

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The Compatibilizing Effect of Coupling Agent on the Morphological Properties of Banana Fibre as Reinforcement for Polymer Matrix Composites

Report submitted in accordance with partial requirements of the Universiti Teknikal Malaysia Melaka for the Bachelor of Manufacturing Engineering (Engineering Materials)

By

Chang Siang Yee

Faculty of Manufacturing Engineering April 2008

	NIKAL MALAYSIA MELAKA
BOR	ANG PENGESAHAN STATUS TESIS*
JUDUL: <u>THE COMPATIBILIZI</u> <u>MORPHOLOGICAL P</u> <u>FOR POLYMER MAT</u>	ING EFFECT OF COUPLING AGENT ON THE PROPERTIES OF BANANA FIBRE AS REINFORCEMENT RIX COMPOSITES
SESI PENGAJIAN : <u>2007/200</u>	<u>8</u>
Saya	CHANG SIANG YEE (HURUF BESAR)
mengaku membenarkan tes Perpustakaan Universiti Tek kegunaan seperti berikut:	is (PSM/Sarjana/Doktor Falsafah) ini disimpan di <nikal (utem)="" dengan="" malaysia="" melaka="" syarat-syarat<="" td=""></nikal>
 Tesis adalah hak milik U Perpustakaan Universiti untuk tujuan pengajian Perpustakaan dibenarka antara institusi pengajia **Sila tandakan (√) 	niversiti Teknikal Malaysia Melaka . Teknikal Malaysia Melaka dibenarkan membuat salinan sahaja. n membuat salinan tesis ini sebagai bahan pertukaran in tinggi.
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PEN	IULIS) (TANDATANGAN PENYELIA)
Alamat Tetap:	Cop Rasmi:
Tarikh:	Tarikh:
* Tesis dimaksudkan sebagai tesis b disertasi bagi pengajian secara ker ** Jika tesis ini SULIT atau TERHAD dengan menyatakan sekali sebab da	bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau ja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM). , sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan an tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this thesis entitled "The Compatibilizing Effect of Coupling Agent on the Morphological Properties of Banana Fibre as Reinforcement for Polymer Matrix Composites" is the result of my own research except as cited in references.

Signature	:
Author's Name	:CHANG SIANG YEE
Date	:

APPROVAL

This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials). The members of the supervisory committee are as follow:

> PN. ZURINA BINTI SHAMSUDIN Main Supervisor (Official Stamp & Date)

ABSTRACT

The interest in using natural fibres as reinforcement in polymer matrix composites has increased dramatically during the last few years in regard to the environmental aspect and cost-effectiveness. This report aims in studying the rheological and morphological properties of banana fibre reinforced polypropylene (PP/BF) composite as a function of fibre loading and coupling agent concentration, followed by drawing a relationship of the two parameters on the rheological-morphological properties of PP/BF composite. To conduct this research, the primary materials involved were banana fibre as the reinforcement, polypropylene (PP) as the matrix and silane as the coupling agent used. Prior to composite processing, banana fibre processing was conducted to extract banana fibres from the pseudo-stem of a mature banana (Musacea) plant. Fibres with length of less than 1mm were then mixed with silane at concentration of 0, 0.5, 1 and 2wt% at fibre loading of 2, 5 and 10wt%. The mixes were later subjected to rheological testing and morphological analysis. The rheological result showed that all system exhibited pseudoplasticity and incorporation of treated fibres consequent enhanced viscosity due to improved interfacial adhesion at fibre-matrix interface. However, it is observed that silane concentration of 2wt% does not yield further enhancement in the rheological properties of the composite when compared to that of 1wt%. In the aspect of morphology, the compatibilizing effect of silane is evaluated in terms of fibre orientation and dispersion. Effect of silane concentration on the morphology does not seem to be pronounced as compared to the effect of fibre loading. Increase in fibre loading causes low shear rate and the fibre concentrated at the periphery; and vice versa. However, it is found that PP/BF 10wt% with 1wt% of silane has the most promising compatibilizing effect.

ABSTRAK

Minat terhadap penggunaan gentian semula jadi sebagai penetulang dalam komposit bermatrikskan polimer telah berkembang secara mendadak sejak kebelakangan ini disebabkan oleh aspek persekitaran dan kos efektif. Matlamat penulisan kertas kajian ini adalah untuk mengkaji sifat reologi dan morfologi komposit polipropilina bertulangkan gentian pisang (PP/BF) berfungsikan muatan gentian dan komposisi agen perangkai serta perkaitan hubungan kedua-dua parameter tersebut dengan sifat reologi-morfologi komposit PP/BF. Dalam kajian ini, bahan utama termasuk gentian pisang sebagai penetulang, polipropilina (PP) sebagai bahan matriks dan 'silane' sebagai agen perangkai. Sebelum komposit difabrikasikan, pemprosesan gentian pisang dijalankan dengan mengekstrak gentian pisang dari batang semu pokok pisang (Musacea) yang matang. Gentian yang berpanjang kurang daripada 1 mm dicampur dengan 'silane' mengikut komposisi 0, 0.5, 1 dan 2wt% dengan muatan gentian 2, 5 dan 10wt%. Campuran kemudian melalui ujian reologi dan analisis morfologi. Keputusan ujian reologi menunjukkan semua sistem berkelakuan pseudoplastik dan penambahan gentian yang dirawat meningkatkan kelikatan disebabkan oleh lekatan kuat pada antara-muka gentian-matriks. Namun, penggunaan 'silane' berkomposisi 2wt% tidak menunjukkan peningkatan dalam sifat reologinya apabila dibandingkan dengan yang berkomposisi 1wt%. Dari aspek morfologi, kesan kesesuaian 'silane' dinilai dari segi orientasi dan taburan gentian. Kesan komposisi 'silane' ke atas morfologi kurang ketara apabila dibandingkan dengan kesan muatan gentian. Penambahan muatan gentian menyebabkan kadar ricih yang rendah dan gentian tertumpu pada kawasan periferi dan sebaliknya. Namun, keputusan menunjukkan PP/BF dengan muatan gentian 10 wt% dan komposisi 'silane' sebanyak 1wt% mempunyai kesan kesesuaian yang memberangsangkan.

DEDICATION

For my beloved parents

ACKNOWLEDGEMENT

I would like to take this opportunity to express my appreciation to those who have aided me throughout the project. Thanks especially to Puan Zurina binti Shamsudin, my direct project supervisor for her guidance and patience throughout the numerous consultations; I am forever grateful for those. Thanks also to Ms. Zaleha binti Mustafa, my cosupervisor for her knowledge and experience regarding my projects, for without those, this project may not be valuable. To Mr. Hairulhisham bin Rosnan, thank you for your time and cooperation, your help throughout the laboratory work of this project is priceless. Not forgetting Mr. Azhar Shah bin Abu Hassan, for his help in the use of Scanning Electron Microscope (SEM) as well as Mr. Mahader bin Muhamad for kind assistance with the use of roll mill machine at the facility of the Faculty of Mechanical Engineering. Also, highly appreciated, Mr. Hooman, University Kebangsaan Malaysia (UKM) PhD. postgraduate for his kind guidance and tolerate throughout my usage of capillary rheometer machine at UKM. To all my peers, especially those who are undergoing final year in the Degree programs, thank you for providing the motivation necessary for me to do my best. Besides those mentioned, I would like to express my gratitude to the rest of the academic staff and technical staff at Universiti of Teknikal Malaysia, Melaka (UTeM) for sharing my sentiments and their ideas. Not forgetting my parents and family, for without their love and support, I would not even be here, thank you for everything. Finally, I would like to thank everyone reading this report for their time.

TABLE OF CONTENTS

DE	CLARA	ΓΙΟΝ		i
API	PROVA	Ĺ		ii
ABS	STRAC	Г		iii
ABS	STRAK			iv
DEI	DICATI	ON		v
AC	KNOWI	LEDGEM	IENTS	vi
TAI	BLE OF	CONTE	NTS	vii
LIS	T OF FI	GURES		xi
LIS	T OF TA	ABLES		xvii
LIS	T OF A	BBREVIA	ATIONS, SYMBOLS AND NOMENCLATURES	xviii
1.	INTI	RODUCT	ION	1
	1.1	Backgro	ound	1
	1.2	Problem	n Statement	3
	1.3	Objectiv	ves	4
	1.4	Scope		4
2.	LITH	ERATUR	E REVIEW	6
	2.1	Compos	sites	6
		2.1.1	Introduction	6
		2.1.2	Polymer matrix composite	7
	2.2	Matrix		8
		2.2.1	Introduction	8
		2.2.2	Thermoset	9
		2.2.3	Thermoplastic	10
	2.3	Reinfor	cement	11

	2.3.1	Introduction	11
	2.3.2	Synthetic fibre	12
	2.3.3	Natural fibre	15
2.4	Banan	a Fibre	17
	2.4.1	Introduction	17
	2.4.2	Characteristic of banana fibre	18
	2.4.3	Banana fibre composite	20
2.5	Natura	al Fibre/Matrix Interface Adhesion	21
	2.5.1	Fibre surface modification	22
	2.5.2	Coupling agent addition	24
		2.5.2.1 Silane	25
		2.5.2.2 Maleic anhydride grafted polypropylene	27
		2.5.2.3 Novel hybrid coupling agent	29
2.6	Rheole	ogical Properties of Composites	30
	2.6.1	Introduction	30
	2.6.2	Shear stress, shear rate & viscosity	31
	2.6.3	Power Law	32
2.7	Morph	nological Properties of Composites	34
	2.7.1	Morphology of fibre	34
	2.7.2	Relationship between the presence of coupling agent	
		with morphology of composite	35
	2.7.3	Relationship between rheological-morphological	
		properties of composite	36
METI	HODO	LOGY	39
3.1	Materi	ials	39
	3.1.1	Banana fibre	39
	3.1.2	Polypropylene	40
	3.1.3	Coupling agent	41
3.2	Metho	ods	42

3.

		3.2.1 Processing of banana fibre	42
		3.2.2 Characterization of banana fibre	43
		3.2.3 Mixing of coupling agent and matrix	44
		3.2.4 Composite processing	45
		3.2.5 Rheological measurement	46
		3.2.6 Microscopic examination	48
		3.2.6.1 Specimen preparation	48
		3.2.6.2 Microscopic observation	52
	3.3	Gantt Chart for PSM I	53
	3.4	Gantt Chart for PSM II	54
	3.5	Flow Chart of Material Preparation	55
	3.6	Flow Chart of Experiment	56
4.	RESU	ULTS	57
	4.1	Introduction	57
	4.2	Characterization of Banana Fibre	57
		4.2.1 Density	57
		4.2.2 Fibre size	58
	4.3	Rheological Properties	59
		4.3.1 Effect of fibre loading on rheology	62
		4.3.2 Effect of silane concentration on rheology	64
	4.4	Morphological Properties	67
5.	DISC	USSION	80
	5.1	Rheological Properties	80
		5.1.1 Effect of fibre loading on rheology	81
		5.1.2 Effect of shear rate and fibre loading on viscosity	83
		5.1.3 Effect of silane concentration on rheology	84
		5.1.4 Effect of shear rate and silane concentration on	
		viscosity	85

	5.2	Morp	hological Properties	87
		5.2.1	Effect of fibre loading	88
		5.2.2	Effect of silane concentration	89
	5.3	Relati	onship between Rheological-Morphological Properties	93
		5.3.1	Effect of fibre loading	93
		5.3.2	Effect of silane concentration	108
6.	CON	CLUSI	ON AND FUTURE WORK	120
	6.1	Concl	usion	120
	6.2	Future	Work	121

REFERENCES

122

APPENDICES

- A Data for Banana Fibre Size Analysis
- B Data for Rheological Testing
- C Sample Designation

LIST OF FIGURES

2.1	Cross-section of banana fibre showing that the fibre is multicellullar	18
	with thin walled and larger lumen (×320)	
2.2	Mechanism of compatibilizing agent between hydrophilic filler and	24
	hydrophobic matrix polymer	
2.3	Hypothetical chemical structure of cellulose-silane-polyethylene in	26
	the interfacial area	
2.4	Hypothetical model of esterification reaction between the hydroxyl	29
	groups of jute fibres and anhydride rings of MAPP	
2.5	Mechanism showing coupling reaction between maleic anhydride	30
	functionality of maleated PP with amino functionality of silane	
2.6	Laminar flow of a viscous fluid	31
2.7	Flow curves: (1) Newtonian; (2) shear thinning; (3) shear thickening	32
2.8	Power Law plot showing log τ_s versus log $(d\lambda_s / dt)$ for different	33
	types of fluid material	
2.9	SEM micrograph of: (a) ground Hemp fibres and (b) GMA modified	34
	fibres	
2.10	SEM micrograph of composites with 20wt% fique fibre: (a)	35
	untreated fibre and (b) with compatibilizer agent MAPP	
2.11	SEM micrographs of PP composites with 21vol% sisal fibre:	36
	(a) untreated fibres and (b) with compatibilizer agent MAPP	
2.12	SEM photographs of the cross section of PS sisal composite at shear	37
	rate of 54 s-1 at: (a) 180°C (b) 190°C	
3.1	Banana fibres	39
3.2	Polypropylene	40
3.3	3-aminopropyl triethoxysilane, Fluka	41

3.4	Molecular structure of AMPTES	41
3.5	Electronic Densimeter MD-300S	43
3.6	Scanning electron microscope (SEM), EVO 50	44
3.7	Beaker, glass rod and dropper for mixing banana fibres with	45
	AMPTES	
3.8	Two-roll internal mixer Haake Rheomix OS	46
3.9	Capillary rheometer, Shimadzu CFT-500D	47
3.10	(a) Epoxy resin, Quickmount 2; (b) Hardener, Quickmount 2; (c)	49
	silicon mold release gel	
3.11	(a) Clip holder; (b) mounting cup	50
3.12	Vacuum chamber, LabTech	50
3.13	BETA Twin Variable Speed Grinder-polisher, Buehler	51
3.14	Polycrystalline diamond suspension	51
3.15	Mounted specimens	52
3.16	Methodology of sample preparation	55
3.17	Experimental methodology	56
4.1	Determination of banana fibre size from an SEM micrograph	59
4.2	Graph of viscosity versus shear rate as a function of silane 0 wt%	60
4.3	Graph of viscosity versus shear rate as a function of silane 0.5 wt%	60
4.4	Graph of viscosity versus shear rate as a function of silane 1wt%	61
4.5	Graph of viscosity versus shear rate as a function of silane 2wt%	61
4.6	Flow rate of PP/BF composites as a function of fibre loading	62
4.7	Shear rate of PP/BF composites as a function of fibre loading	63
4.8	Viscosity of PP/BF composites as a function of fibre loading	63
4.9	Effect of fibre loading on the relationship between the viscosity and	64
	shear rate of PP/BF composites	
4.10	Flow rate of PP/BF composites as the function of silane	65
	concentration	

4.11	Shear rate of PP/BF composites as the function of silane	65
	concentration	
4.12	Viscosity of PP/BF composites as the function of silane	66
	concentration	
4.13	Effect of silane concentration on the relationship between the	66
	viscosity and shear rate of PP/BF composites	
4.14	Micrographs of PP/BF 2wt% without silane for longitudinal	68
	direction	
4.15	Micrographs of PP/BF 2wt% without silane for transverse direction	68
	at (a) core region, (b) periphery region	
4.16	Micrographs of PP/BF 5wt% without silane for longitudinal	69
	direction	
4.17	Micrographs of PP/BF 5wt% without silane for transverse direction	69
	at (a) core region, (b) periphery region	
4.18	Micrographs of PP/BF 10wt% without silane for longitudinal	70
	direction	
4.19	Micrographs of PP/BF 10wt% without silane for transverse direction	70
	at (a) core region, (b) periphery region	
4.20	Micrographs of PP/BF 2wt% with silane 0.5wt% for longitudinal	71
	direction	
4.21	Micrographs of PP/BF 2wt% with silane 0.5wt% for transverse	71
	direction at (a) core region, (b) periphery region	
4.22	Micrographs of PP/BF 5wt% with silane 0.5wt% for longitudinal	72
	direction	
4.23	Micrographs of PP/BF 5wt% with silane 0.5wt% for transverse	72
	direction at (a) core region, (b) periphery region	
4.24	Micrographs of PP/BF 10wt% with silane 0.5wt% for longitudinal	73
	direction	
4.25	Micrographs of PP/BF 10wt% with silane 0.5wt% for transverse	73
	direction at (a) core region, (b) periphery region	

4.26	Micrographs of PP/BF 2wt% with silane 1wt% for longitudinal	74
	direction	
4.27	Micrographs of PP/BF 2wt% with silane 1wt% for transverse	74
	direction at (a) core region, (b) periphery region	
4.28	Micrographs of PP/BF 5wt% with silane 1wt% for longitudinal	75
	direction	
4.29	Micrographs of PP/BF 5wt% with silane 1wt% for transverse	75
	direction at (a) core region, (b) periphery region	
4.30	Micrographs of PP/BF 10wt% with silane 1wt% for longitudinal	76
	direction	
4.31	Micrographs of PP/BF 10wt% with silane 1wt% for transverse	76
	direction at (a) core region, (b) periphery region	
4.32	Micrographs of PP/BF 2wt% with silane 2wt% for longitudinal	77
	direction	
4.33	Micrographs of PP/BF 2wt% with silane 2wt% for transverse	77
	direction at (a) core region, (b) periphery region	
4.34	Micrographs of PP/BF 5wt% with silane 2wt% for longitudinal	78
	direction	
4.35	Micrographs of PP/BF 5wt% with silane 2wt% for transverse	78
	direction at (a) core region, (b) periphery region	
4.36	Micrographs of PP/BF 10wt% with silane 2wt% for longitudinal	79
	direction	
4.37	Micrographs of PP/BF 10wt% with silane 2wt% for transverse	79
	direction at (a) core region, (b) periphery region	
5.1	Voids in extrudate: (i) Rough surface area of void; (ii) Void	90
	incorporated with fibres of polishing cloth	
5.2	Flocked fibres of polishing cloth	91
5.3	Formation of void due to expansion of gas bubble in material	91

5.4	Graph of viscosity vs. shear rate of PP/BF composites without silane	96
	for longitudinal direction	
5.5	Graph of viscosity vs. shear rate of PP/BF composites with 0.5wt%	97
	silane for longitudinal direction	
5.6	Graph of viscosity vs. shear rate of PP/BF composites with 1wt%	98
	silane for longitudinal direction	
5.7	Graph of viscosity vs. shear rate of PP/BF composites with 2wt%	99
	silane for longitudinal direction	
5.8	Graph of viscosity vs. shear rate of PP/BF composites without silane	100
	for transverse direction at core region	
5.9	Graph of viscosity vs. shear rate of PP/BF composites with 0.5wt%	101
	silane for transverse direction at core region	
5.10	Graph of viscosity vs. shear rate of PP/BF composites with 1wt%	102
	silane for transverse direction at core region	
5.11	Graph of viscosity vs. shear rate of PP/BF composites with 2wt%	103
	silane for transverse direction at core region	
5.12	Graph of viscosity vs. shear rate of PP/BF composites without silane	104
	for transverse direction at wall region	
5.13	Graph of viscosity vs. shear rate of PP/BF composites with 0.5wt%	105
	silane for transverse direction at wall region	
5.14	Graph of viscosity vs. shear rate of PP/BF composites with 1wt%	106
	silane for transverse direction at wall region	
5.15	Graph of viscosity vs. shear rate of PP/BF composites with 2wt%	107
	silane for transverse direction at wall region	
5.16	Graph of viscosity vs. shear rate of PP/BF composites with banana	109
	fibre 10wt% for longitudinal direction	
5.17	Graph of viscosity vs. shear rate of PP/BF composites with banana	110
	fibre 5wt% for longitudinal direction	
5.18	Graph of viscosity vs. shear rate of PP/BF composites with banana	111
	fibre 2wt% for longitudinal direction	

5.19	Graph of viscosity vs. shear rate of PP/BF composites with banana	112
	fibre 10wt% for transverse direction at core region	
5.20	Graph of viscosity vs. shear rate of PP/BF composites with banana	113
	fibre 5wt% for transverse direction at core region	
5.21	Graph of viscosity vs. shear rate of PP/BF composites with banana	114
	fibre 2wt% for transverse direction at core region	
5.22	Graph of viscosity vs. shear rate of PP/BF composites with banana	115
	fibre 10wt% for transverse direction at wall region	
5.23	Graph of viscosity vs. shear rate of PP/BF composites with banana	116
	fibre 5wt% for transverse direction at wall region	
5.24	Graph of viscosity vs. shear rate of PP/BF composites with banana	117
	fibre 2wt% for transverse direction at wall region	

LIST OF TABLES

2.1	Comparative properties and costs of selected high-performance			
	reinforcing fibres for polymer-matrix composites			
2.2	Comparison between natural fibre and glass fibres	14		
2.3	Mechanical properties of natural fibres in relation to E-glass	17		
2.4	Chemical composition of banana fibre	19		
3.1	Physical properties of the polypropylene	40		
3.2	Technical data of AMPTES	42		
4.1	Measurement of banana fibre density	58		
5.1	Values of the power law index (n) for PP/BF composites	81		
5.2	Summary of morphological properties observation of PP/BF			
	composites			

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

$\left(\frac{d\gamma_s}{dt}\right)$	-	Shear Rate
$ au_s$	-	Shear Stress
%	-	Percent
°C	-	Degree Celsius
μm	-	Micrometer
А	-	Ccross Sectional Area
AEAPTMS	-	Aminoethylaminopropyltrimethoxy silane
AMPTES	-	(3-aminopropyl) triethoxysilane
ASTM	-	American Society for Testing and Materials
cm	-	Centimeter
cm ³	-	Centimeter Cube
CMC	-	Ceramic Matrix Composite
CO_2	-	Carbon Dioxide
D	-	Die Orifice Diameter
et al.	-	Et alia (and others)
etc.	-	Et cetera
FRIM	-	Forest Research Institute of Malaysia
g	-	Gram
GMA	-	Glycidyl Methacrylate
GPa	-	Giga Pascal
H_2O	-	Chemical formula for water
HDS	-	Hexadecyltrimethoxy-silanes
HM	-	High Modulus
HT	-	High Tenacity

i.e.	-	That is
IM	-	Intermediate Modulus
Inc.	-	Incorporated
ISS	-	Interfacial Shear Strength
k	-	Constant
kg	-	Kilogram
kN	-	Kilo-Newton
КОН	-	Potassium Hydroxide
kV	-	Kilovolt
L	-	Length
LDPE	-	Low Density Polyethylene
LM	-	Low Modulus
Ltd	-	Limited
MA	-	Maleic Anhydride
MAPP	-	Maleic-Anhydride Grafted Polypropylene
mg	-	Milligram
min	-	Minute
mL	-	Millilitre
mm	-	Millimeter
MMC	-	Metal Matrix Composite
MPa	-	Mega Pascal
MPRS	-	γ-mercaptoproyltrimethoxy
MPS	-	γ-methacryloxypropyltrimethoxy
n	-	Power Law Index / Flow-Behavior Index / Flow Index
NaOH	-	Sodium Hydroxide
NF	-	Natural Fibre
OH	-	Hydroxyl
Р	-	Test Pressure
Pa.s	-	Pascal-second
PF	-	Phenol Formaldehyde

PMC	-	Polymer Matrix Composite
PP	-	Polypropylene
PP/BF	-	Banana Fibre Reinforced Polypropylene Composite
Q	-	Flow Rate
rpm	-	Revolution per Minute
S_1	-	Start Point
S_2	-	End Point
Sdn. Bhd.	-	Sendirian Berhad
SEM	-	Scanning Electron Microscopy
SFRTs	-	Short Fibre Reinforced Thermoplastics
SM	-	Standard Modulus
U	-	Velocity
UHM	-	Ultrahigh Modulus
UK	-	United Kingdom
UPE	-	Unsaturated Polyester
US	-	United States
UTM	-	Universal Testing Machine
vol%	-	Percent of volume fraction
wt%	-	Percent of weight fraction
Y	-	Polymerizable vinyl group in Silane
$YR_1Si(OR_2)_3$	-	Chemical formula for Silane
γ	-	Apparent Shear Rate
Δt	-	Time Travel from S_1 to S_2
η	-	Apparent Viscosity

CHAPTER 1 INTRODUCTION

1.1 Background

In the past few decades, research and engineering interest has shifted from monolithic materials to fibre-reinforced polymeric materials. These composite materials (notably aramid, carbon and glass fibre reinforced plastics) now dominate the aerospace, leisure, automotive, construction and sporting industries. Synthetic fibres are widely used in reinforced plastics due to their excellent mechanical properties. However, these fibres have serious drawbacks in terms of cost-effectiveness and environmental effect. The shortcomings have been highly exploited by proponents of natural fibre composites (Wambua *et al.*, 2003).

The primary advantages of using natural fibres as reinforcements in polymer matrix composites are low density, low cost, nonabrasive nature, high specific strength and modulus, high availability, and easy recyclability (Gañán & Mondragon, 2003; Kahraman *et al.*, 2005). Clemons and Caulfield (2005) had reported that one of the largest areas of recent growth in natural fibre polymeric composites is the automotive industry, particularly in Europe, where natural fibres are typically combined with polypropylene, polyester, or polyurethane to produce components such as door, trunk liners, parcel shelves, seat backs, interior sunroof shields and headrests. Various natural fibres that have been employed significantly into automotive industry include flax, hemp, jute, sisal, kenaf, and coir (Bledski *et al.*, 2002).

In tropical countries like Malaysia, bananas (*Musaceae*), which are a type of agricultural crops, are available in abundance. The total planted area of banana in Malaysia is 33,704.2 hectares (MOA, 2006). Banana fibre at present is a waste product of banana cultivation. Hence, without any additional cost input, banana fibre can be obtained for industrial purposes. Banana fibre, the cellulosic fibre obtained from the pseudo-stem of a banana plant, is a bast fibre with relatively good mechanical properties (Pothan *et al.*, 2003).

There are, however, a few bottlenecks of using natural fibres in polymeric composites, such as poor wettability, incompatibility of hydrophilic cellulosic fibres and typical hydrophobic thermoplastic, high moisture absorption by the fibres as well as low processing temperature permissible (Wambua *et al.*, 2003; Kahraman *et al.*, 2005). The most important problem is fibre-matrix adhesion. The role of the matrix in a fibre reinforced composite is to transfer the load to the stiff fibres through shear stresses at the interface. This process requires a good bonding between the polymeric matrix and the fibres (Wambua *et al.*, 2003). However, the inherent polar cum hydrophilic nature of the cellulosic fibres and the non-polar cum hydrophobic nature of polymers result in poor adhesion at the interface of the natural fibre reinforced polymer composites.

In order to enhance the fibre/matrix interactions, it is possible to employ chemical treatment such as fibre surface modification or addition of coupling agents (Gañán & Mondragon, 2004). Various chemical reagents have been studied by researchers to investigate the compatibilizing effect between the matrix and fibres, such as organosilane, alkoxysilanes, maleic anhydride (MA), maleated (maleic-anhydride-modified) polypropylene (MAPP), isocyanates, sodium hydroxide etc. Among these, it is reported that MAPP has been particularly successful as a coupling agent in cellulose-polypropylene composites (Kahraman *et al.*, 2005).