MATERIAL DETECTING AND HANDLING ROBOTIC ARM

NURULHUDA BINTI JALIL

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2009

C Universiti Teknikal Malaysia Melaka

FAKULTI KEJU	I VERSTI TEKNIKAL MALAYSIA MELAKA RUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
A A A A A A A A A A A A A A A A A A A	BORANG PENGESAHANSTATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Projek : MATER	IAL DETECTING AND HANDLING ROBOTIC ARM
Sesi : 2009 Pengajian	
Saya NURULHUDA BINTI JAL disimpan di Perpustakaan dengan sy	IL mengaku membenarkan Laporan Projek Sarjana Muda ini yarat-syarat kegunaan seperti berikut:
1. Laporan adalah hakmilik Unive	rsiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan memb	uat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan memb	ouat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.	
4. Sila tandakan ($$) :	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENUL	IS) (COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: POS 39, KG. PT. HJ. BAJU	RI,
83600 SEMERAH, BATU PAHAT,JOHOR	
Tarikh: 30 April 2009	Tarikh:

"I hereby declare that this report is the results of my own work except for quotes are cited in the references."

Signature	:
Author	: Nurulhuda binti Jalil
Date	: 30 April 2009

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronics Engineering (Industrial Electronics) With Honours"

Signature:Supervisor's Name: En. Mazran bin EsroDate: 30 April 2009

C Universiti Teknikal Malaysia Melaka

Dedicated to my beloved family especially my father and mother, lecturers and also to all my friends

ACKNOWLEGMENT

Alhamdulillah, praise to Allah S.W.T for the blessings bestowed upon me, with it I have come this far by completing this report for my Final Year Project.

I would like to take this opportunity to express my utmost and sincere gratitude to my supervisors, En Zamree bin Abd Ghani and En Mazran bin Esro. They have given me important advices, inspirations, and invaluable guidance throughout the whole project.

Secondly, I would also like to thank my beloved parents and family. They have given me the greatest moral support that I have ever had when I was feeling down. For this, my sincere love and acknowledgement goes especially for them.

On other hand, I would also like to show my appreciation to all the lecturers who taught me over the years in UTeM. Special thanks too to Mr Zulhairi bin Othman for his untiring effort on giving me ideas to complete this project. They have taught me invaluable knowledge which is essential in completing this project. I also would like to thank Automation Lab technician, En Shahrizan bin Johar for accompanying me during the course of this project.

Furthermore, I would like to thank my friends and course mates for sharing their knowledge and experience with me. Thank you for the encouragement and help. All of you have been very kind, caring and I will always treasure our friendship.

ABSTRACT

The introduction, literature review, methodology, results and conclusions for the development of a Material Detecting and Handling Robotics Arm is discussed in this report. Since industries nowadays are facing with a rising cost in labor and workforce, automation plays a big part to increase productivity and still maintain its quality. The machine that will be used as transfer medium in this project is a robot arm where, the main objective is to build, test and run the robot arm as a working machine. From the literature review done, the types of robot arms that are available in the market now have been studied. The types are such as Cartesian, Cylindrical, Spherical, SCARA and Revolute can be used for multiple applications based on the industry's needs. A Programmable Logic Controller (PLC) will be used in this project that acts as the controller which determines the movements of the robot arm. The movements are gained from the DC motors that will provide motion for the robot arm based on the Degrees of Freedom (D.O.F) required. As for the sensing systems, a limit switch, inductive sensor and capacitive sensor will be placed strategically at the conveyor where it will then trigger the PLC to perform the next process which is, pick and place. Next, the gripper will built according to the size of the material to pick and place it efficiently to complete this project. To ensure the completion of this project, the methodologies have also been discussed here with a relevant flow chart and a ganntt chart. Lastly, as for the preliminary results of this project, the major components have been identified and the literature review has been completed.

ABSTRAK

Pengenalan projek, kajian latar belakang, metodologi kajian, keputusan dan kesimpulan untuk Mesin Pengesan dan Pengasingan Produk 'Robotics Arm' telah dibincangkan di dalam laporan ini. Oleh sebab industri kini banyak mengalami masalah dari segi kos kerja dan tenaga pekerja, automasi memainkan peranan yang penting dalam meningkatkan produkiviti dan juga meningkatkan kualiti produk. Mesin yang akan digunakan dalam projek ini sebagai mesin pangantara adalah 'robot arm' dan dimana objektif utama projek ini adalah untuk membina, menguji dan mengoperasi robot ini sebagai satu mesin yang sempurna. Daripada kajian latar belakang yang telah dijalankan, jenis-jenis 'robot arm' yang berada di pasaran juga telah dikenal pasti. Jenis -jenis robot ni terdiri daripada 'Cartesian', 'Cylindrical', 'Spherical', 'SCARA' dan 'Revolute' yang boleh digunakan untuk pelbagai aplikasi mengikut kehendak industri. Sebuah 'Programmable Logic Controller' (PLC) akan digunakan bagi tujuan mengawal pergerakan robot. Pergerakan ini didapati dari kegunaan motor AT dan ianya bergantung kepada tahap 'Degrees of Freedom' yang dikehendaki. Untuk tujuan sistem pengesan, pengesan dari suis sesentuh, jenis induktif dan kapasitif akan digunakan dan akan dipasang secara strategik pada 'conveyer' kepada PLC untuk proses seterusnya iaitu mengangkat dan menyusun produk ke dalam kotak yang ditetapkan. Untuk tujuan ini, pemegang akan dipasang pada 'robotics arm' mengikut saiz produk bagi melengkapkan projek ini. Untuk memastikan projek dapat disiapkan, metodologi telah dibincangkan dengan menggunakan carta alir dan carta gannt yang bersesuaian. Akhirnya, untuk keputusan awal projek ini, kesemua komponen utama telah dapat dikenal pasti dan kajian latar belakang telah selesai.

TABLE OF CONTENTS

CHAPTER CONTENT

PAGE NUMBER

PROJECT TITLE	i
DECLARATION	ii
ACKNOWLEGMENT	111
ABSTRACT	iv
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF ABBREVATIONS	xii

I INTRODUCTION

1.1	Project Introduction	1
1.2	Project Background	2
1.3	Project Objectives	3
1.4	Problem Statement	4
1.5	Scope	4
1.6	Project methodology	5

ix

II LITERATURE REVIEW

			6
2.1	Introd	uction	7
	2.2.1R	Robot Arm Constructions	11
	2.2.2 I	Fishertechnik Kit	13
2.3	Progra	ammable Logic Controller (PLC)	15
	2.3.1	Basic Operation of PLC	16
	2.3.2	Advantages of PLC	17
	2.3.3	Programming the PLC	17
		2.3.3.1 Ladder Logic	20
		2.3.3.2 Software to program the PLC	20
		2.3.3.3 OMRON Type CJ1 GH	22
2.4	DC Se	ervo Motors	24
	2.4.1	DC Servo Motor Speed Control	24
2.5	Sensir	ng Units	26
	2.5.1	Limit switch	28
	2.5.2	Inductive proximity sensor	30
	2.5.3	Capacitive proximity sensor	

III METHODOLOGY

3.1	Introduction 31		
3.2	Component selection 3		
	3.2.1	DC motor	32
	3.2.2	Relay	33
	3.2.3	Limit switch	34
	3.2.4	Inductive sensor	34
	3.2.5	Capacitive sensor	35
3.3	Project In	mplementation	35
	3.2.1 H	lard ware Development and	

			Implementation	36
			3.2.2.1 Hardware calculation	38
		3.2.3	Software Development and	
			Implementation	43
	3.3	Flow (Chart	46
	3.4	Gannt	Chart	47
IV	RE	SULT	AND DISCUSSION	
	4.1	Analy	sis	48
		4.1.1	Hardware development	49
		4.1.2	Software development	51
		4.1.3	Integration	59
	4.2	Resul	t	61
	4.3	Discus	ssion	64
V	CON	NCLUS	SION AND RECOMMENDATION	
	5.1	Concl	usion	66
	5.2	Recon	nmendation	67
	REF	FEREN	CES	68
	APP	PENDI	X A	69
	APP	PENDI	X B	77
	APP	PENDE	X C	79

LIST OF TABLES

NO DESCRIPTION

PAGE NUMBER

2.1	Five Robot Basic Motion.	8
2.2	Advantages, Disadvantages and Applications of Sensors.	26
2.3	Rated operating distance correction factors.	28
3.1	D-Link parameter	35
3.2	Gannt Chart of project planning	44
4.1	Type of sensors	52
4.2	i/p table	54
4.3	o/p table	55

LIST OF FIGURES

NO

DESCRIPTION

PAGE NUMBER

2.1	Unimation PUMA Robot Arm.	7
2.2	Cartesian x,y,z robot.	8
2.3	Cylindrical Robot.	9
2.4	Spherical Robot.	9
2.5	SCARA Robot.	10
2.6	Articulated or revolute robot.	10
2.7	Fishertechnik block diagram.	12
2.8	Example of Fishertechnik kit (industry robots).	13
2.9	A PLC unit with its range of applications.	14
2.10	A Basic Operation Block Diagram	15
2.11	A Simple Relay Layout and Schematic	18
2.12	A Simple Relay Controller.	18
2.13	A PLC Illustrated With Relays.	19
2.14	OMRON Training Kit with Handheld Console.	20
2.15	Six basic instructions PLC	21
2.16	DC Servo Motors.	22
2.17	Pulse Width Modulations for Servo Motors.	23
2.18	Types of Sensors.	25
2.19	Limit switch sensor.	27
2.20	Principle of operation limit switch.	27
2.21	Operation of inductive proximity sensor.	29

2.22	Inductive proximity sensors.	29
2.23	Electronic output circuit and sensor electro-magnetic field	30
2.24	Capacitive sensor	30
2.25	Operation of capacitive proximity sensor	30
3.1	DC motor operating principle	32
3.2	DC motor	33
3.3	Relay OMRON MY2J	33
3.4	Limit switch	34
3.5	Inductive sensor	34
3.6	Capacitive sensor	35
3.7	Robot Arm Simulated in Robosim2	36
3.8	Simulation program at Robosom2	37
3.9	Flow chart step of calculation	38
3.10	Coordinate frames for the robotics arm	39
3.11	The convention in terms of joint axes	39
3.12	A Simple Ladder Diagram Simulated in Omron Type CJ1	44
	GH Ladder Builder.	
3.13	Flow chart of software programming	44
3.14	Integration between hardware and software.	45
3.15	Flowchart of the Project Development	46
4.1	Result from simulation	49
4.2	The part of fishertechnik kit	50
4.3	The whole robotic arm (b) The gripper will be build	50
4.4	Four respective boxes	50
4.5	The ladder diagram build and simulated in Omron Type	58
	CJ1 GH Ladder Builder.	
4.6	Integration between hardware and software.	59
4.7	Relay OMRON MY 2J	59
4.8	Wiring of relays from motor to PLC	60

4.9	Wiring of capacitive sensor to PLC	60
4.10	The 8 Mechanical Relays used for this Project	61
4.11	Robot arm pick the material	61
4.12	Sensors detect the material	62
4.13	Robot arm stop at limit switch	62
4.14	Robot arm place the material	62
4.15	Robot arm back to origin	63
4.16	The whole robotic arm	63
4.17	The position of sensors	65

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

DOF	-	Degrees of Freedom
PPP	-	Prismatic Prismatic Prismatic
SCARA	-	Selective Compliant Articulated Robot for Assembly
RPP	-	Rovolute Prismatic Prismatic
CPU	-	Central Processing Unit
ECM	-	Electrically Commutated Motor
FBD	-	Function Block Diagram
IL	-	Instruction List
LD	-	Ladder diagram
PLC	-	Programmable Logic Controller
PSM	-	Projek Sarjana Muda

CHAPTER I

INTRODUCTION

1.1 Project Introduction

The rapid growing and advancement of modern technology has yield to the developments and inventions of modern equipments and machineries. One of these inventions that give great impacts and implications to the lifestyles is industrial robotics arm. An industrial robot arm is meant to simplify task easier and still maintain its efficiency higher than that of a normal human operator in the industry ^{[6].} These inventions have eased human significantly in all aspects and to upgrade of their daily lives. The basic robot arm consist of several rigid links connected in series by revolute or prismatic joints which can perform various task such as welding, material handling (pick & place), and thermal spraying, to painting and drilling.

A robot arm in the industry nowadays uses at least two or more Degrees of Freedom (D.O.F) to pick and place object, where one for moving and another to pick the object by gripping. As so, the robot arm in this project will be built with 3 D.O.F to provide full efficiency towards the aim of the project.

This project is about the designing and development of 'Material Detecting and Handling Robotic Arm' which includes both hardware and software. The Robotic Arm shall be designed to pick and place materials from a conveyor to a box by detecting the type and color of the material. For this purpose, the sensors which are to detect the type and the color of the material will be place strategically at the conveyor and will the trigger the PLC to control the robotic arm. Robotic arm will then pick and place the material according to the range of movement by the DC motors which is limited by the use of limit switches. A gripper will be built according to the size of the material to pick and place it efficiently. From this project, the application of the sensors, motors and PLC can be shown in one package.

The objective of this project is to build, test and run the robotic arm as a working machine by using a PLC. This is because, this project will benefit students in future to understand the basics of PLC, DC motors, types of sensors and mechanical assembly once they step into the working environment.

1.2 Project Background

What is robotics? Robotics, computer-controlled machine that is programmed to move, manipulates objects, and accomplishes work while interacting with its environment. Robots are able to perform repetitive tasks more quickly, cheaply, and accurately than humans. The word robot has been used since to refer to a machine that performs work to assist people or work that humans find difficult or undesirable.

Here is the brief explanation of the robotics arm history. George Devol applied for the first robotics patents in 1954 (granted in 1961). The first company to produce a robot was Unimation, founded by George Devol and Joseph F. Engelberger in 1956, and was based on Devol's original patents. Unimation robots were also called *programmable transfer machines* since their main use at first was to transfer objects from one point to another, less than a dozen feet or so apart. They used hydraulic actuators and were programmed in *joint coordinates*. In 1969 Victor Scheinman at Stanford University invented the Stanford arm, an all-electric, 6-axis articulated robot designed to permit an arm solution. This allowed it to accurately follow arbitrary paths in space and widened the potential use of the robot to more sophisticated applications such as assembly and welding. Scheinman then designed a second arm and receiving a fellowship from Unimation to develop his designs, sold those designs to Unimation who further developed them with support from General Motors and later marketed it as the Programmable Universal Machine for Assembly (PUMA). In 1973 KUKA Robotics built its first robot, known as FAMULUS, this is the first articulated robot to have six electromechanically driven axes.

Interest in robotics swelled in the late 1970s and many US companies entered the field, including large firms like General Electric, and General Motors (which formed joint venture FANUC Robotics with FANUC LTD of Japan)^{[7].}

1.3 Project Objectives

There are several objectives to be achieved in the end of the project which includes:

- 1. To develop a material detecting and handling robotic arm this can pick and place materials by detecting the type and color of the material.
- 2. To build, test and run the robotic arm as a working machine.
- To study the types of sensors, motors and other components related in building this project.
- 4. To develop a program using the Programmable Logic Controller (PLC) and test the program on the robotic arm.

1.4 Problems Statement

Industries nowadays are facing with the rising cost of labor and workforce because of the expanding global market that requires products to be delivered more and on time without affecting the quality of the product itself. Human operators in industries are more likely to cause mistakes and are not efficient compared to the use of machines. Machines are efficient and are considered cost saving on the long term. Besides that, the process cycle time is longer for human operators.

The robot arm is basically a machine that can replace a human operator and perform various tasks efficiently and still maintain a constant speed while handling the process. By the use of the robot arm too, cost for labor or workforce can be reduced significantly while still maintain a proper production of an industry.

This project highlights the problem in manufacturing industry. Since material has become in various type whether from metal or nonmetal material, packaging the material according to the color has made the respective industry to provide different packaging section or lines for avoid any mistakes.

The robot arm that is being developed in this project can be used in this industry without facing any problem since it can differentiate the type and color of the material, pick and place it according to the fix box. The process too shall be more efficient and faster than a normal human operator.

1.5 Project Scope

The robotic arm project is focus on both the hardware and software application. The hardware will be design from a robotic arm kit (Fishertechnik Kit) that will be modified according to the Degrees Of Freedom (D.O.F) needed in this project. The project involves building, testing and running a 3 Degrees of Freedom (D.O.F) robot arm as a working machine to perform its task. The hardware consists of mechanical structure and assembly; DC motors for movements, gripper for pick and place purposes, sensors as the sensing type and color of the material and a Programmable Logic Controller (PLC) to control the whole robot arm. The program will be developed in the CX-programmer and will be simulated before running on the project. Relays will be used to interface between the hardware (robotic arm) and the software (PLC program).

1.6 Project methodology

As stated at the objectives above, the robotic arm shall be build, test and run as a working machine, the process list below should be considered. The entire point list below is the process that has to be done from the start until the finishing part.

1. Literature review:

For this, a through research shall be done before starting on the project. Literature review will be done from research through books, journals and the internet in websites. This is to know the equipments, materials and components needed in building the project. Beside that, the research will include all the hardware that is related in this project such as the DC motors, sensors and other electrical/electronic components. Sensors too shall be studied and reviewed to find the perfect candidate for the job of detecting the type and color of the material.

2. Building the hardware:

After that, the sketches of the project will be done based on the gathered information. Then, the robotic arm will be build by using, test and finally it'll be run to test whether it is functioning or not. The troubleshooting will be done if it can't function properly during the testing.

3. Software development:

The software which is the PLC program shall be tested and simulated.

5. Finishing :

Finally, testing the operation, application and result of robotic arm. The troubleshooting between hardware and software will be done if it can't function properly during the testing. Then, presentation on outcome of project will be prepared. Besides that, preparation and presentation of technical report also prepared.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter will provide details and discuss about the source that are related to this project. It consists of the products that are already in the market nowadays and also contains the theory of the components, equipments, programming software and controller that will be used in the project.

Research has to be done to provide an initial review in the robotic arm field before starting on this project. It is essential to know how to absorb some industrial robot arm methods that are connected directly or indirectly with this project. While carrying out research in the robotic arm field, any advantages or disadvantages about the current robot arm in the market can be taken as a reference to develop a successor pick and place robot arm. The main key points to take as reference are the control system involved, motors and sensors used, and also the theories and analysis that are relative to the pick and place robot arm.

2.2 Hardware development

2.2.1 Robot arm construction

An industrial robot is a general-purpose, computer-controlled manipulator consisting of several rigid links connected in series by revolute or prismatic joint. One end of the limb is attached to a supporting base while the other end is free and equipped with a tool or gripper to manipulate objects or to perform assembly tasks. The motion of the joints results in relative motion of the links.

Mechanically, a robot arm is composed of an arm and a wrist subassembly unit which is designed to reach work piece located within its work volume. The work volume is the sphere of influence that of a robot arm where its movements can deliver the wrist subassembly unit to any point within the sphere. The arm generally can move anywhere within the work volume by employing the correct Degrees of Freedom (D.O.F). The combination of the movements positions the wrist at the work piece. The wrist subassembly unit usually consists of three rotary motions.

The concept is illustrated by the Cincinnati Milacron T3 robot arm and Unimation PUMA robot arm as shown on Figure 2.1.

Figure 2.1 Unimation PUMA robot arm.

8