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ABSTRACT 

This project focuses on developing a plant disease detection system using Convolutional 

Neural Networks (CNN) to address the critical challenge of identifying plant diseases early 

in agriculture. The proposed system leverages image analysis to classify diseases such as 

Grape Black Rot, Leaf Blight, and healthy conditions in grape leaves. Utilizing AlexNet 

architecture in MATLAB, the model processes a dataset of 500 leaf images (70% for 

training, 30% for testing) with image preprocessing techniques like resizing and 

normalization.The methodology involves designing a MATLAB-based GUI for user 

interaction, allowing image uploads, disease detection, affected area analysis, and remedy 

suggestions. Model performance was evaluated on multiple metrics, achieving an overall 

accuracy of 99.3% on the validation dataset. Tests on 60 samples consistently demonstrated 

high prediction confidence (96.42%-100%) and accurate classification of healthy and 

diseased leaves.Quantitative analysis of the affected area using clustering revealed detailed 

insights into disease severity, supporting effective decision-making. This system shows 

strong potential for real-time agricultural applications, contributing to sustainable farming 

practices and enhancing food security. Future enhancements include integrating mobile 

platforms for broader accessibility. 
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ABSTRAK 

Projek ini bertujuan untuk membangunkan sistem pengesanan penyakit tumbuhan 

menggunakan Rangkaian Neural Konvolusi (CNN) bagi menangani cabaran kritikal dalam 

mengenal pasti penyakit tumbuhan secara awal dalam sektor pertanian. Sistem yang 

dicadangkan memanfaatkan analisis imej untuk mengelaskan penyakit seperti Grape Black 

Rot, Leaf Blight, dan keadaan sihat pada daun anggur. Dengan menggunakan seni bina 

AlexNet dalam MATLAB, model ini memproses dataset yang terdiri daripada 500 imej daun 

(70% untuk latihan, 30% untuk ujian) dengan teknik prapemprosesan imej seperti 

pengubahan saiz dan penormalan. Metodologi melibatkan reka bentuk GUI berasaskan 

MATLAB untuk interaksi pengguna, membolehkan muat naik imej, pengesanan penyakit, 

analisis kawasan terjejas, dan cadangan rawatan. Prestasi model dinilai berdasarkan pelbagai 

metrik, mencapai ketepatan keseluruhan sebanyak 99.3% pada dataset validasi. Ujian ke atas 

60 sampel menunjukkan keyakinan ramalan yang tinggi (96.42%-100%) dan pengelasan 

yang tepat antara daun yang sihat dan yang berpenyakit. Analisis kuantitatif kawasan terjejas 

menggunakan pengelompokan memberikan maklumat terperinci tentang tahap keterukan 

penyakit, menyokong pembuatan keputusan yang berkesan. Sistem ini menunjukkan potensi 

yang kuat untuk aplikasi masa nyata dalam pertanian, menyumbang kepada amalan 

pertanian mampan dan meningkatkan keselamatan makanan. Penambahbaikan masa depan 

termasuk integrasi platform mudah alih untuk akses yang lebih luas. 
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INTRODUCTION 

1.1 Background 

Agriculture is the cornerstone of human civilization, providing essential resources 

such as food, fiber, and fuel. It encompasses a broad range of activities, including the 

cultivation of plants and the rearing of animals, which are fundamental to sustaining the 

global population. With the ever-growing demand for agricultural products driven by 

population growth and changing dietary patterns, ensuring the health and productivity of 

crops is paramount. 

One of the most significant challenges in agriculture is the management of plant 

diseases. Plant diseases, caused by various pathogens including bacteria, viruses, fungi, and 

nematodes, can lead to substantial losses in crop yield and quality. These diseases can spread 

rapidly through fields and across regions, causing epidemics that threaten food security and 

economic stability. Effective disease management is thus crucial for maintaining high 

agricultural productivity and ensuring a stable food supply. 

Traditionally, plant disease management has relied on manual inspection and the 

application of chemical treatments. However, these methods have limitations. Manual 

inspection is time-consuming, labor-intensive, and prone to human error, while the excessive 

use of chemical treatments can lead to environmental pollution, resistance development in 

pathogens, and increased production costs. 

In recent years, advancements in technology have opened new avenues for plant 

disease detection and management. Precision agriculture, leveraging tools such as remote 
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sensing, machine learning, and computer vision, offers innovative solutions to these 

challenges. By automating the detection and diagnosis of plant diseases, these technologies 

can enhance the accuracy and efficiency of disease management practices. 

Machine learning and computer vision have shown great promise in identifying and 

classifying plant diseases based on visual symptoms. These technologies analyze images of 

plants to detect early signs of disease, enabling timely intervention and minimizing crop 

losses. Moreover, the integration of such technologies into user-friendly interfaces, such as 

graphical user interfaces (GUIs), makes these tools accessible to farmers and agricultural 

professionals, facilitating widespread adoption. 

This project focuses on leveraging machine learning and MATLAB to develop a 

system for detecting plant diseases through image analysis. By capturing and processing 

images of plants, the system aims to accurately identify the presence of diseases and provide 

reliable results through an intuitive GUI. This approach not only enhances the precision of 

disease detection but also contributes to the overall goal of sustainable agriculture by 

promoting efficient and environmentally friendly disease management practices. 

1.2 Problem Statement 

The early and accurate detection of plant diseases is a critical challenge in 

agriculture, affecting crop yields, food security, and economic stability. Traditional methods 

of disease detection, which often rely on manual inspection by trained experts, are time-

consuming, labor-intensive, and prone to human error. Additionally, these methods are not 

scalable for large-scale farming operations and may result in delayed intervention, leading 

to significant crop losses. There is an urgent need for an efficient, scalable, and reliable 

solution that can identify plant diseases at an early stage to enable timely and effective 

management. 
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This problem directly impacts Sustainable Development Goal (SDG) 2: Zero 

Hunger, which aims to end hunger, achieve food security, improve nutrition, and promote 

sustainable agriculture. By addressing the challenge of plant disease detection, we can 

significantly reduce crop losses and improve agricultural productivity, thereby contributing 

to food security and sustainable farming practices. 

To tackle these challenges, this research proposes the development of a smart plant 

disease detection system using Convolutional Neural Networks (CNNs), leveraging their 

superior image processing capabilities to identify a wide array of plant diseases 

automatically and accurately from leaf images. This system aims to provide a practical, real-

time solution for farmers and agricultural professionals, enhancing disease management 

practices and contributing to the achievement of SDG 2 by ensuring a more reliable and 

sustainable food supply. 

1.3 Project Objective 

The objectives of this project are as follows: 

 Develop a smart plant disease detection using Convolutional Neural Network 

(CNNs). 

 To collect and create a Comprehensive Dataset: Gather a diverse set of high- 

quality images of plant leaves affected by various diseases, as well as healthy 

leaves, across different plant species. 

 To analyze the performance of the system based on the accuracy and 

efficiency of the system. 
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1.4 Scope of Project 

The scope of this project are as follows: 

Investigation of load profiles of residential, commercial and industrial load 

segments to determine load factor (LF) and loss factor (LsF) were considered 

in the analytical models. The model will focus on detecting and classifying 

common leaf-based plant diseases from  a single plant species which is grape 

leaf. 

This project use 500 datset, 70% for training and 30% for testing. 

The dataset contains three differences categories which are ‘Healthy leaf’, 

‘Grape Black Rot’ and ‘Leaf Blight’. 

Image preprocessing will include resizing, normalization, and basic 

augmentation to ensure consistent input data quality for the CNN model. 

The model’s performance will be evaluated using standard metrics (accuracy) 

on a test dataset derived from the training dataset's domain. 

The CNN will be optimized for MATLAB to run efficiently on standard 

desktop systems, targeting inference times under 1 second per image. 

A basic MATLAB GUI will be developed to allow users to upload images 

and receive predictions with disease classification, confidence scores, 

percentage of Affection and remedy of diseases. 
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LITERATURE REVIEW 

2.1 Introduction 

The literature review section of this research project delves into a comprehensive 

analysis of scholarly journals, product research studies, and technological advancements 

relevant to the field of plant disease detection using Convolutional Neural Networks (CNNs). 

By examining a range of academic sources, including peer-reviewed journals and research 

articles, this review aims to provide a thorough understanding of the current state of 

knowledge in the application of CNNs for plant disease identification. Additionally, insights 

from product research studies focusing on innovative solutions for agricultural disease 

management will be explored to identify trends, challenges, and opportunities in the field. 

Furthermore, the review will highlight key technological developments, such as 

advancements in image processing algorithms and deep learning techniques, that have 

contributed to the evolution of plant disease detection systems. By synthesizing information 

from these diverse sources, this literature review sets the stage for the subsequent sections 

of the research project, guiding the reader through a comprehensive overview of the 

theoretical and practical aspects shaping the landscape of plant disease detection 

technologies. Figure 2.1 shows a various healthy plant and the differences disease. 
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Figure 2.1 Example of various plant disease [1] 

2.2 Recent Study 

There is much research that had been published that involved in plant disease 

detection like the work from the author named Sethi at el. presents a novel approach for 

detecting plant diseases using image segmentation techniques. The study utilizes deep 

learning algorithms to segment images into healthy and infected areas, enabling the 

classification of diseases based on the segmented regions. By automating the detection and 

quantification of plant diseases, the proposed method proves to be a valuable tool for farmers 

and researchers. Experimental results demonstrate high accuracy in detecting various plant 
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diseases such as leaf spots, powdery mildew, and rust. Leveraging transfer learning and 

semantic segmentation, the research showcases the effectiveness of image segmentation in 

improving the accuracy and precision of disease classification. The study emphasizes the 

potential of computer vision techniques in enhancing crop management practices and 

reducing losses due to disease outbreaks [2]. 

The work by author Srivastava et al. explores the application of deep convolutional 

networks in developing a model for accurate and efficient plant disease recognition. By 

utilizing image processing techniques, the study aims to enhance agricultural practices by 

providing a fast and reliable method for detecting diseases in plants. The research 

emphasizes the importance of timely and precise diagnosis in ensuring sustainable 

agriculture and combating the development of pathogen resistance due to indiscriminate 

pesticide use. By deep learning frameworks and fine-tuning parameters, the study achieved 

an overall accuracy of 88% in disease classification. The methodology involves gathering 

and preprocessing leaf images, training the deep CNN, and conducting tests to evaluate the 

model's performance. The findings suggest a promising approach for automating disease 

detection in plants, with potential applications in real-time crop surveillance and yield 

prediction. The study also mentions that the system is based on Python and can provide an 

accuracy of around 88%, which can be further optimized by using Google's GPU for 

processing [3]. 

The work by Dhiman et al. proposed the Smart Disease Detection System for Citrus 

Fruits Using Deep Learning with Edge Computing to detect diseases in citrus fruits through 

advanced technology. By combining deep learning methods, specifically a CNN- LSTM 

model, with edge computing, the system aims to enhance the efficiency and accuracy of 

disease classification. The research addresses the growing need for automated fruit disease 

detection to ensure the production of high-quality, disease-free citrus fruits. With the 



8 

increasing global production of citrus fruits, such technological advancements are crucial for 

farmers to maintain quality standards and prevent the spread of diseases.  

The proposed system leverages edge computing servers located closer to client 

devices, reducing data transmission delays, and improving overall performance compared to 

traditional cloud-based solutions. By integrating cutting-edge technologies, this smart 

disease detection system offers a promising solution for the agricultural sector to enhance 

sustainability and productivity in citrus fruit cultivation. In the experiment, the accuracy 

achieved using the baseline model without using the compression technique is 96.93%. The 

proposed CNN- LSTM model without compression technique achieved an accuracy of 

98.87%. Additionally, the model achieved high accuracies for different classes of citrus fruit 

diseases, such as 97.08% for Canker, 97.32% for Scab, 94.65% for Melanosis, 95.13% for 

Greening, 95.38% for Blackspot, and 99.05% for Healthy [4]. 

The work by Bouni et al. the application of pretrained deep neural networks in 

predicting tomato leaf diseases. By utilizing transfer learning with models such as AlexNet, 

VGG16, ResNet, and DenseNet, the study achieved significant accuracy rates, with 

DenseNet and the RmsProp optimization method leading to the highest accuracy of 99.9%. 

The research emphasizes the importance of technology, particularly deep learning, and 

automation, in agriculture to address the challenges of plant disease management. With the 

global population projected to reach 9.2 billion by 2050, reducing yield losses due to factors 

like climate change and plant diseases is crucial for food security. The study highlights the 

potential of advanced technologies in agriculture to enhance disease detection and control, 

ultimately contributing to sustainable food production and societal well-being.In the 

experiment, the classification accuracy of the models varied. The accuracy percentages for 

each model are AlexNet: 85.6%, RmsProp optimizer: 95.4%, VGG-16: RmsProp optimizer: 

89.5%, ResNet:Adam optimizer: 91.6%, RmsProp optimizer: 99.2%. DenseNet: Adam 



9 

optimizer: 95.6% and RmsProp optimizer: 99.5%. These accuracy percentages reflect the 

performance of the models in classifying tomato leaf diseases in the experiment conducted 

by Mohamed Bouni et al [5]. 

The work by Zamani at el. presented a comprehensive study on utilizing machine 

learning and image processing techniques to evaluate infected leaf disease images. The 

research aimed to develop an automated disease detection system for plant leaves, essential 

for expediting crop diagnosis in agriculture. The process involved multiple stages, including 

image acquisition, preprocessing to eliminate noise, segmentation using the K-Means 

approach for boundary establishment, and feature extraction through principal component 

analysis. Various classification techniques such as RBF-SVM, SVM, random forest, and ID3 

were applied for categorizing images based on disease detection. Despite the promising 

methodology, the article was retracted due to evidence of systematic manipulation in the 

publication process, casting doubt on the reliability of its content and research findings. This 

retraction highlights the critical importance of upholding research integrity and verifying the 

credibility of scientific publications to ensure the dissemination of accurate and trustworthy 

information in academic circles [6]. The accuracy results for the algorithms ID3, 

RandomForest, SVM, and RBF SVM were ID3: Approximately 0.94 accuracy, 

RandomForest: Approximately 0.96 accuracy, SVM: Approximately 0.88 accuracy and RBF 

SVM: Approximately 0.98 accuracy. 

The journal by authors Shewale at el. proposed a high-performance deep learning 

architecture for early detection and classification of plant leaf disease to address the 

significant annual production loss caused by plant leaf diseases. By leveraging deep learning 

techniques, the research focuses on early detection and accurate classification of plant 

diseases, particularly in tomato plants. The study emphasizes the importance of automated 

intelligent strategies in reducing manual recognition efforts and improving recognition 
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accuracy. By combining deep learning with image processing, the proposed method can 

classify diseases with high precision by automatically extracting features from leaf images 

captured in real-time agricultural environments. The research aims to provide a clear 

pathway for crop disease diagnosis on a global scale by training deep learning models on 

progressively larger and publicly available image datasets. The goal is to develop a practical 

tool that can assist farmers in efficiently diagnosing plant diseases, leading to more effective 

decision-making and sustainable agricultural practices. The experiment achieved an accurate 

percentage of 99.81% with the proposed method. This high accuracy rate demonstrates the 

effectiveness of the deep learning model in accurately detecting and classifying plant leaf 

diseases [7]. 

The work by Amin at el. presents a novel approach to automating the identification 

and classification of corn leaf diseases using deep learning techniques. The rapid and 

accurate detection of plant diseases is crucial for global food security, but it remains a 

challenging and time-consuming task. The proposed model leverages two pre-trained CNNs, 

EfficientNetB0 and DenseNet121, to extract features from digital images of corn leaves 

infected with gray leaf spot, common rust, northern leaf blight, and healthy leaves. By 

utilizing feature fusion techniques between the two CNNs, the model enhances its predictive 

power and builds an end-to-end classification system. This innovative approach not only 

addresses the limitations of large parameter sizes in traditional models but also demonstrates 

the potential of deep learning algorithms in revolutionizing plant disease diagnosis and 

management in agriculture. The proposed end- to-end deep learning model achieved a 

classification accuracy of 98.56% in the experiment. This high accuracy rate demonstrates 

the effectiveness of using deep learning techniques for corn leaf disease classification. The 

model outperformed other methods and CNNs used in the study, showcasing its robustness 

and efficiency in identifying different classes of corn leaf diseases [8]. 
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The journal by authors Moupojou presents a FieldPlant, A Dataset of Field Plant 

Images for Plant Disease Detection and Classification with Deep Learning. The dataset 

comprises 5,170 original images captured in plantations under various lighting conditions, 

annotated with 8,629 individual leaf annotations across 27 disease classes. By leveraging the 

RoboFlow online platform for annotation, researchers can develop models to aid farmers in 

real-time plant disease identification and classification. The article highlights the limitations 

of existing datasets, emphasizing the need for more comprehensive and accurate annotations 

to train high-accuracy models. Through the utilization of deep learning models, the study 

showcases the potential of automatic feature extraction for improved disease diagnosis. The 

dataset's creation and potential applications align with addressing global food security 

challenges by mitigating crop yield losses due to plant diseases. The study by Moupojou et 

al. achieved top-1 average identification accuracy of 95% on the tomato test dataset using a 

hybrid deep learning model. Khattak et al. achieved a test accuracy of 94.55% in 

differentiating healthy citrus fruits and leaves from those with common citrus diseases using 

a 2-layers CNN model. The study by Moupojou et al.optimized multi-task learning using 

homoscedastic uncertainty to obtain plant and disease accuracies of 84.71% and 75.06%, 

respectively, on the PlantDoc dataset [9]. 

The work by Restrepo-Arias at el. presents a novel approach to plant disease 

diagnosis using image texture analysis and Bayesian optimization with small neural 

networks. The method involves preprocessing images to remove background noise, 

segmenting images into tiles to reduce bias from leaf morphology, and training small 

convolutional neural network models on a new dataset of images. The proposed strategy 

aims to avoid classification bias caused by plant characteristics and achieve competitive 

classification results with efficient computational requirements. Future work includes testing 

with different image sizes, improving performance metrics, and optimizing other neural 
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network hyperparameters. The experiment reported in the journal achieved accuracy ranging 

from approximately 91.50% to 96.31% for different models used in the plant disease 

detection strategy [10]. The accuracy percentages for each model are MobileNet: 96.31%, 

SqueezeNet: 95.05%, NasNetMobile: 95.01%, MobileNetV2: 94.59%, ShuffleNet: 91.50%. 

The journal by Gao at el explores detecting and identifying potato diseases using 

multidimensional fusion Atrous-CNN and hyperspectral data. It highlights the importance 

of accurate disease detection for preserving crop yield and quality, especially concerning 

diseases like blackleg and soft tuber rot. Traditional methods fall short, prompting the need 

for advanced technologies. Hyperspectral imaging provides detailed spectral and spatial data 

crucial for disease detection in potatoes. The study introduces an Atrous-CNN model that 

combines 1D-CNN, 2D-CNN, and 3D-CNN to enhance disease detection accuracy while 

reducing hardware consumption. Experimental results show high recognition accuracy, 

indicating the model's effectiveness in hyperspectral data analysis for potato disease 

identification. This research not only improves potato disease detection but also has 

implications for other agricultural crops. By leveraging advanced technologies and 

innovative network structures, the agricultural industry can enhance disease management 

strategies, leading to healthier crops and increased productivity. Future work aims to expand 

this approach to address disease challenges in diverse agricultural settings, promoting 

precision agriculture and sustainable food production. In the experiment, the 

Multidimensional Fusion Atrous-CNN model showed high accuracy in identifying potato 

diseases, with accuracy rates exceeding 99.7%. Compared to other models used, it performed 

better by improving accuracy by around 0.5% to 0.9%. The 1D-CNN network also achieved 

high accuracy rates above 98% for disease recognition. Overall, the advanced models proved 

to be effective in accurately detecting and classifying potato diseases using hyperspectral 

imaging technology [11]. 
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The work by Neupane at el. explains into the application of Unmanned Aerial 

Vehicles (UAVs) in precision agriculture for automating the identification and monitoring 

of plant diseases. By employing UAVs with imaging sensors and machine learning 

algorithms, farmers can detect biotic injuries caused by pathogens without direct human 

involvement. Overcoming challenges like limited spectral bandwidth and image noise is 

addressed through advanced techniques such as transfer learning and batch normalization. 

Emphasizing the need for extensive datasets, multi-sensor gimbals, and site-specific 

irradiance systems, the review underscores the potential of UAV technology in 

revolutionizing plant disease detection and management in agriculture. The integration of 

UAVs with deep learning methods showcases a promising pathway towards enhancing crop 

health monitoring and bolstering agricultural productivity. In various, the accuracy 

percentage in identifying plant diseases using different models ranged from 79% to 99.35% 

[12]. 

2.3 Summary Evaluation 

The table highlights research on plant disease detection using various methods. 

Image segmentation achieved 88% accuracy, with plans to improve datasets by adding more 

disease classes. Convolutional Neural Networks (CNNs) are widely used, with accuracies 

ranging from 88% to 99.8%, focusing on real-time detection, IoT integration, optimization, 

and expansion to other plant diseases and parts. Deep Neural Networks (DNNs) showed 

83.6% to 99.5% accuracy, with future work aimed at extending to more plant species and 

gathering diverse datasets. Machine learning methods achieved 88% to 98% accuracy, 

emphasizing robust models and real-time solutions like mobile apps. Overall, future 

directions include enhancing datasets, optimizing models, and developing practical, real-

time applications for farmers. Refer to table 2.1.
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Table 2.1 Comparison of difference method in plant disease detection 

Paper Method 
Percentage of 

accuracy (%) 
Future work 

[2] 
Image 

Segmentation 
88 

Dataset Enrichment: The Field Plant dataset can be improved by adding more 

disease classes, increasing its usefulness for plant disease research and management. 

Future work should involve collecting more field images to include new disease 

classes, enhancing the dataset's diversity. 

[3] 

Convolutional 

Neural 

Network 

88 

1. Automation of Real-Time Detection: Implementing a system to automate the 

process of detecting yield crops in real-time.  

2. Application Development: Creating web or desktop applications to display the 

prediction results for easy access and interpretation. 

3. Optimization for AI Environment: Enhancing the system to operate efficiently 

in an artificial intelligence (AI) environment. 

[4] 

Convolutional 

Neural 

Network 

96.93 

1. Optimization Techniques: 

Further exploration of optimization techniques to enhance the efficiency and speed 

of the CNN- LSTM model on edge computing devices.Investigate advanced 

pruning and quantization methods to reduce model size without compromising 

accuracy. 

 

2. Integration of IoT: 

Integration of Internet of Things (IoT) devices for real-time data collection and 

analysis, enabling proactive disease detection and management in citrus orchards. 

[5] 
Deep Neural 

Network 
83.6-99.5 

1. Expansion to Other Plant Species: Extend the research to investigate the 

application of deep learning models and transfer learning techniques for 

predicting diseases in a variety of plant species beyond tomatoes. 

2. Enhanced Data Collection: Gather more diverse and extensive datasets to train 

deep learning models effectively, improving the accuracy and generalization of 

disease prediction across different plant types. 
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[6] 
Machine 

Learning 
88-98 

Focus on enhancing the model's accuracy and robustness by incorporating larger, 

more diverse datasets and employing advanced deep learning techniques such as 

transfer learning and ensemble methods. Additionally, efforts could be directed 

towards developing real-time, field- deployable solutions such as mobile apps or 

handheld devices that integrate the detection model. 

[7] 

Convolutional 

Neural 

Network 

99.8 

Future Directions: The study proposes developing a server-side system integrated 

with a handheld tool for farmers, providing real- time disease diagnosis and 

decision-making. It also suggests expanding the application to recognize diseases in 

fruits, flowers, and vegetables from leaf images. Future research will focus on 

covering more plant leaf species, supporting sustainable agricultural development. 

[8] 

Convolutional 

Neural 

Network 

98.56 

Expansion to Other Plant Diseases: The model's approach can be extended to 

classify a broader range of plant diseases beyond corn, encompassing various crops 

and vegetation. This expansion would contribute to the development of a versatile 

and comprehensive disease detection system for agriculture 

[9] 

Convolutional 

Neural 

Network 

95 

Dataset Enrichment: The FieldPlant dataset has the potential to be enriched with 

more disease classes, thereby expanding its scope and utility for plant disease 

research and management. Future efforts may focus on collecting additional field 

images to incorporate new disease classes and enhance the dataset's diversity. 

[10] 
Small Neural 

Network 
91.5-96.31 

Experimentation with Different Image Sizes: Conducting tests with various image 

sizes to enhance resolution for improved classification based on texture features 

caused by diseases in plant leaves 

[11] 

Convolutional 

Neural 

Network 

98 

Improving the accuracy and speed of the Atrous-CNN by integrating more advanced 

deep learning techniques and leveraging larger and more diverse hyperspectral 

datasets. Another potential direction is to develop a user- friendly mobile application 

for farmers, enabling real-time disease detection and management in the 

Field. 

[12] 

Convolutional 

Neural 

Network 

79-99.35 

Integration of gimbal systems with multiple sensors for enhanced data 

collection.Expansion of datasets for training and validation to improve algorithm 

accuracy. Development of site-specific irradiance systems for more precise 

monitoring. 
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2.4 Convolutional Neural Network (CNNs) 

Artificial Neural Networks (ANN) are algorithmic mathematical models that 

simulate the composition and operation of biological nervous systems while processing data 

in distributed parallel. By internally altering the weight relationship between neurons and 

neurons, ANN accomplishes its goal of processing information. A feedforward neural 

network made up of numerous convolutional layers and pooling layers is known as a 

convolutional neural network (CNN). CNN performs very well in multiple tasks, especially 

in image processing [13]. 

The concept of CNNs is inspired by the visual processing mechanisms in the 

mammalian brain, particularly the visual cortex. In the 1960s, David Hubel and Torsten 

Wiesel conducted pioneering research on the visual cortex of cats [14]. They discovered that 

individual neurons in the brain's visual cortex respond to specific regions of the visual field, 

a phenomenon known as receptive fields. This research earned them the Nobel Prize in 

Physiology or Medicine in 1981 [15]. Figure 2.2 show an example of CNN. 

 

Figure 2.2 Convolutional Neural Networks (CNNs) [15] 

In 1980, Kunihiko Fukushima proposed the Neocognition, an early neural network 

model designed for pattern recognition. It introduced the concept of hierarchical layers with 

local receptive fields and weight sharing, fundamental ideas that influenced later CNN 

models [16]. Figure 2.3 shows a Neocognition system. 
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Figure 2.3 Neocognition [15] 

In the late 1980s and early 1990s, Yann LeCun and his colleagues developed LeNet-

5, a CNN architecture for handwritten digit recognition. LeNet-5 was successfully applied 

to the MNIST dataset, demonstrating the practical utility of CNNs in image recognition 

tasks. LeNet-5 incorporated several key components of modern CNNs, including 

convolutional layers, subsampling (pooling) layers, and fully connected layers. Figure 2.4 

shows an example of LeNet-5. 

 

Figure 2.4 LeNet-5 [15] 

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed AlexNet, 

a deep CNN that won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

with a significant margin. AlexNet demonstrated the power of deep learning and CNNs in 

handling large-scale image classification tasks. It popularized the use of ReLU (Rectified 

Linear Unit) activation functions, dropout for regularization, and GPU acceleration for 

training large models [15]. 

In CNNs, a two-stage approach typically refers to a method used in object detection 

tasks. This approach divides the process into two distinct phases: region proposal and region 



3 

classification. The most notable example of this methodology is the Region-based 

Convolutional Neural Network (R-CNN) family of algorithms, including R-CNN, Fast R-

CNN, and Faster R-CNN [17]. Figure 2.5 shows Two- stage approach, Figure 2.6 shows 

architecture of R-CNN, Figure 2.7 shows architecture of Fast R-CNN, and Figure 2.8 shows 

architecture of Faster R-CNN. 

 

Figure 2.5 Two-stage approach [17] 

 

Figure 2.6 Architecture of R-CNN 

 

Figure 2.7 Architecture of Fast R-CNN 

 

Figure 2.8 Architecture of Faster R-CNN 
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The one-stage approach in CNNs for object detection simplifies the detection 

pipeline by combining region proposal and region classification into a single step. This 

makes the process faster and often more efficient, though sometimes at the expense of 

accuracy compared to two-stage methods. Key examples of one-stage approaches include 

YOLO (You Only Look Once) [18] and SSD (Single Shot MultiBox Detector) [19]. Figure 

2.9 shows the Architecture of Yolo, Figure 2.10 shows the Architecture of SSD, and Figure 

2.11 shows the Architecture of RetinaNet. 

 

Figure 2.9 Architecture of Yolo [18] 

 

Figure 2.10 Architecture of SSD [19] 

 

Figure 2.11 Architecture of RetinaNet [19] 

2.5 Summary 

In summary, based on previous research on suitable computer vision techniques for 

image processing reveals a variety of traditional methods, such as filtering, edge detection, 
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and segmentation, which have been fundamental in enhancing and analyzing images. CNNs 

have emerged as the most suitable and effective technique due to their ability to 

automatically learn hierarchical features directly from raw images, enabling end-to-end 

learning that simplifies the pipeline and improves performance. CNNs' robustness, 

scalability, and superior accuracy in tasks like object detection, recognition, and 

segmentation make them the preferred choice over traditional and other machine learning-

based approaches. 
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METHODOLOGY 

3.1 Introduction 

The methodology for this project follows a structured, phased approach to ensure 

thoroughness and efficiency. Starting with Project Initialization, the foundation is 

established through defining scope and objectives. This is followed by Requirement 

Analysis to gather and prioritize all necessary requirements. Design and Planning come next, 

developing detailed designs and schedules. The Implementation phase involves developing 

and integrating the components. Testing and Validation ensure the project meets all 

requirements through rigorous testing. Deployment then moves the project to the production 

environment, followed by Maintenance and Evaluation to ensure ongoing performance and 

user satisfaction. This process is visualized in a flow chart, moving sequentially from one 

phase to the next, ensuring each stage is completed before proceeding. 

3.2 Overall Flowchart 

Figure 3.1 shows a flowchart that illustrates a structured approach to project 

planning, starting with defining the project objectives, followed by conducting a literature 

review to gather relevant information. Afterward, the project scopes are determined, with a 

crucial decision point to assess whether the scopes are well-defined. If they are satisfactory, 

the project proceeds; if not, the scopes are reassessed and refined. Once the scopes are 

approved, the project moves forward, concluding the planning phase and transitioning to 
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execution. This method ensures a thorough and well-organized planning process, enhancing 

the project's potential for success. 

 

Figure 3.1 Overall Flowchart 

3.3 System Flowchart 

Figure 3.2 outlines a detailed process for disease detection using CNN. It begins 

with a dataset of images that are segregated into categories, such as healthy and diseased 

samples, and then pre-processed to standardize features like size and format, ensuring they 

are suitable for model training. The pre-processed data is used to train a CNN, which learns 

to identify patterns and features corresponding to different categories. Separately, a test 

image (not part of the training dataset) is provided as input, undergoing similar pre-

processing to ensure compatibility with the trained model. The test image is converted into 
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a numerical array format and passed through the CNN for classification. If the CNN detects 

a disease, the system identifies the specific condition and displays appropriate remedies or 

recommendations. If no disease is detected, the image is classified as healthy. The process 

concludes after displaying the result. 

 

Figure 3.2 System Flowchart 
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3.4 Dataset 

Web-sourced plant disease datasets, such as the PlantVillage dataset, provide high-

quality images of plant leaves with annotations indicating whether they are healthy or 

diseased and specifying the disease type. These datasets, available on platforms like Kaggle 

or academic repositories, typically contain diverse samples across multiple plant species and 

diseases, organized into labeled folders. They are often used for training and evaluating 

machine learning models but may include limitations such as imbalanced classes or images 

captured under controlled conditions that do not fully reflect real-world scenarios. Before 

use, it is essential to ensure the dataset aligns with project goals and complies with licensing 

terms. Figure 3.3 shows a Healthy Grape Leaf, figure 3.4 shows a Grape Black Rot and 

figure 3.5 shows a Grape Leaf Blight. 

 

Figure 3.3 Healthy Grape Leaf 
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Figure 3.4 Grape Black Rot 

 

Figure 3.5 Grape Leaf Blight 

3.5 AI Training 

AlexNet is a convolutional neural network (CNN) introduced in 2012 by Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, which revolutionized image recognition 

by winning the ImageNet competition with a significant reduction in error rates. It consists of 

8 layers (5 convolutional and 3 fully connected) and introduced key innovations like ReLU 
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activation, dropout for regularization, overlapping max pooling, and GPU acceleration for 

faster training. AlexNet processes 227x227 color images and paved the way for modern deep 

learning models in computer vision. 

Figure 3.6 shows algorithm training to set up the AlexNet training pipeline to 

initialize the necessary variables. This includes specifying the path to the dataset folder using 

a variable called dataFolder. Additionally, the input size for the images is defined to match 

the requirements of AlexNet, which expects images of size 227 x 227 pixels. These constants 

and paths ensure that the model and data preprocessing align correctly, forming the 

foundation for subsequent operations. 

To prepare the data for training, the dataset is loaded into MATLAB using the 

imageDatastore function. This automatically assigns labels to images based on the folder 

names. The dataset is then divided into training and validation sets, with 70% allocated for 

training (imdsTrain) and 30% for validation (imdsValidation). Data augmentation is 

applied to the training set to introduce variability, such as random reflections and scaling, 

improving the model's robustness. Meanwhile, the validation set is resized to the required 

input dimensions without augmentation. 

Before training, it’s helpful to visualize the training data to confirm that the data 

loading process was successful. A random selection of nine images from the training dataset 

is displayed in a grid. This optional but informative step ensures the images are correctly 

labeled and formatted, giving confidence in the correctness of the data pipeline before 

proceeding to model training. 

AlexNet, a pre-trained deep learning model, is customized to fit the specific dataset. 

The base layers of AlexNet are retained, excluding the final three layers, which are tailored 

to its original dataset. These layers are replaced with a fully connected layer with neurons 

matching the number of dataset classes, a softmax layer for probability outputs, and a 
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classification layer for label prediction. This modification enables AlexNet to specialize in 

the new dataset while leveraging its pre-trained features. 

Configuring training parameters is crucial for optimizing performance. The 

Stochastic Gradient Descent with Momentum (SGDM) optimizer is selected for efficient 

training. Key parameters include a mini-batch size of 32 images, a maximum of 10 epochs 

to limit the number of passes through the dataset, and an initial learning rate of 0.0001 to 

ensure steady convergence. Validation data is incorporated into the training process to 

monitor the model's performance and prevent overfitting. 

Using the configured parameters and the modified AlexNet structure, the model is 

trained with the augmented training data. This step involves updating the model’s weights 

to minimize the loss function, thereby improving its ability to classify images accurately. 

After training, the resulting model, named netTransfer, is saved as a .mat file 

(PDC_Train.mat) for future use, preserving the trained network and its parameters. 

The model’s performance is evaluated on the validation set to measure its accuracy. 

Validation images are classified using the trained model, and the predictions are compared 

against the actual labels. The resulting accuracy percentage quantifies the model's ability to 

generalize to unseen data. This step provides insights into the model's reliability and 

highlights areas where it may require further fine-tuning. 

Finally, the model’s predictions are visualized to assess its real-world application. 

Four random images from the validation set are selected and displayed along with their 

predicted class labels. This step demonstrates the model's ability to correctly classify images, 

offering a qualitative view of its effectiveness and helping identify specific cases where it 

may struggle. Figure 3.7 shows the architecture of AlexNet. Figure 3.8 displays the 

predictions of a machine learning model classifying grapevine leaf health. It includes four 

samples: the top two leaves are predicted as healthy, showing no visible disease symptoms, 
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while the bottom-left leaf is identified as having "Grape Black Rot," characterized by dark 

lesions, and the bottom-right leaf is predicted to have "blight," marked by browning and 

damage. 

The setup illustrates the model's ability to distinguish between healthy and diseased 

leaves based on visible features such as colour and texture. Figure 3.9 illustrates the training 

progress of a machine learning model over 10 epochs, with accuracy and loss metrics 

tracked. The top graph shows the accuracy starting lower and quickly rising, stabilizing near 

99%, while the bottom graph depicts the loss starting high and decreasing sharply, leveling 

off at a low value, indicating effective learning. The results panel highlights a validation 

accuracy of 99.30%, achieved in 18 minutes and 42 seconds on a single CPU with a constant 

learning rate of 0.001. The smooth curves and stabilized metrics suggest successful training 

and model convergence. 

Algorithm: Training Process Using AlexNet 

Input: Dataset directory (dataFolder) 

Output: Trained AlexNet model (PDC_Train.mat) 

1. Initialize Variables 

o Set dataFolder to the path of the dataset folder. 

o Define inputSize = [227, 227]. 

2. Load and Preprocess Data 

o Load dataset: 
imds ← Load images from dataFolder with labels based on 

folder names. 

o Split data into training and validation sets: 
[imdsTrain, imdsValidation] ← Split imds into 70% training 

and 30% validation. 

o Create image augmenter: 
imageAugmenter ← Configure augmenter with random reflection 

and scaling. 

o Apply augmentation: 
▪ augmentedTrain ← Resize and augment images from 

imdsTrain. 
▪ augmentedValidation ← Resize images from 

imdsValidation. 

3. Visualize Training Data 

o For i from 1 to 9: 

▪ Randomly select an image from imdsTrain. 
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▪ Display the image. 

4. Modify Pre-trained AlexNet 

o Load pre-trained model: 

net ← Load AlexNet. 

o Extract base layers: 

layersTransfer ← All layers except last three of net. 

o Get number of classes: 

numClasses ← Count unique labels in imdsTrain. 

o Add new layers: 

▪ Fully connected layer with numClasses neurons. 

▪ Softmax layer. 

▪ Classification layer. 

5. Set Training Options 

o Define training options: 

▪ Use stochastic gradient descent (SGDM). 

▪ Set MiniBatchSize = 32. 

▪ Set MaxEpochs = 10. 

▪ Set InitialLearnRate = 1e-4. 

▪ Include validation data. 

6. Train the Model 

o Train network: 
netTransfer ← Train with augmentedTrain, layers, and 

training options. 

o Save trained model: 

Save netTransfer as PDC_Train.mat. 

7. Evaluate the Model 

o Classify validation images: 
[YPred, scores] ← Classify augmentedValidation using 

netTransfer. 

o Compute accuracy: 

accuracy ← Mean of correct predictions. 

o Display accuracy. 

8. Display Predictions 

o Randomly select 4 images from imdsValidation. 

o For each image: 

▪ Display the image. 

▪ Display the predicted label. 

Figure 3.6 Algorithm of training process using AlexNet 
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Figure 3.7 Architecture of AlexNet 

 

Figure 3.8 Sample Prediction 
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Figure 3.9 Training Progress 

3.6 AI Testing  

Figure 3.10 shows the algorithm for Plant Disease Detection Systems. The first step 

in the classification process is to load the trained AlexNet model from the PDC_Train.mat 

file. This file contains the pre-trained model, stored as the netTransfer variable. Upon loading 

the file, the system checks for the presence of the netTransfer variable to ensure the model 

has been correctly saved and is accessible. If the variable is missing, an error message is 

displayed to inform the user, and the process is terminated to prevent further execution 

without a valid model. This validation step is crucial to avoid runtime errors and ensure 

smooth operation during classification tasks. 

Call back functions in the GUI are designed to handle user actions effectively, 

ensuring smooth operation and interaction. The "Browse Image" function allows the user to 

load a leaf image into the system. When triggered, it prompts the user to select an image file, 

which is then resized to [256, 256] for consistent display within the GUI. The total number 

of pixels in the image is stored for later calculations, such as determining the affected area. 
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The image is then displayed on the designated axis, axImage, providing a clear view for the 

user. 

The "Detect Disease" function utilizes the trained AlexNet model to classify the 

loaded leaf image. Before proceeding it, verifies that an image has been loaded; if not, an 

error message is displayed. The image is resized to [227, 227], the input size required by 

AlexNet, and classified using the trained model (netTransfer). The predicted disease type 

and its confidence score are retrieved, and the GUI is updated accordingly. The classified 

image is displayed alongside the confidence score and disease type, ensuring the user has a 

clear understanding of the model's predictions. 

The "Analyze Features" and "Display Cluster" functions focus on image 

segmentation and cluster analysis. In the "Analyze Features" step, the loaded image is 

converted to LAB color space, and the a and b channels are extracted for clustering. K-means 

clustering segments the image into three clusters, which are saved as separate segmented 

images. The "Display Cluster" function allows the user to select a cluster from the popup 

menu and view its details. Each cluster highlights specific regions: Cluster 1 often identifies 

diseased or rot-affected areas, Cluster 2 represents intermediate regions like early-stage 

disease or shadows, and Cluster 3 corresponds to healthy areas. If a cluster is selected, the 

system calculates and displays the affected area's percentage and shows the segmented 

cluster on axSegment. If no cluster is selected, the outputs are cleared to avoid confusion. 

Figure 3.11 shows the three-segmentation cluster. 

The "Remedy" callback is designed to provide users with solutions for the detected 

disease. Before proceeding, the system verifies that an image has been loaded and disease 

detection has been successfully completed. If these conditions are not met, an error message 

is displayed to guide the user. Using the detected disease type (YPred), the system attempts 

to locate a corresponding remedy file that contains treatment or prevention guidelines. If the 
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remedy file is found, it is opened in the default text editor for easy access. However, if no 

matching file is found, an error message is displayed, informing the user that the remedy 

information is unavailable. This functionality ensures users receive relevant and actionable 

insights based on the classification results. Figure 3.12 shows the example of remedy. 

Algorithm: Plant Disease Detection System 

Input: Leaf image file, trained model (PDC_Train.mat), remedy files. 

Output: Disease type, prediction confidence, affected area, remedy information. 

 

1. Initialize GUI 

o Create a figure for the GUI with appropriate size, color, and layout. 

o Define axes for: 

▪ Leaf image display (axImage) 

▪ Affected area percentage (axAffection) 

▪ Prediction confidence (axPrediction) 

▪ Disease type (axDisease) 

▪ Segmented region of interest (ROI) (axSegment) 

o Add popup menu for cluster selection. 

o Add buttons for "Browse," "Detect Disease," "Analyze Features," and 

"Remedy." 

2. Load Trained Model 

o Load PDC_Train.mat. 

o Check for the variable netTransfer. 

o If not found, display an error and exit. 

3. Callback Functions 

(a) Browse Image 

o Prompt the user to select an image file. 

o Load and resize the image to [256, 256]. 

o Store the total number of pixels in the image. 

o Display the loaded image on axImage. 

(b) Detect Disease 

o If no image is loaded, display an error and exit. 

o Resize the image to the input size of the model ([227, 227]). 

o Classify the image using netTransfer. 

o Extract the predicted label (YPred) and confidence score. 

o Update the GUI to display: 

▪ The detected image on axImage. 

▪ The prediction confidence on axPrediction. 
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▪ The predicted disease type on axDisease. 

(c) Analyze Features 

o If no image is loaded, display an error and exit. 

o Convert the image to LAB color space. 

o Extract the a and b channels and reshape for clustering. 

o Perform k-means clustering with 3 clusters. 

o Generate segmented images for each cluster. 

(d) Display Cluster 

o Get the selected cluster from the popup menu. 

o If a cluster is selected: 

▪ Calculate the affected area as the percentage of pixels in the 

selected cluster. 

▪ Display the segmented cluster on axSegment. 

▪ Display the affected area percentage on axAffection. 

o If no cluster is selected, clear axSegment and axAffection. 

(e) Remedy Callback 

o If no image is loaded or disease detection is not performed, display an 

error and exit. 

o Get the detected disease type from YPred. 

o Match the disease type to a corresponding remedy file. 

o If a remedy file exists: 

▪ Open the remedy file in the default text editor. 

o If no remedy file is found, display an error message. 

4. End Program 

 

Figure 3.10 Algorithm of Plant Disease Detection System. 
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Figure 3.11 Segmentation Cluster 

 

 

 

Figure 3.12 Example of Remedy 
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3.7 GUI Design 

Figure 3.13 shows a MATLAB App Designer interface where a UI Figure and an 

Axes component are configured. The Axes is titled "Leaf Image," with X, Y, and Z axis 

labels and Helvetica font styled as bold with a size of 12. The UI Figure has a background 

color set to [0.94, 0.94, 0.94], a position defined as [100, 100, 640, 480], and settings for 

resizing and auto-resizing children enabled. The interface is designed to display plots or 

images, with the axes centrally aligned for clear visualization. 

  

  

Figure 3.13 Axes In App Designer 

This figure 3.14 showcases the Drop-Down component in MATLAB App Designer, 

configured to display a labeled menu with the text "Select Cluster" and options such as 
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"cluster1," "cluster2," and "cluster3," with "cluster1" currently selected. The drop-down 

menu is styled with Helvetica font, bold, size 12, a light-gray background ([0.96, 0.96, 

0.96]), and black text. Positioned at [750, 550, 300, 30] within the UI figure, it fits well into 

the layout. The UI figure itself has a light-gray background ([0.94, 0.94, 0.94]), with resizing 

enabled to allow dynamic adjustments. 

  

  

Figure 3.14 Drop Down Component in App Designer 

Figure 3.15 shows representations of a button in MATLAB's App Designer: the left 

side depicts the button in runtime, where it is labeled "PUSH" and interacts with the user, 

while the right side shows the button in design mode, with a blue background, editable text 

("Button"), and resizing handles for customization. There also a button in Plant Disease 

Detection GUI with the functions. 
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"Browse" button for loading a leaf image 

into the system. 

 

"Detect Disease" button to classify the 

disease based on the input image. 

 

"Analyze Features" button to perform k-

means clustering on the image for 

detailed analysis. 

 

"Remedy" button to display 

recommended solutions for the detected 

disease. 

Figure 3.15 GUI Push Button 

For label ‘Prediction Confidence (%)’, Affected Area (%), ‘Disease Type’ and the 

‘Plant Disease Detection GUI’ tittle, I use the label function in App Designer in MATLAB 

app. Figure 3.16 shows the label function in App Designer. 

   

Figure 3.16 Label function 

Figure 3.17 shows result for GUI design created in MATLAB's App Designer. It 

includes a title at the top ("Plant Disease Detection GUI") and features components such as 
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axes for displaying the leaf image and selected clusters (ROI), labels for displaying 

prediction confidence, affected area, and disease type, and a dropdown menu for selecting 

clusters. At the bottom, buttons like "Browse," "Detect Disease," "Analyze Features," and 

"Remedy" enable users to upload images, detect diseases, analyze features, and view 

remedies, all within a clean, light blue interface. 

 

Figure 3.17 GUI Design Result 

3.8 Final Evaluation for Training and Testing 

Figure 3.18 outlines a systematic process, beginning with the START node to 

initiate the workflow. The next step involves obtaining a result from a Graphical User 

Interface (GUI), which likely represents some computational or automated output. Once 

the GUI provides a result, the process moves to the Verification of Result and Manual 

Calculation stage, where the obtained result is thoroughly checked and cross-verified using 

manual calculations to ensure accuracy and reliability. This verification step is crucial for 

validating the correctness of the automated output. Finally, the process concludes at the END 

node, signifying the completion of all required tasks in the workflow. 
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Figure 3.18 Final Evaluation flowchart 

3.8.1 GUI Result 

Figure 3.19 represents a user interface for a Browse Button. At the top, there is a 

"Browse" button, which allows users to upload or select images. Below it, the interface 

displays three loaded images of leaves, each labelled "Loaded Image". These images 

appear to showcase different conditions of the leaves, possibly for purposes like analysis, 

comparison, or classification (e.g., identifying healthy versus diseased leaves). The layout 

suggests that the system is designed to handle multiple images and display them in an 

organized format for further interaction or processing.  

Figure 3.20 shows the result of a "Detect Disease" button, where the system 

analyzes an input (e.g., a leaf) and provides its health status. The output includes the 

“Prediction Confidence (%)”, which is “100.00%”, indicating complete confidence in the 

result, and the “Disease Type”, which is identified as "healthy", meaning no disease is 

detected. The interface clearly presents the information in a simple and user-friendly format.  
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Figure 3.21 shows the function of Analyze Feature button illustrates the analysis of a leaf's 

affected areas, segmented into three clusters (regions of interest). Each cluster displays an 

image of the selected region and the corresponding percentage of the area affected, likely by 

damage or disease.  

The results show that “Cluster 1” has 49.23% affected, “Cluster 2” has 18.27%, and 

“Cluster 3” has 32.43%, highlighting the varying severity of impact across the leaf. Figure 

3.22 shows the function of Remedy button that are serves as a tool or feature that provides 

users with detailed guidelines or instructions for addressing specific plant diseases. In this 

context, clicking the Remedy button gives access to tailored solutions, such as the Black 

Rot Remedy, which focuses on proper fertilization, watering techniques, and sanitation, and 

the Blight Leaf Remedy, which emphasizes spacing, pest control, and chemical treatments. 

The button essentially acts as a quick reference for disease management strategies. 

 

   

Figure 3.19 Browse Button Result 



27 

 

 

Figure 3.20 Detect Disease Button Result 
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Figure 3.21 Analyze Features Button Result 
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Figure 3.22 Remedy Button Result 

3.8.2 Verification of Results and manual calculation 

After the GUI displays the results, it is essential to verify their accuracy to ensure 

the system performs as expected. If the GUI displays 'healthy' for an image, the result should 

be cross-checked against the initial labelling of the test dataset. For instance, if the dataset 

contains 20 images of healthy plants, and the GUI consistently classifies all of them as 
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'healthy,' the results can be considered accurate. Maintaining a log of these outcomes is 

crucial for tracking the model's performance over time. This process should be repeated with 

datasets from various plants and different diseases to evaluate the system's adaptability and 

robustness across a wider range of scenarios. 

The primary objective of the data analysis in this project is to determine the accuracy 

percentage of the plant disease detection system. This involves comparing the system's 

predictions with the actual conditions of the plants whether they are healthy or diseased and 

calculating the proportion of correct predictions. The process begins with ground truth 

labelling, where the dataset is accurately labelled, such as marking the 20 test images as 

'healthy' if they represent healthy plants. Next, the model predictions are generated by using 

the trained detection model to classify each image as either 'healthy' or 'diseased.' 

To evaluate the model's performance, the predictions are compared against the 

ground truth labels, and the number of correct matches is counted. The accuracy percentage 

is then calculated using the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ( 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙
 ) 𝑥 100% (3.1) 

3.9 Summary 

The methodology for plant disease detection using CNNs involves several key steps. 

Firstly, a diverse dataset of plant images, including healthy specimens and various diseased 

conditions, is collected. These images undergo preprocessing to standardize their size, color, 

and format. Subsequently, an appropriate CNN architecture is selected, and the model is 

trained on the preprocessed dataset, often employing techniques like transfer learning or 

fine-tuning. The trained model is then evaluated using validation datasets to assess its 

performance metrics. Further optimization of the model may be conducted through fine-

tuning of hyperparameters and architecture. In the operational flowchart, input plant images 
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are preprocessed, and relevant features are extracted using the trained CNN model. These 

features are then classified into disease categories or healthy status, and the final output 

indicates the detected disease or plant health. Optional feedback loops can be incorporated 

to continuously improve the model's performance based on user feedback. This methodology 

ensures accurate and efficient plant disease detection, facilitating effective agricultural 

management practices. 
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

This section presents the outcomes of our study on plant disease detection using 

CNNs implemented in MATLAB. We begin by showcasing the results of our model, 

including key performance metrics such as predicted confidence and percentage of affected 

area. These metrics provide a comprehensive understanding of the model's effectiveness in 

identifying and classifying plant diseases from leaf images. Through detailed data analysis, 

we evaluate the CNN's performance across different types of diseases and compare its 

accuracy with other traditional methods. We also explore the impact of various 

preprocessing techniques and model hyperparameters on the results. This analysis helps 

identify the strengths and limitations of our approach. 

In the discussion section, we interpret these findings in the context of practical 

agricultural applications. We discuss the potential benefits of implementing such a system 

for real-time disease monitoring and management, highlighting its advantages in terms of 

speed, accuracy, and scalability. Additionally, we address the challenges encountered during 

the study, such as handling imbalanced datasets and the need for high-quality annotated 

images. Finally, we propose future research directions to further enhance the model's 

robustness and applicability, including the integration of additional data types and the use of 

transfer learning to improve performance on smaller datasets. 
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4.2 Results and Analysis 

Figure 4.1 shows a plant disease detection software analyzing the same leaf images, 

determined to be “healthy” with 0.00% affected area and 100.00% prediction confidence. 

The software confirms no disease presence in either leaf, as indicated by the “healthy” label 

in red text. The left panels display the analyzed images and affect area results, while the right 

panels explicitly state “NO REMEDY” since no treatment is needed for healthy leaves. 

Buttons for further analysis, such as "Browse," "Detect Disease," "Analyze Features," and 

"Remedy," are still visible but unused in this case.  

Figure 4.2 displays a plant disease detection software (left) and a corresponding 

remedy guide in Notepad (right). In both cases, the software analyzes leaf images, 

identifying Grape Black Rot with 100% prediction confidence. The first leaf shows 49.22% 

affected area, while the second shows 32.42% and the third shows 18.29%. The software 

includes buttons for browsing, detecting diseases, analyzing features, and providing 

remedies. The remedy guide emphasizes proper fertilization to avoid nitrogen deficiency, 

preventing wounds on plants, and using a soaker or drip hose instead of sprinklers to reduce 

water splashes that spread the disease. It also advises working with plants when they are dry 

to help limit infection.  

Figure 4.3 shows a graphical user interface (GUI) for plant disease detection and its 

corresponding remedy information. On the left side under "GUI RESULT," two examples 

of plant leaf analysis are displayed. Each analysis identifies the leaf’s disease as "blight" 

with 100% confidence, along with the affected area percentages (48.54%, 36.73% and 

14.73%). The images also show clustering visualizations to highlight the affected regions. 

On the right side under "REMEDY," a Notepad window provides a textual remedy for blight, 

recommending measures such as the destruction of infected plant parts, crop rotation, proper 

spacing, avoiding overhead watering, and the use of fungicides or antibiotics. The remedy 
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emphasizes sanitation and prevention to control the spread of bacterial blight. This combined 

system helps users detect and analyze plant diseases and provides actionable solutions.Insert 

your content here. 

NO REMEDY 

 

 

 

Figure 4.1 Result for Healthy Plant 
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Figure 4.2 Result for Grape Black Rot 

  

 
 

Figure 4.3 Result for Blight Leaf 

Figure 4.4, 4.5 and 4.6 shows the test dataset for testing part. Each figure shows 20 

dataset that had rename T1 to T60. Table 4.1 summarizes the results of a plant disease 
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detection experiment across 20 test samples. Samples T1 to T6 are healthy, with no affected 

areas and 100% detection confidence. Samples T7 to T20 show varying percentages of 

disease spread across three clusters (indicating different disease types or severities). The 

detection was successful for all samples except T20, which had a lower confidence of 

96.42%. 

Overall, the detection algorithm performed well, consistently achieving high 

confidence levels (mostly 99.85–100%). Table 4.2 presents the results of plant disease 

detection for test samples T21 to T40. Samples T21 to T31 are healthy, with no affected 

areas (all percentages are 0.00%) and detection confidence of 100%. Samples T32 to T40 

show varying degrees of disease spread across three clusters, representing different disease 

types or severities (e.g., "Black Rot" or "Leaf Blight"). The detection was successful for all 

samples, with confidence levels ranging from 96.42% to 100%. The results demonstrate 

consistent and accurate detection for both healthy and diseased samples, with high 

confidence in the predictions.  

Table 4.3 shows plant disease detection results for samples T41 to T60. Samples 

T41 and T42 are healthy, with no affected areas (all percentages are 0.00%) and 100% 

detection confidence. Samples T43 to T60 show varying degrees of disease spread across 

three clusters (indicating different disease types or severities like "Black Rot" or "Leaf 

Blight"). The detection was successful for all samples, with confidence levels ranging from 

96.42% to 100%. The percentages highlight the distribution of the affected area among 

clusters, such as T43 with 55.82% in Cluster 3 and T44 with 60.53% in Cluster 1. The results 

demonstrate accurate detection for all samples, maintaining high prediction confidence. 
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Figure 4.4 Test Dataset  part 1 

 

Table 4.1 Result of Plant Disease Detection part 1 

Plant Disease Detection Result 

 Test 

Data 

Classify Percentage of Affected 

Area 

(%) 

Detection 

Successful 

Predicted 

Confidence     

(%) 

Healthy Black 

Rot 

Leaf 

Blight 

Cluster 

1 

Cluster 

2 

Cluster 

3 

T1    0 0 0 Yes 100 

T2    0 0 0 Yes 100 

T3    0 0 0 Yes 100 

T4    0 0 0 Yes 100 

T5    0 0 0 Yes 100 

T6    0 0 0 Yes 100 

T7    18.29 49.22 32.42 Yes 100 

T8    48.55 36.73 14.72 Yes 100 

T9    47.79 46.69 5.52 Yes 100 

T10    37.59 46.09 16.33 Yes 100 

T11    49.15 39.60 11.25 Yes 100 

T12    32.95 22.03 45.03 Yes 99.94 

T13    41.04 41.86 17.10 Yes 100 

T14    56.26 11.11 32.63 Yes 99.97 
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T15    36.06 51.56 12.38 Yes 99.99 

T16    22.17 51.16 26.67 Yes 99.85 

T17    35.44 55.05 9.52 Yes 100 

T18    55.17 34.95 9.89 Yes 100 

T19    44.89 24.30 30.81 Yes 100 

T20    36.91 40.43 22.65 No 96.42 

 

 

Figure 4.5 Test Dataset part 2 

 

Table 4.2 Result of Plant Disease Detection part 2 

Plant Disease Detection Result 

Sampl

e Test 

Data 

Classify Percentage of Affected 

Area 

(%) 

Detection 

Successfu

l 

Predicted 

Confidenc

e     (%) 

Health

y 

Blac

k Rot 

Leaf 

Bligh

t 

Cluste

r 1 

Cluste

r 2 

Cluste

r 3 

T21    0.00 0.00 0.00 Yes 100.00 

T22    0.00 0.00 0.00 Yes 100.00 

T23    0.00 0.00 0.00 Yes 100.00 

T24    0.00 0.00 0.00 Yes 100.00 

T25    0.00 0.00 0.00 Yes 100.00 
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T26    0.00 0.00 0.00 Yes 100.00 

T27    0.00 0.00 0.00 Yes 100.00 

T28    0.00 0.00 0.00 Yes 100.00 

T29    0.00 0.00 0.00 Yes 100.00 

T30    0.00 0.00 0.00 Yes 100.00 

T31    0.00 0.00 00.00 Yes 100.00 

T32    24.87 52.74 22.38 Yes 99.94 

T33    66.61 16.86 16.53 Yes 100.00 

T34    16.29 66.62 16.59 Yes 99.97 

T35    53.46 19.74 26.27 Yes 99.99 

T36    29.25 50.07 20.64 Yes 99.85 

T37    26.60 51.86 21.54 Yes 100.00 

T38    49.20 32.33 18.41 Yes 100.00 

T39    18.48 49.21 32.26 Yes 100.00 

T40    62.38 15.86 21.76 Yes 96.42 

 

 

Figure 4.6 Test Dataset part 3 
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Table 4.3 Result of Plant Disease Detection part 3 

Plant Disease Detection Result 

Sampl

e Test 

Data 

Classify Percentage of Affected 

Area 

(%) 

Detection 

Successfu

l 

Predicted 

Confidenc

e     (%) 

Health

y 

Blac

k Rot 

Leaf 

Bligh

t 

Cluste

r 1 

Cluste

r 2 

Cluste

r 3 

T41 0.00 0.00 0.00 Yes 100.00 

T42 0.00 0.00 0.00 Yes 100.00 

T43 17.84 26.31 55.82 Yes 100.00 

T44 60.53 16.46 23.01 Yes 100.00 

T45 33.11 50.34 16.52 Yes 100.00 

T46 16.54 50.36 33.07 Yes 100.00 

T47 42.16 47.22 10.61 Yes 100.00 

T48 61.39 8.77 29.84 Yes 100.00 

T49 32.98 53.40 13.61 Yes 100.00 

T50 13.71 53.42 32.87 Yes 100.00 

T51 11.74 35.99 52.27 Yes 100.00 

T52 51.55 9.35 59.10 Yes 99.94 

T53 18.15 49.72 32.12 Yes 100.00 

T54 17.21 30.54 52.85 Yes 99.97 

T55 27.10 35.67 37.19 Yes 99.99 

T56 53.06 8.66 38.28 Yes 99.85 

T57 15.81 33.62 50.57 Yes 100.00 

T58 51.96 30.57 17.46 Yes 100.00 

T59 18.98 38.86 42.15 Yes 100.00 

T60 48.77 26.52 24.70 Yes 96.42 

The accuracy of the plant disease detection system was calculated for different 

categories, demonstrating its effectiveness in identifying healthy and diseased plants. For the 

healthy plant category, the system correctly identified 19 out of 20 images, resulting in an 

accuracy of (
20−1

20
) 𝑥100% = 95% . For the grape black rot and blight leaf categories, the 

system achieved perfect accuracy, correctly identifying all 20 images in each category, 

yielding 100\% accuracy for both. When considering the overall performance across all 

categories, the system correctly classified 59 out of 60 images, leading to an overall accuracy 

of (
60−1

60
) x 100%=98.33%. These results highlight the robustness and reliability of the 

detection model in accurately distinguishing between healthy plants and various diseases. 
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Table 4.4 compares the feature extraction results for “Healthy”, “Grape Black Rot”, 

and “Blight Leaf” samples, highlighting differences in texture and statistical characteristics. 

Healthy leaves show low contrast, high homogeneity, and higher energy, indicating smooth 

and uniform textures. Grape Black Rot leaves have higher contrast, lower energy, and higher 

variance, reflecting more texture variation and less uniformity. Blight Leaf features lie in 

between, with moderate contrast and homogeneity. All leaves maintain high smoothness, but 

differences in entropy, kurtosis, and skewness reflect variations in intensity distribution 

across the leaf types. These features help distinguish between healthy and diseased leaves. 

 

Table 4.4 Feature Extraction 

Type of leaf Feature Extraction 

Healthy 

 
Grape Black Rot 
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Blight Leaf 

 
 

Table 4.5 summarizes the dataset composition and the predicted confidence levels 

for a plant disease detection model. The training dataset consists of 200 healthy samples, 

150 samples with grape black rot, and 150 samples with leaf blight. The validation/test 

dataset includes 20 samples for each category. The model demonstrates high predicted 

confidence in its classification performance, achieving 100% confidence for healthy samples 

and 99.8% confidence for both grape black rot and leaf blight. This indicates the model is 

highly reliable in detecting and classifying these conditions.  

Table 4.5 Comparison Table 

 Healthy Grape Black Rot Leaf Blight 

Train dataset 200 150 150 

Valid/test dataset 20 20 20 

Predicted confidence 

(%) 

100.00 99.8 99.8 

 

Figure 4.7 shows the relationship between the frequency of the training dataset (x-

axis) and the predicted confidence percentage (y-axis). It highlights that as the frequency of 

the training dataset increases, the model's confidence in its predictions also increases. 

Specifically, at a frequency of approximately 150, the confidence is around 99.8%, and as 

the frequency rises to 200, the predicted confidence reaches 100%. The trend indicates a 

positive correlation where a larger training dataset improves prediction confidence, 

demonstrating that the model benefits from more data to improve its reliability. 
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Figure 4.7 Graph Predicted Confidence vs frequency of train dataset 

Figure 4.8 shows grape leaves classified into three categories: healthy, affected by 

Grape Black Rot, or suffering from blight, with each image labeled alongside a confidence 

percentage. The classifications likely come from a machine learning model trained to 

identify these conditions based on visual features. Healthy leaves show no visible damage, 

while diseased leaves exhibit distinct symptoms of their respective conditions. The purpose 

is to demonstrate the model's ability to accurately differentiate between healthy and diseased 

grape leaves. 

 

Figure 4.8 Predicted confidence results 
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4.3 Summary 

This study investigates the results and discussions of the research on plant disease 

detection using CNN. It highlights the model's high accuracy in identifying and classifying 

various plant diseases, demonstrating its effectiveness compared to traditional methods. The 

chapter discusses the positive impact of preprocessing techniques on model performance and 

emphasizes the advantages of using deep learning for real-time disease detection in 

agriculture. Overall, the findings suggest that integrating CNN technology can significantly 

aid farmers in early disease identification and management, enhancing agricultural practices. 
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CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In conclusion, the project on plant disease detection using CNNs within the 

MATLAB framework has made significant progress towards achieving its objectives. The 

project has successfully implemented advanced deep learning techniques and robust image 

processing capabilities to develop a highly effective solution for identifying and classifying 

plant diseases with remarkable accuracy. 

The structured approach to project planning, as outlined in the methodology section, 

has ensured thoroughness and efficiency in the project development process. Starting from 

project initialization, defining scope and objectives, requirement analysis, design and 

planning, implementation, testing and validation, deployment, and maintenance and 

evaluation, each phase has been carefully executed to move the project forward 

systematically. 

By leveraging the power of CNNs alongside MATLAB's versatility in algorithm 

development and data processing, the project has created a sophisticated tool that addresses 

critical challenges in agriculture. The future works mentioned in the conclusion section 

indicate a commitment to further enhancing the software functionality, demonstrating a 

forward-looking approach to continuous improvement and innovation. 

Overall, the project has made significant strides in utilizing cutting-edge technology 

to revolutionize crop management practices, offering timely and precise disease detection 

that holds immense promise for enhancing agricultural productivity and sustainability. The 

adherence to a structured methodology and the successful integration of advanced techniques 
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highlights the project's dedication to achieving its objectives and delivering impactful results 

in the field of plant disease detection. 

5.2 Potential for Commercialization 

The project presents significant potential in addressing the pressing challenges of 

plant diseases that threaten agricultural productivity and food security. With the increasing 

incidence of such diseases, there is a growing demand for effective detection solutions 

among farmers, agricultural businesses, and researchers. By providing a reliable tool for 

early disease identification, this project not only aims to reduce crop losses but also to 

enhance overall agricultural yields, making it an asset in the agricultural sector. 

Scalability is a key feature of the CNN-based plant disease detection system. 

Initially focused on grape leaves, the technology can be expanded to include a wider variety 

of crops, thereby broadening its applicability across different agricultural sectors. By 

enhancing the dataset and refining the model, the system can cater to diverse plant species, 

increasing its market appeal and potential for widespread adoption among farmers and 

agricultural professionals. 

Commercial opportunities abound for this project, particularly through the 

development of a user-friendly mobile application. This app would enable farmers to upload 

images of their plants for instant disease diagnosis and treatment recommendations. 

Additionally, partnerships with agricultural suppliers could facilitate a marketplace within 

the app, providing users with direct access to necessary products such as pesticides and 

fungicides. Furthermore, offering expert consultation services through the app could create 

an additional revenue stream, ultimately promoting sustainable agricultural practices and 

contributing to global food security. 
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5.3 Future Works 

To enhance the usability and accessibility of the CNN-based plant disease detection 

system, future work will focus on developing a marketplace platform tailored to farmers, 

gardeners, and agricultural stakeholders. The following features will be prioritized: 

 Consider effect of unbalance and harmonic to TL. Mobile Integration: 

Develop a user-friendly mobile application that integrates the CNN-  based 

detection model, enabling users to upload leaf images and receive disease 

diagnosis and remedies instantly.  

 Data-Driven Insights: Create a centralized dashboard where farmers can track 

disease outbreaks across regions, forecast risks, and access actionable 

insights for crop management.  

 Instant Diagnosis: Enable users to upload images of their plants for 

immediate disease identification and treatment recommendations, complete 

with confidence scores. 
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APPENDICES 

Appendix A  Training Process Code 

%% Training Process Based on Deep Learning Model Using AlexNet 

clear; close all; clc; 

% Step 1: Load and Preprocess the Data 
% Replace 'dataFolder' with the path to your dataset folder 
dataFolder = 'C:\Users\USER\Downloads\psm'; 
imds = imageDatastore(dataFolder, ... 
    'IncludeSubfolders', true, ... 
    'LabelSource', 'foldernames'); 

% Split the data into training and validation sets 
[imdsTrain, imdsValidation] = splitEachLabel(imds, 0.7, 'randomized'); 
numTrainImages = numel(imdsTrain.Labels); 
inputSize = [227 227]; % AlexNet default input size 

% Resize images to match AlexNet input size and apply data augmentation 
imageAugmenter = imageDataAugmenter( ... 
    'RandXReflection', true, ... 
    'RandXScale', [0.9 1.1], ... 
    'RandYScale', [0.9 1.1]); 
augmentedTrain = augmentedImageDatastore(inputSize, imdsTrain, 
'DataAugmentation', imageAugmenter); 
augmentedValidation = augmentedImageDatastore(inputSize, imdsValidation); 

% Display sample training images 
figure('Name', 'Sample Training Images'); 
for i = 1:9 
    subplot(3, 3, i); 
    I = readimage(imdsTrain, randperm(numTrainImages, 1)); 
    imshow(I); 
end 

% Step 2: Load Pre-trained AlexNet and Modify for New Classes 
net = alexnet; % Load AlexNet 
layersTransfer = net.Layers(1:end-3); % Keep all layers except the last 3 

% Modify the last fully connected layer and classification layer 
numClasses = numel(categories(imdsTrain.Labels)); 
layers = [ 
    layersTransfer 
    fullyConnectedLayer(numClasses, 'WeightLearnRateFactor', 10, 
'BiasLearnRateFactor', 10) 
    softmaxLayer 
    classificationLayer]; 

% Step 3: Set Training Options 
options = trainingOptions('sgdm', ... 
    'MiniBatchSize', 32, ... 
    'MaxEpochs', 10, ... 
    'InitialLearnRate', 1e-4, ... 
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    'ValidationData', augmentedValidation, ... 
    'ValidationFrequency', 5, ... 
    'Verbose', false, ... 
    'Plots', 'training-progress'); 
 
% Step 4: Train the Network 
netTransfer = trainNetwork(augmentedTrain, layers, options); 
 
% Save the trained model 
save('PDC_Train.mat', 'netTransfer'); 
disp('Network model was trained and saved as PDC_Train.mat'); 
 
% Step 5: Evaluate the Model 
% Calculate the accuracy on the validation set 
[YPred, scores] = classify(netTransfer, augmentedValidation); 
YValidation = imdsValidation.Labels; 
accuracy = mean(YPred == YValidation); 
fprintf('Validation accuracy: %.2f%%\n', accuracy * 100); 
 
% Display a few sample predictions 
idx = randperm(numel(imdsValidation.Files), 4); 
figure('Name', 'Sample Predictions'); 
for i = 1:4 
    subplot(2, 2, i); 
    I = readimage(imdsValidation, idx(i)); 
    imshow(I); 
    label = YPred(idx(i)); 
    title(sprintf("Predicted: %s", string(label))); 
end 
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Appendix B  Function Code 

function FINAL 
    % Main GUI Figure 
    fig = figure('Name', 'Plant Disease Detection', 'NumberTitle', 'off', ... 

  'Position', [100, 100, 1200, 700], 'MenuBar', 'none', ... 
  'Resize', 'off', 'Color', [0.9, 0.95, 1]); 

    % Variables for storing data 
    global I netTransfer inputSize axImage axAffection axPrediction axDisease 
axSegment popupCluster segmented_images totalPixels YPred; 
    inputSize = [227, 227, 3]; % AlexNet input size 

    % Load Trained Model 
    data = load('PDC_Train.mat'); % Load into a structure 
    if isfield(data, 'netTransfer') 

netTransfer = data.netTransfer; % Extract the trained network 
msgbox('Trained Network Model Was Loaded', 'Model Loaded'); 

    else 
errordlg('The required variable "netTransfer" was not found in 

PDC_Train.mat.', 'Error'); 
return; 

    end 

    % Title Label 
    uicontrol('Style', 'text', 'String', 'Plant Disease Detection System', 
... 

'FontSize', 20, 'FontWeight', 'bold', 'BackgroundColor', [0.7, 
0.85, 1], ... 

'ForegroundColor', 'k', 'Position', [400, 650, 400, 40], ... 
'HorizontalAlignment', 'center'); 

    % Axes for displaying images and results 
    axImage = axes('Parent', fig, 'Units', 'pixels', ... 

    'Position', [50, 400, 300, 200], 'Box', 'on'); 
    title(axImage, 'Leaf Image', 'FontWeight', 'bold', 'FontSize', 12); 

    axAffection = axes('Parent', fig, 'Units', 'pixels', ... 
'Position', [400, 400, 300, 200], 'Box', 'on'); 

    title(axAffection, 'Affected Area (%)', 'FontWeight', 'bold', 'FontSize', 
12); 
    axis(axAffection, 'off'); 

    axPrediction = axes('Parent', fig, 'Units', 'pixels', ... 
'Position', [50, 150, 300, 200], 'Box', 'on'); 

    title(axPrediction, 'Prediction Confidence (%)', 'FontWeight', 'bold', 
'FontSize', 12); 
    axis(axPrediction, 'off'); 

    axDisease = axes('Parent', fig, 'Units', 'pixels', ... 
'Position', [400, 150, 300, 200], 'Box', 'on'); 

    title(axDisease, 'Disease Type', 'FontWeight', 'bold', 'FontSize', 12); 
    axis(axDisease, 'off'); 

    % Axes for displaying segmented ROI 
    axSegment = axes('Parent', fig, 'Units', 'pixels', ... 
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'Position', [750, 330, 300, 200], 'Box', 'on'); 
    title(axSegment, 'Selected Cluster (ROI)', 'FontWeight', 'bold', 
'FontSize', 12); 

    % Popup menu for cluster selection 
    popupCluster = uicontrol('Style', 'popupmenu', ... 

   'String', {'Select Cluster', 'Cluster 1', 
'Cluster 2', 'Cluster 3'}, ... 

   'Position', [750, 550, 300, 30], ... 
   'FontSize', 12, 'Callback', @displayCluster); 

    % Arrange buttons at the bottom 
    buttonWidth = 150; 
    buttonHeight = 40; 
    buttonSpacing = 30; 
    totalWidth = (4 * buttonWidth) + (3 * buttonSpacing); 
    startX = (1200 - totalWidth) / 2; % Center buttons horizontally 
    startY = 20; % Fixed vertical position for buttons 

    uicontrol('Style', 'pushbutton', 'String', 'Browse', ... 
'FontSize', 12, 'BackgroundColor', [0.7, 0.85, 1], ... 
'Position', [startX, startY, buttonWidth, buttonHeight], ... 
'Callback', @browseCallback); 

    uicontrol('Style', 'pushbutton', 'String', 'Detect Disease', ... 
'FontSize', 12, 'BackgroundColor', [0.6, 0.8, 0.9], ... 
'Position', [startX + buttonWidth + buttonSpacing, startY, 

buttonWidth, buttonHeight], ... 
'Callback', @detectionCallback); 

    uicontrol('Style', 'pushbutton', 'String', 'Analyze Features', ... 
'FontSize', 12, 'BackgroundColor', [0.5, 0.75, 0.85], ... 
'Position', [startX + 2 * (buttonWidth + buttonSpacing), 

startY, buttonWidth, buttonHeight], ... 
'Callback', @analysisCallback); 

    uicontrol('Style', 'pushbutton', 'String', 'Remedy', ... 
'FontSize', 12, 'BackgroundColor', [0.6, 0.8, 0.7], ... 
'Position', [startX + 3 * (buttonWidth + buttonSpacing), 

startY, buttonWidth, buttonHeight], ... 
'Callback', @remedyCallback); 

    %% Callback Functions 
    % Browse Image 
    function browseCallback(~, ~) 

[filename, pathname] = uigetfile({'*.*'; '*.bmp'; '*.jpg'; '*.gif'}, 
'Pick a Leaf Image File'); 

if filename == 0 
return; 

end 
I = imread([pathname, filename]); 
I = imresize(I, [256, 256]); 
totalPixels = numel(I(:, :, 1)); % Total number of pixels in the 

image 
imshow(I, 'Parent', axImage); 
title(axImage, 'Loaded Image', 'FontWeight', 'bold'); 

    end 

    % Detect Disease 



55 

    function detectionCallback(~, ~) 
if isempty(I) 

errordlg('Please load an image first.', 'Error'); 
return; 

end 

% Resize for AlexNet 
Img1 = imresize(I, inputSize(1:2)); 

% Classification 
[YPred, scores] = classify(netTransfer, Img1); 
predicted_score = max(scores) * 100; 

% Update Axes 
imshow(I, 'Parent', axImage); 
title(axImage, 'Detected Image', 'FontWeight', 'bold'); 

axes(axPrediction); 
cla; 
text(0.5, 0.5, sprintf('%.2f%%', predicted_score), ... 

'Color', 'b', 'FontWeight', 'bold', 'FontSize', 16, ... 
'HorizontalAlignment', 'center'); 

title(axPrediction, 'Prediction Confidence (%)', 'FontWeight', 
'bold'); 

axes(axDisease); 
cla; 
text(0.5, 0.5, char(YPred), ... 

'Color', 'r', 'FontWeight', 'bold', 'FontSize', 16, ... 
'HorizontalAlignment', 'center'); 

title(axDisease, 'Disease Type', 'FontWeight', 'bold'); 
    end 

    % Analyze Features 
    function analysisCallback(~, ~) 

if isempty(I) 
errordlg('Please load an image first.', 'Error'); 
return; 

end 

% K-means segmentation 
lab_he = rgb2lab(I); 
ab = double(lab_he(:, :, 2:3)); 
nrows = size(ab, 1); 
ncols = size(ab, 2); 
ab = reshape(ab, nrows * ncols, 2); 
nColors = 3; 
[cluster_idx, ~] = kmeans(ab, nColors, 'distance', 'sqEuclidean', 

'Replicates', 3); 
pixel_labels = reshape(cluster_idx, nrows, ncols); 
segmented_images = cell(1, nColors); 
rgb_label = repmat(pixel_labels, [1, 1, 3]); 
for k = 1:nColors 

colors = I; 
colors(rgb_label ~= k) = 0; 
segmented_images{k} = colors; 

end 
    end 
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    % Display Cluster and Calculate Affected Area 
    function displayCluster(~, ~) 
        selectedCluster = popupCluster.Value - 1; % Get selected cluster 
index 
        if selectedCluster >= 1 && selectedCluster <= 3 
            clusterMask = segmented_images{selectedCluster}(:, :, 1) > 0; 
            if strcmpi(char(YPred), 'Healthy') 
                affectedArea = 0.00; % Healthy case, affected area is always 
0 
            else 
                affectedArea = sum(clusterMask(:)) / totalPixels * 100; 
            end 
 
            imshow(segmented_images{selectedCluster}, 'Parent', axSegment); 
            title(axSegment, sprintf('Selected Cluster %d (ROI)', 
selectedCluster), 'FontWeight', 'bold'); 
 
            axes(axAffection); 
            cla; 
            text(0.5, 0.5, sprintf('%.2f%%', affectedArea), ... 
                 'Color', 'g', 'FontWeight', 'bold', 'FontSize', 16, ... 
                 'HorizontalAlignment', 'center'); 
            title(axAffection, 'Affected Area (%)', 'FontWeight', 'bold'); 
        else 
            cla(axSegment); 
            cla(axAffection); 
            title(axSegment, 'Selected Cluster (ROI)', 'FontWeight', 'bold'); 
        end 
    end 
 
    % Remedy Callback Function 
    function remedyCallback(~, ~) 
        if isempty(I) 
            errordlg('Please load an image and detect disease first.', 
'Error'); 
            return; 
        end 
         
        % Get the detected disease type 
        diseaseType = char(YPred); % Ensure YPred is converted to a string 
         
        % File paths for remedies 
        remedyFolder = 'C:\Users\USER\Downloads\REMEDY'; % Folder where 
remedy files are located 
        switch lower(diseaseType) % Match disease type 
            case 'blight' 
                remedyFile = fullfile(remedyFolder, 'BLIGHT REMEDY.txt'); 
            case 'grape black rot' 
                remedyFile = fullfile(remedyFolder, 'BLACK ROT REMEDY.txt'); 
            otherwise 
                errordlg('No remedy available for the detected disease.', 
'Error'); 
                return; 
        end 
         
        % Check if the file exists and display it 
        if isfile(remedyFile) 
            % Open the remedy file in the default text editor 
            winopen(remedyFile); 
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else 
errordlg(['The remedy file "' remedyFile '" does not exist.'], 

'Error'); 
end 

    end 
end 




