
Faculty of Electrical Technology and Engineering

PLANT DISEASE DETECTION USING CONVOLUTIONAL NEURAL

NETWORK

MUHAMMAD FAZA IQMAL BIN MUSTAFA KAMAL

Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics)

with Honours

2024

PLANT DISEASE DETECTION USING CONVOLUTIONAL NEURAL

NETWORK

MUHAMMAD FAZA IQMAL BIN MUSTAFA KAMAL

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics)

with Honours

Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I declare that this project report entitled “Plant Disease Detection Using Convolutional

Neural Network” is the result of my own research except as cited in the references. The

project report has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature :

Student Name : MUHAMMAD FAZA IQMAL BIN MUSTAFA KAMAL

Date : 5/1/2025

DEDICATION

Dedicated to the journey of my final year project — a labour of passion, dedication, and

countless hours of hard work. To my loving parents, Mustafa kamal Bin Abdul Rahim and

Zulaidah Binti Che Abdul Halim, your unwavering support and belief in my abilities have

been my driving force.

Special gratitude to my exceptional supervisor, Ts. Aminurrashid Bin Noordin and my co-

supervisor, Ts. Madiha Binti zahari for your invaluable guidance, encouragement, and

expertise. Your mentorship has played a pivotal role in shaping the course of this project.

To my dear friends, who have shared both the challenges and triumphs of this endeavour,

thank you for your camaraderie and understanding.

This work is dedicated to all those who find joy in the pursuit of knowledge and the quest

for excellence. May it stand as a testament to the collective effort and passion that fuelled

this final year project. Thank you for being part of this significant chapter in my academic

journey.

i

ABSTRACT

This project focuses on developing a plant disease detection system using Convolutional

Neural Networks (CNN) to address the critical challenge of identifying plant diseases early

in agriculture. The proposed system leverages image analysis to classify diseases such as

Grape Black Rot, Leaf Blight, and healthy conditions in grape leaves. Utilizing AlexNet

architecture in MATLAB, the model processes a dataset of 500 leaf images (70% for

training, 30% for testing) with image preprocessing techniques like resizing and

normalization.The methodology involves designing a MATLAB-based GUI for user

interaction, allowing image uploads, disease detection, affected area analysis, and remedy

suggestions. Model performance was evaluated on multiple metrics, achieving an overall

accuracy of 99.3% on the validation dataset. Tests on 60 samples consistently demonstrated

high prediction confidence (96.42%-100%) and accurate classification of healthy and

diseased leaves.Quantitative analysis of the affected area using clustering revealed detailed

insights into disease severity, supporting effective decision-making. This system shows

strong potential for real-time agricultural applications, contributing to sustainable farming

practices and enhancing food security. Future enhancements include integrating mobile

platforms for broader accessibility.

ii

ABSTRAK

Projek ini bertujuan untuk membangunkan sistem pengesanan penyakit tumbuhan

menggunakan Rangkaian Neural Konvolusi (CNN) bagi menangani cabaran kritikal dalam

mengenal pasti penyakit tumbuhan secara awal dalam sektor pertanian. Sistem yang

dicadangkan memanfaatkan analisis imej untuk mengelaskan penyakit seperti Grape Black

Rot, Leaf Blight, dan keadaan sihat pada daun anggur. Dengan menggunakan seni bina

AlexNet dalam MATLAB, model ini memproses dataset yang terdiri daripada 500 imej daun

(70% untuk latihan, 30% untuk ujian) dengan teknik prapemprosesan imej seperti

pengubahan saiz dan penormalan. Metodologi melibatkan reka bentuk GUI berasaskan

MATLAB untuk interaksi pengguna, membolehkan muat naik imej, pengesanan penyakit,

analisis kawasan terjejas, dan cadangan rawatan. Prestasi model dinilai berdasarkan pelbagai

metrik, mencapai ketepatan keseluruhan sebanyak 99.3% pada dataset validasi. Ujian ke atas

60 sampel menunjukkan keyakinan ramalan yang tinggi (96.42%-100%) dan pengelasan

yang tepat antara daun yang sihat dan yang berpenyakit. Analisis kuantitatif kawasan terjejas

menggunakan pengelompokan memberikan maklumat terperinci tentang tahap keterukan

penyakit, menyokong pembuatan keputusan yang berkesan. Sistem ini menunjukkan potensi

yang kuat untuk aplikasi masa nyata dalam pertanian, menyumbang kepada amalan

pertanian mampan dan meningkatkan keselamatan makanan. Penambahbaikan masa depan

termasuk integrasi platform mudah alih untuk akses yang lebih luas.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Ts.

Aminurrashid Bin Noordin and co-supervisor, Ts. Madiha Binti Zahari for their precious

guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial

support through which enables me to accomplish the project. Not forgetting my fellow

colleagues, for the willingness of sharing their thoughts and ideas regarding the project.

My highest appreciation goes to my parents, parents’ in-law, and family members

for their love and prayer during the period of my study. An honourable mention also goes

to my academic advisor, for all the motivation and understanding.

Finally, I would like to thank all the staffs at the Universiti Teknikal Malaysia Melaka

(UTeM), fellow colleagues and classmates, the faculty members, as well as other individuals

who are not listed here for being co-operative and helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF SYMBOLS ix

LIST OF ABBREVIATIONS x

LIST OF APPENDICES xi

INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Project Objective 3
1.4 Scope of Project 4

LITERATURE REVIEW 5
2.1 Introduction 5
2.2 Recent Study 6
2.3 Summary Evaluation 13
2.4 Convolutional Neural Network (CNNs) 1
2.5 Summary 4

METHODOLOGY 6
3.1 Introduction 6
3.2 Overall Flowchart 6
3.3 System Flowchart 7
3.4 Dataset 9
3.5 AI Training 10
3.6 AI Testing 16
3.7 GUI Design 21
3.8 Final Evaluation for Training and Testing 24

3.8.1 GUI Result 25

v

3.8.2 Verification of Results and manual calculation 29
3.9 Summary 30

 RESULTS AND DISCUSSIONS 32
4.1 Introduction 32
4.2 Results and Analysis 33
4.3 Summary 44

 CONCLUSION AND RECOMMENDATIONS 45
5.1 Conclusion 45
5.2 Potential for Commercialization 46
5.3 Future Works 47

REFERENCES 48

APPENDICES 51

vi

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Comparison of difference method in plant disease detection 1

Table 4.1 Result of Plant Disease Detection part 1 37

Table 4.2 Result of Plant Disease Detection part 2 38

Table 4.3 Result of Plant Disease Detection part 3 40

Table 4.4 Feature Extraction 41

Table 4.5 Comparison Table 42

vii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 Example of various plant disease [1] 6

Figure 2.2 Convolutional Neural Networks (CNNs) [15] 1

Figure 2.3 Neocognition [15] 2

Figure 2.4 LeNet-5 [15] 2

Figure 2.5 Two-stage approach [17] 3

Figure 2.6 Architecture of R-CNN 3

Figure 2.7 Architecture of Fast R-CNN 3

Figure 2.8 Architecture of Faster R-CNN 3

Figure 2.9 Architecture of Yolo [18] 4

Figure 2.10 Architecture of SSD [19] 4

Figure 2.11 Architecture of RetinaNet [19] 4

Figure 3.1 Overall Flowchart 7

Figure 3.2 System Flowchart 8

Figure 3.3 Healthy Grape Leaf 9

Figure 3.4 Grape Black Rot 10

Figure 3.5 Grape Leaf Blight 10

Figure 3.6 Algorithm of training process using AlexNet 14

Figure 3.7 Architecture of AlexNet 15

Figure 3.8 Sample Prediction 15

Figure 3.9 Training Progress 16

Figure 3.10 Algorithm of Plant Disease Detection System. 19

Figure 3.11 Segmentation Cluster 20

Figure 3.12 Example of Remedy 20

viii

Figure 3.13 Axes In App Designer 21

Figure 3.14 Drop Down Component in App Designer 22

Figure 3.15 GUI Push Button 23

Figure 3.16 Label function 23

Figure 3.17 GUI Design Result 24

Figure 3.18 Final Evaluation flowchart 25

Figure 3.19 Browse Button Result 26

Figure 3.20 Detect Disease Button Result 27

Figure 3.21 Analyze Features Button Result 28

Figure 3.22 Remedy Button Result 29

Figure 4.1 Result for Healthy Plant 34

Figure 4.2 Result for Grape Black Rot 35

Figure 4.3 Result for Blight Leaf 35

Figure 4.4 Test Dataset part 1 37

Figure 4.5 Test Dataset part 2 38

Figure 4.6 Test Dataset part 3 39

Figure 4.7 Graph Predicted Confidence vs frequency of train dataset 43

Figure 4.8 Predicted confidence results 43

ix

LIST OF SYMBOLS

𝛿 - Voltage angle

 -

 -

 -

 -

 -

 -

 -

x

LIST OF ABBREVIATIONS

𝑉 - Voltage

 -

 -

 -

 -

 -

 -

 -

xi

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Training Process Code 51

Appendix B Function Code 53

1

INTRODUCTION

1.1 Background

Agriculture is the cornerstone of human civilization, providing essential resources

such as food, fiber, and fuel. It encompasses a broad range of activities, including the

cultivation of plants and the rearing of animals, which are fundamental to sustaining the

global population. With the ever-growing demand for agricultural products driven by

population growth and changing dietary patterns, ensuring the health and productivity of

crops is paramount.

One of the most significant challenges in agriculture is the management of plant

diseases. Plant diseases, caused by various pathogens including bacteria, viruses, fungi, and

nematodes, can lead to substantial losses in crop yield and quality. These diseases can spread

rapidly through fields and across regions, causing epidemics that threaten food security and

economic stability. Effective disease management is thus crucial for maintaining high

agricultural productivity and ensuring a stable food supply.

Traditionally, plant disease management has relied on manual inspection and the

application of chemical treatments. However, these methods have limitations. Manual

inspection is time-consuming, labor-intensive, and prone to human error, while the excessive

use of chemical treatments can lead to environmental pollution, resistance development in

pathogens, and increased production costs.

In recent years, advancements in technology have opened new avenues for plant

disease detection and management. Precision agriculture, leveraging tools such as remote

2

sensing, machine learning, and computer vision, offers innovative solutions to these

challenges. By automating the detection and diagnosis of plant diseases, these technologies

can enhance the accuracy and efficiency of disease management practices.

Machine learning and computer vision have shown great promise in identifying and

classifying plant diseases based on visual symptoms. These technologies analyze images of

plants to detect early signs of disease, enabling timely intervention and minimizing crop

losses. Moreover, the integration of such technologies into user-friendly interfaces, such as

graphical user interfaces (GUIs), makes these tools accessible to farmers and agricultural

professionals, facilitating widespread adoption.

This project focuses on leveraging machine learning and MATLAB to develop a

system for detecting plant diseases through image analysis. By capturing and processing

images of plants, the system aims to accurately identify the presence of diseases and provide

reliable results through an intuitive GUI. This approach not only enhances the precision of

disease detection but also contributes to the overall goal of sustainable agriculture by

promoting efficient and environmentally friendly disease management practices.

1.2 Problem Statement

The early and accurate detection of plant diseases is a critical challenge in

agriculture, affecting crop yields, food security, and economic stability. Traditional methods

of disease detection, which often rely on manual inspection by trained experts, are time-

consuming, labor-intensive, and prone to human error. Additionally, these methods are not

scalable for large-scale farming operations and may result in delayed intervention, leading

to significant crop losses. There is an urgent need for an efficient, scalable, and reliable

solution that can identify plant diseases at an early stage to enable timely and effective

management.

3

This problem directly impacts Sustainable Development Goal (SDG) 2: Zero

Hunger, which aims to end hunger, achieve food security, improve nutrition, and promote

sustainable agriculture. By addressing the challenge of plant disease detection, we can

significantly reduce crop losses and improve agricultural productivity, thereby contributing

to food security and sustainable farming practices.

To tackle these challenges, this research proposes the development of a smart plant

disease detection system using Convolutional Neural Networks (CNNs), leveraging their

superior image processing capabilities to identify a wide array of plant diseases

automatically and accurately from leaf images. This system aims to provide a practical, real-

time solution for farmers and agricultural professionals, enhancing disease management

practices and contributing to the achievement of SDG 2 by ensuring a more reliable and

sustainable food supply.

1.3 Project Objective

The objectives of this project are as follows:

 Develop a smart plant disease detection using Convolutional Neural Network

(CNNs).

 To collect and create a Comprehensive Dataset: Gather a diverse set of high-

quality images of plant leaves affected by various diseases, as well as healthy

leaves, across different plant species.

 To analyze the performance of the system based on the accuracy and

efficiency of the system.

4

1.4 Scope of Project

The scope of this project are as follows:

Investigation of load profiles of residential, commercial and industrial load

segments to determine load factor (LF) and loss factor (LsF) were considered

in the analytical models. The model will focus on detecting and classifying

common leaf-based plant diseases from a single plant species which is grape

leaf.

This project use 500 datset, 70% for training and 30% for testing.

The dataset contains three differences categories which are ‘Healthy leaf’,

‘Grape Black Rot’ and ‘Leaf Blight’.

Image preprocessing will include resizing, normalization, and basic

augmentation to ensure consistent input data quality for the CNN model.

The model’s performance will be evaluated using standard metrics (accuracy)

on a test dataset derived from the training dataset's domain.

The CNN will be optimized for MATLAB to run efficiently on standard

desktop systems, targeting inference times under 1 second per image.

A basic MATLAB GUI will be developed to allow users to upload images

and receive predictions with disease classification, confidence scores,

percentage of Affection and remedy of diseases.

5

LITERATURE REVIEW

2.1 Introduction

The literature review section of this research project delves into a comprehensive

analysis of scholarly journals, product research studies, and technological advancements

relevant to the field of plant disease detection using Convolutional Neural Networks (CNNs).

By examining a range of academic sources, including peer-reviewed journals and research

articles, this review aims to provide a thorough understanding of the current state of

knowledge in the application of CNNs for plant disease identification. Additionally, insights

from product research studies focusing on innovative solutions for agricultural disease

management will be explored to identify trends, challenges, and opportunities in the field.

Furthermore, the review will highlight key technological developments, such as

advancements in image processing algorithms and deep learning techniques, that have

contributed to the evolution of plant disease detection systems. By synthesizing information

from these diverse sources, this literature review sets the stage for the subsequent sections

of the research project, guiding the reader through a comprehensive overview of the

theoretical and practical aspects shaping the landscape of plant disease detection

technologies. Figure 2.1 shows a various healthy plant and the differences disease.

6

Figure 2.1 Example of various plant disease [1]

2.2 Recent Study

There is much research that had been published that involved in plant disease

detection like the work from the author named Sethi at el. presents a novel approach for

detecting plant diseases using image segmentation techniques. The study utilizes deep

learning algorithms to segment images into healthy and infected areas, enabling the

classification of diseases based on the segmented regions. By automating the detection and

quantification of plant diseases, the proposed method proves to be a valuable tool for farmers

and researchers. Experimental results demonstrate high accuracy in detecting various plant

7

diseases such as leaf spots, powdery mildew, and rust. Leveraging transfer learning and

semantic segmentation, the research showcases the effectiveness of image segmentation in

improving the accuracy and precision of disease classification. The study emphasizes the

potential of computer vision techniques in enhancing crop management practices and

reducing losses due to disease outbreaks [2].

The work by author Srivastava et al. explores the application of deep convolutional

networks in developing a model for accurate and efficient plant disease recognition. By

utilizing image processing techniques, the study aims to enhance agricultural practices by

providing a fast and reliable method for detecting diseases in plants. The research

emphasizes the importance of timely and precise diagnosis in ensuring sustainable

agriculture and combating the development of pathogen resistance due to indiscriminate

pesticide use. By deep learning frameworks and fine-tuning parameters, the study achieved

an overall accuracy of 88% in disease classification. The methodology involves gathering

and preprocessing leaf images, training the deep CNN, and conducting tests to evaluate the

model's performance. The findings suggest a promising approach for automating disease

detection in plants, with potential applications in real-time crop surveillance and yield

prediction. The study also mentions that the system is based on Python and can provide an

accuracy of around 88%, which can be further optimized by using Google's GPU for

processing [3].

The work by Dhiman et al. proposed the Smart Disease Detection System for Citrus

Fruits Using Deep Learning with Edge Computing to detect diseases in citrus fruits through

advanced technology. By combining deep learning methods, specifically a CNN- LSTM

model, with edge computing, the system aims to enhance the efficiency and accuracy of

disease classification. The research addresses the growing need for automated fruit disease

detection to ensure the production of high-quality, disease-free citrus fruits. With the

8

increasing global production of citrus fruits, such technological advancements are crucial for

farmers to maintain quality standards and prevent the spread of diseases.

The proposed system leverages edge computing servers located closer to client

devices, reducing data transmission delays, and improving overall performance compared to

traditional cloud-based solutions. By integrating cutting-edge technologies, this smart

disease detection system offers a promising solution for the agricultural sector to enhance

sustainability and productivity in citrus fruit cultivation. In the experiment, the accuracy

achieved using the baseline model without using the compression technique is 96.93%. The

proposed CNN- LSTM model without compression technique achieved an accuracy of

98.87%. Additionally, the model achieved high accuracies for different classes of citrus fruit

diseases, such as 97.08% for Canker, 97.32% for Scab, 94.65% for Melanosis, 95.13% for

Greening, 95.38% for Blackspot, and 99.05% for Healthy [4].

The work by Bouni et al. the application of pretrained deep neural networks in

predicting tomato leaf diseases. By utilizing transfer learning with models such as AlexNet,

VGG16, ResNet, and DenseNet, the study achieved significant accuracy rates, with

DenseNet and the RmsProp optimization method leading to the highest accuracy of 99.9%.

The research emphasizes the importance of technology, particularly deep learning, and

automation, in agriculture to address the challenges of plant disease management. With the

global population projected to reach 9.2 billion by 2050, reducing yield losses due to factors

like climate change and plant diseases is crucial for food security. The study highlights the

potential of advanced technologies in agriculture to enhance disease detection and control,

ultimately contributing to sustainable food production and societal well-being.In the

experiment, the classification accuracy of the models varied. The accuracy percentages for

each model are AlexNet: 85.6%, RmsProp optimizer: 95.4%, VGG-16: RmsProp optimizer:

89.5%, ResNet:Adam optimizer: 91.6%, RmsProp optimizer: 99.2%. DenseNet: Adam

9

optimizer: 95.6% and RmsProp optimizer: 99.5%. These accuracy percentages reflect the

performance of the models in classifying tomato leaf diseases in the experiment conducted

by Mohamed Bouni et al [5].

The work by Zamani at el. presented a comprehensive study on utilizing machine

learning and image processing techniques to evaluate infected leaf disease images. The

research aimed to develop an automated disease detection system for plant leaves, essential

for expediting crop diagnosis in agriculture. The process involved multiple stages, including

image acquisition, preprocessing to eliminate noise, segmentation using the K-Means

approach for boundary establishment, and feature extraction through principal component

analysis. Various classification techniques such as RBF-SVM, SVM, random forest, and ID3

were applied for categorizing images based on disease detection. Despite the promising

methodology, the article was retracted due to evidence of systematic manipulation in the

publication process, casting doubt on the reliability of its content and research findings. This

retraction highlights the critical importance of upholding research integrity and verifying the

credibility of scientific publications to ensure the dissemination of accurate and trustworthy

information in academic circles [6]. The accuracy results for the algorithms ID3,

RandomForest, SVM, and RBF SVM were ID3: Approximately 0.94 accuracy,

RandomForest: Approximately 0.96 accuracy, SVM: Approximately 0.88 accuracy and RBF

SVM: Approximately 0.98 accuracy.

The journal by authors Shewale at el. proposed a high-performance deep learning

architecture for early detection and classification of plant leaf disease to address the

significant annual production loss caused by plant leaf diseases. By leveraging deep learning

techniques, the research focuses on early detection and accurate classification of plant

diseases, particularly in tomato plants. The study emphasizes the importance of automated

intelligent strategies in reducing manual recognition efforts and improving recognition

10

accuracy. By combining deep learning with image processing, the proposed method can

classify diseases with high precision by automatically extracting features from leaf images

captured in real-time agricultural environments. The research aims to provide a clear

pathway for crop disease diagnosis on a global scale by training deep learning models on

progressively larger and publicly available image datasets. The goal is to develop a practical

tool that can assist farmers in efficiently diagnosing plant diseases, leading to more effective

decision-making and sustainable agricultural practices. The experiment achieved an accurate

percentage of 99.81% with the proposed method. This high accuracy rate demonstrates the

effectiveness of the deep learning model in accurately detecting and classifying plant leaf

diseases [7].

The work by Amin at el. presents a novel approach to automating the identification

and classification of corn leaf diseases using deep learning techniques. The rapid and

accurate detection of plant diseases is crucial for global food security, but it remains a

challenging and time-consuming task. The proposed model leverages two pre-trained CNNs,

EfficientNetB0 and DenseNet121, to extract features from digital images of corn leaves

infected with gray leaf spot, common rust, northern leaf blight, and healthy leaves. By

utilizing feature fusion techniques between the two CNNs, the model enhances its predictive

power and builds an end-to-end classification system. This innovative approach not only

addresses the limitations of large parameter sizes in traditional models but also demonstrates

the potential of deep learning algorithms in revolutionizing plant disease diagnosis and

management in agriculture. The proposed end- to-end deep learning model achieved a

classification accuracy of 98.56% in the experiment. This high accuracy rate demonstrates

the effectiveness of using deep learning techniques for corn leaf disease classification. The

model outperformed other methods and CNNs used in the study, showcasing its robustness

and efficiency in identifying different classes of corn leaf diseases [8].

11

The journal by authors Moupojou presents a FieldPlant, A Dataset of Field Plant

Images for Plant Disease Detection and Classification with Deep Learning. The dataset

comprises 5,170 original images captured in plantations under various lighting conditions,

annotated with 8,629 individual leaf annotations across 27 disease classes. By leveraging the

RoboFlow online platform for annotation, researchers can develop models to aid farmers in

real-time plant disease identification and classification. The article highlights the limitations

of existing datasets, emphasizing the need for more comprehensive and accurate annotations

to train high-accuracy models. Through the utilization of deep learning models, the study

showcases the potential of automatic feature extraction for improved disease diagnosis. The

dataset's creation and potential applications align with addressing global food security

challenges by mitigating crop yield losses due to plant diseases. The study by Moupojou et

al. achieved top-1 average identification accuracy of 95% on the tomato test dataset using a

hybrid deep learning model. Khattak et al. achieved a test accuracy of 94.55% in

differentiating healthy citrus fruits and leaves from those with common citrus diseases using

a 2-layers CNN model. The study by Moupojou et al.optimized multi-task learning using

homoscedastic uncertainty to obtain plant and disease accuracies of 84.71% and 75.06%,

respectively, on the PlantDoc dataset [9].

The work by Restrepo-Arias at el. presents a novel approach to plant disease

diagnosis using image texture analysis and Bayesian optimization with small neural

networks. The method involves preprocessing images to remove background noise,

segmenting images into tiles to reduce bias from leaf morphology, and training small

convolutional neural network models on a new dataset of images. The proposed strategy

aims to avoid classification bias caused by plant characteristics and achieve competitive

classification results with efficient computational requirements. Future work includes testing

with different image sizes, improving performance metrics, and optimizing other neural

12

network hyperparameters. The experiment reported in the journal achieved accuracy ranging

from approximately 91.50% to 96.31% for different models used in the plant disease

detection strategy [10]. The accuracy percentages for each model are MobileNet: 96.31%,

SqueezeNet: 95.05%, NasNetMobile: 95.01%, MobileNetV2: 94.59%, ShuffleNet: 91.50%.

The journal by Gao at el explores detecting and identifying potato diseases using

multidimensional fusion Atrous-CNN and hyperspectral data. It highlights the importance

of accurate disease detection for preserving crop yield and quality, especially concerning

diseases like blackleg and soft tuber rot. Traditional methods fall short, prompting the need

for advanced technologies. Hyperspectral imaging provides detailed spectral and spatial data

crucial for disease detection in potatoes. The study introduces an Atrous-CNN model that

combines 1D-CNN, 2D-CNN, and 3D-CNN to enhance disease detection accuracy while

reducing hardware consumption. Experimental results show high recognition accuracy,

indicating the model's effectiveness in hyperspectral data analysis for potato disease

identification. This research not only improves potato disease detection but also has

implications for other agricultural crops. By leveraging advanced technologies and

innovative network structures, the agricultural industry can enhance disease management

strategies, leading to healthier crops and increased productivity. Future work aims to expand

this approach to address disease challenges in diverse agricultural settings, promoting

precision agriculture and sustainable food production. In the experiment, the

Multidimensional Fusion Atrous-CNN model showed high accuracy in identifying potato

diseases, with accuracy rates exceeding 99.7%. Compared to other models used, it performed

better by improving accuracy by around 0.5% to 0.9%. The 1D-CNN network also achieved

high accuracy rates above 98% for disease recognition. Overall, the advanced models proved

to be effective in accurately detecting and classifying potato diseases using hyperspectral

imaging technology [11].

13

The work by Neupane at el. explains into the application of Unmanned Aerial

Vehicles (UAVs) in precision agriculture for automating the identification and monitoring

of plant diseases. By employing UAVs with imaging sensors and machine learning

algorithms, farmers can detect biotic injuries caused by pathogens without direct human

involvement. Overcoming challenges like limited spectral bandwidth and image noise is

addressed through advanced techniques such as transfer learning and batch normalization.

Emphasizing the need for extensive datasets, multi-sensor gimbals, and site-specific

irradiance systems, the review underscores the potential of UAV technology in

revolutionizing plant disease detection and management in agriculture. The integration of

UAVs with deep learning methods showcases a promising pathway towards enhancing crop

health monitoring and bolstering agricultural productivity. In various, the accuracy

percentage in identifying plant diseases using different models ranged from 79% to 99.35%

[12].

2.3 Summary Evaluation

The table highlights research on plant disease detection using various methods.

Image segmentation achieved 88% accuracy, with plans to improve datasets by adding more

disease classes. Convolutional Neural Networks (CNNs) are widely used, with accuracies

ranging from 88% to 99.8%, focusing on real-time detection, IoT integration, optimization,

and expansion to other plant diseases and parts. Deep Neural Networks (DNNs) showed

83.6% to 99.5% accuracy, with future work aimed at extending to more plant species and

gathering diverse datasets. Machine learning methods achieved 88% to 98% accuracy,

emphasizing robust models and real-time solutions like mobile apps. Overall, future

directions include enhancing datasets, optimizing models, and developing practical, real-

time applications for farmers. Refer to table 2.1.

1

Table 2.1 Comparison of difference method in plant disease detection

Paper Method
Percentage of

accuracy (%)
Future work

[2]
Image

Segmentation
88

Dataset Enrichment: The Field Plant dataset can be improved by adding more

disease classes, increasing its usefulness for plant disease research and management.

Future work should involve collecting more field images to include new disease

classes, enhancing the dataset's diversity.

[3]

Convolutional

Neural

Network

88

1. Automation of Real-Time Detection: Implementing a system to automate the

process of detecting yield crops in real-time.

2. Application Development: Creating web or desktop applications to display the

prediction results for easy access and interpretation.

3. Optimization for AI Environment: Enhancing the system to operate efficiently

in an artificial intelligence (AI) environment.

[4]

Convolutional

Neural

Network

96.93

1. Optimization Techniques:

Further exploration of optimization techniques to enhance the efficiency and speed

of the CNN- LSTM model on edge computing devices.Investigate advanced

pruning and quantization methods to reduce model size without compromising

accuracy.

2. Integration of IoT:

Integration of Internet of Things (IoT) devices for real-time data collection and

analysis, enabling proactive disease detection and management in citrus orchards.

[5]
Deep Neural

Network
83.6-99.5

1. Expansion to Other Plant Species: Extend the research to investigate the

application of deep learning models and transfer learning techniques for

predicting diseases in a variety of plant species beyond tomatoes.

2. Enhanced Data Collection: Gather more diverse and extensive datasets to train

deep learning models effectively, improving the accuracy and generalization of

disease prediction across different plant types.

2

[6]
Machine

Learning
88-98

Focus on enhancing the model's accuracy and robustness by incorporating larger,

more diverse datasets and employing advanced deep learning techniques such as

transfer learning and ensemble methods. Additionally, efforts could be directed

towards developing real-time, field- deployable solutions such as mobile apps or

handheld devices that integrate the detection model.

[7]

Convolutional

Neural

Network

99.8

Future Directions: The study proposes developing a server-side system integrated

with a handheld tool for farmers, providing real- time disease diagnosis and

decision-making. It also suggests expanding the application to recognize diseases in

fruits, flowers, and vegetables from leaf images. Future research will focus on

covering more plant leaf species, supporting sustainable agricultural development.

[8]

Convolutional

Neural

Network

98.56

Expansion to Other Plant Diseases: The model's approach can be extended to

classify a broader range of plant diseases beyond corn, encompassing various crops

and vegetation. This expansion would contribute to the development of a versatile

and comprehensive disease detection system for agriculture

[9]

Convolutional

Neural

Network

95

Dataset Enrichment: The FieldPlant dataset has the potential to be enriched with

more disease classes, thereby expanding its scope and utility for plant disease

research and management. Future efforts may focus on collecting additional field

images to incorporate new disease classes and enhance the dataset's diversity.

[10]
Small Neural

Network
91.5-96.31

Experimentation with Different Image Sizes: Conducting tests with various image

sizes to enhance resolution for improved classification based on texture features

caused by diseases in plant leaves

[11]

Convolutional

Neural

Network

98

Improving the accuracy and speed of the Atrous-CNN by integrating more advanced

deep learning techniques and leveraging larger and more diverse hyperspectral

datasets. Another potential direction is to develop a user- friendly mobile application

for farmers, enabling real-time disease detection and management in the

Field.

[12]

Convolutional

Neural

Network

79-99.35

Integration of gimbal systems with multiple sensors for enhanced data

collection.Expansion of datasets for training and validation to improve algorithm

accuracy. Development of site-specific irradiance systems for more precise

monitoring.

1

2.4 Convolutional Neural Network (CNNs)

Artificial Neural Networks (ANN) are algorithmic mathematical models that

simulate the composition and operation of biological nervous systems while processing data

in distributed parallel. By internally altering the weight relationship between neurons and

neurons, ANN accomplishes its goal of processing information. A feedforward neural

network made up of numerous convolutional layers and pooling layers is known as a

convolutional neural network (CNN). CNN performs very well in multiple tasks, especially

in image processing [13].

The concept of CNNs is inspired by the visual processing mechanisms in the

mammalian brain, particularly the visual cortex. In the 1960s, David Hubel and Torsten

Wiesel conducted pioneering research on the visual cortex of cats [14]. They discovered that

individual neurons in the brain's visual cortex respond to specific regions of the visual field,

a phenomenon known as receptive fields. This research earned them the Nobel Prize in

Physiology or Medicine in 1981 [15]. Figure 2.2 show an example of CNN.

Figure 2.2 Convolutional Neural Networks (CNNs) [15]

In 1980, Kunihiko Fukushima proposed the Neocognition, an early neural network

model designed for pattern recognition. It introduced the concept of hierarchical layers with

local receptive fields and weight sharing, fundamental ideas that influenced later CNN

models [16]. Figure 2.3 shows a Neocognition system.

2

Figure 2.3 Neocognition [15]

In the late 1980s and early 1990s, Yann LeCun and his colleagues developed LeNet-

5, a CNN architecture for handwritten digit recognition. LeNet-5 was successfully applied

to the MNIST dataset, demonstrating the practical utility of CNNs in image recognition

tasks. LeNet-5 incorporated several key components of modern CNNs, including

convolutional layers, subsampling (pooling) layers, and fully connected layers. Figure 2.4

shows an example of LeNet-5.

Figure 2.4 LeNet-5 [15]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed AlexNet,

a deep CNN that won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

with a significant margin. AlexNet demonstrated the power of deep learning and CNNs in

handling large-scale image classification tasks. It popularized the use of ReLU (Rectified

Linear Unit) activation functions, dropout for regularization, and GPU acceleration for

training large models [15].

In CNNs, a two-stage approach typically refers to a method used in object detection

tasks. This approach divides the process into two distinct phases: region proposal and region

3

classification. The most notable example of this methodology is the Region-based

Convolutional Neural Network (R-CNN) family of algorithms, including R-CNN, Fast R-

CNN, and Faster R-CNN [17]. Figure 2.5 shows Two- stage approach, Figure 2.6 shows

architecture of R-CNN, Figure 2.7 shows architecture of Fast R-CNN, and Figure 2.8 shows

architecture of Faster R-CNN.

Figure 2.5 Two-stage approach [17]

Figure 2.6 Architecture of R-CNN

Figure 2.7 Architecture of Fast R-CNN

Figure 2.8 Architecture of Faster R-CNN

4

The one-stage approach in CNNs for object detection simplifies the detection

pipeline by combining region proposal and region classification into a single step. This

makes the process faster and often more efficient, though sometimes at the expense of

accuracy compared to two-stage methods. Key examples of one-stage approaches include

YOLO (You Only Look Once) [18] and SSD (Single Shot MultiBox Detector) [19]. Figure

2.9 shows the Architecture of Yolo, Figure 2.10 shows the Architecture of SSD, and Figure

2.11 shows the Architecture of RetinaNet.

Figure 2.9 Architecture of Yolo [18]

Figure 2.10 Architecture of SSD [19]

Figure 2.11 Architecture of RetinaNet [19]

2.5 Summary

In summary, based on previous research on suitable computer vision techniques for

image processing reveals a variety of traditional methods, such as filtering, edge detection,

5

and segmentation, which have been fundamental in enhancing and analyzing images. CNNs

have emerged as the most suitable and effective technique due to their ability to

automatically learn hierarchical features directly from raw images, enabling end-to-end

learning that simplifies the pipeline and improves performance. CNNs' robustness,

scalability, and superior accuracy in tasks like object detection, recognition, and

segmentation make them the preferred choice over traditional and other machine learning-

based approaches.

6

METHODOLOGY

3.1 Introduction

The methodology for this project follows a structured, phased approach to ensure

thoroughness and efficiency. Starting with Project Initialization, the foundation is

established through defining scope and objectives. This is followed by Requirement

Analysis to gather and prioritize all necessary requirements. Design and Planning come next,

developing detailed designs and schedules. The Implementation phase involves developing

and integrating the components. Testing and Validation ensure the project meets all

requirements through rigorous testing. Deployment then moves the project to the production

environment, followed by Maintenance and Evaluation to ensure ongoing performance and

user satisfaction. This process is visualized in a flow chart, moving sequentially from one

phase to the next, ensuring each stage is completed before proceeding.

3.2 Overall Flowchart

Figure 3.1 shows a flowchart that illustrates a structured approach to project

planning, starting with defining the project objectives, followed by conducting a literature

review to gather relevant information. Afterward, the project scopes are determined, with a

crucial decision point to assess whether the scopes are well-defined. If they are satisfactory,

the project proceeds; if not, the scopes are reassessed and refined. Once the scopes are

approved, the project moves forward, concluding the planning phase and transitioning to

7

execution. This method ensures a thorough and well-organized planning process, enhancing

the project's potential for success.

Figure 3.1 Overall Flowchart

3.3 System Flowchart

Figure 3.2 outlines a detailed process for disease detection using CNN. It begins

with a dataset of images that are segregated into categories, such as healthy and diseased

samples, and then pre-processed to standardize features like size and format, ensuring they

are suitable for model training. The pre-processed data is used to train a CNN, which learns

to identify patterns and features corresponding to different categories. Separately, a test

image (not part of the training dataset) is provided as input, undergoing similar pre-

processing to ensure compatibility with the trained model. The test image is converted into

8

a numerical array format and passed through the CNN for classification. If the CNN detects

a disease, the system identifies the specific condition and displays appropriate remedies or

recommendations. If no disease is detected, the image is classified as healthy. The process

concludes after displaying the result.

Figure 3.2 System Flowchart

9

3.4 Dataset

Web-sourced plant disease datasets, such as the PlantVillage dataset, provide high-

quality images of plant leaves with annotations indicating whether they are healthy or

diseased and specifying the disease type. These datasets, available on platforms like Kaggle

or academic repositories, typically contain diverse samples across multiple plant species and

diseases, organized into labeled folders. They are often used for training and evaluating

machine learning models but may include limitations such as imbalanced classes or images

captured under controlled conditions that do not fully reflect real-world scenarios. Before

use, it is essential to ensure the dataset aligns with project goals and complies with licensing

terms. Figure 3.3 shows a Healthy Grape Leaf, figure 3.4 shows a Grape Black Rot and

figure 3.5 shows a Grape Leaf Blight.

Figure 3.3 Healthy Grape Leaf

10

Figure 3.4 Grape Black Rot

Figure 3.5 Grape Leaf Blight

3.5 AI Training

AlexNet is a convolutional neural network (CNN) introduced in 2012 by Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, which revolutionized image recognition

by winning the ImageNet competition with a significant reduction in error rates. It consists of

8 layers (5 convolutional and 3 fully connected) and introduced key innovations like ReLU

11

activation, dropout for regularization, overlapping max pooling, and GPU acceleration for

faster training. AlexNet processes 227x227 color images and paved the way for modern deep

learning models in computer vision.

Figure 3.6 shows algorithm training to set up the AlexNet training pipeline to

initialize the necessary variables. This includes specifying the path to the dataset folder using

a variable called dataFolder. Additionally, the input size for the images is defined to match

the requirements of AlexNet, which expects images of size 227 x 227 pixels. These constants

and paths ensure that the model and data preprocessing align correctly, forming the

foundation for subsequent operations.

To prepare the data for training, the dataset is loaded into MATLAB using the

imageDatastore function. This automatically assigns labels to images based on the folder

names. The dataset is then divided into training and validation sets, with 70% allocated for

training (imdsTrain) and 30% for validation (imdsValidation). Data augmentation is

applied to the training set to introduce variability, such as random reflections and scaling,

improving the model's robustness. Meanwhile, the validation set is resized to the required

input dimensions without augmentation.

Before training, it’s helpful to visualize the training data to confirm that the data

loading process was successful. A random selection of nine images from the training dataset

is displayed in a grid. This optional but informative step ensures the images are correctly

labeled and formatted, giving confidence in the correctness of the data pipeline before

proceeding to model training.

AlexNet, a pre-trained deep learning model, is customized to fit the specific dataset.

The base layers of AlexNet are retained, excluding the final three layers, which are tailored

to its original dataset. These layers are replaced with a fully connected layer with neurons

matching the number of dataset classes, a softmax layer for probability outputs, and a

12

classification layer for label prediction. This modification enables AlexNet to specialize in

the new dataset while leveraging its pre-trained features.

Configuring training parameters is crucial for optimizing performance. The

Stochastic Gradient Descent with Momentum (SGDM) optimizer is selected for efficient

training. Key parameters include a mini-batch size of 32 images, a maximum of 10 epochs

to limit the number of passes through the dataset, and an initial learning rate of 0.0001 to

ensure steady convergence. Validation data is incorporated into the training process to

monitor the model's performance and prevent overfitting.

Using the configured parameters and the modified AlexNet structure, the model is

trained with the augmented training data. This step involves updating the model’s weights

to minimize the loss function, thereby improving its ability to classify images accurately.

After training, the resulting model, named netTransfer, is saved as a .mat file

(PDC_Train.mat) for future use, preserving the trained network and its parameters.

The model’s performance is evaluated on the validation set to measure its accuracy.

Validation images are classified using the trained model, and the predictions are compared

against the actual labels. The resulting accuracy percentage quantifies the model's ability to

generalize to unseen data. This step provides insights into the model's reliability and

highlights areas where it may require further fine-tuning.

Finally, the model’s predictions are visualized to assess its real-world application.

Four random images from the validation set are selected and displayed along with their

predicted class labels. This step demonstrates the model's ability to correctly classify images,

offering a qualitative view of its effectiveness and helping identify specific cases where it

may struggle. Figure 3.7 shows the architecture of AlexNet. Figure 3.8 displays the

predictions of a machine learning model classifying grapevine leaf health. It includes four

samples: the top two leaves are predicted as healthy, showing no visible disease symptoms,

13

while the bottom-left leaf is identified as having "Grape Black Rot," characterized by dark

lesions, and the bottom-right leaf is predicted to have "blight," marked by browning and

damage.

The setup illustrates the model's ability to distinguish between healthy and diseased

leaves based on visible features such as colour and texture. Figure 3.9 illustrates the training

progress of a machine learning model over 10 epochs, with accuracy and loss metrics

tracked. The top graph shows the accuracy starting lower and quickly rising, stabilizing near

99%, while the bottom graph depicts the loss starting high and decreasing sharply, leveling

off at a low value, indicating effective learning. The results panel highlights a validation

accuracy of 99.30%, achieved in 18 minutes and 42 seconds on a single CPU with a constant

learning rate of 0.001. The smooth curves and stabilized metrics suggest successful training

and model convergence.

Algorithm: Training Process Using AlexNet

Input: Dataset directory (dataFolder)

Output: Trained AlexNet model (PDC_Train.mat)

1. Initialize Variables

o Set dataFolder to the path of the dataset folder.

o Define inputSize = [227, 227].

2. Load and Preprocess Data

o Load dataset:
imds ← Load images from dataFolder with labels based on

folder names.

o Split data into training and validation sets:
[imdsTrain, imdsValidation] ← Split imds into 70% training

and 30% validation.

o Create image augmenter:
imageAugmenter ← Configure augmenter with random reflection

and scaling.

o Apply augmentation:
▪ augmentedTrain ← Resize and augment images from

imdsTrain.
▪ augmentedValidation ← Resize images from

imdsValidation.

3. Visualize Training Data

o For i from 1 to 9:

▪ Randomly select an image from imdsTrain.

14

▪ Display the image.

4. Modify Pre-trained AlexNet

o Load pre-trained model:

net ← Load AlexNet.

o Extract base layers:

layersTransfer ← All layers except last three of net.

o Get number of classes:

numClasses ← Count unique labels in imdsTrain.

o Add new layers:

▪ Fully connected layer with numClasses neurons.

▪ Softmax layer.

▪ Classification layer.

5. Set Training Options

o Define training options:

▪ Use stochastic gradient descent (SGDM).

▪ Set MiniBatchSize = 32.

▪ Set MaxEpochs = 10.

▪ Set InitialLearnRate = 1e-4.

▪ Include validation data.

6. Train the Model

o Train network:
netTransfer ← Train with augmentedTrain, layers, and

training options.

o Save trained model:

Save netTransfer as PDC_Train.mat.

7. Evaluate the Model

o Classify validation images:
[YPred, scores] ← Classify augmentedValidation using

netTransfer.

o Compute accuracy:

accuracy ← Mean of correct predictions.

o Display accuracy.

8. Display Predictions

o Randomly select 4 images from imdsValidation.

o For each image:

▪ Display the image.

▪ Display the predicted label.

Figure 3.6 Algorithm of training process using AlexNet

15

Figure 3.7 Architecture of AlexNet

Figure 3.8 Sample Prediction

16

Figure 3.9 Training Progress

3.6 AI Testing

Figure 3.10 shows the algorithm for Plant Disease Detection Systems. The first step

in the classification process is to load the trained AlexNet model from the PDC_Train.mat

file. This file contains the pre-trained model, stored as the netTransfer variable. Upon loading

the file, the system checks for the presence of the netTransfer variable to ensure the model

has been correctly saved and is accessible. If the variable is missing, an error message is

displayed to inform the user, and the process is terminated to prevent further execution

without a valid model. This validation step is crucial to avoid runtime errors and ensure

smooth operation during classification tasks.

Call back functions in the GUI are designed to handle user actions effectively,

ensuring smooth operation and interaction. The "Browse Image" function allows the user to

load a leaf image into the system. When triggered, it prompts the user to select an image file,

which is then resized to [256, 256] for consistent display within the GUI. The total number

of pixels in the image is stored for later calculations, such as determining the affected area.

17

The image is then displayed on the designated axis, axImage, providing a clear view for the

user.

The "Detect Disease" function utilizes the trained AlexNet model to classify the

loaded leaf image. Before proceeding it, verifies that an image has been loaded; if not, an

error message is displayed. The image is resized to [227, 227], the input size required by

AlexNet, and classified using the trained model (netTransfer). The predicted disease type

and its confidence score are retrieved, and the GUI is updated accordingly. The classified

image is displayed alongside the confidence score and disease type, ensuring the user has a

clear understanding of the model's predictions.

The "Analyze Features" and "Display Cluster" functions focus on image

segmentation and cluster analysis. In the "Analyze Features" step, the loaded image is

converted to LAB color space, and the a and b channels are extracted for clustering. K-means

clustering segments the image into three clusters, which are saved as separate segmented

images. The "Display Cluster" function allows the user to select a cluster from the popup

menu and view its details. Each cluster highlights specific regions: Cluster 1 often identifies

diseased or rot-affected areas, Cluster 2 represents intermediate regions like early-stage

disease or shadows, and Cluster 3 corresponds to healthy areas. If a cluster is selected, the

system calculates and displays the affected area's percentage and shows the segmented

cluster on axSegment. If no cluster is selected, the outputs are cleared to avoid confusion.

Figure 3.11 shows the three-segmentation cluster.

The "Remedy" callback is designed to provide users with solutions for the detected

disease. Before proceeding, the system verifies that an image has been loaded and disease

detection has been successfully completed. If these conditions are not met, an error message

is displayed to guide the user. Using the detected disease type (YPred), the system attempts

to locate a corresponding remedy file that contains treatment or prevention guidelines. If the

18

remedy file is found, it is opened in the default text editor for easy access. However, if no

matching file is found, an error message is displayed, informing the user that the remedy

information is unavailable. This functionality ensures users receive relevant and actionable

insights based on the classification results. Figure 3.12 shows the example of remedy.

Algorithm: Plant Disease Detection System

Input: Leaf image file, trained model (PDC_Train.mat), remedy files.

Output: Disease type, prediction confidence, affected area, remedy information.

1. Initialize GUI

o Create a figure for the GUI with appropriate size, color, and layout.

o Define axes for:

▪ Leaf image display (axImage)

▪ Affected area percentage (axAffection)

▪ Prediction confidence (axPrediction)

▪ Disease type (axDisease)

▪ Segmented region of interest (ROI) (axSegment)

o Add popup menu for cluster selection.

o Add buttons for "Browse," "Detect Disease," "Analyze Features," and

"Remedy."

2. Load Trained Model

o Load PDC_Train.mat.

o Check for the variable netTransfer.

o If not found, display an error and exit.

3. Callback Functions

(a) Browse Image

o Prompt the user to select an image file.

o Load and resize the image to [256, 256].

o Store the total number of pixels in the image.

o Display the loaded image on axImage.

(b) Detect Disease

o If no image is loaded, display an error and exit.

o Resize the image to the input size of the model ([227, 227]).

o Classify the image using netTransfer.

o Extract the predicted label (YPred) and confidence score.

o Update the GUI to display:

▪ The detected image on axImage.

▪ The prediction confidence on axPrediction.

19

▪ The predicted disease type on axDisease.

(c) Analyze Features

o If no image is loaded, display an error and exit.

o Convert the image to LAB color space.

o Extract the a and b channels and reshape for clustering.

o Perform k-means clustering with 3 clusters.

o Generate segmented images for each cluster.

(d) Display Cluster

o Get the selected cluster from the popup menu.

o If a cluster is selected:

▪ Calculate the affected area as the percentage of pixels in the

selected cluster.

▪ Display the segmented cluster on axSegment.

▪ Display the affected area percentage on axAffection.

o If no cluster is selected, clear axSegment and axAffection.

(e) Remedy Callback

o If no image is loaded or disease detection is not performed, display an

error and exit.

o Get the detected disease type from YPred.

o Match the disease type to a corresponding remedy file.

o If a remedy file exists:

▪ Open the remedy file in the default text editor.

o If no remedy file is found, display an error message.

4. End Program

Figure 3.10 Algorithm of Plant Disease Detection System.

20

Figure 3.11 Segmentation Cluster

Figure 3.12 Example of Remedy

21

3.7 GUI Design

Figure 3.13 shows a MATLAB App Designer interface where a UI Figure and an

Axes component are configured. The Axes is titled "Leaf Image," with X, Y, and Z axis

labels and Helvetica font styled as bold with a size of 12. The UI Figure has a background

color set to [0.94, 0.94, 0.94], a position defined as [100, 100, 640, 480], and settings for

resizing and auto-resizing children enabled. The interface is designed to display plots or

images, with the axes centrally aligned for clear visualization.

Figure 3.13 Axes In App Designer

This figure 3.14 showcases the Drop-Down component in MATLAB App Designer,

configured to display a labeled menu with the text "Select Cluster" and options such as

22

"cluster1," "cluster2," and "cluster3," with "cluster1" currently selected. The drop-down

menu is styled with Helvetica font, bold, size 12, a light-gray background ([0.96, 0.96,

0.96]), and black text. Positioned at [750, 550, 300, 30] within the UI figure, it fits well into

the layout. The UI figure itself has a light-gray background ([0.94, 0.94, 0.94]), with resizing

enabled to allow dynamic adjustments.

Figure 3.14 Drop Down Component in App Designer

Figure 3.15 shows representations of a button in MATLAB's App Designer: the left

side depicts the button in runtime, where it is labeled "PUSH" and interacts with the user,

while the right side shows the button in design mode, with a blue background, editable text

("Button"), and resizing handles for customization. There also a button in Plant Disease

Detection GUI with the functions.

23

"Browse" button for loading a leaf image

into the system.

"Detect Disease" button to classify the

disease based on the input image.

"Analyze Features" button to perform k-

means clustering on the image for

detailed analysis.

"Remedy" button to display

recommended solutions for the detected

disease.

Figure 3.15 GUI Push Button

For label ‘Prediction Confidence (%)’, Affected Area (%), ‘Disease Type’ and the

‘Plant Disease Detection GUI’ tittle, I use the label function in App Designer in MATLAB

app. Figure 3.16 shows the label function in App Designer.

Figure 3.16 Label function

Figure 3.17 shows result for GUI design created in MATLAB's App Designer. It

includes a title at the top ("Plant Disease Detection GUI") and features components such as

24

axes for displaying the leaf image and selected clusters (ROI), labels for displaying

prediction confidence, affected area, and disease type, and a dropdown menu for selecting

clusters. At the bottom, buttons like "Browse," "Detect Disease," "Analyze Features," and

"Remedy" enable users to upload images, detect diseases, analyze features, and view

remedies, all within a clean, light blue interface.

Figure 3.17 GUI Design Result

3.8 Final Evaluation for Training and Testing

Figure 3.18 outlines a systematic process, beginning with the START node to

initiate the workflow. The next step involves obtaining a result from a Graphical User

Interface (GUI), which likely represents some computational or automated output. Once

the GUI provides a result, the process moves to the Verification of Result and Manual

Calculation stage, where the obtained result is thoroughly checked and cross-verified using

manual calculations to ensure accuracy and reliability. This verification step is crucial for

validating the correctness of the automated output. Finally, the process concludes at the END

node, signifying the completion of all required tasks in the workflow.

25

Figure 3.18 Final Evaluation flowchart

3.8.1 GUI Result

Figure 3.19 represents a user interface for a Browse Button. At the top, there is a

"Browse" button, which allows users to upload or select images. Below it, the interface

displays three loaded images of leaves, each labelled "Loaded Image". These images

appear to showcase different conditions of the leaves, possibly for purposes like analysis,

comparison, or classification (e.g., identifying healthy versus diseased leaves). The layout

suggests that the system is designed to handle multiple images and display them in an

organized format for further interaction or processing.

Figure 3.20 shows the result of a "Detect Disease" button, where the system

analyzes an input (e.g., a leaf) and provides its health status. The output includes the

“Prediction Confidence (%)”, which is “100.00%”, indicating complete confidence in the

result, and the “Disease Type”, which is identified as "healthy", meaning no disease is

detected. The interface clearly presents the information in a simple and user-friendly format.

26

Figure 3.21 shows the function of Analyze Feature button illustrates the analysis of a leaf's

affected areas, segmented into three clusters (regions of interest). Each cluster displays an

image of the selected region and the corresponding percentage of the area affected, likely by

damage or disease.

The results show that “Cluster 1” has 49.23% affected, “Cluster 2” has 18.27%, and

“Cluster 3” has 32.43%, highlighting the varying severity of impact across the leaf. Figure

3.22 shows the function of Remedy button that are serves as a tool or feature that provides

users with detailed guidelines or instructions for addressing specific plant diseases. In this

context, clicking the Remedy button gives access to tailored solutions, such as the Black

Rot Remedy, which focuses on proper fertilization, watering techniques, and sanitation, and

the Blight Leaf Remedy, which emphasizes spacing, pest control, and chemical treatments.

The button essentially acts as a quick reference for disease management strategies.

Figure 3.19 Browse Button Result

27

Figure 3.20 Detect Disease Button Result

28

Figure 3.21 Analyze Features Button Result

29

Figure 3.22 Remedy Button Result

3.8.2 Verification of Results and manual calculation

After the GUI displays the results, it is essential to verify their accuracy to ensure

the system performs as expected. If the GUI displays 'healthy' for an image, the result should

be cross-checked against the initial labelling of the test dataset. For instance, if the dataset

contains 20 images of healthy plants, and the GUI consistently classifies all of them as

30

'healthy,' the results can be considered accurate. Maintaining a log of these outcomes is

crucial for tracking the model's performance over time. This process should be repeated with

datasets from various plants and different diseases to evaluate the system's adaptability and

robustness across a wider range of scenarios.

The primary objective of the data analysis in this project is to determine the accuracy

percentage of the plant disease detection system. This involves comparing the system's

predictions with the actual conditions of the plants whether they are healthy or diseased and

calculating the proportion of correct predictions. The process begins with ground truth

labelling, where the dataset is accurately labelled, such as marking the 20 test images as

'healthy' if they represent healthy plants. Next, the model predictions are generated by using

the trained detection model to classify each image as either 'healthy' or 'diseased.'

To evaluate the model's performance, the predictions are compared against the

ground truth labels, and the number of correct matches is counted. The accuracy percentage

is then calculated using the formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙
) 𝑥 100% (3.1)

3.9 Summary

The methodology for plant disease detection using CNNs involves several key steps.

Firstly, a diverse dataset of plant images, including healthy specimens and various diseased

conditions, is collected. These images undergo preprocessing to standardize their size, color,

and format. Subsequently, an appropriate CNN architecture is selected, and the model is

trained on the preprocessed dataset, often employing techniques like transfer learning or

fine-tuning. The trained model is then evaluated using validation datasets to assess its

performance metrics. Further optimization of the model may be conducted through fine-

tuning of hyperparameters and architecture. In the operational flowchart, input plant images

31

are preprocessed, and relevant features are extracted using the trained CNN model. These

features are then classified into disease categories or healthy status, and the final output

indicates the detected disease or plant health. Optional feedback loops can be incorporated

to continuously improve the model's performance based on user feedback. This methodology

ensures accurate and efficient plant disease detection, facilitating effective agricultural

management practices.

32

RESULTS AND DISCUSSIONS

4.1 Introduction

This section presents the outcomes of our study on plant disease detection using

CNNs implemented in MATLAB. We begin by showcasing the results of our model,

including key performance metrics such as predicted confidence and percentage of affected

area. These metrics provide a comprehensive understanding of the model's effectiveness in

identifying and classifying plant diseases from leaf images. Through detailed data analysis,

we evaluate the CNN's performance across different types of diseases and compare its

accuracy with other traditional methods. We also explore the impact of various

preprocessing techniques and model hyperparameters on the results. This analysis helps

identify the strengths and limitations of our approach.

In the discussion section, we interpret these findings in the context of practical

agricultural applications. We discuss the potential benefits of implementing such a system

for real-time disease monitoring and management, highlighting its advantages in terms of

speed, accuracy, and scalability. Additionally, we address the challenges encountered during

the study, such as handling imbalanced datasets and the need for high-quality annotated

images. Finally, we propose future research directions to further enhance the model's

robustness and applicability, including the integration of additional data types and the use of

transfer learning to improve performance on smaller datasets.

33

4.2 Results and Analysis

Figure 4.1 shows a plant disease detection software analyzing the same leaf images,

determined to be “healthy” with 0.00% affected area and 100.00% prediction confidence.

The software confirms no disease presence in either leaf, as indicated by the “healthy” label

in red text. The left panels display the analyzed images and affect area results, while the right

panels explicitly state “NO REMEDY” since no treatment is needed for healthy leaves.

Buttons for further analysis, such as "Browse," "Detect Disease," "Analyze Features," and

"Remedy," are still visible but unused in this case.

Figure 4.2 displays a plant disease detection software (left) and a corresponding

remedy guide in Notepad (right). In both cases, the software analyzes leaf images,

identifying Grape Black Rot with 100% prediction confidence. The first leaf shows 49.22%

affected area, while the second shows 32.42% and the third shows 18.29%. The software

includes buttons for browsing, detecting diseases, analyzing features, and providing

remedies. The remedy guide emphasizes proper fertilization to avoid nitrogen deficiency,

preventing wounds on plants, and using a soaker or drip hose instead of sprinklers to reduce

water splashes that spread the disease. It also advises working with plants when they are dry

to help limit infection.

Figure 4.3 shows a graphical user interface (GUI) for plant disease detection and its

corresponding remedy information. On the left side under "GUI RESULT," two examples

of plant leaf analysis are displayed. Each analysis identifies the leaf’s disease as "blight"

with 100% confidence, along with the affected area percentages (48.54%, 36.73% and

14.73%). The images also show clustering visualizations to highlight the affected regions.

On the right side under "REMEDY," a Notepad window provides a textual remedy for blight,

recommending measures such as the destruction of infected plant parts, crop rotation, proper

spacing, avoiding overhead watering, and the use of fungicides or antibiotics. The remedy

34

emphasizes sanitation and prevention to control the spread of bacterial blight. This combined

system helps users detect and analyze plant diseases and provides actionable solutions.Insert

your content here.

NO REMEDY

Figure 4.1 Result for Healthy Plant

35

Figure 4.2 Result for Grape Black Rot

Figure 4.3 Result for Blight Leaf

Figure 4.4, 4.5 and 4.6 shows the test dataset for testing part. Each figure shows 20

dataset that had rename T1 to T60. Table 4.1 summarizes the results of a plant disease

36

detection experiment across 20 test samples. Samples T1 to T6 are healthy, with no affected

areas and 100% detection confidence. Samples T7 to T20 show varying percentages of

disease spread across three clusters (indicating different disease types or severities). The

detection was successful for all samples except T20, which had a lower confidence of

96.42%.

Overall, the detection algorithm performed well, consistently achieving high

confidence levels (mostly 99.85–100%). Table 4.2 presents the results of plant disease

detection for test samples T21 to T40. Samples T21 to T31 are healthy, with no affected

areas (all percentages are 0.00%) and detection confidence of 100%. Samples T32 to T40

show varying degrees of disease spread across three clusters, representing different disease

types or severities (e.g., "Black Rot" or "Leaf Blight"). The detection was successful for all

samples, with confidence levels ranging from 96.42% to 100%. The results demonstrate

consistent and accurate detection for both healthy and diseased samples, with high

confidence in the predictions.

Table 4.3 shows plant disease detection results for samples T41 to T60. Samples

T41 and T42 are healthy, with no affected areas (all percentages are 0.00%) and 100%

detection confidence. Samples T43 to T60 show varying degrees of disease spread across

three clusters (indicating different disease types or severities like "Black Rot" or "Leaf

Blight"). The detection was successful for all samples, with confidence levels ranging from

96.42% to 100%. The percentages highlight the distribution of the affected area among

clusters, such as T43 with 55.82% in Cluster 3 and T44 with 60.53% in Cluster 1. The results

demonstrate accurate detection for all samples, maintaining high prediction confidence.

37

Figure 4.4 Test Dataset part 1

Table 4.1 Result of Plant Disease Detection part 1

Plant Disease Detection Result

 Test

Data

Classify Percentage of Affected

Area

(%)

Detection

Successful

Predicted

Confidence

(%)

Healthy Black

Rot

Leaf

Blight

Cluster

1

Cluster

2

Cluster

3

T1 0 0 0 Yes 100

T2 0 0 0 Yes 100

T3 0 0 0 Yes 100

T4 0 0 0 Yes 100

T5 0 0 0 Yes 100

T6 0 0 0 Yes 100

T7 18.29 49.22 32.42 Yes 100

T8 48.55 36.73 14.72 Yes 100

T9 47.79 46.69 5.52 Yes 100

T10 37.59 46.09 16.33 Yes 100

T11 49.15 39.60 11.25 Yes 100

T12 32.95 22.03 45.03 Yes 99.94

T13 41.04 41.86 17.10 Yes 100

T14 56.26 11.11 32.63 Yes 99.97

38

T15 36.06 51.56 12.38 Yes 99.99

T16 22.17 51.16 26.67 Yes 99.85

T17 35.44 55.05 9.52 Yes 100

T18 55.17 34.95 9.89 Yes 100

T19 44.89 24.30 30.81 Yes 100

T20 36.91 40.43 22.65 No 96.42

Figure 4.5 Test Dataset part 2

Table 4.2 Result of Plant Disease Detection part 2

Plant Disease Detection Result

Sampl

e Test

Data

Classify Percentage of Affected

Area

(%)

Detection

Successfu

l

Predicted

Confidenc

e (%)

Health

y

Blac

k Rot

Leaf

Bligh

t

Cluste

r 1

Cluste

r 2

Cluste

r 3

T21 0.00 0.00 0.00 Yes 100.00

T22 0.00 0.00 0.00 Yes 100.00

T23 0.00 0.00 0.00 Yes 100.00

T24 0.00 0.00 0.00 Yes 100.00

T25 0.00 0.00 0.00 Yes 100.00

39

T26 0.00 0.00 0.00 Yes 100.00

T27 0.00 0.00 0.00 Yes 100.00

T28 0.00 0.00 0.00 Yes 100.00

T29 0.00 0.00 0.00 Yes 100.00

T30 0.00 0.00 0.00 Yes 100.00

T31 0.00 0.00 00.00 Yes 100.00

T32 24.87 52.74 22.38 Yes 99.94

T33 66.61 16.86 16.53 Yes 100.00

T34 16.29 66.62 16.59 Yes 99.97

T35 53.46 19.74 26.27 Yes 99.99

T36 29.25 50.07 20.64 Yes 99.85

T37 26.60 51.86 21.54 Yes 100.00

T38 49.20 32.33 18.41 Yes 100.00

T39 18.48 49.21 32.26 Yes 100.00

T40 62.38 15.86 21.76 Yes 96.42

Figure 4.6 Test Dataset part 3

40

Table 4.3 Result of Plant Disease Detection part 3

Plant Disease Detection Result

Sampl

e Test

Data

Classify Percentage of Affected

Area

(%)

Detection

Successfu

l

Predicted

Confidenc

e (%)

Health

y

Blac

k Rot

Leaf

Bligh

t

Cluste

r 1

Cluste

r 2

Cluste

r 3

T41 0.00 0.00 0.00 Yes 100.00

T42 0.00 0.00 0.00 Yes 100.00

T43 17.84 26.31 55.82 Yes 100.00

T44 60.53 16.46 23.01 Yes 100.00

T45 33.11 50.34 16.52 Yes 100.00

T46 16.54 50.36 33.07 Yes 100.00

T47 42.16 47.22 10.61 Yes 100.00

T48 61.39 8.77 29.84 Yes 100.00

T49 32.98 53.40 13.61 Yes 100.00

T50 13.71 53.42 32.87 Yes 100.00

T51 11.74 35.99 52.27 Yes 100.00

T52 51.55 9.35 59.10 Yes 99.94

T53 18.15 49.72 32.12 Yes 100.00

T54 17.21 30.54 52.85 Yes 99.97

T55 27.10 35.67 37.19 Yes 99.99

T56 53.06 8.66 38.28 Yes 99.85

T57 15.81 33.62 50.57 Yes 100.00

T58 51.96 30.57 17.46 Yes 100.00

T59 18.98 38.86 42.15 Yes 100.00

T60 48.77 26.52 24.70 Yes 96.42

The accuracy of the plant disease detection system was calculated for different

categories, demonstrating its effectiveness in identifying healthy and diseased plants. For the

healthy plant category, the system correctly identified 19 out of 20 images, resulting in an

accuracy of (
20−1

20
) 𝑥100% = 95% . For the grape black rot and blight leaf categories, the

system achieved perfect accuracy, correctly identifying all 20 images in each category,

yielding 100\% accuracy for both. When considering the overall performance across all

categories, the system correctly classified 59 out of 60 images, leading to an overall accuracy

of (
60−1

60
) x 100%=98.33%. These results highlight the robustness and reliability of the

detection model in accurately distinguishing between healthy plants and various diseases.

41

Table 4.4 compares the feature extraction results for “Healthy”, “Grape Black Rot”,

and “Blight Leaf” samples, highlighting differences in texture and statistical characteristics.

Healthy leaves show low contrast, high homogeneity, and higher energy, indicating smooth

and uniform textures. Grape Black Rot leaves have higher contrast, lower energy, and higher

variance, reflecting more texture variation and less uniformity. Blight Leaf features lie in

between, with moderate contrast and homogeneity. All leaves maintain high smoothness, but

differences in entropy, kurtosis, and skewness reflect variations in intensity distribution

across the leaf types. These features help distinguish between healthy and diseased leaves.

Table 4.4 Feature Extraction

Type of leaf Feature Extraction

Healthy

Grape Black Rot

42

Blight Leaf

Table 4.5 summarizes the dataset composition and the predicted confidence levels

for a plant disease detection model. The training dataset consists of 200 healthy samples,

150 samples with grape black rot, and 150 samples with leaf blight. The validation/test

dataset includes 20 samples for each category. The model demonstrates high predicted

confidence in its classification performance, achieving 100% confidence for healthy samples

and 99.8% confidence for both grape black rot and leaf blight. This indicates the model is

highly reliable in detecting and classifying these conditions.

Table 4.5 Comparison Table

 Healthy Grape Black Rot Leaf Blight

Train dataset 200 150 150

Valid/test dataset 20 20 20

Predicted confidence

(%)

100.00 99.8 99.8

Figure 4.7 shows the relationship between the frequency of the training dataset (x-

axis) and the predicted confidence percentage (y-axis). It highlights that as the frequency of

the training dataset increases, the model's confidence in its predictions also increases.

Specifically, at a frequency of approximately 150, the confidence is around 99.8%, and as

the frequency rises to 200, the predicted confidence reaches 100%. The trend indicates a

positive correlation where a larger training dataset improves prediction confidence,

demonstrating that the model benefits from more data to improve its reliability.

43

Figure 4.7 Graph Predicted Confidence vs frequency of train dataset

Figure 4.8 shows grape leaves classified into three categories: healthy, affected by

Grape Black Rot, or suffering from blight, with each image labeled alongside a confidence

percentage. The classifications likely come from a machine learning model trained to

identify these conditions based on visual features. Healthy leaves show no visible damage,

while diseased leaves exhibit distinct symptoms of their respective conditions. The purpose

is to demonstrate the model's ability to accurately differentiate between healthy and diseased

grape leaves.

Figure 4.8 Predicted confidence results

44

4.3 Summary

This study investigates the results and discussions of the research on plant disease

detection using CNN. It highlights the model's high accuracy in identifying and classifying

various plant diseases, demonstrating its effectiveness compared to traditional methods. The

chapter discusses the positive impact of preprocessing techniques on model performance and

emphasizes the advantages of using deep learning for real-time disease detection in

agriculture. Overall, the findings suggest that integrating CNN technology can significantly

aid farmers in early disease identification and management, enhancing agricultural practices.

45

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the project on plant disease detection using CNNs within the

MATLAB framework has made significant progress towards achieving its objectives. The

project has successfully implemented advanced deep learning techniques and robust image

processing capabilities to develop a highly effective solution for identifying and classifying

plant diseases with remarkable accuracy.

The structured approach to project planning, as outlined in the methodology section,

has ensured thoroughness and efficiency in the project development process. Starting from

project initialization, defining scope and objectives, requirement analysis, design and

planning, implementation, testing and validation, deployment, and maintenance and

evaluation, each phase has been carefully executed to move the project forward

systematically.

By leveraging the power of CNNs alongside MATLAB's versatility in algorithm

development and data processing, the project has created a sophisticated tool that addresses

critical challenges in agriculture. The future works mentioned in the conclusion section

indicate a commitment to further enhancing the software functionality, demonstrating a

forward-looking approach to continuous improvement and innovation.

Overall, the project has made significant strides in utilizing cutting-edge technology

to revolutionize crop management practices, offering timely and precise disease detection

that holds immense promise for enhancing agricultural productivity and sustainability. The

adherence to a structured methodology and the successful integration of advanced techniques

46

highlights the project's dedication to achieving its objectives and delivering impactful results

in the field of plant disease detection.

5.2 Potential for Commercialization

The project presents significant potential in addressing the pressing challenges of

plant diseases that threaten agricultural productivity and food security. With the increasing

incidence of such diseases, there is a growing demand for effective detection solutions

among farmers, agricultural businesses, and researchers. By providing a reliable tool for

early disease identification, this project not only aims to reduce crop losses but also to

enhance overall agricultural yields, making it an asset in the agricultural sector.

Scalability is a key feature of the CNN-based plant disease detection system.

Initially focused on grape leaves, the technology can be expanded to include a wider variety

of crops, thereby broadening its applicability across different agricultural sectors. By

enhancing the dataset and refining the model, the system can cater to diverse plant species,

increasing its market appeal and potential for widespread adoption among farmers and

agricultural professionals.

Commercial opportunities abound for this project, particularly through the

development of a user-friendly mobile application. This app would enable farmers to upload

images of their plants for instant disease diagnosis and treatment recommendations.

Additionally, partnerships with agricultural suppliers could facilitate a marketplace within

the app, providing users with direct access to necessary products such as pesticides and

fungicides. Furthermore, offering expert consultation services through the app could create

an additional revenue stream, ultimately promoting sustainable agricultural practices and

contributing to global food security.

47

5.3 Future Works

To enhance the usability and accessibility of the CNN-based plant disease detection

system, future work will focus on developing a marketplace platform tailored to farmers,

gardeners, and agricultural stakeholders. The following features will be prioritized:

 Consider effect of unbalance and harmonic to TL. Mobile Integration:

Develop a user-friendly mobile application that integrates the CNN- based

detection model, enabling users to upload leaf images and receive disease

diagnosis and remedies instantly.

 Data-Driven Insights: Create a centralized dashboard where farmers can track

disease outbreaks across regions, forecast risks, and access actionable

insights for crop management.

 Instant Diagnosis: Enable users to upload images of their plants for

immediate disease identification and treatment recommendations, complete

with confidence scores.

48

REFERENCES

[1] R. Tripathi, “A Deep Learning Approach for Plant Material Disease Identification,”

IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, p. 12133, 2021, doi: 10.1088/1757-

899X/1116/1/012133.

[2] M. Sethi, “Plant Disease Detection using Image Segmentation,” Int. J. Ayurveda Herb.

Res., vol. 1, no. 1, pp. 15–18, 2023, doi: 10.54060/ijahr.v1i1.3.

[3] P. Srivastava, K. Mishra, V. Awasthi, V. Kumar Sahu, and P. Kumar Pal, “Plant

Disease Detection Using Convolutional Neural Network,” Int. J. Adv. Res., vol. 9, no.

01, pp. 691–698, 2021, doi: 10.21474/ijar01/12346.

[4] P. Dhiman, A. Kaur, Y. Hamid, E. Alabdulkreem, H. Elmannai, and N. Ababneh,

“Smart Disease Detection System for Citrus Fruits Using Deep Learning with Edge

Computing,” Sustain., vol. 15, no. 5, 2023, doi: 10.3390/su15054576.

[5] M. Bouni, B. Hssina, K. Douzi, and S. Douzi, “Impact of Pretrained Deep Neural

Networks for Tomato Leaf Disease Prediction,” J. Electr. Comput. Eng., vol. 2023,

2023, doi: 10.1155/2023/5051005.

[6] A. S. Zamani et al., “Performance of Machine Learning and Image Processing in Plant

Leaf Disease Detection,” J. Food Qual., vol. 2022, 2022, doi: 10.1155/2022/1598796.

[7] M. V. Shewale and R. D. Daruwala, “High performance deep learning architecture for

early detection and classification of plant leaf disease,” J. Agric. Food Res., vol. 14,

no. June, p. 100675, 2023, doi: 10.1016/j.jafr.2023.100675.

[8] H. Amin, A. Darwish, A. E. Hassanien, and M. Soliman, “End-to-End Deep Learning

Model for Corn Leaf Disease Classification,” IEEE Access, vol. 10, pp.31103–31115,

2022, doi: 10.1109/ACCESS.2022.3159678.

49

[9] E. Moupojou et al., “FieldPlant: A Dataset of Field Plant Images for Plant Disease

Detection and Classification With Deep Learning,” IEEE Access, vol. 11, no. April,pp.

35398–35410, 2023, doi: 10.1109/ACCESS.2023.3263042.

[10] J. F. Restrepo-Arias, J. W. Branch-Bedoya, and G. Awad, “Plant Disease Detection

Strategy Based on Image Texture and Bayesian Optimization with Small Neural

Networks,” Agric., vol. 12, no. 11, pp. 1–18, 2022, doi: 10.3390/agriculture12111964.

[11] W. Gao, Z. Xiao, and T. Bao, “Detection and Identification of Potato-Typical Diseases

Based on Multidimensional Fusion Atrous-CNN and Hyperspectral Data,” Appl. Sci.,

vol. 13, no. 8, 2023, doi: 10.3390/app13085023.

[12] K. Neupane and F. Baysal-Gurel, “Automatic identification and monitoring of plant

diseases using unmanned aerial vehicles: A review,” Remote Sens., vol. 13, no. 19,

2021, doi: 10.3390/rs13193841.

[13] X. Chen, “The Study for Convolutional Neural Network and Corresponding

Applications,” Theor. Nat. Sci., vol. 5, no. 1, 2023, doi: 10.54254/2753-

8818/5/20230387.

[14] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex,” J. Physiol., vol. 160, no. 1, 1962, doi:

10.1113/jphysiol.1962.sp006837.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, 2017, doi:

10.1145/3065386.

[16] K. Fukushima, “Artificial Vision by Deep CNN Neocognitron,” IEEE Trans. Syst.

Man, Cybern. Syst., vol. 51, no. 1, 2021, doi: 10.1109/TSMC.2020.3042785.

50

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 39, no. 6, 2017, doi: 10.1109/TPAMI.2016.2577031.

[18] C. Y. Cao, J. C. Zheng, Y. Q. Huang, J. Liu, and C. F. Yang, “Investigation of a

promoted you only look once algorithm and its application in traffic flow monitoring,”

Appl. Sci., vol. 9, no. 17, 2019, doi: 10.3390/app9173619.

[19] W. Liu et al., “SSD: Single shot multibox detector,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2016. doi: 10.1007/978-3-319-46448-0_2.

51

APPENDICES

Appendix A Training Process Code

%% Training Process Based on Deep Learning Model Using AlexNet

clear; close all; clc;

% Step 1: Load and Preprocess the Data
% Replace 'dataFolder' with the path to your dataset folder
dataFolder = 'C:\Users\USER\Downloads\psm';
imds = imageDatastore(dataFolder, ...
 'IncludeSubfolders', true, ...
 'LabelSource', 'foldernames');

% Split the data into training and validation sets
[imdsTrain, imdsValidation] = splitEachLabel(imds, 0.7, 'randomized');
numTrainImages = numel(imdsTrain.Labels);
inputSize = [227 227]; % AlexNet default input size

% Resize images to match AlexNet input size and apply data augmentation
imageAugmenter = imageDataAugmenter(...
 'RandXReflection', true, ...
 'RandXScale', [0.9 1.1], ...
 'RandYScale', [0.9 1.1]);
augmentedTrain = augmentedImageDatastore(inputSize, imdsTrain,
'DataAugmentation', imageAugmenter);
augmentedValidation = augmentedImageDatastore(inputSize, imdsValidation);

% Display sample training images
figure('Name', 'Sample Training Images');
for i = 1:9
 subplot(3, 3, i);
 I = readimage(imdsTrain, randperm(numTrainImages, 1));
 imshow(I);
end

% Step 2: Load Pre-trained AlexNet and Modify for New Classes
net = alexnet; % Load AlexNet
layersTransfer = net.Layers(1:end-3); % Keep all layers except the last 3

% Modify the last fully connected layer and classification layer
numClasses = numel(categories(imdsTrain.Labels));
layers = [
 layersTransfer
 fullyConnectedLayer(numClasses, 'WeightLearnRateFactor', 10,
'BiasLearnRateFactor', 10)
 softmaxLayer
 classificationLayer];

% Step 3: Set Training Options
options = trainingOptions('sgdm', ...
 'MiniBatchSize', 32, ...
 'MaxEpochs', 10, ...
 'InitialLearnRate', 1e-4, ...

52

 'ValidationData', augmentedValidation, ...
 'ValidationFrequency', 5, ...
 'Verbose', false, ...
 'Plots', 'training-progress');

% Step 4: Train the Network
netTransfer = trainNetwork(augmentedTrain, layers, options);

% Save the trained model
save('PDC_Train.mat', 'netTransfer');
disp('Network model was trained and saved as PDC_Train.mat');

% Step 5: Evaluate the Model
% Calculate the accuracy on the validation set
[YPred, scores] = classify(netTransfer, augmentedValidation);
YValidation = imdsValidation.Labels;
accuracy = mean(YPred == YValidation);
fprintf('Validation accuracy: %.2f%%\n', accuracy * 100);

% Display a few sample predictions
idx = randperm(numel(imdsValidation.Files), 4);
figure('Name', 'Sample Predictions');
for i = 1:4
 subplot(2, 2, i);
 I = readimage(imdsValidation, idx(i));
 imshow(I);
 label = YPred(idx(i));
 title(sprintf("Predicted: %s", string(label)));
end

53

Appendix B Function Code

function FINAL
 % Main GUI Figure
 fig = figure('Name', 'Plant Disease Detection', 'NumberTitle', 'off', ...

 'Position', [100, 100, 1200, 700], 'MenuBar', 'none', ...
 'Resize', 'off', 'Color', [0.9, 0.95, 1]);

 % Variables for storing data
 global I netTransfer inputSize axImage axAffection axPrediction axDisease
axSegment popupCluster segmented_images totalPixels YPred;
 inputSize = [227, 227, 3]; % AlexNet input size

 % Load Trained Model
 data = load('PDC_Train.mat'); % Load into a structure
 if isfield(data, 'netTransfer')

netTransfer = data.netTransfer; % Extract the trained network
msgbox('Trained Network Model Was Loaded', 'Model Loaded');

 else
errordlg('The required variable "netTransfer" was not found in

PDC_Train.mat.', 'Error');
return;

 end

 % Title Label
 uicontrol('Style', 'text', 'String', 'Plant Disease Detection System',
...

'FontSize', 20, 'FontWeight', 'bold', 'BackgroundColor', [0.7,
0.85, 1], ...

'ForegroundColor', 'k', 'Position', [400, 650, 400, 40], ...
'HorizontalAlignment', 'center');

 % Axes for displaying images and results
 axImage = axes('Parent', fig, 'Units', 'pixels', ...

 'Position', [50, 400, 300, 200], 'Box', 'on');
 title(axImage, 'Leaf Image', 'FontWeight', 'bold', 'FontSize', 12);

 axAffection = axes('Parent', fig, 'Units', 'pixels', ...
'Position', [400, 400, 300, 200], 'Box', 'on');

 title(axAffection, 'Affected Area (%)', 'FontWeight', 'bold', 'FontSize',
12);
 axis(axAffection, 'off');

 axPrediction = axes('Parent', fig, 'Units', 'pixels', ...
'Position', [50, 150, 300, 200], 'Box', 'on');

 title(axPrediction, 'Prediction Confidence (%)', 'FontWeight', 'bold',
'FontSize', 12);
 axis(axPrediction, 'off');

 axDisease = axes('Parent', fig, 'Units', 'pixels', ...
'Position', [400, 150, 300, 200], 'Box', 'on');

 title(axDisease, 'Disease Type', 'FontWeight', 'bold', 'FontSize', 12);
 axis(axDisease, 'off');

 % Axes for displaying segmented ROI
 axSegment = axes('Parent', fig, 'Units', 'pixels', ...

54

'Position', [750, 330, 300, 200], 'Box', 'on');
 title(axSegment, 'Selected Cluster (ROI)', 'FontWeight', 'bold',
'FontSize', 12);

 % Popup menu for cluster selection
 popupCluster = uicontrol('Style', 'popupmenu', ...

 'String', {'Select Cluster', 'Cluster 1',
'Cluster 2', 'Cluster 3'}, ...

 'Position', [750, 550, 300, 30], ...
 'FontSize', 12, 'Callback', @displayCluster);

 % Arrange buttons at the bottom
 buttonWidth = 150;
 buttonHeight = 40;
 buttonSpacing = 30;
 totalWidth = (4 * buttonWidth) + (3 * buttonSpacing);
 startX = (1200 - totalWidth) / 2; % Center buttons horizontally
 startY = 20; % Fixed vertical position for buttons

 uicontrol('Style', 'pushbutton', 'String', 'Browse', ...
'FontSize', 12, 'BackgroundColor', [0.7, 0.85, 1], ...
'Position', [startX, startY, buttonWidth, buttonHeight], ...
'Callback', @browseCallback);

 uicontrol('Style', 'pushbutton', 'String', 'Detect Disease', ...
'FontSize', 12, 'BackgroundColor', [0.6, 0.8, 0.9], ...
'Position', [startX + buttonWidth + buttonSpacing, startY,

buttonWidth, buttonHeight], ...
'Callback', @detectionCallback);

 uicontrol('Style', 'pushbutton', 'String', 'Analyze Features', ...
'FontSize', 12, 'BackgroundColor', [0.5, 0.75, 0.85], ...
'Position', [startX + 2 * (buttonWidth + buttonSpacing),

startY, buttonWidth, buttonHeight], ...
'Callback', @analysisCallback);

 uicontrol('Style', 'pushbutton', 'String', 'Remedy', ...
'FontSize', 12, 'BackgroundColor', [0.6, 0.8, 0.7], ...
'Position', [startX + 3 * (buttonWidth + buttonSpacing),

startY, buttonWidth, buttonHeight], ...
'Callback', @remedyCallback);

 %% Callback Functions
 % Browse Image
 function browseCallback(~, ~)

[filename, pathname] = uigetfile({'*.*'; '*.bmp'; '*.jpg'; '*.gif'},
'Pick a Leaf Image File');

if filename == 0
return;

end
I = imread([pathname, filename]);
I = imresize(I, [256, 256]);
totalPixels = numel(I(:, :, 1)); % Total number of pixels in the

image
imshow(I, 'Parent', axImage);
title(axImage, 'Loaded Image', 'FontWeight', 'bold');

 end

 % Detect Disease

55

 function detectionCallback(~, ~)
if isempty(I)

errordlg('Please load an image first.', 'Error');
return;

end

% Resize for AlexNet
Img1 = imresize(I, inputSize(1:2));

% Classification
[YPred, scores] = classify(netTransfer, Img1);
predicted_score = max(scores) * 100;

% Update Axes
imshow(I, 'Parent', axImage);
title(axImage, 'Detected Image', 'FontWeight', 'bold');

axes(axPrediction);
cla;
text(0.5, 0.5, sprintf('%.2f%%', predicted_score), ...

'Color', 'b', 'FontWeight', 'bold', 'FontSize', 16, ...
'HorizontalAlignment', 'center');

title(axPrediction, 'Prediction Confidence (%)', 'FontWeight',
'bold');

axes(axDisease);
cla;
text(0.5, 0.5, char(YPred), ...

'Color', 'r', 'FontWeight', 'bold', 'FontSize', 16, ...
'HorizontalAlignment', 'center');

title(axDisease, 'Disease Type', 'FontWeight', 'bold');
 end

 % Analyze Features
 function analysisCallback(~, ~)

if isempty(I)
errordlg('Please load an image first.', 'Error');
return;

end

% K-means segmentation
lab_he = rgb2lab(I);
ab = double(lab_he(:, :, 2:3));
nrows = size(ab, 1);
ncols = size(ab, 2);
ab = reshape(ab, nrows * ncols, 2);
nColors = 3;
[cluster_idx, ~] = kmeans(ab, nColors, 'distance', 'sqEuclidean',

'Replicates', 3);
pixel_labels = reshape(cluster_idx, nrows, ncols);
segmented_images = cell(1, nColors);
rgb_label = repmat(pixel_labels, [1, 1, 3]);
for k = 1:nColors

colors = I;
colors(rgb_label ~= k) = 0;
segmented_images{k} = colors;

end
 end

56

 % Display Cluster and Calculate Affected Area
 function displayCluster(~, ~)
 selectedCluster = popupCluster.Value - 1; % Get selected cluster
index
 if selectedCluster >= 1 && selectedCluster <= 3
 clusterMask = segmented_images{selectedCluster}(:, :, 1) > 0;
 if strcmpi(char(YPred), 'Healthy')
 affectedArea = 0.00; % Healthy case, affected area is always
0
 else
 affectedArea = sum(clusterMask(:)) / totalPixels * 100;
 end

 imshow(segmented_images{selectedCluster}, 'Parent', axSegment);
 title(axSegment, sprintf('Selected Cluster %d (ROI)',
selectedCluster), 'FontWeight', 'bold');

 axes(axAffection);
 cla;
 text(0.5, 0.5, sprintf('%.2f%%', affectedArea), ...
 'Color', 'g', 'FontWeight', 'bold', 'FontSize', 16, ...
 'HorizontalAlignment', 'center');
 title(axAffection, 'Affected Area (%)', 'FontWeight', 'bold');
 else
 cla(axSegment);
 cla(axAffection);
 title(axSegment, 'Selected Cluster (ROI)', 'FontWeight', 'bold');
 end
 end

 % Remedy Callback Function
 function remedyCallback(~, ~)
 if isempty(I)
 errordlg('Please load an image and detect disease first.',
'Error');
 return;
 end

 % Get the detected disease type
 diseaseType = char(YPred); % Ensure YPred is converted to a string

 % File paths for remedies
 remedyFolder = 'C:\Users\USER\Downloads\REMEDY'; % Folder where
remedy files are located
 switch lower(diseaseType) % Match disease type
 case 'blight'
 remedyFile = fullfile(remedyFolder, 'BLIGHT REMEDY.txt');
 case 'grape black rot'
 remedyFile = fullfile(remedyFolder, 'BLACK ROT REMEDY.txt');
 otherwise
 errordlg('No remedy available for the detected disease.',
'Error');
 return;
 end

 % Check if the file exists and display it
 if isfile(remedyFile)
 % Open the remedy file in the default text editor
 winopen(remedyFile);

57

else
errordlg(['The remedy file "' remedyFile '" does not exist.'],

'Error');
end

 end
end

