DEVELOPMENT OF MAGNETO ELECTROLYSIS FOR HYDROGEN GENERATOR SYSTEM

NURHIDAYAH BINTI HAMDAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

"I admit that I have read this report and found that it is suffice from aspect of scope and quality to pass the Bachelor of Mechanical Engineering (Thermal-Fluids)

Signature	:
Supervisor Name	:
Date	:

DEVELOPMENT OF MAGNETO ELECTROLYSIS FOR HYDROGEN GENERATOR SYSTEM

NURHIDAYAH BINTI HAMDAN

A thesis submitted is fulfillment of the requirements for the award of degree of

Bachelor of Mechanical Engineering (Thermal-Fluids)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MAY 2009

"I admit that this report is done all by myself except statement that I have already stated on each one of them"

Signature	:		•	•	•	•	•	•	•	•	•	•	• •	 	 •	•	•	•	•	•	-	• •	 	•	•	•	•	•	•	• •	
Author	:	-	•			•	•	•	•	•	-	•	. .	 	 •		•	•	•	-			 	•	•			•	•		
Date	:					•	•	•	•	•	•	•	•	 			•	•	•	•			 					•	•		

ACKNOWLEDGEMENT

The author wishes to express her most sincere appreciation to her supervisor, Dr Khisbullah Hudha for providing tremendous technical guidance, advises, continuous encouragement, constructive criticisms, suggestion throughout this project and administrative support during completing this project. Sincere thanks are extended to the technicians of Faculty of Mechanical Engineering Lab and fellow friends for their cooperation and help during the period of this project. Appreciation also dedicated to all that involved directly or indirectly during the completion of this project. The author always appreciates to the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka for providing the facilities for this project.

ABSTRACT

This Final Year Project is about the development of magneto electrolysis for hydrogen generator system. Magneto electrolysis for hydrogen generator system is an enlargement of hydro-fuel technology which is as an alternative way of cost saving for petrol used. It consist the design of hydrogen generator system built by water electrolysis. The objective of this project is to find the optimum parameters in magneto electrolysis process and to study the rate of hydrogen gas generated using the proposed system. Today, the energy source for nearly all daily applications is fossil fuel, principally petrol. The supply of petrol is limited and its price is increasing. Greenhouse gas and air pollutants are emitted when petrol is used. Hydrogen generator which is built by water electrolysis that produces the hydrogen gas could solve this problem by hybridization with petrol. A proposed system consist of tank-type water electrolysis apparatus with series electrodes arrangement and wherein imposed magnetic fields enhance electrolyte solution circulation further enhanced in apparatus operation by use of immersed electrets providing partitioning structure between separated hydrogen bubbles-producing and oxygen bubbles-producing regions in the solution. Various design parameters and the fabrication of the reactor is discussed briefly in the thesis. Experimental results of hydrogen production rate and the comparison are also discussed.

ABSTRAK

Projek akhir tahun ini adalah berkaitan dengan pembangunan sistem elektrolisis berasaskan magnet untuk generator hidrogen. Sistem elektrolisis berasaskan magnet untuk generator hidrogen adalah perkembangan dari teknologi bahan api menggunakan air yang mana ia merupakan salah satu cara altenatif untuk menjimatkan kos penggunaan petrol. Ia terdiri daripada reka bentuk hidrogen generator yang menggunakan sistem elektrolisis menggunakan air. Objektif projek adalah untuk mencari parameter yang optimum dalam proses elektrolisis berasaskan magnet ini dan untuk mempelajari kadar penghasilan hidrogen daripada sistem yang dicadangkan. Hari ini, hampir semua sumber kuasa bagi pengunaan harian datangnya dari penggunaan minyak mentah terutamanya petrol. Namun pembekalan petrol adalah terhad dan harganya semakin meningkat. Gas rumah hijau dan pencemaran udara terjadi apabila petrol digunakan. Generator hidrogen yang terdiri daripada elektrolisis berasaskan air yang menghasilkan gas hidrogen mampu menyelesaikan masalah ini dengan mencampurkannya dengan petrol. Sistem yang dicadangkan terdiri daripada peralatan sistem tangki elektrolisis air dengan susunan elektrod yang sesiri dan dimana medan magnet didedahkan untuk meningkatkan kadar peredaran ion-ion dalam larutan elektrolit. Ia seterusnya dapat meningkatkan operasi elektrod yang ditenggelamkan didalam larutan yang terdapat dinding pemisah ditengah-tengahnya bagi mengasingkan buih-buih gas hidrogen dan oksigen yang terhasil. Pelbagai bentuk parameter dan fabrikasi untuk reaktor terlibat dibincangkan didalam tesis ini. Keputusan experiment untuk kadar penghasilan gas hidrogen dan perbandingannya turut dibincangkan.

TABLE OF CONTENTS

CHAPTER	TITTLE	PAGE
	DECLARATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xiv
	LIST OF FORMULA	XV
	LIST OF ABBRIVIATION	xvi

INTRODUCTION

1

1.1	Introduction	1
1.2	Project Background	3
1.3	Objective	4

1.4	Scope of Work	4
1.5	Problem Statement	4
1.6	Report Outline	5

2

LITERATURE REVIEW

2.1	Introduction	6
2.2	Hydrogen as a fuel	8
2.3	Combustion Characteristics of Hydrogen	9
2.4	Hydrogen Production and Its Influence	
	in Current Hydrogen Technologies	10
2.5	Definition of Magneto Electrolysis	11
	2.5.1 Process Mechanism	12
2.6	Lorentz's Theory	12
2.7	Basic Principles of Magnetic Field Lines	20
2.8	Types of Hydrogen Generator in Market	24

PAGE

CHAPTER TITTLE

3

METHODOLOGY

3.1	Introduction							
3.2		Methodology Flow Chart						
3.3	Methodol	ogy Steps	28					
	3.3.1 Pro	oject Review	28					
	3.3.2 Par	ameters Determination	28					
	3.3.3 Ma	3.3 Material Selection						
	3.3.4 Fat	prication	29					
	3.3.5 Ex	periment	30					
	3.3.5.1	Hydrogen Flow Meter	31					
	3.3.5.2	Test Run the Hydrogen						
		Generator on Motorcycle	33					
	3.3.5.3	Precautionary Measures	35					
	3.3.6 Data Analysis							

4	RESU	JLTS	36
	4.1	Experimental Results	36
	4.2	Shape of Electrode	37
	4.3	Type of solvent used	37
	4.4	Type of Electrode/Material Selection	38

CHAPTER	TIT	TLE		PAGE
	4.5	Size of	f Hydrogen Generator Tank	39
	4.6	Rate o	f Gas Produced	39
		4.6.1	Experiment of Designed	
			Hydrogen Generator	
			(Without Magnet)	40
		4.6.2	Experiment of Hydrogen	
			Generator with Applied of	
			Magnetic Field	40
	4.7	Petrol U	Jsage on Motorcycle	41
	4.8	Hydrog	en Generator Capabilities	41
5	DISS	CUSSION	VS	43
	5.1	Process	Mechanism	43
	5.2	Influence	e Factor of Gas Production Rate	45
		5.2.1	The Solvent Used for Electrolysis	45
		5.2.2	The Shape of Electrode	47
		5.2.3	Type of Electrode/Material Selection	48

	5.2.5	The Area of Electrode Plates	
		and Plate Surface	50
	5.2.6	The Current Flowing Through	
		the Cell	51
	5.2.7	The Temperature of Electrolyte	53
	5.2.8	The Number of Bubbles Sticking	
		to the Surface of Electrode Plates	54
	5.2.9	Effect of Electrolyte Concentration	54
5.3	Experin	nental Results of Rate of Gas	
	Produce	ed	56
5.4	Hydrog	en Generator Cell Calculation	59
5.5	Hydrog	en Generator Test Run on	
	Motore	ycle	60
5.5	Advanta	ges of Running Vehicle	
	Using H	ydrogen Generator	61

5.5

6

CC	DNCLUSION AND	
RE	COMMENDATION	62
6.1	Conclusion	62
6.2	Recommendation	63
RE	FERENCES	64
AP	PENDICES	66

LIST OF TABLES

NO	TITTLE	PAGE
4.1	Comparison between Rod and Plate Shape Electrode	37
4.2	Solvent Characteristics	37
4.3	Material Selection	38
4.4	Rate of Gas Produce by Current Variation without Applied Magnetic Field	40
4.5	Rate of Gas Produce by Current Variation with Applied Magnetic Field	40
4.6	Petrol Usage on Motorcycle	41
5.1	Mechanical Properties of Stainless Steel and	
	Aluminum Alloy	48
5.2	Effective Plate Area	59

LIST OF FIGURES

TITTLE

NO

2.1	Principle sketch of Lorentz force velocimetry	21
2.2	Digital Hydrogen Generators	24
2.3	Series Cell Hydrogen Generator	25
2.4	Reactor Type Hydrogen Generators	25
3.1	Methodology Chart	27
3.2	Apparatus set up	31
3.3	Apparatus set up by magnet addition	31
3.4	Schematic Diagrams of Hydrogen Generator Installations	33
5.1	Relationships between Heat and Gas Rate	52
5.2	Graph of Hydrogen Generator Performance	56
5.3	Difference between magnetic current and electrical current	58
5.4	Test Cell	59

PAGE

LIST OF SYMBOLS

Δ	The change in
2	Less than or equal to
≤	Greater than or equal to
~	Roughly similar
≈	Approximately equal to

xiv

LIST OF FORMULA

NO	TITTLE	PAGE
2.1	Lorentz Theory Derivation	13
2.2	Lorentz Force Density	20
2.3	Lorentz force	22

LIST OF ABBRIVIATION

H ₂ O	Water
H ₂	Hydrogen
O ₂	Oxygen
КОН	Potassium Hydroxide
ICE	Internal Combustion Engine
СО	Carbon Oxides
НС	Hydro Carbon
SI	Spark Ignition
CI	Compression Ignition
NOx	Nitrogen Oxides
mJ	Mili-Joules
К	Kelvin
DC	Direct Current
HG	Hydrogen Generator

CHAPTER 1

INTRODUCTION TO THE STUDY

The purpose of this chapter is to provide the reader with an introduction to the research conducted in this thesis. First, the fundamental of hydrogen generator will be discussed. The results of literature search conducted in the areas related to this research will then be discussed. The chapter ends with the objectives for the research conducted, followed by an outline of subsequent chapters in this thesis.

1.1 Introduction

Basically, a hydrogen generator is a device that separates hydrogen from oxygen in water, H_2O so that the hydrogen gas can be used in various applications. For commercial use, hydrogen is most commonly released by a petroleum cracking process from natural gas, as generating large amounts of hydrogen from water is more expensive than generating it from carbon. However, for domestic use, the small hydrogen generator is the easiest and most effective means of separation. The separation process is accomplished by charging distilled water by means of an electrode, and then harvesting the hydrogen as it rises above the oxygen in the hydrogen generator. Hydrogen is the lightest element known, atomic weight 1.00794; much lighter than oxygen, atomic weight 15.9994, and it is the most abundant element on earth. It is also highly combustible and great care must be taken when generating and using hydrogen.

Hydrogen, when mixed with fuel vapor, creates a combustible material that can efficiently power gasoline and diesel engines. The hydrogen, when separated by the hydrogen generator, mixes with or replaces the oxygen needed for combustion in combustible engines. Once the hydrogen has replaced the oxygen in high enough quantities, fuel mileage will usually increase, and the engine will run cleaner and more smoothly.

The basic requirements for a hydrogen generator are: a bottle of distilled water, a long vacuum hose, a quart size canning jar with a solid lid, an electrode made of a stainless steel in a row, and two long electrical wires. The two electrode terminals, positive and negative, are simple bolts with the stainless steel wire wound around them at the top end of the electrode and fixed through holes in the jar lid. Once a positive direct current (DC) is tapped from the auto electrical system, a wire connects to the positive post of the electrode. The other electrode is the ground and should be attached to the frame of the automobile.

When DC electricity from the auto electrical system is introduced to the electrode inside the jar three fourths full of water, the newly created hydrogen generator begins the separation of hydrogen from oxygen.

The hydrogen, being a much lighter gas than oxygen, rises to the top of the jar where it is siphoned off through a vacuum hose connected to the fuel intake of the automobile engine. Hydrogen then replaces oxygen in the intake and mixes with fuel to become the combustible agent.

Due to the more complex computerized oxygen/fuel mixing computer on most late model cars, this means of replacing oxygen with hydrogen from the hydrogen generator is most effective on vehicles manufactured before 1995.

1.2 Project Background

Hydrogen generators for the vehicle use electricity provided by the car to electrolyze a small amount of water and inject the resulting hydrogen and oxygen gases into the vehicle's intake system. The hydrogen and oxygen displace some of the fossil fuels in the cylinders, help the fuel to burn more efficiently, increase power and decrease pollutants coming out the tailpipe. The hydrogen generator tank consists of water electrolysis using aluminum electrodes and potassium hydroxide, KOH as solvent to increase the rate of hydrogen producing. The experiment will be conducted on the motorcycle to record the result of petrol saver by using hydrogen injection. The target for petrol saving by using hydrogen gas is about 40% to 50%. The fuel mixture of petrol or diesel, hydrogen and oxygen is then injected into the engine where combustion takes place.

1.3 Objectives

The objective of this project is to find the optimum parameters in magneto electrolysis process such as shape of electrode, type of electrode, the type of solvent used, the size of hydrogen generator tank, and to study the rate of hydrogen gas generated using the proposed system.

1.4 Scope of Work

The study of magneto electrolysis based hydrogen generation system including the optimization of magneto electrolysis system parameters and performance evaluation on the rate of hydrogen gas using the proposed magneto electrolysis system. In this study, ways to optimize the energy efficiency of the hybrid cycle are explored by varying the electrolyte concentration, internal heat recuperation, based on currently available experimental data for the electrode potential.

1.5 Problem Statement

Today, the energy source for nearly all daily applications is fossil fuel, principally petrol. The supply of petrol is limited and its price is increasing. Greenhouse gas and air pollutants are emitted when petrol is used. In order to overcome the energy crisis because of the current rising of petrol price in Malaysia, the new solution needs to be highlighted to reduce the burden of the higher living cost. One of the new solutions is to use the hydrogen generator by magneto electrolysis process.

1.6 Report Outline

In Chapter 2 of this report, previous electrolysis research in similar application is reviewed. Chapter 3 addresses the methodology for preparing the hydrogen generator based on hydrolysis system. Chapter 4 will stated all the experimental results that have been done during the project. The preliminary calculation on ions and analysis of parameter in electrolysis such as type of electrode, shape of electrode and the number of electrode will be discussed in Chapter 5. Chapter 6 discussed the conclusions and recommendations for the future work.

CHAPTER 2

LITERATURE REVIEW

The purpose of this chapter is to give the research background of the magneto hydrolysis for hydrogen generator system. In addition, the research aspects of hydrogen generator will also be discussed. Furthermore, the expansion on the Lorentz Theory for the magnetic field will be added.

2.1 Introduction

For more than a century, hydrocarbon fuels have played a leading role in propulsion and power generation. Recent years, declining oil reserves and increased fuel prices have, together with increased awareness of the environmental impacts of burning hydrocarbon fuels, led to an interest in alternatives to fossil fuel based propulsion and power generation. One such alternative is to use hydrogen as an energy carrier and to extract energy using a hydrogen generator or a modified internal combustion engine (ICE).