
 ANALYSIS ON LOAD BALANCING MECHANISMS FOR BETTER

NETWORK PERFORMANCE USING OPEN FLOW

MOHAMAD FIQHREEL EIZIQ BIN ISMAIL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

ANALYSIS ON LOAD BALANCING MECHANISMS FOR BETTER NETWORK

PERFORMANCE USING OPEN FLOW

MOHAMAD FIQHREEL EIZIQ BIN ISMAIL

This report is submitted in partial fulfilment of the requirements for the

Bachelor of Computer Science (Computer Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

iii

DEDICATION

To my beloved parents, thank you for always support me through my up and down.

To all my friends who always support me to complete this project,

Thanks a lot.

Last but not least, special thanks to my lovely and supportive supervisor, thanks for

all motivation, encouraging and believe me to complete this project.

May all bless us. Amin

iv

ACKNOWLEDGEMENT

 First of all, thanks to ALLAH S.W.T for this mercy and guidance in giving me

full strength to complete this project. I would like to express my gratitude and

appreciation to all those who gave me the possibility too complete this project. A

special thanks to our final year project supervisor, Dr. Zaheera, whose help,

stimulating suggestions and encouragements, helped me to coordinate my project

especially in writing this report.

 Then, I would like thanks to my parents, for supporting me mentally and

physically not just finishing this project but also during my whole studies. Not to

forget, I would like to thanks Universiti Teknikal Malaysia Melaka (UTeM) for giving

me the opportunity to produce this project. Last but not least, grateful

acknowledgement to all my friends who never give up in giving their support to me in

all aspects of life. Thanks you very much my friends. I will never forget all of your

kindness.

v

ABSTRACT

The idea of Software-Defined Networking is rapidly growing. Providers have

made use of the idea of Software-Defined Networking has a lot of advantages, despite

the challenges they face. There is a possible scalability issue with relying on a single

controller in future networks. In order to overcome these conventional network-based

problems, a newly emerging technology Software Defined Networking (SDN) has

been implemented which vastly simplifies the data plane and control plane and makes

the network fully programmable. This project proposes an approach to a load balancer

with the implementation of SDN. The algorithm using for SDN Load Balancing is

Round Robin. The design topology consists of the SDN switch and the Open Day Light

controller. The packet entries are stored in the flow table stored in the data plane. The

project separates the control and data plane and regulates the controller using Open

Day Light controller. Such isolation makes it easier to manage the load balancers.

Using this method, the process is explicitly programmable and agile. Requests from

different clients will be guided to different pre-defined servers in Round-Robin mode.

vi

ABSTRAK

 Idea ‘Software Defined Networking’ berkembang dengan pesat. Penyedia

menyatakan idea untuk menggunakan ‘Software Defined Networking’ mempunyai

banyak kelebihan, walaupun perdapat halangan yang perlu dihadapi. Terdapat

beberapa skala kemungkinan isu dengan bergantung kepada satu pengawal pada masa

akan datang. Untuk mengatasi masalah-masalah berasaskan konvansional ini, satu

teknologi baru yang telah dilaksanakan iaitu ‘Software Defined Networking’ untuk

menyerderhanakan ‘control plane’ dan ‘data plane’ dan menjadikan rangkaian itu

dapat diprogramkan sepenuhnya. Project ini dicadang untuk menggunakan pendekatan

‘SDN Load Balancing’ Bersama ‘Round Robin’ algorithma. Rekaan topologi terdiri

daripada ‘SDN Switch’ dan pengawal ‘Open Day Light’. Paket yang masuk disimpan

di dalam jadual aliran dalam ‘Data Plane’. Projek ini memisahkan pengawal, ‘Data

Plane’ dan mengawal kawalan menggunakan pengawal ‘Open Day Light’.

Pengasingan sedemikian menjadikannya lebih mudah untuk menguruskan ‘Load

Balancer’. Menggunakan kaedah ini, proses ini secara jelas dapat diprogramkan

dengan mudah. Permintaan daripada klien yang berbeza akan di bimbing kepada

beberapa pelayar yang telah ditentukan sebelumnya.

vii

TABLE OF CONTENTS

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xi

CHAPTER 1: INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement (PS) 2

1.3 Project Question (PQ) 3

1.4 Project Objective (PO) 4

1.5 Project Scope 4

1.6 Project Contribution (PC) 5

1.7 Thesis Organization 5

1.8 Conclusion 8

CHAPTER 2: LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Network Architecture 9

2.2.1 Issues in Network Architecture 10

2.2.2 Terms 11

2.2.2.1 Network Simulation 11

2.2.2.2 Software Defined Network 11

2.2.2.3 Openflow Protocol 12

2.3 Critical Review Of Current Problem And Justification 13

2.3.1 Project Methodologies 13

2.3.1.1 Software Defined Network 13

2.3.1.1.1 Software Based Load Balancing 14

2.3.1.1.2 Hardware Based Load Balancing 15

2.3.2 Load Balancing Techniques 15

viii

2.3.2.1 Load Balancing Software Based 15

2.3.2.1.1 Balance Flow 16

2.3.2.1.2 Hybrid Flow 16

2.3.2.2 Network Virtualization 17

2.3.2.3 Energy Efficient Networking 18

2.3.3 Parameter of Load Balancing Based on Scenario 19

2.3.4 Project Software 19

2.3.4.1 Ubuntu 19

2.3.4.2 Openflow 20

2.3.4.3 Mininet 20

2.3.5 Conclusion 21

2.4 Proposed Solution 21

2.5 Conclusion 23

CHAPTER 3: METHODOLOGY 24

3.1 Introduction 24

3.2 Methodology 24

3.2.1 Requirement Software and Hardware Analysis 25

3.2.2 Design 26

3.2.3 Implementation 26

3.2.4 Testing 27

3.2.5 Maintenance 28

3.3 Project Milestones 28

3.4 Conclusion 31

CHAPTER 4 DESIGN 32

4.1 Introduction 32

4.2 Network System Architecture 32

4.2.1 SDN Application 32

4.2.2 SDN Controllers 33

4.3 Possible Scenarios 34

4.3.1 Scenario A 34

4.3.2 Scenario B 35

4.3.3 Scenario C 36

4.4 Metric Measurement 37

4.5 Conclusion 38

ix

CHAPTER 5 IMPLEMENTATION 39

5.1 Introduction 39

5.2 Environment Setup 39

5.2.1 Network Scenario Environment Setup 40

5.2.1.1 Topology A Environment Setup 40

5.2.1.2 Topology B Environment Setup 41

5.2.1.3 Topology C Environment Setup 42

5.2.1.4 Server Pool Setup 44

5.2.2 Controller Environment Setup 44

5.2.2.1 Load Balancing Controller Environment Setup 44

5.2.3 Network Monitoring Environment Setup 45

5.2.3.1 Wireshark Environment Setup 45

5.3 Conclusion 46

x

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 Software Defined Network Architecture (S Sarika, P Shiva, 2019)......... 12

Figure 2.2 Method of load balancing in OSI model (I Ivanisenko, 2015) 14

Figure 2.3 : Load operation in HybridModel (H Sufiev and Y Haddad, 2016) 17

Figure 3.1 : Waterfall model illustration (W W Royse 1970).................................... 25

Figure 3.2 Load balancing architecture (source:

https://avinetworks.com/glossary/round-robin-load-balancing/) 27

Figure 3.3 Gantt Chart.. 30

Figure 4.1 : Network architecture for Software defined networking 33

Figure 4.2: Scenario A ... 34

Figure 4.3: Scenario B.. 35

Figure 4.4: Scenario C.. 36

Figure 5.1: Topology A implementation .. 41

Figure 5.2: Topology B Implementation .. 42

Figure 5.3: Topology C Implementation .. 43

Figure 5.4 : Custom topology coding ... 43

Figure 5.5: HTTP Server Configuration .. 44

Figure 5.6: Openflow Controller Configuration .. 45

Figure 5.7: Wireshark packet transfer .. 46

xi

LIST OF TABLES

TABLE TITLE PAGE

Table 1.1: Summary of Problem Statement 3

Table 1.2: Summary of Problem Question 3

Table 1.3: Summary of Project Objective 4

Table 1.4: Summary of Project Contribution 5

Table 2.1 : Comparison for parameter and scenario (N. Joshi and D. Gupta, 2019) 19

Table 3.1 Project Milestones PSM 1 29

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

The outcome of this project is to demonstrate on how simulation various

network scenario can be designed and can effected on network performance. Besides,

this project assessed the efficiency of the load balancing actuators and compared both

the latency and the response time for the design topologies. The goal of this project, is

to design a network scenario of load balancing using network controller software tools.

At the end at this project, we can see that users can implement load balancing to their

network using software based not just cheaper solution but also give a stratification

network performance.

Therefore, the growth of the Internet and ICT (information-communication

technology) developments, including internet, cloud, social networking, IoT (Internet

of Things), multimedia and the trend towards a virtual world, the global demand for

IP traffic has increased enormously in recent years. With an increasing order of internet

traffic, the operation and installation of networking equipment has become

complicated, difficult and time-consuming for service providers.

2

So that, every network need an implementation of load balancing. Load

balancing refers to efficiently distributing incoming network traffic across a group of

backend servers, also known as a server farm or server pool. Load balancer functions

as a traffic policeman sitting in front of your servers and routing client requests across

all servers capable of responding to those requests in a way that maximizes speed and

capacity utilization and guarantees that no server is overworked, which could degrade

efficiency. If a single server comes down, the load balancing device redirects traffic to

the remaining online servers. When a fresh server is added to the server group, the load

balancer will automatically send requests to the server group.

This project proposes an approach that implement a load balancer using

network controller. Network controller is an emerging technology in the field of

networking. Customers now use big volumes of data that the network generates a lot

of traffic. It becomes difficult to manage the entire load for a single server. Using

several servers is the answer for this. The load balancer will receive the applications.

The client requests the information then forwarded to the servers depending on the

load balancing strategy used. Additional use of load balancing is not required for

dedicated hardware. In this document, we are applying and evaluating network

performance using the Floodlight Controller, Mininet, and testing our outcomes using

the Wireshark Network Analysis Tool.

1.2 Problem Statement (PS)

The biggest problem for that traditional load balancing is performance, ability

and economy. The traditional load balancer is vendor implement on specific hardware

3

are very costly, inflexible and non-programmable to use, so administrators cannot

create their own algorithm. So to overcome this problem, this project emulates scenario

of load balancing with various network controller technologies. In today’s network,

every network need to handle huge number of clients are connected with the network

and need to handle huge of request and has become a tedious job to a server. It is

impossible for single server.

Table 1.1: Summary of Problem Statement

PS Problem Statement

PS1 The traditional load balancer are vendor implement on specific

hardware are very costly, inflexible and non-programmable to use

PS2 Current network need to handle huge number of client request and

packet data transfer

PS3 Difficult to configure a lot of network hardware in one time

1.3 Project Question (PQ)

Table 1.2: Summary of Problem Question

PS PQ Problem Statement

PS1 PQ1 What is the best way to overcome the costly and non-

programmable load balancing hardware equipment?

PS2 PQ2 How to overcome the problem of huge number of client and

packet data request and transfer?

PS3 PQ3 How to configure all the network hardware in one time?

4

1.4 Project Objective (PO)

Table 1.3: Summary of Project Objective

PS PQ PO Project Objective

PS1 PQ1 PO1 To emulate a network scenario of load balancing with

emerging technologies like OpenFlow and using tools

Mininet and Open Daylight Controller for cost reduction

and flexible settings.

PS2 PQ2 PO2 To implement dynamic load balancing using several

technique for achieving better results and higher

performance

PS3 PQ3 PO3 To configure the Round Robin technique into the load

balancer.

1.5 Project Scope

The scope for this study is to use a several network tools. Network controller

tools technology is an approach to network management that enables dynamic,

programmatically efficient network configuration in order to improve network

performance and monitoring. to monitor performance network while using the load

balancing mechanism.

5

1.6 Project Contribution (PC)

Table 1.4: Summary of Project Contribution

PS PQ PO Project Objective

PS1 PQ1 PO1 PC1 A new implementation of network scenarios with

and without load balancing for better network

performance.

PS2 PQ2 PO2 PC2 Round Robin technique setting at network

controller

PS3 PQ3 PO3 PC3 Load Balancing with Round Robin

1.7 Thesis Organization

Chapter 1 Introduction

This chapter discuss about introducing the readers to the general background

of the project, the objective of the project, scope of the project, and the problem

statement.

6

Chapter 2 Literature Review

This chapter consists of the all the study about the project by referring from the

existing study which is thesis, paper, journal and etc.

Chapter 3 Project Methodology

In this chapter focussed on the all the material and data gathered for this study.

It will show how all the data and information are collected from the new result or from

the previous study. All the data will show in graphical such as graph and table.

Chapter 4 Design

This chapter will show how the data and information collected from the

previous chapter will be detailed design to come out with the new result also with the

metrical calculation.

Chapter 5 Implementation

7

This chapter show how data collected in this project will implement using a

several setup and scenario and show how the hardware to be setup, software

installation and configuration.

Chapter 6 Testing And Analysis

This chapter consists of the testing and analysis for this project. All the data

and information are collected and tested in this chapter.

Chapter 7 Project Conclusion

This chapter will show the conclusion about the study and the recommendation

for the future improvements.

8

1.8 Conclusion

Expected outcome for this project is this project can demonstrate on how

simulation various network scenario can be designed and can effected on network

performance. Besides, this project assessed the efficiency of the load balancing

actuators and compared both the latency and the response time for the design

topologies. The goal of this project, is to design a network scenario of load balancing

using network controller software tools.

9

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This section discussed on methods and technique for solving using load

balancing. Furthermore, the purpose of this chapter is to research about difference

performance of network with implementation of network balancing and how the

implementation of network controller can affect the network performance in term of

internet speed performance, packet lost and so on. This chapter also discussed about

the method, techniques and parameters used in previous project.

2.2 Network Architecture

All the data from the previous paper and journal will be collected in this chapter

and will be compared to become a good reference for this study henceforth will make

the project become successful. The domain of this project is network performance and

analysis. This project will analyse network performance with implementation of

10

network controller and capture every packet in and out. This project will create a

several scenarios which create a basic simulation network using a software Openflow.

2.2.1 Issues in Network Architecture

One of the major issues in network architecture is delay in delivering an end-

users response. Normally lengthening happens when the network device gets

overwhelmed and causes a bottleneck (N Joshi,2019) situation in the network. In order

to distribute the load among the servers and to prevent a bottleneck state of affairs, we

need load balancing appliances. In the existing network load balancing machine,

different types of load balancing algorithms are used, so it takes too much time to

process and make the system inefficient to transfer a large amount of user traffic to

multiple servers.

From the case study based on several past research paper, issues that have been

founded related to domain problem is, traditional load balancer are non-

programmable, complex in management, highly expensive in nature, and have tightly

coupled control plane with data plane (N Joshi and D Gupta, 2019). Based on

researcher the best technique to solved this problem are emerging technology network

controller has been introduced which decouples the data plane and control plane and

makes the network fully programmable (N Joshi and D Gupta, 2019). Therefore, every

network application needs a hardware applied which means that hardware’s are very

expensive and vendor specific. Traditional hardware load balancer is based on

manufactured and can be only use a specific algorithm that allow users to customised

according to users’ feasibility or requirements.

11

2.2.2 Terms

2.2.2.1 Network Simulation

Therefore, Network simulation is a technique by which the software models

the actions of the network by measuring the communication between the different

network entities (routers, switches, nodes, access points, connections, etc.). Several

simulators use discrete event visualization-system modelling in which state variables

modify at discrete time points.

2.2.2.2 Software Defined Network

In implements network simulation, a software based network controller is

applied. Software Defined Network is an evolving architecture that is flexible,

scalable, cost-effective and adaptable, making it ideal for high-bandwidth, complex

applications today. It architecture decouples network control and forwarding

functions, allowing network control to become directly programmable and the

underlying infrastructure to be decoupled for applications and network services. The

12

OpenFlow specification is a key element protocol for developing network controller

solutions.

Figure 2.1 Software Defined Network Architecture (S Sarika, P Shiva, 2019)

2.2.2.3 Openflow Protocol

OpenFlow (OF) is considered to be one of the first network controller

standards. It originally defined a communication protocol in network controller

environments that allows network controllers to communicate directly with network

devices such as switches and routers, both physical and virtual (hypervisor-based), so

that they can better adapt to changing business requirements. We can initiate physical

network and virtual devices using OpenFlow. OpenFlow is usually implemented

13

between the SDN controller and the OpenFlow enabled switches and uses flow tables

to match traffic or flow through the network (S Mishra and M A Rahman 2017).

2.3 Critical Review Of Current Problem And Justification

2.3.1 Project Methodologies

2.3.1.1 Software Defined Network

 Software Defined Networking (SDN) is a way to approach computer

networking through software abstractions instead of specific hardware. Through

incorporating a few of the low-level features of the network to a software application,

this helps network administrators to control complex networks more easily(P Sun, J

Li, Z Guo, Y Xu, J Lan, 2019). SDN is a rapidly evolving networking technology that

allows us to easily manage different network applications and services using the SDN

architecture. One of main features of the network is load balancing so that we have

implemented a load balancing mechanism over the SDN controller, and then the

controller functions as a load balancing tool.

 Load Balancing consist of a several type of mothed can be applied to the

distributed system which is software based and hardware based. According to I

14

(Ivanisenko, 2015), Load balancing is represented on four levels of network model

OSI: channel, network, transport, application.

Figure 2.2 Method of load balancing in OSI model (I Ivanisenko, 2015)

2.3.1.1.1 Software Based Load Balancing

Software based load balancing consists of a special software installed on the

servers in the load balancing cluster. The software transmits requests from the user to

the server due to different algorithms. For example, Software Defined Network

(Network Controller) and Microsoft Network Load Balancing

15

2.3.1.1.2 Hardware Based Load Balancing

 Load balancing hardware devices working on OSI layers 2-7 and used for

splitting the network load among multiple servers in terms of factors such as utilization

of processor CPU, number of connections, total server performance [Natario, 2011;

Laviol, 2014].Hardware based load balancing consists of a special switch or router

with programs that provide load balancing capabilities. This approach incorporates

switching and load balancing into a single device, which reduces the amount of

additional equipment required for load balancing. Current load balancing equipment

is known as the network packet browser.

2.3.2 Load Balancing Techniques

2.3.2.1 Load Balancing Software Based

 One of the technique can be implement to the network controller is load

balancing. Load balancing technique can be applied without needed a load balancing

hardware. Most of load balancing using a dedicated hardware which expensive and

vendor specified which users can’t program that hardware what their needed. One the

16

other hand special controller load balancing are programmable and allow users to

design and implement own users load balancing strategy. Load balancing come with

several coding technique such as Balance Flow, Hybrid Flow, Round Robin and etc.

2.3.2.1.1 Balance Flow

According to (H Sufiev and Y Haddad, 2016), This method called

”BalanceFlow” where the load balancing between the network controllers is

performed by a SuperController (SC). "Balance flow” focuses on the load balancing

of the system so that the flow-requests are dynamically distributed between the

controllers in order to achieve rapid response. The load on the overloaded controller is

switched dynamically to a suitable low-loaded controllers to enhance controller

utilization. This technique requires each switch to allow a certain flow of service from

some controllers. The accuracy of the algorithm is reached by dividing the switch load

among some controllers by the source and destination of each current.

2.3.2.1.2 Hybrid Flow

(H Sufiev and Y Haddad, 2016) stated that the second technique that can be

used in network controller are HybridFlow which consist in splitting the controllers

17

into clusters, such that in each cluster the controllers can help each other and perform

load balancing within the same cluster. After all the controllers throughout the cluster

are fully filled, a request will be sent to the SC to reduce the amount of switches to be

operated in the cluster. This method of "local" load balancing helps to reduce the load

on the SC without affecting the total load balancing.

Figure 2.3 : Load operation in HybridModel (H Sufiev and Y Haddad, 2016)

2.3.2.2 Network Virtualization

 Another technique can be applied with SDN is Network Virtual. Network

Virtualization (NV) refers to the transfer of network resources typically provided in

hardware to software. NV can add multiple physical networks into one virtual

software-based network, or split one physical network into different, independent

virtual networks. Network Function Virtualization (NFV) decouples network

18

functions from the underlying hardware so that they run as software images on

commercial off the shelf and purpose built hardware . (A YAZILIM, 2019). Consumer

off-the-shelf or purpose-built hardware. This is achieved by using traditional

virtualization technologies (networking, computation, and processing age) to

virtualize network functions. The goal is to increasing the reliance on specific,

specialized physical devices through the allocation and use of physical and virtual

resources only when and where they are necessary.

2.3.2.3 Energy Efficient Networking

 According to J Nyoupane, A Kumar, 2018 The shifting of focus of ICT

towards energy-efficient and well-performed solutions (commonly known as green

networking) in recent years has purposed numerous solutions. Most of these work can

also be adapted in SDN concept. The goal is to increase the energy efficiency of the

backbone network by dynamically changing the number of active links by network

load. This incorporates the power of the origin routing, allows dynamic traffic

engineering, and defines a forwarding route other than the usual shortest path that a

specific packet is going through. The data plane used by SPRING follows the same

principle of MPLS tag swapping, but its control plane has been completely redesigned.

19

2.3.3 Parameter of Load Balancing Based on Scenario

Table 2.1 : Comparison for parameter and scenario (N. Joshi and D. Gupta, 2019)

Parameters Scenario (100 users) Scenario (800 users)

 Server

load

Round

Robin

Flow Stat Server

load

Round

Robin

Flow

Stat

Throughput 3 mbps 2.7 mbps 2.9 mbps 2.1 mbps 1.1 mbps 1.3 mbps

Response

time

0.04 sec 0.05 sec 0.04 sec 3 sec 4.3 sec 2.2 sec

Transaction

rate(trans

per sec)

350

trans

280 trans X 280 trans 180 trans X

2.3.4 Project Software

2.3.4.1 Ubuntu

Operating system that will used to complete this project is Ubuntu. Ubuntu is

an open source operating system (OS) based on the Debian GNU / Linux distribution.

Ubuntu combines all the functionality of a Unix OS with an enhanced customizable

GUI, making it popular with universities and research organizations. Ubuntu is

primarily intended to be used on personal computers, although server versions are also

available. Ubuntu consists of a variety of software programs operating under the GNU

20

General Public License. It allows users to copy change, create and redistribute their

own version of the program.

2.3.4.2 Openflow

 Many SDN Controller platform has come into existence in the past few years,

like Beacon OpenFlow controller, NOX, POX,Nettle, OpenDayLight, FloodLight,

Ryu (S Mishra and M A Rahman 2017). OpenFlow is a programmable network

protocol designed to control and direct traffic between routers and switches from

different vendors. Divides the software of the switches and routers from the underlying

hardware. By using these platform researchers develop many applications such as load

balancing, network virtualization, energy efficient networking, dynamic access control

in enterprise network, Virtual machine mobility etc. Openflow technology is being

considered one of the favourable technologies for isolation of control plane &data

plane and logical placement of centralized control from SDN controller.

2.3.4.3 Mininet

Mininet is a network emulator which creates a network of virtual hosts,

switches, controllers, and links. Mininet hosts run standard Linux network software,

21

and its switches support OpenFlow for highly flexible custom routing and Software-

Defined Networking. Mininet supports research, development, learning, prototyping,

testing, debugging, and any other tasks that could benefit from having a complete

experimental network on a laptop or other PC.

2.3.5 Conclusion

 Method for implementation load balancing can be done by two option which

hardware based and software based. The software based load balancing platform using

a software defined network technology. Software-defined networking (SDN)

technology is an approach to network management that enables dynamic,

programmatically efficient network configuration in order to improve network

performance and monitoring making it more like cloud computing than traditional

network management. Besides, with the implementation of load balancing can give an

impact to the network performance. We can see form the table 2.1 the result from the

different scenario done by the pass researcher.

2.4 Proposed Solution

22

Studies have shown that the best way to implement load balancing is using

software based platform. Software defined network technology is the best way to

implement load balancing technique due to software defined network is an open source

software and its enables dynamic, programmatically efficient network configuration

in order to improve network performance. According to (N. Joshi and D. Gupta, 2019),

SDN controller, which is fully programmable and behaves like a Load Balancer after

installing the load balancing algorithms over it and represents number of servers where

load is distributed according to the load balancing algorithms. Next, the technique will

be used for this project based from previous studied is Load Balancing. The proposed

this project is to analyse network performance based on implementation of load

balancing using network controller.

This project applied dynamic application load balancing method. This method

works together with an external server load balancer, and calculates the weight

parameter of round robin scheduling in the load balancer to distribute requests among

nodes (K HIKICHI, T SOUMIYA, and A YAMADA, 2016). Lastly, the best

parameter used based on previous journal is Round Robin. This parameter show the

best result to be used together with load balancing technology. This method is defined

as the requests are sent to each server that is present in the queue one by one in a

circular manner. When a packet arrives, the next selected server is available on the list

of all the servers present on the network system. So that all servers in the database are

in the same order and perform the same number of loads, except for the load present

on each server. (N. Joshi and D. Gupta, 2019).

23

2.5 Conclusion

As a conclusion, this chapter important to completed this project. A literature

review is an overview of research on a given topic and answers to related research

question. We can gather all important data and source from the previous paper. From

this chapter we can know what is the best method, technique, attribute or parameters

best for used to complete this project. The technique consists of identifying redundant

computation both within single runs as well as across consecutive simulator.

 The next chapter is methodology. This chapter focussed on the all the material

and data gathered for this study. It will show how all the data and information are

collected from the new result or from the previous study. All the data will show in

graphical such as graph and table.

24

CHAPTER 3: METHODOLOGY

3.1 Introduction

The chapter will clarify the method used in this project. This chapter will list

all components of data, population structure and sampling methods used in the

interviews involved in carrying out this study. All the data gathered will be showed in

step by step also showed every stages included in this chapter. Finally, this section

gives a detailed description of the chosen method of research used and the process of

data collection. Moreover, in this chapter also will show the Gantt chat for this project.

The Gantt chart shows how the work is planned and whether the project is behind or

ahead of schedule. The role of the Gantt chart is to guide the course of the project plan.

3.2 Methodology

25

There are several type of method can be used to developed this project such as

Scrum, Kanban, Lean, Waterfall and Six Sigma. For this project waterfall method was

selected to developed this project. It is also referred to as a linear-sequential life cycle

model. Waterfall are knows as one of the more traditional project management

methodologies. The Waterfall model was introduced in 1970 by Winston W. Royce.

It's very easy to understand and use. In a waterfall design, each step must be completed

until the next stage can begin and there's no overlapping throughout the phases. The

Waterfall model is the first SDLC approach used to develop software. The following

illustration is a representation of the different phases of the waterfall model.

Figure 3.1 : Waterfall model illustration (W W Royse 1970)

3.2.1 Requirement Software and Hardware Analysis

 In this stage 1, all applicable requirements of the project to be developed are

taken into this phase. All the data required for completed this project are gathered in

this stage which for example. Operating system that being used in this project is

Ubuntu. Software for create the network simulation is Mininet and Openflow. Also

Requrement
Analysis

Design

Implementation

Testing

Maintanance

26

several network performance analysis are used in this project. All the data from the

previous studies about this software are collected and analyse for making this project

complete. Beside all data are analysed so we can know what is the weaknesses and

problem existing to the software and the solution to be as a main consideration data

for this stage.

3.2.2 Design

In this stage 2, the proposed of this stage is design all the project diagram. This

system design helps in specifying hardware and system requirements and helps in

defining the overall system architecture. The design that need to considered in this

project is the designing network structure. The network structure designed using a

simulation method using a Mininet software. Network will be designing with several

scenario and with the implementation of load balancing strategies.

3.2.3 Implementation

 In this stage, With the system design inputs, the system is first built in small

programs called units, which are implemented in the next step. Each system shall be

designed and tested for its functionality referred to as System Testing. After the

27

network has designed. It will be implemented with the network controller and load

balancing technique. Data that collected from the chapter two was used to be

implementation in this stage. After a several studies from the previous paper this

project decided to using a Round Robin algorithm to be implement in load balancing

technique. Using this method, client requests are routed to available servers on a

cyclical basis. Round robin server load balancing works best when servers have

roughly identical computing capabilities and storage capacity. The implementation

will be testing in the testing stage.

Figure 3.2 Load balancing architecture (source:

https://avinetworks.com/glossary/round-robin-load-balancing/)

3.2.4 Testing

 In this stage 4, All the units developed in the implementation phase are

integrated into a system after testing of each unit. Post integration the entire system is

tested for any faults and failures. All the network scenario will be testing the

performances and the results will be collected for documentation. The network testing,

28

the network controller testing, the load balancing testing and the parameter testing The

network tested with several parameter which is throughput, transfer rate, delay and

response time.

3.2.5 Maintenance

 In this stage 5, while doing the testing, if testing is failed. Some maintenance

will be doing to find the problem and do some fix to the error. Every coding to the

network controller will be checked to find the error. After that the testing stage will be

doing again with for a few times until get the better result.

3.3 Project Milestones

 Project milestones has been assign to this project. A milestone is a particular

period in time within the life cycle of the plan was using to assess the advancement of

the project towards its ultimate goal. Project Milestones are being used as markers of:

the start and end date of the project, the need for external approval or feedback, the

need for budget limits, the submission of significant deadlines, and much more.

Milestones have a fixed date but no length of time which is from the first week until

the last week of presentation.

29

Table 3.1 Project Milestones PSM 1

Week Activity Output

W1

10 – 15 September

Decided for project title

and proposal

Assign a supervisor

Title was chosen

Developed a proposal

W2

16 – 22 September

Submit proposal to

supervisor to approval

Proposal submitted

W3

23 – 29 September

Proposal modification Proposal approved

W4

30 – 6 October

Project begins Chapter 1 Introduction

W5

7 – 13 October

Submit Chapter 1 to

supervisor

Progress report

W6

15 – 20 October

Discussion with

supervisor for Chapter 2

Chapter 2 started

W7

21 – 27 October

Started on studies for

related article related with

project

Chapter 2 Literature

review

W8

4 – 10 November

Chapter 2 completed Submitted Chapter 2 for

supervisor evaluation

W9

11 – 17 November

Started for chapter 3 Chapter 3 Methodology

W10

18 – 24 November

Begin previous research

for methodology

Submitted progress for

chapter 3

W11

25 – 1 December

Network design for

chapter 4

Chapter 4 Design

W12

2 – 8 December

Design for network

environment for chapter 4

PSM 1 report preparation

Submitted chapter 4 to

supervisor for evaluation

Create slide presentation

30

Demonstration for

supervisor and submitted

full report for PSM 1

W13

9 – 15 December

Final presentation PSM 1 Final evaluation from

supervisor and evaluator

Figure 3.3 Gantt Chart

31

3.4 Conclusion

 As a conclusion, the project methodology which involve all 5 phase which are

Requirement Analysis, Design, Implementation, Testing and maintenance in the

project a identified. This chapter very importance to this project to make sure this

project follows the right method and to make this project process smoothly while

develop this project. Also, Gantt charts and project milestones are also very important

to be sure this project follow the schedule. The next chapter to be developed is design.

This chapter will show how the overall design for this project.

32

CHAPTER 4 DESIGN

4.1 Introduction

 In this chapter, it will describe all the network design for this project also

defines the results of the analysis of the preliminary design and the result of the detailed

design.. In this project there are consists with several network scenario to be analyses

using a simulation software based. Then, it will discussed the detailed of each network

scenario and also the parameter of each network design.

4.2 Network System Architecture

4.2.1 SDN Application

33

SDN applications are systems that interact behaviours and resources with the

SDN controller via application programming interfaces (APIs). In addition,

applications may build an abstracted view of the network by gathering data from the

controller for decision-making purposes. These applications may include networking,

analytics, or business applications used it to support large data centres.

4.2.2 SDN Controllers

SDN controller is a logical organization that obtains instructions or

requirements from the SDN application layer and transmits them to the networking

components. The controller also extracts network information from hardware and

forwards an abstract view of the network to SDN applications, including statistics and

events about what's going on.

Figure 4.1 : Network architecture for Software defined networking

34

4.3 Possible Scenarios

 This project consists with a several network scenario which is Network A,

Network B and Network C. All this design will be design using simulation software

which is Mininet and this software will be based for this project. This project will

running fully using simulation environment. Every network design for this project

consists of router, switches and different amount client connected which is important

to be testing in this project.

4.3.1 Scenario A

Figure 4.2: Scenario A

The first design topology is simple design in which four are equal number of

clients and two servers, here there are clients and two servers in the server pool. Figure

35

4.2 depicts the design topology one in which two servers acting as server pool

connected to SDN switch. The communication between these servers happens in a

systematic manner where the servers in the pool receive these requests in a Round

Robin fashion.

4.3.2 Scenario B

Figure 4.3: Scenario B

The second design topology is four clients. Figure 4.3 depicts design two, in which

there is an inequality of servers and clients. There are four switch connected to the

controller and two server pool.

36

4.3.3 Scenario C

Figure 4.4: Scenario C

The third design is an incredibly complex model in which there are twelve

servers in the database pool, but there are only three clients. Figure 4.4 illustrates the

complex design where there are only three switches connected to the server pool that

support twelve clients. The design is similar to the previous two, but there is an

increase in the number of clients. The traditional load balancers lag in these types of

design topologies where the response time and latency will increase for the traditional

load balancers.

37

4.4 Metric Measurement

 For testing, we compare the load balancing algorithm with each other by the

help of attributes like throughput, response time, and transaction rate. Mathematical

calculation for the throughput can be calculated as:

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Response time is defined as total processing time of all users and is divided by

the number of users. The response time is usually the total amount of time made by

the request response process. It is also the amount of time that the servers process the

request when the client receives the request. They measure the response time using the

following calculation:

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠

The transaction rate can be measured as the amount of the http request-response

pair is processed per unit time. Normally, the amount of information or the request-

response pair is exchanged from the server in a given amount of time. Thus, the

maximum transaction rate shows a faster and better response. It could be denoted as:

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑛𝑢𝑚 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑝𝑎𝑖𝑟

𝑠𝑒𝑐𝑜𝑛𝑑

38

4.5 Conclusion

 The main focus of this chapter is on the design of the network scenario for this

project, which is an important step in the planning of the project. This chapter include

all the important design requirement as part that need to be implementing and testing

in the next chapter. It also explains the design of the architecture for this project that

has been planned.

39

CHAPTER 5 IMPLEMENTATION

5.1 Introduction

This chapter discusses about the implementation project for the Analysis On

Load Balancing Mechanisms For Better Network Performance Using Open Flow. In

this phase, it focusses on how data collected in this project implements using a several

setup. Network scenario setup, controller setup and network monitoring setup and

show how the software installation and configuration management. Every detail on

how the implementation and configuration are established in this chapter.

5.2 Environment Setup

In this project, network scenario that has been chooses are designed using

simulation software which is Mininet. Mininet is an open source based software

operated using Linux Operating System and can creates a realistic virtual network also

40

creates a switch and application code in a seconds and using a single command.

Besides, the implementation of this project also uses the Openflow protocol which is

controller protocol that control server where the sending packet need to transfer by tell

the network switches where to send the packets. Network monitoring also involved in

this project which is using a Wireshark software. Wireshark is used to analysis

captured packet transfer. All the data capture gathered and analysed to get the network

performance result which throughput, response time and transaction rate will be using

in the next chapter.

5.2.1 Network Scenario Environment Setup

 This topic discuss on how the method of network configuration for this project

are implement. The step on how to implement are show step by step in this sub topic.

For this project, it fully simulation based using Mininet software and illustrated in

details.

5.2.1.1 Topology A Environment Setup

 The configuration is done using the Mininet software. To create a network

topology using Mininet software, it can be create using a single command. It has a

several topologies type available in this software which is single topology, linear

topology and tree topology (Idris Z B, Upena D. Dalal, 2016) also users can customs

topology.

41

 Refer to Figure 5.1, it shows that topology a created using a single topology.

This topology contains six hosts and one switch. Two from six hosts will be change to

the HTTP server pools connect to the single switch. It creates with a Openflow

controller using port 6633.

Figure 5.1: Topology A implementation

5.2.1.2 Topology B Environment Setup

 Refer to figure 5.2, the topology b uses linear topology with six hosts connected

to the six switches. This topology has Openflow controller connected and using port

42

6633. Form the figure 5.2 also can see every one host connected to one switch. Host

one and host two will be configure as a HTTP server.

Figure 5.2: Topology B Implementation

5.2.1.3 Topology C Environment Setup

 Refer to figure 5.3, for the topology c, it uses a customs topology. For the

custom topology, it need to create using a python coding. after create a python coding

it need to be open to Mininet using a single command. It shows in figure 5.3. this

topology using a three connected switches plus a host and three servers for each switch.

43

Figure 5.3: Topology C Implementation

Figure 5.4 : Custom topology coding

44

5.2.1.4 Server Pool Setup

 To configure HTTP server, it shows on figure 5.5 below.

Figure 5.5: HTTP Server Configuration

5.2.2 Controller Environment Setup

5.2.2.1 Load Balancing Controller Environment Setup

 In this project, it uses Openflow controller connected to the switch. It has

several type of controller can be used with Mininet software. For this project it uses

pox controller. In figure 5.5 show that pox controller using a Load Balancer protocol.

For the network it uses Ip address 10.0.1.1 and server use Ip address 10.0.0.1 for server

one and 10.0.0.2 for server two.

45

Figure 5.6: Openflow Controller Configuration

5.2.3 Network Monitoring Environment Setup

 To testing the network, this project will use Wireshark software to enable the

simulation captured the parameter needed. The parameter will be results and based on

throughput, response time and transaction rate.

5.2.3.1 Wireshark Environment Setup

46

 To captured packet transfer it need Wireshark to run in the background. The

command use to run the Wireshark in the background is:

“$ sudo wireshark &”

 To capture Openflow packet, “of” need to be fill in the filter box.

Figure 5.7: Wireshark packet transfer

5.3 Conclusion

 As a conclusion, this chapter is discussed about how this project completely

implement. It overall focussed on how the network and parameter that has been use,

how the method to implement and further to be continued is Testing Phase. Detail

explanation on how the data captured using Wireshark to be testing will be discussed

on the next chapter.

