard

A breadboard, Figure 3.7 is a reusable platform used for prototyping and testing electronic

circuits without soldering. It features a grid of interconnected holes that allow components

such as resistors, capacitors, ICs, and jumper wires to be easily inserted and connected. The

breadboard is divided into sections: power rails, which run horizontally along the edges and

are used for distributing power and ground, and terminal strips, which consist of vertical

rows of connected holes where components are placed. A central gap separates the terminal

strips, providing space to insert integrated circuits (ICs) without shorting their pins.

The breadboard's design allows users to quickly assemble, modify, and test circuits, making

it ideal for learning electronics, debugging designs, and building temporary prototypes. Its

versatility and compatibility with various components and microcontroller boards, such as

Arduino or NodeMCU, make it an essential tool for hobbyists, students, and engineers. By

eliminating the need for soldering, a breadboard provides a clean and efficient way to

experiment with electronic circuits.

31

3.4.2 Software Requirement

3.4.2.1 Arduino IDE

Figure 3.8 Arduino IDE

The Arduino Integrated Development Environment (IDE), Figure 3.8 is a software tool used

to program, compile, and upload code onto Arduino microcontroller boards. It provides a

user-friendly interface for scripting Arduino projects, making it suitable for both

professionals and beginners. The Arduino IDE includes a text editor for writing code, a

compiler to translate programs into machine code, and a bootloader to transfer the compiled

program to an Arduino board via a computer's USB or serial port. Additionally, it offers

various libraries and examples to simplify project development for specific applications.

Overall, the Arduino IDE is an indispensable tool for creating interactive electronics

projects.

In this project, the Arduino IDE is used to configure an ESP8266 microcontroller to operate

with two MFRC522 RFID readers and connect to a Wi-Fi network for transmitting detected

card information to a server. The code initializes SPI communication for the RFID readers

32

and Wi-Fi for network connectivity. During execution, the system continuously checks each

RFID reader for new cards. When a card is detected, its unique identifier (UID) is read,

converted to a string, and sent to the server via an HTTP POST request. The system logs

relevant details to the serial monitor, such as initialization status, detected UIDs, HTTP

response codes, and any errors during communication. Error handling ensures that issues

like failed HTTP requests or Wi-Fi disconnections are managed smoothly. The process

repeats in a loop with a short delay to avoid rapid polling.

3.4.2.2 Visual Studio Code

Figure 3.9 Visual Studio Code

Visual Studio Code (VS Code), Figure 3.9 is a feature-rich, lightweight code editor that

serves as an excellent tool for web development, including creating dynamic PHP-based

websites. It provides a user-friendly interface for writing, editing, and managing PHP scripts,

as well as other web technologies like HTML, CSS, and JavaScript. One of the standout

features of VS Code is its intelligent coding assistance, which includes syntax highlighting,

code autocompletion, and error detection, making it easier to write and debug PHP code

efficiently. For PHP development, VS Code supports powerful extensions such as PHP

IntelliSense, which provides smart autocompletion for PHP functions and variables, and

33

PHP Intelephense, which enhances the development experience with improved code analysis

and error-checking. Debugging is made seamless with the integration of Xdebug, allowing

developers to set breakpoints, step through code, and inspect variables in real-time.

Additionally, the editor supports live server extensions that enable developers to preview

their PHP applications in a browser and see changes instantly.

The built-in Git integration is another crucial feature, allowing developers to track changes,

manage repositories, and collaborate with others directly within the editor. The integrated

terminal simplifies running PHP scripts, managing dependencies with tools like Composer,

or executing database commands, eliminating the need to switch between multiple tools. VS

Code's highly customizable interface lets developers tailor the workspace with themes,

keyboard shortcuts, and custom layouts to suit their workflow. Its multi-file and multi-

language support makes it easy to work on complex projects involving interconnected PHP

scripts and front-end technologies. Furthermore, features like IntelliSense for parameter

hints, bracket matching, and snippet generation enhance productivity and reduce coding

errors.

In my project, I use VS Code to write and manage PHP scripts for server-side processing,

interact with MySQL and Xampp database, and integrate back-end functionality with the

front-end design. The extensions and tools provided by VS Code streamline tasks such as

coding, testing, debugging, and version control, making it an indispensable tool for PHP

development and ensuring a smooth and efficient workflow.

34

3.4.2.3 Phpmyadmin

Figure 3.10 phpMyAdmin

phpMyAdmin from Figure 3.10 is a web-based tool designed for managing MySQL and

MariaDB databases through an intuitive graphical interface. It simplifies database

administration by allowing users to create, modify, and delete databases and manage their

associated tables. With phpMyAdmin, users can easily handle table structures by adding,

editing, or removing columns and perform data operations such as inserting, updating, and

deleting records. The tool also provides a platform for executing custom SQL queries,

offering flexibility for advanced database tasks. Additionally, phpMyAdmin facilitates user

and privilege management, enabling administrators to create users, assign roles, and control

access to databases and tables.

Backup and restoration are streamlined with its export and import features, supporting

various formats like SQL, CSV, and XML for database migrations or data recovery. It

includes robust search functionality for locating specific data within tables or across

databases, as well as tools for managing indexes and keys to optimize query performance.

Visual representations of table relationships, such as foreign keys, help users understand and

35

navigate database schemas. Moreover, phpMyAdmin offers maintenance tools for analyzing

database performance, repairing corrupted tables, and optimizing database structures.

In this project, I used phpMyAdmin to create a database for storing all relevant information

and to retrieve this data for display on the website. This made it possible to efficiently

manage and utilize data collected from the system, ensuring smooth integration between the

back-end database and the website interface.

3.4.2.4 Xampp

Figure 3.11 Xampp Control Panel

XAMPP, refer at Figure 3.11 is a free and open-source software package that provides a

complete local development environment for building and testing web applications. It

includes key components such as Apache, a web server for hosting websites locally; MySQL

or MariaDB, a database server for managing and storing data; and PHP and Perl,

programming languages used for server-side scripting. XAMPP enables developers to

simulate a real server environment on their local machines, allowing them to test websites

36

or applications before deploying them to a live server. It also includes additional tools like

phpMyAdmin for database management and FileZilla for FTP functionality.

XAMPP's user-friendly control panel simplifies the process of starting, stopping, and

configuring its various components. Developers can use it to host and run dynamic websites,

test PHP scripts, and manage databases without needing an active internet connection. Its

cross-platform compatibility makes it accessible on Windows, macOS, and Linux systems,

catering to a wide range of users. In this project, I use XAMPP to run my PHP scripts and

design my website, leveraging its comprehensive features for local web development and

testing. Overall, XAMPP is an essential tool for developers, offering a convenient and

efficient solution for creating and managing web applications locally.

3.4.2.5 MySQL

Figure 3.12 MySQL 8.0 Command Line Client

From Figure 3.12, MySQL is a powerful and widely used open-source relational database

management system (RDBMS) that is essential for storing, managing, and retrieving data in

37

structured formats. It allows developers to create databases, define tables, and establish

relationships between data entities using SQL (Structured Query Language). MySQL is

known for its speed, scalability, and reliability, making it suitable for small-scale projects as

well as large-scale enterprise applications. It supports various data types and indexing

mechanisms to optimize query performance and ensures data integrity through primary keys,

foreign keys, and constraints.

MySQL provides robust features for managing user permissions, enabling secure access

control and multi-user collaboration. It also offers powerful querying capabilities for

extracting and manipulating data, as well as advanced features like stored procedures,

triggers, and views to automate and simplify complex tasks. MySQL is compatible with

many programming languages, including PHP, making it an integral part of web application

development. Its compatibility with popular tools like phpMyAdmin and seamless

integration with platforms like XAMPP further enhances its usability.

In this project, I used MySQL to store timestamp data whenever an RFID tag is detected by

the reader. This timestamp information is linked to the respective book data and displayed

to the librarians and visitor, allowing them to track the time and date associated with each

book's activity. MySQL's reliability and flexibility made it an ideal choice for managing this

time-sensitive data, ensuring efficient storage and retrieval for dynamic web applications.

38

3.4.3 Bill of Material (BOM)

Table 3.2 show all the necessary component used in this project and the price for each

component. This component will be purchased before the implementation process is begin.

No Component Description Quantity Unit cost Cost

1 NFC sticker Adhesive tags with NFC

chips for wireless

communication

4 RM1.19 RM4.79

2 RFID reader MFRC522 module for

reading/writing

RFID/NFC tags

2 RM4.90 RM9.80

3 NodeMCU (Node

MicroController Unit)
Microcontroller board

with built-in Wi-Fi

1 RM28.00 RM28.00

4 Wire jumper Insulated wires for

connections

20 RM0.14 RM2.80

5 Breadboard Prototyping board for

assembling circuits

1 RM2.50 RM2.50

Total component 28 Total

cost

RM47.89

Table 3.2 Bill of Material table

39

RFID reader

NodeMCU

ESP8266

3.5 Hardware Setup

Figure 3.13 Hardware Connection

The Figure 3.13 shows the hardware setup of an ESP8266 microcontroller connected to two

MFRC522 RFID readers via a breadboard. This configuration enables simultaneous

communication with both RFID readers for an RFID-based book tracking system. The

connections for Reader 1 and Reader 2 are designed to share the SPI communication lines

(SCK, MOSI, MISO) while using separate pins for SDA (SS) and RST to allow individual

identification and operation. Reader 1 connects to the ESP8266 with SDA (SS) wired to D2,

RST to D1, SCK to D5, MOSI to D7, MISO to D6, GND to GND, and 3.3V to 3.3V, ensuring

safe voltage levels. Similarly, Reader 2 is connected with SDA (SS) to D3, RST to D4, and

the shared SPI lines (SCK to D5, MOSI to D7, and MISO to D6). Both readers share the

same GND and 3.3V pins from the ESP8266. The setup is powered via the ESP8266’s USB

interface, ensuring sufficient power for the microcontroller and both RFID readers. The

40

breadboard provides an organized and modular platform for the wiring, facilitating easy

debugging and system testing.

Table 3.3 below show the summarize ESP8266 Pin connections for Two MFRC522 RFID

Readers. The pinout reference of ESP8266 can be refer at Appendix Q and the pinout

refference of RFID reader can be refer at Appendix R

Reader 1 Reader 2

SDA (SS) → D2

SCK → D5

MOSI → D7

MISO → D6

RST → D1

GND → GND

3.3V → 3.3V

SDA (SS) → D3

SCK → D5

MOSI → D7

MISO → D6

RST → D4

GND → GND

3.3V → 3.3V

Table 3.3 Hardware Connection

41

3.6 Test Method

3.6.1 Wi-fi Connectivity Test

The Wi-Fi connectivity test was conducted to evaluate the system's ability to automatically

reconnect to a Wi-Fi network. For this test, the system's Wi-Fi connection was intentionally

turned off. During this time, the system's behavior was observed to determine how it

responded to the disconnection. After that, the Wi-Fi was turned back on, and the system's

response to the restored connection was recorded.

3.6.2 Server Communication Test

The Server Communication Test was conducted to evaluate the system's response when

communicating with a server under different conditions. First, the system was configured to

use a correct URL, and its behavior during the connection attempt was observed. Next, an

incorrect URL was deliberately introduced to simulate a faulty server communication

scenario. The system's response and behavior under this condition were observed and

compared to its behavior when using the correct URL.

3.6.3 Edge Case Handling Test

The Edge Case Handling Test was conducted to evaluate the system's ability to detect NFC

stickers under different conditions. The first test involved tapping the same book on different

RFID readers to observe the system's behavior and data logging for each reader. The second

test involved repeatedly tapping different books on each RFID reader to examine how the

system handled multiple scans. In both cases, the system's output was carefully observed and

recorded for analysis.

42

3.6.4 Distance Test

The test evaluates the maximum distance at which an RFID reader can reliably detect an

NFC sticker. The procedure involves placing the NFC sticker at varying distances from the

RFID reader, starting from 1 cm and incrementally increasing to 2.5 cm. The test stops when

the reader can no longer detect the NFC sticker, defining its operational range. This method

helps determine the effective detection distance and highlights the reader's performance

under varying proximity conditions.

3.6.5 Reader Overlap and Interference Test

The test evaluates the interference between two RFID readers placed at varying distances.

The setup starts with the readers positioned 3 cm apart, and the distance is incrementally

increased to 6 cm, 9 cm, and finally 12 cm. At each distance, both readers attempt to detect

NFC tags. The number of successful and missed detections for each reader is recorded to

assess how proximity affects performance, likely due to overlapping electromagnetic fields.

This method identifies the extent of interference and its impact on reader performance at

different distances.

43

3.6.6 Orientation Test

Figure 3.14 0° orientation test

Figure 3.13 show position of RFID reader and the book during 0° Orientation Test

Figure 3.15 30° orientation test

Figure 3.14 show position of RFID reader and the book during 30° Orientation Test

44

Figure 3.16 60° orientation test

Figure 3.15 show position of RFID reader and the book during 60° Orientation Test

Figure 3.17 90° orientation test

Figure 3.16 show position of RFID reader and the book during 90° Orientation Test

The orientation test was conducted to determine how the angle between the RFID reader and

an NFC tag (attached to a book) affects detection performance. The setup involved

positioning the NFC tag at specific angles relative to the reader: 0° (aligned flat with the

reader), 30°, 60°, and 90° (perpendicular to the reader). This test evaluates the reader’s

performance at different orientations and identifies the optimal alignment for reliable tag

detection.

45

3.7 Summary

This chapter outlines the comprehensive development methodology for a library book

tracking system that leverages RFID technology and a microcontroller to enhance efficiency,

accuracy, and user satisfaction in library management. The primary objective is to create a

system that automates the tracking of books, minimizes manual intervention, and provides

real-time updates on book locations. This innovative solution incorporates a combination of

hardware and software tools to achieve a streamlined and scalable system. At the hardware

level, the project employs NFC stickers attached to books for identification, RFID RC522

readers for detecting tags, and the NodeMCU ESP8266 microcontroller to process and

transmit data. The NodeMCU ESP8266 was chosen for its built-in Wi-Fi capabilities, cost-

effectiveness, and ease of integration with IoT-based applications. Other hardware

components, such as jumper wires, breadboards, and power sources, were utilized for

prototyping and testing the circuitry. The RFID readers are strategically positioned within

the library to detect tags as books move through designated areas, while the NodeMCU

collects the data, adds metadata such as timestamps and location information, and transmits

it to a web-based system.

On the software side, tools like Visual Studio Code, XAMPP, phpMyAdmin, and MySQL

were employed to develop the web application and manage the database. Visual Studio Code

was used for writing PHP scripts and designing the web interface, while XAMPP provided

a local server environment for hosting and testing the system. phpMyAdmin facilitated

database management, enabling efficient storage and retrieval of book-related data. The

Arduino IDE was used to program the NodeMCU for communication with the RFID readers

and for handling HTTP requests to update the server with detected data. The methodology

46

emphasizes meticulous planning, starting with theoretical research and prototyping,

followed by hardware-software integration, extensive testing, and iterative refinement.

The project employed various tests to ensure system reliability and accuracy, such as Wi-Fi

connectivity tests to assess the system's ability to reconnect to the network after intentional

disconnections and server communication tests to validate error-handling capabilities under

correct and incorrect configurations. Edge case handling tests investigated the system's

response to repetitive and simultaneous scans, while distance tests determined the effective

range of the RFID readers. Reader overlap and interference tests analyzed the impact of

electromagnetic interference between RFID readers at varying distances, and orientation

tests evaluated how the angle between the NFC tag and RFID reader affected detection

accuracy.

The system was designed to meet the library’s operational needs, such as real-time book

tracking, scalability, and ease of use. By automating inventory management, it reduces

manual labor, enhances accuracy, and improves the overall user experience. This chapter

provides a thorough roadmap for developing a robust RFID-based library book tracking

system, emphasizing sustainability, efficiency, and scalability to meet both current and

future requirements of modern library operations.

47

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the findings and analyses derived from the implementation and testing

of the book tracking system using a microcontroller and RFID technology. The results are

organized to demonstrate the system's functionality, accuracy, and performance in tracking

book movements within a library environment. Key aspects such as RFID detection,

timestamp data, and database updates are evaluated to ensure alignment with the project

objectives. The analysis focuses on the system's ability to reliably detect RFID tags, record

timestamps, and display book information on the web interface. Furthermore, this chapter

discusses the effectiveness of the system in achieving real-time data updates and minimizing

manual effort. Through detailed evaluation, the results validate the system's capability to

streamline library operations and improve inventory management.

48

4.2 Results

4.2.1 Prototype

Figure 4.1 Prototype

Figure 4.2 illustrates the prototype designed for this project. The setup includes a laptop

connected to a black box that serves as a physical representation of two distinct book

locations, labeled as 'Shelf A' and 'Shelf B' using a marker for visual clarity. This division is

essential for demonstrating the system's capability to differentiate between multiple

locations.

49

Figure 4.2 Inside Prototype

Inside the box from Figure 4.3, there are two RFID readers. ‘Shelf A’ is represented Reader

1 and ‘Shelf B’ is represent Reader 2. The wiring of this system connects with nodemcu

ESP8266 which send data to the website.

Figure 4.3 NFC Sticker Attached to the Book

The NFC sticker is place at the back of each book just like Figure 4.4. The purpose of the

prototype is to demonstrate the functionality of the project, which aims to track and identify

the location of books. By scanning the NFC sticker associated with books, the system

updates their location as either 'Shelf A' or 'Shelf B,' showcasing its ability to distinguish and

log book placements accurately.

50

4.2.2 Software Development

4.2.2.1 Home Page

Figure 4.4 Home Page

Figure 4.5 illustrates the home page of the website for the RFID-based book tracking system,

designed with a library-centric theme to align with its purpose. The website features a

prominent header displaying the project's title, "DEVELOPMENT OF A BOOK

TRACKING SYSTEM IN THE LIBRARY USING A MICROCONTROLLER AND

RFID," which immediately conveys its objective. Below the header, a navigation menu

offers clearly labeled options such as "Home," "Admin Record," "Registration," "Book

Display," and "Book Record," ensuring easy access to the website's core functionalities for

user. Each menu option is designed to cater to specific tasks, streamlining library

management processes.

The main content section features a warm-toned library image with high shelves filled with

books, evoking a classic library ambiance. This visually reinforces the website's connection

to books and libraries. Above the image, the text "This Website will display book

information" succinctly describes the primary purpose of the system. The overall color

scheme, typography, and layout create a professional yet approachable interface, making it

51

intuitive and engaging for users. This homepage serves as a gateway to all features, offering

both functionality and thematic coherence in its design.

4.2.2.2 Registration

Figure 4.5 Registration

The Registration menu, as shown in Figure 4.6, displays a form designed for registering

books in a library tracking system. When an NFC tag is tapped on the RFID reader, the

BookID field is automatically populated with the unique identifier retrieved from the NFC

tag. The librarian is required to input additional details, including the Title, Author, and Book

Genre of the book. Once all the fields are completed and the Save button is clicked, all the

information is stored in the `table_nodemcu_rfidrc522_mysql` within the PHPMyAdmin

database, ensuring accurate tracking and management of book records.

52

4.2.2.3 Admin Record

Figure 4.6 Book Data Table

Figure 4.7 displays the "Admin Record" menu of the book tracking system's website,

showcasing a table of registered books stored in the database. The table includes columns

for essential details such as BookID, Title, Author, and Book Genre, allowing librarians to

view all the registered book information in one organized interface. This menu serves as a

centralized location where librarians can manage book records efficiently.

Additionally, the interface provides two action buttons, "Edit" and "Delete," for each book

entry. The "Edit" function allows librarians to update or correct any errors in the book's

details, ensuring the database remains accurate. The "Delete" option enables librarians to

remove entries for books that are no longer available in the library, helping to keep the

database clean and up to date. The visually distinct buttons, green for "Edit" and red for

"Delete," improve usability and reduce the chance of errors during operation.

The clear and structured layout of the data table, combined with the straightforward

functionality, ensures librarians can easily manage the library's book inventory while

maintaining accuracy and efficiency.

53

4.2.2.4 User Data Edit

Figure 4.7 Edit Book Data

Based on Figure 4.8, the interface shown allows the librarian to edit the details of a registered

book. The page is designed to correct any misinformation or update the book's data as

needed. Fields such as `BookID`, `Title`, `Author`, and `Book Genre` are displayed in

editable text boxes. While the `BookID` field is typically locked to maintain its uniqueness,

other fields can be modified to ensure accurate and up-to-date information. This feature

enhances the system's flexibility, allowing librarians to easily manage book records and

rectify errors without complications.

4.2.2.5 User Data Delete

Figure 4.8 Remove Book

Based on Figure 4.9, the interface displayed allows librarians to delete book records that are

no longer present in the library. The page provides a confirmation dialog to ensure that the

action is intentional, displaying a message, "Are you sure you want to remove this book?"

54

along with two options: "Yes" and "No." This confirmation step minimizes accidental

deletions and ensures that only unnecessary or obsolete book data is removed. By offering

this functionality, the system helps maintain an accurate and up-to-date catalog of books

available in the library.

4.2.2.6 Book Display

Figure 4.9 Book Display

Figure 4.10 illustrates the ‘Book Display’ menu, which prompts visitors with the book’s

informatiton being display here. Once the book is detected, the webpage displays key

information, including BookID, Title, Author, Timestamp, and Location. The BookID, Title,

and Author are fetched from the ̀ table_nodemcu_rfidrc522_mysql` in the database, ensuring

accurate retrieval of book-specific details. The Timestamp and Location are dynamically

retrieved from the `page_data` table, providing real-time updates on when and where the

book was scanned. This interface streamlines the tracking of books and enhances data

accuracy in the library system.

55

4.2.2.7 Book Record

Figure 4.10 Book Record

Figure 4.11 illustrates the Book Data Table webpage, which displays all the information of

books that have been scanned through the ‘Book Display’ menu. The table provides an

organized view of key details, including BookID, Title, Author, Timestamp, and Location.

This webpage is particularly useful for visitors, as it allows them to monitor the exact time

and location where each book was scanned. Since the Timestamp may change with each

scan, and the Location of the book might change as visitors take books from the shelves, the

table updates to reflect the most recent data. This ensures accurate and real-time tracking of

book movements within the library system, enhancing overall book management and

traceability.

56

4.2.3 Database

4.2.3.1 table_nodemcu_rfidrc522_mysql

Figure 4.11 Database table_nodemcu_rfidrc522_mysql

Figure 4.12 illustrates the structure of the database table `nodemcu_rfidrc522_mysql`,

designed to store book information. The table consists of four fields: BookID, Title, Author,

and BookGenre. The BookID field serves as the primary key and is a unique identifier for

each book, defined as `varchar(8)` and does not allow null values. This field is automatically

populated when an RFID tag is scanned. The remaining fields like Title, Author, and

BookGenre are defined as `varchar(255)` and are manually filled in by the librarian. The

Title field stores the book's name, Author records the author's name, and BookGenre

categorizes the book's genre. This database ensures that all book details are systematically

recorded and securely stored.

57

4.2.3.2 page_data

Figure 4.12 Database page_data

Figure 4.13 illustrates the structure and contents of the `page_data` table, which is connected

to the `nodemcu_rfidrc522_mysql` table. This table is designed to store tracking data for

books and consists of four fields examples ID, BookID, Timestamp, and Location. The ID

field serves as the primary key, functioning as an auto-incrementing integer that uniquely

identifies each record. The BookID field, defined as `varchar(8)`, references the unique

identifier of a book from the `nodemcu_rfidrc522_mysql` table and does not allow null

values, ensuring a strong connection between the two tables. The Timestamp field, defined

with the `CURRENT_TIMESTAMP` attribute, automatically records the exact date and

time of each interaction, as examples like ̀ 2024-12-03 14:43:32` and ̀ 2024-12-04 22:58:48`.

The Location field, defined as `varchar(40)`, is currently unpopulated in the displayed

records but allows null values, providing flexibility if location data is unavailable.

58

4.2.4 Coding

4.2.4.1 Arduino IDE

The code from Appendix A is for an ESP8266-based system that uses two RFID readers

(MFRC522) to read NFC card UIDs and send them to a web server via HTTP POST requests.

It starts by including necessary libraries for Wi-Fi, HTTP communication, SPI protocol, and

RFID reader control. The RFID readers are connected to specific pins on the ESP8266, and

their respective pins for reset and slave select (SS) are defined. The Wi-Fi credentials and

the server URL are also specified, allowing the ESP8266 to send the UID data to the server.

In the `setup()` function, the system initializes serial communication and the SPI bus, then

sets up each RFID reader. The version information of each reader is printed to the serial

monitor for debugging. The ESP8266 connects to the Wi-Fi network and waits until it is

successfully connected, displaying the IP address upon connection. In the `loop()` function,

the code checks the Wi-Fi connection continuously, ensuring the device remains connected.

It then loops through each RFID reader, checking if a card is present. If a card is detected,

the UID is read and sent to the server. A debounce mechanism is in place to prevent multiple

reads in quick succession by using a cooldown period of 1 second.

The `readCard()` function handles the card detection and UID extraction. It uses the

`PICC_IsNewCardPresent()` and `PICC_ReadCardSerial()` functions to check for new

cards and read their serial numbers. The UID is converted into a string and stored for further

use. The `sendUIDToServer()` function is responsible for sending the detected UID to the

server through an HTTP POST request. The UID, along with the reader's ID, is sent to the

server as form data. The response from the server is printed to the serial monitor. Finally,

59

the `checkWiFi()` function ensures that if the Wi-Fi connection drops, the device will

automatically attempt to reconnect.

This code allows the ESP8266 to interact with multiple RFID readers, read the UIDs from

NFC stickers, and send the data to a web server, making it suitable for applications such as

RFID-based tracking or access control.

4.2.4.2 PHP Script

4.2.5.2.1 Home.php

Appendix C provides the code for a basic web page used in a library book tracking system.

The PHP section initializes a variable, `$UIDresult`, and writes it to a separate file,

`UIDContainer.php`, which is likely used to store and display the UID (unique identifier) of

RFID tags detected in the system. The HTML portion of the code constructs the user

interface, styled with embedded CSS and Bootstrap for responsiveness across devices. The

web page includes a title, a main heading introducing the project, and a navigation bar

linking to key pages such as "Home," "Admin Record," "Registration," "Book Display," and

"Book Record." This navigation bar adapts to smaller screens using media queries. Below

the heading, the page displays a message indicating its purpose of showcasing book

information, followed by a centered image (`library.png`) for visual enhancement. Overall,

the code in Appendix B.1 provides a responsive interface and integrates dynamic backend

functionality for RFID-based book tracking.

4.2.5.2.2 User data.php

Appendix D provides the code for displaying book data from a MySQL database in a

structured table on a web page. The PHP section establishes a database connection using a

60

custom Database class and PDO for secure data handling. It fetches details such as BookID,

Title, Author, and BookGenre from the table_nodemcu_rfidrc522_mysql table, explicitly

excluding columns like Location and Date. The retrieved data is stored in an associative

array, $bookData, which is dynamically used to populate the table in the HTML section.

The HTML portion creates the webpage, styled with Bootstrap and custom CSS for a clean

and responsive interface. A navigation bar provides links to different sections of the

application, with "Admin Record" set as the active page. The page includes a centered title

introducing the project and a table displaying the book data. Each row features "Edit" and

"Delete" buttons, linking to respective pages with the BookID passed as a query parameter.

If no book data is available, the table displays a message indicating this.

The code uses Bootstrap components for styling and responsiveness, with additional custom

CSS for table aesthetics and layout. Overall, Appendix B.2 provides a functional interface

for managing book records in the library's RFID-based tracking system, allowing librarians

to view, edit, or delete book entries efficiently.

4.2.5.2.3 User data edit page.php

Appendix E provides the code for editing book data in the library’s RFID-based book

tracking system. The PHP section initializes variables to store book details and checks

whether a `BookID` is passed through the URL. If a valid `BookID` is provided, the script

connects to the database using a custom `Database` class and retrieves the corresponding

book's details (`Title`, `Author`, and `BookGenre`) from the table

`table_nodemcu_rfidrc522_mysql`. These details are populated into a form, allowing the

librarians to update them. If the `BookID` is invalid or no matching data is found, the script

redirects the user to the "User Data" page or displays an error message.

61

The script also handles form submissions for updating the book data. Upon submission, the

updated `Title`, `Author`, and `BookGenre` values are sent via POST. The script reconnects

to the database and executes an SQL `UPDATE` query to save the changes based on the

`BookID`. After the update is complete, the user is redirected back to the "User Data" page

to confirm the changes.

The HTML section creates a responsive form using Bootstrap, prefilled with the existing

book details retrieved from the database. The form includes fields for `BookID` (read-only),

`Title`, ̀ Author`, and ̀ BookGenre`, all marked as required. Buttons for "Update" and "Back"

are provided for submitting changes or returning to the main user data page.

The page is styled with Bootstrap for consistent design and includes custom CSS for

centering the form and applying a soft background color. This code in Appendix B.3 offers

a user-friendly interface for administrators to edit book records efficiently, ensuring the data

is updated accurately in the library’s book tracking system.

4.2.5.2.4 User data edit tb.php

This code is used to handle the updating of book data in the library’s RFID-based book

tracking system. When a user navigates to this page, the `BookID` is passed as a query

parameter via the URL. The script first retrieves the `BookID` using the `$_GET`

superglobal and ensures it is valid. Once the librarians submits the form with updated book

details (`Title`, `Author`, and `BookGenre`), the script processes the data using the

`$_POST` superglobal.

62

The PHP script establishes a connection to the database using a custom `Database` class. It

uses an SQL `UPDATE` query to modify the record associated with the provided `BookID`,

ensuring that only the `Title`, `Author`, and `BookGenre` fields are updated, leaving other

fields like `Date` and `Location` untouched. After the database update operation is

completed, the connection is closed, and the user is redirected to the "User Data" page to

view the updated records.

This script plays a critical role in maintaining up-to-date information about the library’s book

inventory and ensures data integrity during the update process. The functionality is crucial

for administrators managing the book records efficiently. Refer to Appendix F for the full

implementation of this code.

4.2.5.2.5 User data delete page.php

This PHP script facilitates the deletion of a book record from the library’s database in the

RFID-based book tracking system. The script starts by retrieving the `BookID` from the

`GET` parameter in the URL to identify the specific record the librarian wants to delete.

When the librarian submits the confirmation form, the `BookID` is retrieved via the `POST`

method.

The script then connects to the database using a custom `Database` class and executes an

SQL `DELETE` query to remove the record associated with the provided `BookID`. The

`rowCount()` method is used to confirm whether the deletion was successful. If no record is

found with the given ID, an appropriate message is displayed to the user. In case of

successful deletion, the script redirects the user back to the "User Data" page.

63

The HTML portion of the script displays a confirmation dialog asking the user to confirm

their intention to delete the selected book. It includes a form with a hidden input field

containing the `BookID`. The form provides two options: a "Yes" button to confirm deletion

and a "No" button to return to the "User Data" page without making any changes.

This functionality ensures that administrators can manage the book inventory by removing

outdated or incorrect records. It incorporates user confirmation and error handling for a

reliable deletion process. Refer to Appendix G for the full implementation of this code.

4.2.5.2.6 Registration.php

This PHP script serves as the foundation for a registration form in the RFID-based book

tracking system. The primary function of the script is to dynamically retrieve and display a

unique `BookID` whenever an NFC stickere is scanned. This functionality is achieved by

writing an empty PHP variable, `$UIDresult`, to a separate file, `UIDContainer.php`. This

file is loaded and updated at regular intervals via AJAX using jQuery, ensuring the ̀ BookID`

is displayed in real time.

The HTML portion structures a user-friendly interface styled with Bootstrap, featuring a

navigation bar for accessing different pages like "Home," "Admin Record," "Registration,"

"Book Display," and "Book Record." The form allows the librarian to input the book's

details, such as `BookID`, `Title`, `Author`, and `Book Genre`. The `BookID` field is

automatically populated with the unique identifier retrieved from the RFID scan. This is

facilitated by the jQuery script, which fetches data from `UIDContainer.php` every 500

milliseconds, ensuring the system stays responsive to tag scans.

64

Additionally, the page layout includes responsive navigation and styling for compatibility

across various devices. On form submission, the entered data is sent to `insertDB.php` to be

stored in the database.

This script exemplifies real-time data fetching and updating in web applications, enhancing

user interactivity and efficiency in managing library records. Refer to Appendix H for the

complete implementation of this code.

4.2.5.2.7 Read tag.php

This PHP and HTML script implements a real-time RFID-based system that displays book

data when an RFID tag is scanned. The PHP portion initializes a placeholder file,

`UIDContainer.php`, containing a blank variable (`$UIDresult`) that will later store the

scanned UID. This file is dynamically updated via JavaScript using AJAX and jQuery.

The JavaScript code refreshes the content of `UIDContainer.php` every 500 milliseconds,

ensuring that any new UID from an RFID scan is captured and displayed without requiring

a manual page reload. The captured UID is then processed by another function,

`showUser()`, which uses an asynchronous XMLHttpRequest to fetch associated book

details (like Title, Author, Timestamp, and Location) from `read tag user data.php`. These

details are displayed dynamically in a table on the webpage.

The HTML layout includes a responsive navigation bar styled with CSS, allowing visitors

to switch between various system functionalities such as Home, Registration, Book Display,

and Book Records. The page also includes a well-structured table that serves as a placeholder

for displaying book information associated with a scanned RFID tag.

65

Additional JavaScript functionality includes monitoring changes in the scanned UID. If a

new tag is detected, the system refreshes and retrieves updated data, maintaining

synchronization with the database.

The script's primary objective is to ensure efficient and seamless interaction between the

RFID system and the user interface, making it an integral part of the RFID-based library

book tracking system. Refer to Appendix I for the detailed implementation of this code.

4.2.5.2.8 Read tag user data.php

This PHP code handles the retrieval and display of book details when an RFID tag is

scanned. It integrates the `UID` (unique identifier of the RFID tag) and `readerID` (location

identifier) to provide accurate book information, including its location in the library. The

script starts by including necessary dependencies, such as the GeoIP2 library and database

connection files, and initializes a session to manage the `readerID` variable. It also imports

the UID and reader ID values from their respective PHP files.

When the RFID tag's `BookID` is passed as a URL parameter, the system determines the

book's location based on the `readerID`. For example, `readerID = 1` corresponds to "Shelf

A," while `readerID = 2` corresponds to "Shelf B." This data is then checked against the

database to confirm whether the scanned book exists. If it does, the script inserts or updates

its location in the `page_data` table.

Subsequently, the code retrieves the most recent record for the scanned book, including

details such as the title, author, timestamp, and location. If the book does not exist in the

database, a fallback message is displayed, and placeholders are used for the book's details.

66

The retrieved data is dynamically displayed in an HTML table format, ensuring user-friendly

visualization.

This script is vital in the context of an RFID-based library book tracking system, where real-

time updates and precise book locations are critical for efficient operation. Refer to

Appendix J for the detailed implementation and integration of this code within the project.

4.2.5.2.9 Book record.php

This PHP code generates a webpage displaying book data retrieved from a MySQL database,

which is part of an RFID-based book tracking system. The script begins by connecting to

the database using a helper class (`database.php`) and executing an SQL query that joins two

tables: `table_nodemcu_rfidrc522_mysql`, which contains book details such as `BookID`,

`Title`, and `Author`, and `page_data`, which stores additional information such as

`Timestamp` and `Location`. The `INNER JOIN` ensures that only records with matching

`BookID` entries in both tables are fetched.

The fetched data is stored in an associative array (`$bookData`), which is then dynamically

rendered into an HTML table using a `foreach` loop. If no data is retrieved, a placeholder

message is displayed instead. After fetching the data, the database connection is closed to

ensure proper resource management.

The HTML layout is styled using Bootstrap and custom CSS, ensuring a user-friendly

interface. It includes a navigation menu for seamless access to other pages, such as "Home,"

"Registration," and "Book Display." The table is structured with columns for `BookID`,

`Title`, `Author`, `Timestamp`, and `Location`. Each row corresponds to a book, with data

populated from the database. If a `Location` value is not available, it defaults to "N/A."

67

This code plays a critical role in providing a clear overview of book information and their

associated tracking details, making it essential for library management systems relying on

RFID technology.Refer to Appendix K for further details on the database schema and the

integration of this code within the project.

4.2.5.2.10 Database.php

This PHP code defines a class Database, which facilitates the connection and disconnection

to a MySQL database using PDO (PHP Data Objects). The class follows the Singleton design

pattern, ensuring that only one instance of the database connection is created throughout the

script's execution. The class defines several private static properties: $dbName, $dbHost,

$dbUsername, and $dbUserPassword, which store the database credentials. These are used

to establish the connection to the database. The $cont property is a static variable that holds

the PDO connection instance.

The constructor of the class is private, preventing direct instantiation of the class, which

enforces the Singleton pattern. The connect() method checks if a connection already exists

by verifying if $cont is null. If not, it attempts to create a new PDO connection to the MySQL

database using the provided credentials and connection options (such as error handling and

connection timeout). If the connection is successful, the method sets the character encoding

to UTF-8 for the connection. If an exception occurs, an error message is logged, and a user-

friendly message is displayed. The disconnect() method is used to close the database

connection by setting the PDO instance ($cont) to null. Refer to Appendix L for further

details on the database schema and the integration of this code within the project.

68

4.2.5.2.11 getUID.php

This PHP code snippet handles the processing of data sent via a POST request. It checks if

both the `UIDresult` and `readerID` are set in the POST request using `isset()`. If both are

present, it assigns their values to the variables `$UIDresult` and `$readerID`. The script then

writes these values to two separate PHP files: `UIDContainer.php` and

`readerContainer.php`. For the `UIDresult`, it generates a PHP file that defines a variable

with the value of the UID and echoes it. Similarly, for the `readerID`, it creates another PHP

file that defines the reader ID and echoes it. The `file_put_contents()` function is used to

write the dynamically created PHP code into these files.

If either `UIDresult` or `readerID` is missing in the POST request, the script outputs an error

message, "Missing UIDresult or readerID!". This code ensures that the UID and reader ID

are stored dynamically in PHP files for later use. For more detail of this code and its

integration, refer to Appendix M.

4.2.5.2.12 insertDB.php

This PHP script handles the insertion of data into a MySQL database based on a POST

request. It starts by requiring the `database.php` file, which contains the necessary database

connection functionality. The script then checks if there is any data in the `$_POST` array,

indicating that a form has been submitted. If data exists, it prints the contents of the

`$_POST` array for debugging purposes.

The script retrieves form values such as `bookID`, `title`, `author`, and `BookGenre` from

the POST request, using `isset()` to prevent warnings in case any of the fields are not set.

Next, it connects to the database using a `Database::connect()` call. It prepares a SQL query

69

to check if the provided `BookID` already exists in the database. If the `BookID` is found,

the script outputs an error message indicating that the ID already exists and terminates further

execution by calling `exit`.

If no duplicate `BookID` is found, the script proceeds to insert the new book data (BookID,

Title, Author, and BookGenre) into the `table_nodemcu_rfidrc522_mysql` table. After the

insertion, the database connection is closed with `Database::disconnect()`, and the user is

redirected to the "user data.php" page.

For a more detailed understanding of the database connection process and the structure of

the data, please refer to Appendix N.

4.2.5.2.13 UIDContainer.php

This PHP code defines a variable `$UIDresult` and initializes it with an empty string (`''`). It

then uses the ̀ echo` statement to output the value of the ̀ $UIDresult` variable to the browser.

Since `$UIDresult` is set to an empty string, nothing will be displayed on the page when this

code is executed. The code effectively serves as a placeholder for a variable that could be

populated with data dynamically from other parts of the application. For more details on how

this variable interacts with other components or its role in the broader system, refer to

Appendix O.

70

4.2.5.2.14 readerContainer.php

This PHP code snippet defines a variable `$readerID` and assigns it an empty string (`''`). It

then uses the `echo` statement to output the value of the `$readerID` variable to the browser.

Since `$readerID` is initialized with an empty string, nothing will be displayed on the page

when this code is executed. This code likely acts as a placeholder for the reader ID, which

could be dynamically assigned or updated in the system depending on the user's actions or

inputs. For a more detailed explanation of how these variable fits into the larger system and

its usage, refer to Appendix P.

4.2.5 Data Collection

Figure 4.13 Book Detected at Shelf A

Figure 4.14 above show that when a book which have NFC sticker attached to it is place on

top RFID reader label as ‘Shelf A’. When RFID reader detect this NFC, it will read its unique

identifier (UID).

71

Figure 4.14 Registration Book

Figure 4.15 above show that when ‘TWIN’S TERRITORY’ book is being tap, the BookID

is automatically fill up. The other, ‘Title’, ‘Author’, and ‘Book Genre’ is need to fill up

manually for register book

Figure 4.15 Book Data Table

Figure 4.16 illustrates that the data of books already registered is stored and displayed on the

webpage. The webpage also indicates which books are registered in the system and which

are not.

72

Figure 4.16 Book Detected at Shelf B

This Figure 4.17 show that when the ‘LELAKI ASTATINE’ is being tap at ‘Shelf B’. This

show that two readers can detect the UID of the NFC sticker effectively

Figure 4.17 Registration Book

Figure 4.18 show that when ‘LELAKI ASTATINE’ is being tap at ‘Shelf B’, the BookID is

also automatically fill in. The other like ‘Title’, ‘Author’, and ‘Book Genre’ is need to fill

up manually.

73

Figure 4.18 Book Data Table

Figure 4.19 show that the ‘LELAKI ASTATINE’ is successfully being register. All the

book’s information is stored and display here.

Figure 4.19 Book Data Table

This Figure 4.20 show when I register the other two books into database and being display

here.

74

Figure 4.20 Book Display

This Figure 4.21 webpage shows that when ‘TWIN’S TERRITORY’ book is being tap at

‘Shelf A’. This webpage displays the book’s timestamp to show when the book is being

detected at ‘Shelf A’

75

Figure 4.21 Book Display

The Figure 4.22 show another book, ‘INTERNET DEATH ANGEL’ when the book is being

tap at ‘Shelf B’. This webpage displays the book’s timestamp to show when is the book is

detected at ‘Shelf B’.

Figure 4.22 Book Data Table

The Figure 4.23 show the Book Data table that display all the book that being tap is recorded

here. We can see all the book record like ‘BookID’, ‘Title’, ‘Author’ and ‘Timestamp’ and

‘Location’ here.

76

Figure 4.23 Book Data Table

Figure 4.24 above show book’s record of the other book that being tap and display at ‘User

Display’ menu. Here we can see the different date, timestamp and location for each book.

77

4.2.6.1 Serial Monitor Arduino IDE

Figure 4.24 Serial Monitor of Arduino Ide

Figure 4.25 shows the output on the Serial Monitor of the Arduino IDE, where the HTTP

Response Code 200 confirms successful communication with the server. The number "200"

is a standardized HTTP status code indicating an "OK" response, meaning the server

successfully received, processed, and responded to the HTTP request sent by the ESP8266.

In this project, the ESP8266 sent a POST request containing the UID and readerID to the

server endpoint `getUID.php`. The server successfully received the data, executed its logic

such as logging the data, saving it to the database, and displaying it on a webpage and then

sent a response back to the ESP8266. The HTTP 200 status code indicates that the request

was processed without issues.

HTTP status codes are a standardized system used in the HTTP protocol to communicate the

result of a request between a client, such as the ESP8266, and a server. These three-digit

codes are categorized based on the first digit. Codes in the 1xx range (Informational) indicate

that the request was received and is being processed. The 2xx range (Success) confirms that

the request was successfully received, understood, and processed, with 200 (OK) being a

common example. Codes in the 3xx range (Redirection) suggest that further action is

required to complete the request, while those in the 4xx range (Client Error) indicate issues

78

such as bad syntax or unauthorized access. Lastly, the 5xx range (Server Error) reflects a

failure on the server’s side to process a valid request.

In this project, receiving a 200-status code demonstrates that the communication between

the ESP8266 and the server was reliable and executed without errors, highlighting the

system's functionality.

4.3 Analysis

4.3.1 Data Testing

4.3.1.1 Wi-Fi Connectivity

Wi-fi Status Expected result Actual result

Reconnecting after 5

minutes of disconnection

System automatically

reconnects and resume

Able to reconnect

Table 4.1 Wi-fi Test

The Wi-Fi Connectivity Test examines the system's ability to automatically reconnect to a

Wi-Fi network after a brief period of disconnection. Specifically, it simulates a scenario

where the system is disconnected from Wi-Fi for five minutes. Based on Table 4.1, the

expected behaviour is that the system should automatically reconnect to the network and

resume its functionality without user intervention. The actual result of the test indicates that

the system successfully reconnected as expected, demonstrating robust network recovery

capabilities under such conditions.

79

4.3.1.2 Server Communication Test

Server URL Expected result Actual result

Correct URL HTTP Response code: 200. Behave as expected

Incorrect URL HTTP request failed Failed as expected

Table 4.2 Server Test

The Server Communication Test evaluates how the system interacts with a server under two

distinct conditions: using a correct URL and an incorrect URL. From Table 4.2, the first case

uses correct URL. So, the system is expected to establish a successful connection and return

an HTTP response code of 200, confirming that the communication was successful. The test

result aligns with this expectation, as the system returned the expected HTTP 200 response

code. Conversely, when an incorrect URL is used, the system is anticipated to fail the HTTP

request, as the server cannot be reached. The test outcome shows that the system handled the

invalid URL appropriately by failing the request, demonstrating effective error management

in server communication.

80

4.3.1.3 Edge Case Handling Test

Steps Expected result Actual result

Scan same book at different

reader

System logs separate entries

with timestamp and location

Failed to behave as

expected

Scan different book at each

reader repeatedly

System logs separate entries

with timestamp and location

Behave as expected

Table 4.3 edge Test

The Edge Case Handling Test focuses on how the system deals with specific edge cases

related to scanning books using different readers. Based on Table 4.3, the first scenario

involves scanning the same book using different readers. The expected behaviour is for the

system to log separate entries for each scan, with distinct timestamps and location for each

reader. However, the actual result indicates a failure in meeting this requirement, suggesting

that the system does not differentiate between scans of the same book at different readers.

This failure occurs because the system overwrites the previous location of the book with the

new one rather than creating separate entries for each scan. Additionally, the system's design

does not treat the `readerID` as a unique component when logging entries, causing all scans

of the same book to be treated as a single record associated with the most recent scan's

location and timestamp.

The second scenario tests the system's ability to handle repeated scans of different books at

various readers. In this case, the expected behaviour is for the system to log each scan as a

separate entry, including the associated timestamp and location details. The actual result

confirms that the system behaved as expected in this scenario, accurately logging the entries.

These findings highlight both strengths and areas for improvement in the system’s ability to

manage complex data logging scenarios.

81

4.3.1.4 Distance Test between RFID Reader and NFC Sticker

Distance (cm) Number of Test Reader 1

Detection

Reader 2

Detection

1 cm 5 5 5

1.5 cm 5 5 5

1.7 cm 5 5 5

1.9 cm 5 5 5

2.0 cm 5 0 0

2.5 cm 5 0 0

Table 4.4 Distance Test

Table 4.4 presents the detection range of an RFID reader for an NFC sticker at different

distances. The results show successful detection at 1 cm, 1.5 cm, 1.7 cm and 1.9 cm while

no detection occurs at 2 cm or beyond. This suggests the RFID reader's effective range is

limited to 1.9 cm, highlighting its short detection capability.

Figure 4.25 Data Chart

The Figure 4.26 bar chart illustrates the detection performance of two RFID readers (Reader

1 and Reader 2) when interacting with an NFC sticker at varying distances, ranging from 1

Reader 2 Detection Reader 1 Detection

Distance (cm)

2.5 cm 2.0 cm 1.9 cm 1.7 cm 1.5 cm 1 cm

6

4

2

0

Distance Test between RFID Reader
and NFC Sticker

N
u

m
b

er
 o

f
D

et
ec

ti
o

n
s

82

cm to 2.5 cm. The number of detections is used as the measure of performance across these

distances.

Both RFID readers exhibit consistent and reliable detection performance at shorter distances.

At 1 cm, both Reader 1 and Reader 2 achieve the maximum detection count, demonstrating

their optimal functionality at close proximity. This trend continues as the distance increases

incrementally to 1.5 cm, 1.7 cm, and 1.9 cm, where both readers still maintain a high level

of detection reliability, albeit with a slight variation in detection counts.

However, beyond 1.9 cm, neither Reader 1 nor Reader 2 is able to detect the NFC sticker.

This sharp decline in performance indicates a defined operational range for the RFID readers,

effectively limiting their ability to detect NFC stickers beyond this threshold. At distances

of 2 cm and 2.5 cm, the detection count drops to zero for both readers, signifying the

complete loss of detection capability.

The results highlight that the effective detection range for both RFID readers is constrained

to a maximum distance of 1.9 cm. Within this range, the readers demonstrate consistent and

reliable performance, which likely reflects the intended design specifications of the system.

This restricted operational range may be influenced by factors such as the power output of

the readers, the sensitivity of the NFC sticker, or the electromagnetic field strength generated

by the readers.

From an operational perspective, the findings underscore the importance of maintaining

NFC stickers within the specified range to ensure consistent detection. While the design

parameters may aim to minimize external interference and optimize performance within a

controlled range, the limited detection distance could pose challenges in applications

requiring extended operational ranges. These observations suggest potential areas for

83

improvement, such as enhancing reader hardware, increasing signal strength, or exploring

alternative technologies to support greater detection distances while maintaining reliability.

4.3.1.5 Reader Overlap and Interference Test

Distance

between

Reader (cm)

Number of

Tests

Reader 1

Detection

Reader 2

Detection

Missed

Detection

(Reader 1)

Missed

Detection

(Reader 2)

3 cm 5 3 2 2 3

6 cm 5 2 3 3 2

9 cm 5 4 4 1 1

12 cm 5 5 5 0 0

Table 4.5 Reader Overlap and Interference Test

Table 4.5 presents the results of the Reader Overlap and Interference Test, which examines

how the proximity of two RFID readers impacts their detection performance. The test was

conducted at four distances: 3 cm, 6 cm, 9 cm, and 12 cm.

At the closest distance of 3 cm, significant interference was observed, resulting in lower

detection rates for both readers, with Reader 1 detecting 3 out of 5 tests and Reader 2

detecting 2 out of 5 tests. As the distance increased to 6 cm, the performance remained

inconsistent, with Reader 1 detecting 2 tests and Reader 2 detecting 3 tests, showing

continued interference.

At 9 cm, both readers demonstrated improved detection rates, with each detecting 4 out of 5

tests and showing fewer missed detections. By 12 cm, the interference appeared to be

minimal, as both readers achieved perfect detection rates with no missed detections.

Overall, the results suggest that interference between the readers diminishes as the distance

between them increases, with optimal performance achieved at 12 cm.

84

Reader Overlap and Interference Test

6

5

4

3

2

1

0

3 cm 6 cm 9 cm 12 cm

Distance between Reader (cm)

Number of Tests Reader 1 Detection

Reader 2 Detection Missed Detection (Reader 1)

Missed Detection (Reader 2)

Figure 4.26 Data Chart

Figure 4.27 illustrates the results of the Reader Overlap and Interference Test, which

evaluates how the proximity between two RFID readers affects their ability to detect tags.

The test was performed at four distances: 3 cm, 6 cm, 9 cm, and 12 cm, with five detection

attempts made by each reader at each distance.

At 3 cm, Reader 1 successfully detected 3 tags (orange bar), while Reader 2 detected 2 tags

(gray bar). The missed detections are represented by the yellow and light blue bars,

indicating 2 missed detections for Reader 1 and 3 for Reader 2. These results reveal

significant interference, likely due to overlapping electromagnetic fields at this close

distance.

At 6 cm, the detection patterns changed, with Reader 1 detecting 2 tags and Reader 2

detecting 3 tags. The yellow and light blue bars show 3 missed detections for Reader 1 and

2 for Reader 2, suggesting that interference continues to affect performance despite the

increased distance.

N
u

m
b

er
 o

f
Te

st
/D

et
ec

ti
o

n

85

At 9 cm, both readers showed improved performance, with each detecting 4 tags (orange and

gray bars), and the missed detections reduced to 1 for both readers (yellow and light blue

bars). This indicates a decrease in interference as the distance between the readers increases.

At 12 cm, both Reader 1 and Reader 2 achieved perfect detection rates, successfully

identifying all 5 tags (orange and gray bars) with no missed detections (yellow and light blue

bars absent). This demonstrates that interference was no longer a significant factor at this

distance.

Overall, the figure demonstrates that interference between the two RFID readers diminishes

as the distance between them increases, with optimal performance achieved at the tested

maximum of 12 cm. This suggests that maintaining sufficient spacing between RFID readers

is critical for minimizing overlap and ensuring accurate detections.

4.3.1.6 Orientation Test

Orientation (°) Number of Test Successful

Detection

Missed Detection

0° 5 5 0

30° 5 4 1

60° 5 2 3

90° 5 0 5

Table 4.6 Orientation Test

The results of the Orientation Test in Table 4.6 show how the angle of an NFC tag relative

to the RFID reader affects detection. At 0°, the reader achieved full detection success, while

at 30° and 60°, performance declined moderately. At 90°, detection failed entirely. These

results highlight the importance of keeping the NFC tag as close to 0° as possible for reliable

detection.

86

Orientation Test

6

5

4

3

2

1

0

0° 30° 60° 90°

Orientation (°)

Number of Test Successful Detection Missed Detection

Figure 4.27 Data Chart

The Figure 4.28 above illustrates the results of the Orientation Test, which examines how

varying the angle of an NFC tag relative to the RFID reader impacts detection success. At

0°, where the tag is perfectly aligned with the reader, all 5 tests resulted in successful

detections, as shown by the equal heights of the blue and red bars, with no missed detections

(green bar at zero). This confirms that the RFID reader operates optimally when the tag is

flat and directly facing the reader.

At 30°, the red bar (successful detections) drops slightly to 4, while the green bar (missed

detections) rises to 1, indicating a small reduction in performance due to the tag’s slight

deviation from perfect alignment. Despite this, the detection performance remains robust at

this angle.

At 60°, the red bar decreases further to 2 successful detections, with the green bar rising to

3 missed detections. This demonstrates a more noticeable decline in detection efficiency,

highlighting the reader’s struggle as the tag orientation becomes less favorable.

N
u

m
b

er
 o

f
Te

st
/D

et
ec

ti
o

n

87

Finally, at 90°, where the tag is fully perpendicular to the reader, the red bar drops to zero,

and the green bar reaches its maximum height of 5, indicating that the reader failed to detect

the tag in all tests. This confirms that the reader cannot reliably interact with tags at extreme

angles.

Overall, the chart visually underscores the steady decline in detection performance as the

angle increases from 0° to 90°, emphasizing the need to position NFC tags as close to 0° as

possible for reliable system operation.

4.3.2 Challenge in Completing the Project

4.3.2.1 Arduino IDE Coding

The code from Appendix B is unsuccessful because, while it successfully reads the UID

from two RFID readers and displays them via the serial monitor, it fails to send this data to

a website. The RFID readers are correctly initialized, and the code establishes a connection

to the specified Wi-Fi network, confirming the device's ability to communicate over the

network. However, the absence of functionality for transmitting the UID data to a web server

results in incomplete implementation, limiting the code's effectiveness in achieving its

intended purpose.

88

4.3.2.2 Php Script

One of the key challenges in completing this project was working with the PHP script,

particularly in implementing book location detection. I faced difficulties in accurately

determining the location of a book using the RFID system. To address this, I attempted to

use two RFID readers to differentiate the location of books on the shelves. However,

integrating multiple readers and ensuring accurate data capture and location tracking proved

to be complex due to synchronization issues, proper placement of readers, and ensuring

consistent detection of NFC tags.

4.4 Summary

This chapter presents the findings and analysis from implementing and testing the RFID-

based book tracking system developed to enhance library management. The system was

evaluated on its functionality, accuracy, and performance in tracking book movements,

ensuring real-time updates, and minimizing manual effort. Key aspects such as hardware

setup, prototype design, web interface functionalities, database management, and operational

tests are discussed in detail.

The hardware setup includes an ESP8266 microcontroller integrated with two MFRC522

RFID readers. These readers are configured to detect NFC-tagged books and transmit data

to a web server for processing and display. The prototype features distinct zones, labeled as

Shelf A and Shelf B, to demonstrate the system’s ability to differentiate between book

locations. Each book is tagged with an NFC sticker, and when scanned by the RFID readers,

the system updates its location in real time. This functionality is supported by a web interface

that enables book registration, editing, deletion, and tracking. A robust MySQL database

89

underpins the system, storing critical information such as book IDs, titles, authors, genres,

timestamps, and locations.

The system's performance was assessed through several tests. Detection range tests revealed

that the RFID readers can reliably detect NFC tags within a maximum range of 1.9 cm.

However, beyond this range, detection fails, limiting the system's operational flexibility.

Orientation tests demonstrated that detection efficiency decreases as the angle of the NFC

tag relative to the reader increases. At 0° alignment, detection was flawless, but performance

declined significantly at 30° and 60°, with complete failure at 90°. Interference tests

highlighted the need for a minimum separation of 12 cm between RFID readers to avoid

electromagnetic field overlap, which could cause missed detections.

The system also underwent Wi-Fi and server communication tests, which confirmed its

ability to reconnect automatically after brief disconnections and return HTTP status codes

of 200 for successful operations. However, challenges were identified in handling specific

edge cases, such as scanning the same book at different locations. In such cases, the system

overwrote previous location data instead of logging separate entries, indicating a need for

improved data management logic.

Overall, the results demonstrate the potential of the RFID-based book tracking system in

automating library operations. The system enhances efficiency by providing real-time

updates, reducing manual inventory tasks, and maintaining accurate book records while

reliably tracking and displaying the locations of books. These findings affirm the system’s

capability to streamline library management processes effectively.

90

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The development of a book-tracking system using a microcontroller and RFID technology

has successfully addressed the limitations of traditional library management systems. These

systems often suffer from inefficiencies, inaccuracies, and heavy reliance on manual

processes, which can lead to misplaced books and frustrated users. The newly developed

system provides an innovative solution by automating inventory management and enabling

real-time tracking of book locations. Through rigorous testing, including Wi-Fi connectivity,

server communication, distance measurements, and orientation evaluations, the system

demonstrated high accuracy, reliability, and robustness.

While the system only manages to record the last availability of the book at a specified shelf,

it can be further improved to also record whenever the book is taken out from the shelves.

This system not only benefits librarians by reducing their workload and enhancing

operational efficiency but also significantly improves the overall experience for library

visitors. Visitors can quickly locate books with real-time updates on their availability and

exact locations, minimizing search time and frustration. The web-based interface ensures

user-friendly interaction, enabling visitors to access book details and locations effortlessly.

By streamlining the process of finding and managing books, the system enhances user

satisfaction and promotes a more organized and accessible library environment. Ultimately,

this project has achieved its objectives of creating a scalable, efficient, and user-focused

library management system.

91

5.2 Potential for Commercialization

This RFID-based book-tracking system holds considerable potential for commercialization,

particularly for large-scale libraries in academic institutions, public facilities, and private

organizations. Its real-time tracking capabilities, automated updates, and accurate inventory

management make it a highly attractive solution for libraries seeking modernization. The

modular design allows customization to include features like book borrowing, returning, fine

management, and analytics, making it adaptable to a variety of library settings.

Additionally, the system’s cost-effectiveness and scalability ensure that it is not limited to

large institutions but is also suitable for smaller libraries with limited budgets. For library

visitors, the system’s ability to provide instant access to book availability and locations adds

a significant value proposition, encouraging widespread adoption. Collaborations with

technology vendors and library software providers could further enhance its features and

expand its market reach, positioning it as a leading solution in library automation systems.

5.3 Future Works

To further improve this project, several enhancements are recommended. First, the

implementation of a registration menu and a book record menu accessible exclusively to

librarians is essential. These features would require secure username and password

authentication to prevent unauthorized access. The registration menu would enable librarians

to manage user registrations, assign library cards, and control access, while the book record

menu would allow them to add, update, and delete book information, maintaining an accurate

database. The system should also be able to detect the same book at different readers, record

whenever the book is taken out from the shelves, enabling more accurate tracking of book

movement and location changes.

92

To enhance security and scalability, encrypted data transmission between the

microcontroller and the web server should be implemented to safeguard sensitive

information. Transitioning to a cloud-based database would provide better scalability,

reliability, and backup options, ensuring the system can handle larger data volumes

efficiently.

Additionally, developing a mobile application would provide greater convenience for library

visitors, allowing them to access book availability, locations, and other library services

directly on their smartphones. Advanced analytics tools could be integrated to help librarians

analyze book usage trends, optimize shelf organization, and predict future resource needs.

Expanding the hardware capabilities, such as using long-range RFID readers or

incorporating additional sensors, could further improve the accuracy and efficiency of book

tracking. These proposed enhancements would transform the system into a robust,

comprehensive, and future-ready solution for modern library environments, benefitting both

library staff and visitors alike.

93

REFERENCES

[1] Al Asrafi, A. A., Anti, A. H., & Ahmed, R. (2021). Smart library management system

(SLMS) using RFID technology (Bachelor's thesis, University of Asia Pacific,

Department of Electrical and Electronic Engineering, Dhaka, Bangladesh).

[2] Okubanjo, A., Okandeji, A., Osifeko, O., Onasote, A., & Olayemi, M. (2022).

Development of a hybrid radio frequency identification (RFID) and biometric-based

library management system. Gazi University Journal of Science, 35(2), 567-584.

https://doi.org/10.35378/gujs.834087 .

[3] Dharani Devi, P., Mirudhula, S., & Devi, A. (2021). Advanced library management

system using IoT. In Proceedings of the Fifth International Conference on I-SMAC (IoT

in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 150-152). IEEE.

https://doi.org/10.1109/I-SMAC52330.2021.9640697 .

[4] He, H., Liu, T., & Wang, E. (2017). Intelligent book positioning system for library based

on RFID. In Proceedings of the Conference on Industrial Electronics and Applications

(ICIEA). IEEE. https://doi.org/10.1109/ICIEA.2017.8006380 .

[5] Khadgi, R., Dangol, S., Lamsal, S., & Shrestha, S. (2022). RFID-based library

management system (Bachelor’s thesis, Khwopa Engineering College, Department of

Electronics & Communication Engineering, Bhaktapur, Nepal).

[6] Mukund, N. R., Arun, S., Kusuma, S. M., Vishak, K. R., & Monisha, M. (2021).

Intelligent RFID-based library management system. In Proceedings of the International

Conference on Electronics, Computing and Communication Technologies (CONECCT).

IEEE.

https://doi.org/10.35378/gujs.834087
https://doi.org/10.1109/I-SMAC52330.2021.9640697

94

[7] Babu, S., Srividhya, S., & Aishwarya, U. (2023). RFID-based library management

system. International Research Journal of Modernization in Engineering Technology and

Science, 5(6), 1-10.

[8] Suhaimi, M. M., Mohamed, Z., & Khusaini, N. S. (2023). Effectiveness of RFID smart

library management system. Journal of Mechanical Engineering, SI 12, 133-152.

https://doi.org/10.24191/jmeche.v12i1.24642.

[9] Gannamraju, P., Yarramsetti, S., & Kumar, L. S. (2021). Radio frequency identification

and internet of things-based smart library management system. International Journal of

Networking and Virtual Organisations, 24(4), 329-346.

https://doi.org/10.1504/IJNVO.2021.116430 .

[10] Keshinro, K. K., Balogun, W. A., Oyetola, J. B., & Omogoye, S. O. (2016).

Development of RFID library management information system. American Journal of

Engineering Research (AJER), 5(4), 158-160.

[11] Mozilla Developer Network. (n.d.). HTTP response status codes. Retrieved December

23, 2024, from https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

[12] W3Schools. (n.d.). HTTP messages. Retrieved, from

https://www.w3schools.com/tags/ref_httpmessages.asp

[13] PRAFUL SHINDE, PRADNYA CHIKANE, VAISHALI RAMCHANDRAN, PROF.

RASHMI MAHAJAN (2019). “AUTOMATED BOOK MANAGEMENT AND

TRACKING SYSTEM FOR LIBRARIES USING RFID”. Department of Electronics &

Telecommunication engineering, Lohegaon, Pune, Maharashtra (India).

https://ssrn.com/abstract=3382780

[14] RAMJI P. M. , SHUNBAGA PRADEEPA T. (2021). “DESIGN AND

IMPLEMENTATION OF BOOK TRACKING SYSTEM IN LIBRARY”.

https://doi.org/10.24191/jmeche.v12i1.24642
https://doi.org/10.1504/IJNVO.2021.116430
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://www.w3schools.com/tags/ref_httpmessages.asp
https://ssrn.com/abstract%3D3382780

95

International Journal of Innovative Research in Applied Sciences and Engineering

(IJIRASE) Volume 4, Issue 7, DOI:10.29027/IJIRASE.v4.i7.2021.811-816,January

2021. Department of Electronics and Communication Engineering, Institute of

Technology Coimbatore, Tamilnadu, India.

[15] Teach Me Microcontrollers.(December 4, 2023) . NodeMCU Pinout., Retrieved from

https://www.teachmemicro.com/nodemcu-pinout/

[16] MySQL Documentation. (n.d.). Date and time functions. Retrieved, from

https://dev.mysql.com/doc/refman/8.4/en/date-and-time-functions.html

[17] Visual Studio Code. (December 11, 2024.). Visual Studio Code for the web. Retrieved,

from https://code.visualstudio.com/docs/editor/vscode-web

[18] University of Virginia, Computer Science Department. (2023, September 12). Setting

up a database with XAMPP. Retrieved from

https://www.cs.virginia.edu/~up3f/cs4750/supplement/DB-setup-

xampp.html#:~:text=XAMPP%20is%20an%20open%20source,install%20and%20set

%20up%20XAMPP.

[19] Cloudways. (2025, January 5). How to join two tables in MySQL. Cloudways.

Retrieved from https://www.cloudways.com/blog/how-to-join-two-tables-

mysql/#:~:text=Ans%3A%20Joining%20two%20tables%20in,and%20Union%20(rem

oves%20duplicates)

[20] Stack Overflow. (2013). Show values from a MySQL database table inside an HTML

table on a webpage. Stack Overflow. Retrieved from

https://stackoverflow.com/questions/17902483/show-values-from-a-mysql-database-

table-inside-a-html-table-on-a-webpage

https://www.teachmemicro.com/nodemcu-pinout/
https://dev.mysql.com/doc/refman/8.4/en/date-and-time-functions.html
https://code.visualstudio.com/docs/editor/vscode-web
https://www.cs.virginia.edu/~up3f/cs4750/supplement/DB-setup-xampp.html#%3A~%3Atext%3DXAMPP%20is%20an%20open%20source%2Cinstall%20and%20set%20up%20XAMPP
https://www.cs.virginia.edu/~up3f/cs4750/supplement/DB-setup-xampp.html#%3A~%3Atext%3DXAMPP%20is%20an%20open%20source%2Cinstall%20and%20set%20up%20XAMPP
https://www.cs.virginia.edu/~up3f/cs4750/supplement/DB-setup-xampp.html#%3A~%3Atext%3DXAMPP%20is%20an%20open%20source%2Cinstall%20and%20set%20up%20XAMPP
https://www.cloudways.com/blog/how-to-join-two-tables-mysql/#%3A~%3Atext%3DAns%3A%20Joining%20two%20tables%20in%2Cand%20Union%20(removes%20duplicates)
https://www.cloudways.com/blog/how-to-join-two-tables-mysql/#%3A~%3Atext%3DAns%3A%20Joining%20two%20tables%20in%2Cand%20Union%20(removes%20duplicates)
https://www.cloudways.com/blog/how-to-join-two-tables-mysql/#%3A~%3Atext%3DAns%3A%20Joining%20two%20tables%20in%2Cand%20Union%20(removes%20duplicates)
https://stackoverflow.com/questions/17902483/show-values-from-a-mysql-database-table-inside-a-html-table-on-a-webpage
https://stackoverflow.com/questions/17902483/show-values-from-a-mysql-database-table-inside-a-html-table-on-a-webpage

96

#define RST_2_PIN D4 // Reset pin for Reader 2

#define SS_2_PIN D3 // SDA (SS) pin for Reader 2

#define NR_OF_READERS 2 // Number of RFID readers

// Wi-Fi Credentials

const char* ssid = "Galaxy A126FFD"; // Replace with your Wi-Fi SSID

const char* password = "busybody"; // Replace with your Wi-Fi password

// Server URL

const char* serverURL =

"http://192.168.242.166/NodeMCU_RC522_Mysql/getUID.php";

// SDA (SS) pin for Reader 1 #define SS_1_PIN D2

// Reset pin for Reader 1 #define RST_1_PIN D1

// Pin Definitions for the RFID Readers

// Include the MFRC522 library #include <MFRC522.h>

// Include SPI library for MFRC522 #include <SPI.h>

#include <ESP8266HTTPClient.h> // Include the HTTP Client library

// Include the Wi-Fi library #include <ESP8266WiFi.h>

APPENDICES

Appendix A Arduino IDE

http://192.168.242.166/NodeMCU_RC522_Mysql/getUID.php

97

// Array to hold SS and RST pins for readers

byte ssPins[] = {SS_1_PIN, SS_2_PIN};

byte rstPins[] = {RST_1_PIN, RST_2_PIN};

// Create instances of MFRC522 for each reader

MFRC522 mfrc522[NR_OF_READERS];

// Variables for storing UIDs

String UID[NR_OF_READERS];

unsigned long lastReadTime[NR_OF_READERS] = {0}; // For debouncing

const unsigned long debounceDelay = 1000; // 1 second cooldown

/**

* Initialize Wi-Fi and RFID readers.

*/

void setup() {

Serial.begin(115200); // Initialize serial communications with the PC

SPI.begin(); // Initialize SPI bus

// Initialize each RFID reader

for (uint8_t reader = 0; reader < NR_OF_READERS; reader++) {

mfrc522[reader].PCD_Init(ssPins[reader], rstPins[reader]);

Serial.print("Reader ");

98

Serial.print(reader + 1); // Display "Reader 1" or "Reader 2"

Serial.print(": ");

mfrc522[reader].PCD_DumpVersionToSerial(); // Print reader version info

}

// Connect to Wi-Fi

WiFi.begin(ssid, password);

Serial.print("Connecting to Wi-Fi");

while (WiFi.status() != WL_CONNECTED) {

Serial.print(".");

delay(500);

}

Serial.println("\nConnected to Wi-Fi!");

Serial.print("IP Address: ");

Serial.println(WiFi.localIP());

}

/**

* Main loop to detect and send UIDs from RFID readers.

*/

void loop() {

checkWiFi(); // Ensure Wi-Fi is connected

for (uint8_t reader = 0; reader < NR_OF_READERS; reader++) {

99

unsigned long currentTime = millis();

if (currentTime - lastReadTime[reader] > debounceDelay) {

if (readCard(mfrc522[reader], UID[reader], ssPins[reader])) {

lastReadTime[reader] = currentTime; // Update last read time

Serial.print("Reader ");

Serial.print(reader + 1);

Serial.println(" detected a card: " + UID[reader]);

sendUIDToServer(UID[reader], reader + 1);

}

}

}

delay(100); // Polling delay

}

/**

* Read card UID from the specified reader.

*/

bool readCard(MFRC522& reader, String& UID, int ss_pin) {

digitalWrite(ss_pin, LOW); // Select the reader

if (!reader.PICC_IsNewCardPresent() || !reader.PICC_ReadCardSerial()) {

digitalWrite(ss_pin, HIGH); // Deselect the reader

return false;

}

100

byte cardUID[4];

char buffer[32] = "";

for (int i = 0; i < 4; i++) {

cardUID[i] = reader.uid.uidByte[i];

}

arrayToString(cardUID, 4, buffer);

UID = String(buffer);

reader.PICC_HaltA(); // Halt the card

digitalWrite(ss_pin, HIGH); // Deselect the reader

return true;

}

/**

* Convert a byte array to a string.

*/

void arrayToString(byte array[], unsigned int len, char buffer[]) {

for (unsigned int i = 0; i < len; i++) {

byte nib1 = (array[i] >> 4) & 0x0F;

byte nib2 = (array[i] >> 0) & 0x0F;

buffer[i*2] = nib1 < 0xA ? '0' + nib1 : 'A' + nib1 - 0xA;

buffer[i*2+1] = nib2 < 0xA ? '0' + nib2 : 'A' + nib2 - 0xA;

}

buffer[len*2] = '\0';

101

}

/**

* Send UID to the server via HTTP POST request.

*/

void sendUIDToServer(String UID, int readerID) {

if (WiFi.status() != WL_CONNECTED) {

Serial.println("Wi-Fi not connected!");

return;

}

HTTPClient http;

WiFiClient client;

String postData = "UIDresult=" + UID + "&readerID=" + String(readerID); // Send both

UID and readerID

http.begin(client, serverURL);

http.addHeader("Content-Type", "application/x-www-form-urlencoded");

int httpCode = http.POST(postData); // Send POST request

if (httpCode > 0) {

Serial.println("HTTP Response code: " + String(httpCode));

String payload = http.getString();

Serial.println("Server response: " + payload);

102

} else {

Serial.println("HTTP request failed.");

}

http.end();

}

/**

* Check and reconnect Wi-Fi if disconnected.

*/

void checkWiFi() {

if (WiFi.status() != WL_CONNECTED) {

Serial.println("Reconnecting to Wi-Fi...");

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

Serial.print(".");

delay(500);

}

Serial.println("\nWi-Fi reconnected!");

}

}

103

Appendix B Arduino IDE

#include <ESP8266WiFi.h>

#include <SPI.h>

#include <MFRC522.h>

// Updated Pin Definitions for Reader 1 and Reader 2

#define SS_PIN_1 D2 // SDA (SS) for the first RC522

#define RST_PIN_1 D1 // RST for the first RC522

#define SS_PIN_2 D3 // SDA (SS) for the second RC522

#define RST_PIN_2 D4 // RST for the second RC522

MFRC522 rfid1(SS_PIN_1, RST_PIN_1); // Create instance for first reader

MFRC522 rfid2(SS_PIN_2, RST_PIN_2); // Create instance for second reader

// WiFi credentials

const char* ssid = "Galaxy A126FFD"; // Replace with your WiFi SSID

const char* password = "busybody"; // Replace with your WiFi password

void setup() {

Serial.begin(115200);

SPI.begin(); // Initialize SPI bus (uses hardware-defined pins)

rfid1.PCD_Init(); // Initialize the first reader

rfid2.PCD_Init(); // Initialize the second reader

Serial.println("RFID readers initialized.");

// Connect to WiFi

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(500);

Serial.print(".");

}

Serial.println("Connected to WiFi.");

}

void loop() {

// Check first RFID reader

if (rfid1.PICC_IsNewCardPresent()) {

if (rfid1.PICC_ReadCardSerial()) {

Serial.print("RFID 1: ");

for (byte i = 0; i < rfid1.uid.size; i++) {

Serial.print(rfid1.uid.uidByte[i], HEX);

Serial.print(" ");

}

Serial.println();

rfid1.PICC_HaltA(); // Halt PICC

rfid1.PCD_StopCrypto1(); // Stop encryption to free reader

104

}

}

// Check second RFID reader

if (rfid2.PICC_IsNewCardPresent()) {

if (rfid2.PICC_ReadCardSerial()) {

Serial.print("RFID 2: ");

for (byte i = 0; i < rfid2.uid.size; i++) {

Serial.print(rfid2.uid.uidByte[i], HEX);

Serial.print(" ");

}

Serial.println();

rfid2.PICC_HaltA(); // Halt PICC

rfid2.PCD_StopCrypto1(); // Stop encryption to free reader

}

}

delay(100); // Add a small delay to prevent overwhelming the serial output

}

105

<?php

$Write="<?php $" . "UIDresult=''; " . "echo $" . "UIDresult;" . " ?>";

file_put_contents('UIDContainer.php',$Write);

?>

<!DOCTYPE html>

<html lang="en">

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta charset="utf-8">

<link href="css/bootstrap.min.css" rel="stylesheet">

<script src="js/bootstrap.min.js"></script>

<style>

html {

font-family: Arial;

display: inline-block;

margin: 0px auto;

text-align: center;

}

body {

background-color: #E8D1A7;

}

h2 {

font-family: "Courier New", Courier, monospace; /*"Franklin Gothic Medium",

"Arial Narrow", Arial, sans-serif;

/* Change the font family */

font-size: 28px; /* Adjust the font size */

color: #333333; /* Change font color */

}

h3 {

font-family: "Courier New", Courier, monospace; /*"Franklin Gothic Medium",

"Arial Narrow", Arial, sans-serif;

/* Change the font family */

font-size: 28px; /* Adjust the font size */

color: #333333; /* Change font color */

}

ul.topnav {

list-style-type: none;

margin: auto;

Appendix C Home.php

106

padding: 0;

overflow: hidden;

background-color: #9D9167;

width: 70%;

}

ul.topnav li {float: left;}

ul.topnav li a {

display: block;

color: white;

text-align: center;

padding: 14px 16px;

text-decoration: none;

}

ul.topnav li a:hover:not(.active) {background-color: #743014;}

ul.topnav li a.active {background-color: #84592B;}

ul.topnav li.right {float: right;}

@media screen and (max-width: 600px) {

ul.topnav li.right,

ul.topnav li {float: none;}

}

img {

display: block;

margin-left: auto;

margin-right: auto;

}

</style>

<title>Home : NodeMCU V3 ESP8266 / ESP12E with MYSQL Database</title>

</head>

<body>

<h2>DEVELOPMENT OF A BOOK TRACKING SYSTEM IN THE

LIBRARY USING A MICROCONTROLLER AND RFID</h2>

<ul class="topnav">

Home

Admin Record

Registration

Book Display

Book Record

<h3>This Website will display book information</h3>

107

<?php

require 'database.php';

// Establish the connection

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Fetch all book data from the table, excluding Location and Date

$sql = "SELECT BookID, Title, Author, BookGenre FROM

table_nodemcu_rfidrc522_mysql"; // Updated SQL query

$q = $pdo->prepare($sql);

$q->execute();

$bookData = $q->fetchAll(PDO::FETCH_ASSOC);

Database::disconnect();

?>

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"

rel="stylesheet">

<script

src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></scri

pt>
<title>User Data : NodeMCU V3 ESP8266 / ESP12E with MYSQL Database</title>

<style>

table {

margin-top: 20px;

width: 100%;

border-collapse: collapse;

}

body {

background-color: #E8D1A7;

}

Appendix D User data.php

</body>

</html>

https://cdn.jsdelivr.net/npm/bootstrap%405.1.3/dist/css/bootstrap.min.css
https://cdn.jsdelivr.net/npm/bootstrap%405.1.3/dist/js/bootstrap.bundle.min.js

108

th, td {

padding: 10px;

text-align: left;

border: 1px solid #ddd;

}

th {

background-color: #f2f2f2;

}

td {

background-color: #fafafa;

}

.topnav {

list-style-type: none;

margin: auto;

padding: 0;

overflow: hidden;

background-color: #9D9167;

width: 70%;

}

.topnav li {

float: left;

}

.topnav li a {

display: block;

color: white;

text-align: center;

padding: 14px 16px;

text-decoration: none;

}

.topnav li a:hover:not(.active) {

background-color: #743014;

}

.topnav li a.active {

background-color: #84592B;

}

.topnav li.right {

float: right;

}

h2 {

font-family: "Courier New", Courier, monospace;

font-size: 28px;

color: #333333;

}

h3 {

font-family: "Courier New", Courier, monospace;

font-size: 28px;

109

color: #333333;

}

</style>

</head>

<body>

<h2 class="text-center">DEVELOPMENT OF A BOOK TRACKING SYSTEM IN

THE LIBRARY USING A MICROCONTROLLER AND RFID</h2>

<ul class="topnav">

Home

Admin Record

Registration

Book Display

Book Record

<div class="container">

<h3 class="text-center">Book Data Table</h3>

<table class="table table-striped table-bordered">

<thead>

<tr bgcolor="#442D1C" style="color:#FFFFFF;">

<th>BookID</th>

<th>Title</th>

<th>Author</th>

<th>Book Genre</th>

<th>Action</th>

</tr>

</thead>

<tbody>

<?php

if (!empty($bookData)) {

foreach ($bookData as $row) {

echo '<tr>';

echo '<td>' . $row['BookID'] . '</td>';

echo '<td>' . $row['Title'] . '</td>';

echo '<td>' . $row['Author'] . '</td>';

echo '<td>' . $row['BookGenre'] .'</td>'; // Removed Location and

Date

echo '<td>'; // Open a new cell for buttons

echo '<a class="btn btn-success" href="user data edit page.php?id=' .

$row['BookID'] . '">Edit';

echo ' ';

echo '<a class="btn btn-danger" href="user data delete page.php?id=' .

$row['BookID'] . '">Delete';

echo '</td>';

echo '</tr>';

}

110

<?php

require 'database.php';

// Initialize variables

$bookID = $title = $author = $BookGenre = "";

// Check if the BookID is passed in the URL

if (isset($_GET['id']) && !empty($_GET['id'])) {

$bookID = $_GET['id'];

// Establish the connection to the database

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Fetch the book data using BookID

$sql = "SELECT Title, Author, BookGenre FROM

table_nodemcu_rfidrc522_mysql WHERE BookID = ?";

$q = $pdo->prepare($sql);

$q->execute(array($bookID));

// Check if a row is returned

$row = $q->fetch(PDO::FETCH_ASSOC);

// If a row is found, populate the variables

if ($row) {

$title = $row['Title'];

$author = $row['Author'];

$BookGenre = $row['BookGenre'];

} else {

// If no book is found, redirect or show an error

echo "No book found with ID: $bookID";

exit();

}

Appendix E User data edit page.php

} else {

echo "<tr><td colspan='4' style='text-align:center;'>No data

available</td></tr>"; // Adjusted colspan

}

?>

</tbody>

</table>

</div>

</body>

</html>

111

Database::disconnect();

} else {

// Redirect if no BookID is provided

header("Location: user data.php");

exit();

}

// Handle form submission (update data)

if ($_SERVER["REQUEST_METHOD"] == "POST") {

$bookID = $_POST['BookID'];

$title = $_POST['Title'];

$author = $_POST['Author'];

$BookGenre = $_POST['BookGenre'];

// Establish the connection to the database

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Prepare the update query

$sql = "UPDATE table_nodemcu_rfidrc522_mysql SET Title = ?, Author = ?,

BookGenre = ? WHERE BookID = ?";

$q = $pdo->prepare($sql);

$q->execute(array($title, $author, $BookGenre, $bookID));

Database::disconnect();

// Redirect to user data page after update

header("Location: user data.php");

exit();

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"

rel="stylesheet">

<script

src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></scri

pt>

<title>Edit Book Data</title>

<style>

.form-container {

width: 50%;

margin: auto;

padding-top: 20px;

https://cdn.jsdelivr.net/npm/bootstrap%405.1.3/dist/css/bootstrap.min.css
https://cdn.jsdelivr.net/npm/bootstrap%405.1.3/dist/js/bootstrap.bundle.min.js

112

<?php

require 'database.php';

}

body {

background-color: #E8D1A7;

}

</style>

</head>

<body>

<h2 class="text-center">Edit Book Data</h2>

<div class="form-container">

<form action="user data edit page.php?id=<?php echo $bookID; ?>"

method="POST">

<div class="mb-3">

<label for="BookID" class="form-label">BookID</label>

<input type="text" class="form-control" id="BookID" name="BookID"

value="<?php echo $bookID; ?>" readonly>

</div>

<div class="mb-3">

<label for="Title" class="form-label">Title</label>

<input type="text" class="form-control" id="Title" name="Title"

value="<?php echo htmlspecialchars($title); ?>" required>

</div>

<div class="mb-3">

<label for="Author" class="form-label">Author</label>

<input type="text" class="form-control" id="Author" name="Author"

value="<?php echo htmlspecialchars($author); ?>" required>

</div>

<div class="mb-3">

<label for="BookGenre" class="form-label">Book Genre</label>

<input type="text" class="form-control" id="BookGenre" name="BookGenre"

value="<?php echo htmlspecialchars($BookGenre); ?>" required>

</div>

<button type="submit" class="btn btn-primary">Update</button>

Back

</form>

</div>

</body>

</html>

Appendix F User data edit tb.php

113

<?php
require 'database.php';

$id = 0;

// Fetch the id from the GET parameter if it's available

if (!empty($_GET['id'])) {

$id = $_GET['id']; // Use GET to retrieve the ID from the URL

}

// Handle the delete action when the form is submitted

if (!empty($_POST)) {

// Ensure the ID is retrieved from the POST request

$id = $_POST['id'];

Appendix G User data delete page.php

$id = null;

if (!empty($_GET['BookID'])) {

$id = $_REQUEST['BookID'];

}

if (!empty($_POST)) {

// Keep track of the posted values

$BookID = $_POST['BookID'];

$Title = $_POST['Title'];

$Author = $_POST['Author'];

$BookGenre = $_POST['BookGenre'];

// Connect to the database

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Update query without Date and Location fields

$sql = "UPDATE table_nodemcu_rfidrc522_mysql SET Title = ?, Author = ?,

BookGenre = ? WHERE BookID = ?";

$q = $pdo->prepare($sql);

$q->execute(array($Title, $Author, $BookGenre, $BookID)); // Corrected parameter

order

Database::disconnect();

header("Location: user data.php");

exit();

}

?>

114

// Delete data from the database using the correct column name (BookID)

try {

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

// Assuming the identifier is BookID and not id

$sql = "DELETE FROM table_nodemcu_rfidrc522_mysql WHERE BookID = ?";

$q = $pdo->prepare($sql);

$q->execute(array($id));

// Check if the delete was successful

if ($q->rowCount() > 0) {

// Redirect to the user data page after deletion

header("Location: user data.php");

exit();

} else {

echo "No record found with that ID.";

}

Database::disconnect();

} catch (PDOException $e) {

echo "Error: " . $e->getMessage();

}

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<link href="css/bootstrap.min.css" rel="stylesheet">

<script src="js/bootstrap.min.js"></script>

<title>Delete : NodeMCU V3 ESP8266 / ESP12E with MYSQL Database</title>

<style>

body {

background-color: #E8D1A7;

}

</style>

</head>

<body>

<h2 align="center">DEVELOPMENT OF A BOOK TRACKING SYSTEM IN THE

LIBRARY USING A MICROCONTROLLER AND RFID</h2>

<div class="container">

<div class="span10 offset1">

<div class="row">

<h3 align="center">Remove Book</h3>

</div>

115

<?php

$Write="<?php $" . "UIDresult=''; " . "echo $" . "UIDresult;" . " ?>";

file_put_contents('UIDContainer.php',$Write);

?>

<!DOCTYPE html>

<html lang="en">

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta charset="utf-8">

<link href="css/bootstrap.min.css" rel="stylesheet">

<script src="js/bootstrap.min.js"></script>

<script src="jquery.min.js"></script>

<script>

$(document).ready(function(){

$("#getUID").load("UIDContainer.php");

setInterval(function() {

$("#getUID").load("UIDContainer.php");

}, 500);

});

</script>

<style>

Appendix H Registration.php

<!-- Form for deleting the user -->

<form

method="post">

class="form-horizontal" action="user data delete page.php"

<!-- Hidden input to pass the id for deletion -->

<input type="hidden" name="id" value="<?php echo $id; ?>" />

<p class="alert alert-error">Are you sure you want to remove this book?</p>

<div class="form-actions">

<button type="submit" class="btn btn-danger">Yes</button>

No

</div>

</form>

</div>

</div> <!-- /container -->

</body>

</html>

116

html {

font-family: Arial;

display: inline-block;

margin: 0px auto;

}

body {

background-color: #E8D1A7;

}

h2 {

font-family: "Courier New", Courier, monospace; /*"Franklin Gothic Medium",

"Arial Narrow", Arial, sans-serif;

/* Change the font family */

font-size: 28px; /* Adjust the font size */

color: #333333; /* Change font color */

}

h3 {

font-family: "Courier New", Courier, monospace; /*"Franklin Gothic Medium",

"Arial Narrow", Arial, sans-serif;

/* Change the font family */

font-size: 28px; /* Adjust the font size */

color: #333333; /* Change font color */

}

textarea {

resize: none;

}

ul.topnav {

list-style-type: none;

margin: auto;

padding: 0;

overflow: hidden;

background-color: #9D9167;

width: 70%;

}

ul.topnav li {float: left;}

ul.topnav li a {

display: block;

color: white;

text-align: center;

padding: 14px 16px;

text-decoration: none;

}

117

ul.topnav li a:hover:not(.active) {background-color: #743014;}

ul.topnav li a.active {background-color: #84592B;}

ul.topnav li.right {float: right;}

@media screen and (max-width: 600px) {

ul.topnav li.right,

ul.topnav li {float: none;}

}

</style>

<title>Registration : NodeMCU V3 ESP8266 / ESP12E with MYSQL Database</title>

</head>

<body>

<h2 align="center">DEVELOPMENT OF A BOOK TRACKING SYSTEM IN THE

LIBRARY USING A MICROCONTROLLER AND RFID</h2>

<ul class="topnav">

Home

Admin Reord

Registration

Book Display

Book Record

<div class="container">

<div class="center" style="margin: 0 auto; width:495px; border-style: solid; border-

color: #442D1C;">

<div class="row">

<h3 align="center">Registration Form</h3>

</div>

<form class="form-horizontal" action="insertDB.php" method="post" >

<div class="control-group">

<label class="control-label">BookID</label>

<div class="controls">

<textarea name="bookID" id="getUID" placeholder="Please Tag your Card /

Key Chain to display BookID" rows="1" cols="1" required></textarea>

</div>

</div>

<div class="control-group">

<label class="control-label">Title</label>

<div class="controls">

<input id="div_refresh" name="title" type="text" placeholder="" required>

</div>

118

<?php

// Write the scanned UID to a PHP file to be used by JavaScript

$Write = "<?php \$UIDresult=''; echo \$UIDresult; ?>";

file_put_contents('UIDContainer.php', $Write);
?>

<!DOCTYPE html>

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta charset="utf-8">

<link href="css/bootstrap.min.css" rel="stylesheet">

<script src="js/bootstrap.min.js"></script>

<script src="jquery.min.js"></script>

<script>

$(document).ready(function(){

Appendix I Read tag.php

</div>

<div class="control-group">

<label class="control-label">Author</label>

<div class="controls">

<input name="author" type="text" placeholder="" required>

</div>

</div>

<div class="control-group">

<label class="control-label">Book Genre</label>

<div class="controls">

<input name="BookGenre" type="text" placeholder="" required>

</div>

</div>

<div class="form-actions">

<button type="submit" class="btn btn-success">Save</button>

</div>

</form>

</div>

</div> <!-- /container -->

</body>

</html>

119

$("#getUID").load("UIDContainer.php"); // Load UID on page load

setInterval(function() {

$("#getUID").load("UIDContainer.php"); // Refresh every 500ms

}, 500);

});

</script>

<style>

html {

font-family: Arial;

display: inline-block;

margin: 0px auto;

text-align: center;

}

body {

background-color: #E8D1A7;

}

h2 {

font-family: "Courier New", Courier, monospace;

font-size: 28px;

color: #333333;

}

h3 {

font-family: "Courier New", Courier, monospace;

font-size: 28px;

color: #333333;

}

ul.topnav {

list-style-type: none;

margin: auto;

padding: 0;

overflow: hidden;

background-color: #9D9167;

width: 70%;

}

ul.topnav li { float: left; }

ul.topnav li a {

display: block;

color: white;

text-align: center;

padding: 14px 16px;

text-decoration: none;

}

120

ul.topnav li a:hover:not(.active) { background-color: #743014; }

ul.topnav li a.active { background-color: #84592B; }

ul.topnav li.right { float: right; }

@media screen and (max-width: 600px) {

ul.topnav li.right,

ul.topnav li { float: none; }

}

td.lf {

padding-left: 15px;

padding-top: 12px;

padding-bottom: 12px;

}

</style>

<title>Read Tag : NodeMCU V3 ESP8266 / ESP12E with MYSQL Database</title>

</head>

<body>

<h2 align="center">DEVELOPMENT OF A BOOK TRACKING SYSTEM IN

THE LIBRARY USING A MICROCONTROLLER AND RFID</h2>

<ul class="topnav">

Home

Admin Record

Registration

Book Display

Book Record

<p id="getUID" hidden></p>

<div id="show_user_data">

<!-- Placeholder for user data -->

<form>

<table width="452" border="1" bordercolor="#FFFFFF" align="center"

cellpadding="0" cellspacing="1" bgcolor="#000" style="padding: 2px">

<tr>

<td height="40" align="center" bgcolor="#442D1C"><font

color="#FFFFFF">User Data</td>

</tr>

121

<tr>

<td bgcolor="#f9f9f9">

<table width="452" border="0" align="center" cellpadding="5"

cellspacing="0">

<tr>

<td width="113" align="left" class="lf">BookID</td>

<td style="font-weight:bold">:</td>

<td align="left"> -------- </td>

</tr>

<tr bgcolor="#f2f2f2">

<td align="left" class="lf">Title</td>

<td style="font-weight:bold">:</td>

<td align="left"> -------- </td>

</tr>

<tr>

<td align="left" class="lf">Author</td>

<td style="font-weight:bold">:</td>

<td align="left"> -------- </td>

</tr>

<tr>

<td align="left" class="lf">Timestamp</td>

<td style="font-weight:bold">:</td>

<td align="left"> -------- </td>

</tr>

<tr>

<td align="left" class="lf">Location</td>

<td style="font-weight:bold">:</td>

<td align="left"> -------- </td>

</tr>

</table>

</td>

</tr>

</table>

</form>

</div>

<script>

var myVar = setInterval(myTimer, 1000);

var myVar1 = setInterval(myTimer1, 1000);

var oldID = "";

clearInterval(myVar1);

function myTimer() {

122

var getID = document.getElementById("getUID").innerHTML;

oldID = getID;

if (getID != "") {

myVar1 = setInterval(myTimer1, 500);

showUser (getID);

clearInterval(myVar);

}

}

function myTimer1() {

var getID = document.getElementById("getUID").innerHTML;

if (oldID != getID) {

myVar = setInterval(myTimer, 500);

clearInterval(myVar1);

}

}

function showUser (str) {

if (str == "") {

document.getElementById("show_user_data").innerHTML = "";

return;

} else {

if (window.XMLHttpRequest) {

xmlhttp = new XMLHttpRequest();

} else {

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

}

xmlhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

document.getElementById("show_user_data").innerHTML

this.responseText;

}

};

xmlhttp.open("GET", "read tag user data.php?id=" + str, true);

xmlhttp.send();

}

}

=

var blink = document.getElementById('blink');

setInterval(function() {

blink.style.opacity = (blink.style.opacity == 0 ? 1 : 0);

}, 750);

</script>

</body>

</html>

123

Appendix J Read tag user data.php

<?php

require_once 'vendor/autoload.php';

use GeoIp2\Database\Reader;

require 'database.php'; // Ensure your database connection file is included

// Start session (if using session storage for readerID)

session_start();

// Initialize message variable

$msg = null;

// Include the PHP files that contain the UID and readerID values

include('readerContainer.php'); // This will set the $readerID variable

include('UIDContainer.php'); // This will set the $UIDresult variable

// Check if 'id' parameter is set in the URL

if (isset($_GET['id'])) {

// Get the book ID from the URL parameter

$id = $_GET['id'];

// Default to "Unknown Reader" if $readerID is not set

$location = "Unknown Reader";

// Determine the location based on the reader ID

if ($readerID == 1) {

$location = "Shelf A";

} elseif ($readerID == 2) {

$location = "Shelf B";

}

// Connect to the database

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Check if the book exists in the database

$checkSql = "SELECT BookID FROM table_nodemcu_rfidrc522_mysql WHERE

BookID = ?";

$checkStmt = $pdo->prepare($checkSql);

$checkStmt->execute([$id]);

// If the book exists, insert/update the location

if ($checkStmt->rowCount() > 0) {

// Insert or update the data with the new location

$sql1 = "INSERT INTO page_data (BookID, Location) VALUES (?, ?)";

$q1 = $pdo->prepare($sql1);

$q1->execute([$id, $location]);

124

}

// Fetch the most recent record, ensuring it includes the correct location

$sql = "

SELECT

t.BookID, t.Title, t.Author, p.Timestamp, p.Location

FROM

table_nodemcu_rfidrc522_mysql AS t

LEFT JOIN

page_data AS p

ON

t.BookID = p.BookID

WHERE

t.BookID = ?

ORDER BY

p.Timestamp DESC

LIMIT 1

";

$q = $pdo->prepare($sql);

$q->execute([$id]);

$data = $q->fetch(PDO::FETCH_ASSOC);

// Fallback if data is missing

if (!$data) {

$msg = "The ID of your Card / KeyChain is not registered !!!";

$data['BookID'] = $id;

$data['Title'] = " ------- ";

$data['Author'] = " ------- ";

$data['Timestamp'] = " ------- ";

$data['Location'] = $location; // Ensure the location defaults to the current reader's

location

}

}

// Display the user data in a table

echo '<table width="452" border="1" bordercolor="#442D1C" align="center"

cellpadding="0" cellspacing="1" bgcolor="#000" style="padding: 2px">

<tr>

<td height="40" align="center" bgcolor="#442D1C"><font

color="#FFFFFF">User Data</td>

</tr>

<tr>

<td bgcolor="#f9f9f9">

<table width="452" border="0" align="center" cellpadding="5"

cellspacing="0">

<tr>

<td width="113" align="left" class="lf">BookID</td>

<td style="font-weight:bold">:</td>

<td align="left">' . htmlspecialchars($data['BookID']) . '</td>

125

<?php

require 'database.php';

// Establish the connection

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Fetch data from two tables using INNER JOIN

$sql = "SELECT

t1.BookID,

t1.Title,

t1.Author,

t2.Timestamp,

t2.Location

FROM table_nodemcu_rfidrc522_mysql t1

INNER JOIN page_data t2

Appendix K Book record.php

</tr>

<tr bgcolor="#f2f2f2">

<td align="left" class="lf">Title</td>

<td style="font-weight:bold">:</td>

<td align="left">' . htmlspecialchars($data['Title']) . '</td>

</tr>

<tr>

<td align="left" class="lf">Author</td>

<td style="font-weight:bold">:</td>

<td align="left">' . htmlspecialchars($data['Author']) . '</td>

</tr>

<tr>

<td align="left" class="lf">Timestamp</td>

<td style="font-weight:bold">:</td>

<td align="left">' . htmlspecialchars($data['Timestamp']) . '</td>

</tr>

<tr>

<td align="left" class="lf">Location</td>

<td style="font-weight:bold">:</td>

<td align="left">' . htmlspecialchars($data['Location']) . '</td>

</tr>

</table>

</td>

</tr>

</table>';

?>

126

ON t1.BookID = t2.BookID";

$q = $pdo->prepare($sql);

$q->execute();

$bookData = $q->fetchAll(PDO::FETCH_ASSOC);

Database::disconnect();

?>

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"

rel="stylesheet">

<script

src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></scri

pt>

<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>

<title>Book Record : NodeMCU V3 ESP8266 / ESP12E with MYSQL

Database</title>

<style>

table {

margin-top: 20px;

width: 100%;

border-collapse: collapse;

}

body {

background-color: #E8D1A7;

}

th, td {

padding: 10px;

text-align: left;

border: 1px solid #ddd;

}

th {

background-color: #f2f2f2;

}

td {

background-color: #fafafa;

}

.topnav {

list-style-type: none;

margin: auto;

padding: 0;

overflow: hidden;

https://cdn.jsdelivr.net/npm/bootstrap%405.1.3/dist/css/bootstrap.min.css
https://cdn.jsdelivr.net/npm/bootstrap%405.1.3/dist/js/bootstrap.bundle.min.js

127

background-color: #9D9167;

width: 70%;

}

.topnav li {

float: left;

}

.topnav li a {

display: block;

color: white;

text-align: center;

padding: 14px 16px;

text-decoration: none;

}

.topnav li a:hover:not(.active) {

background-color: #743014;

}

.topnav li a.active {

background-color: #84592B;

}

.topnav li.right {

float: right;

}

h2 {

font-family: "Courier New", Courier, monospace;

font-size: 28px;

color: #333333;

}

h3 {

font-family: "Courier New", Courier, monospace;

font-size: 28px;

color: #333333;

}

</style>

</head>

<body>

<h2 class="text-center">DEVELOPMENT OF A BOOK TRACKING SYSTEM IN

THE LIBRARY USING A MICROCONTROLLER AND RFID</h2>

<ul class="topnav">

Home

Admin Record

Registration

Book Display

Book Record

128

<?php

class Database

{

// Database credentials

private static $dbName = 'node_rfidrc522_mysql'; // Your database name

private static $dbHost = 'localhost'; // Your database host

Appendix L Database.php

<div class="container">

<h3 class="text-center">Book Data Table</h3>

<table class="table table-striped table-bordered">

<thead>

<tr bgcolor="#442D1C" style="color:#FFFFFF;">

<th>BookID</th>

<th>Title</th>

<th>Author</th>

<th>Timestamp</th>

<th>Location</th>

</tr>

</thead>

<tbody id="book-data">

<?php

if (!empty($bookData)) {

foreach ($bookData as $row) {

echo '<tr>';

echo '<td>' . $row['BookID'] . '</td>';

echo '<td>' . $row['Title'] . '</td>';

echo '<td>' . $row['Author'] . '</td>';

echo '<td>' . $row['Timestamp'] . '</td>'; // Display the Timestamp

echo '<td>' . (isset($row['Location']) ? $row['Location'] : 'N/A') . '</td>'; //

Optional for Location

echo '</tr>';

}

} else {

echo "<tr><td colspan='5' style='text-align:center;'>No data available</td></tr>";

}

?>

</tbody>

</table>

</div>

</body>

</html>

129

private static $dbUsername = 'root'; // Your database username

private static $dbUserPassword = 'root123'; // Your database password

// The PDO connection instance

private static $cont = null;

// Private constructor to prevent initialization

public function construct() {

die('Init function is not allowed');

}

/**

* Connect to the database using PDO.

* Uses the Singleton pattern to ensure only one instance.

*
* @return PDO instance

*/

public static function connect()

{

// If connection already exists, return the existing connection

if (null == self::$cont) {

try {

// Set connection options

$options = array(

PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION, // Enable

error handling

PDO::ATTR_TIMEOUT => 30 // Set connection timeout

);

// Attempt to connect using PDO

self::$cont = new PDO(

"mysql:host=" . self::$dbHost . ";dbname=" . self::$dbName,

self::$dbUsername,

self::$dbUserPassword,

$options

);

// Set the character set to UTF-8

self::$cont->exec("SET NAMES 'utf8'");

} catch (PDOException $e) {

// Log error and show user-friendly message

error_log("Database Connection Error: " . $e->getMessage());

die('Unable to connect to the database at this time. Please try again later.');

}

}

// Return the active connection

return self::$cont;

130

<?php

if (isset($_POST["UIDresult"]) && isset($_POST["readerID"])) {

$UIDresult = $_POST["UIDresult"];

$readerID = $_POST["readerID"];

// Save the UID to UIDContainer.php

$Write = "<?php $" . "UIDresult='" . $UIDresult . "'; " . "echo $" . "UIDresult;" . " ?>";

file_put_contents('UIDContainer.php', $Write);

// Save the readerID to readerContainer.php

$Write = "<?php $" . "readerID='" . $readerID . "'; " . "echo $" . "readerID;" . " ?>";

file_put_contents('readerContainer.php', $Write);

} else {

echo "Missing UIDresult or readerID!";

}

?>

<?php

require 'database.php';

if (!empty($_POST)) {

// Debugging: print the post data

print_r($_POST);

Appendix M getUID.php

Appendix N insertDB.php

}

/**

* Disconnect from the database.

*/

public static function disconnect()

{

// Close the connection by setting it to null

self::$cont = null;

}

}

?>

131

<?php $UIDresult=''; echo $UIDresult; ?>

<?php $readerID=''; echo $readerID; ?>

// Keep track of post values (using isset to avoid warnings)

$BookID = isset($_POST['bookID']) ? $_POST['bookID'] : '';

$Title = isset($_POST['title']) ? $_POST['title'] : '';

$Author = isset($_POST['author']) ? $_POST['author'] : '';

$BookGenre = isset($_POST['BookGenre']) ? $_POST['BookGenre'] : '';

// Check if the BookID already exists in the database

$pdo = Database::connect();

$pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$sql_check = "SELECT COUNT(*) FROM table_nodemcu_rfidrc522_mysql WHERE

BookID = ?";

$q_check = $pdo->prepare($sql_check);

$q_check->execute(array($BookID));

$count = $q_check->fetchColumn();

// If the BookID already exists, handle the error (e.g., don't insert, or update the record)

if ($count > 0) {

echo "Error: This BookID already exists in the database.";

Database::disconnect();

exit;

}

// Insert data if no duplicate BookID found

$sql = "INSERT INTO table_nodemcu_rfidrc522_mysql (BookID, Title, Author,

BookGenre) VALUES (?, ?, ?, ?)";

$q = $pdo->prepare($sql);

$q->execute(array($BookID, $Title, $Author, $BookGenre));

Database::disconnect();

header("Location: user data.php");

}

?>

Appendix O UIDContainer.php

Appendix P readerContainer.php

132

Appendix Q ESP8266 pintout

Appendix R RFID reader pinout

