ELECTROMAGNETIC POWER PLANT BASE ON PERENDEV THEORY

ZULHILMI AFIQ BIN ZULKIFLE

MAY 2009

ELECTROMAGNETIC POWER PLANT BASE ON PERENDEV THEORY

ZULHILMI AFIQ BIN ZULKIFLE

This Report Is Submitted In Partial Fulfillment of Requirements For The Degree Of Bachelor In Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

University Teknikal Malaysia Melaka

May 2009

"I hereby declared t	hat I have read through this report and found that it has comply
the partial fulfillmer	nt for awarding the degree of Bachelor of Electrical Engineering
	(Industrial Power)"
Signature	·
Supervisor"s Name	: Pn Elia Erwani Bte Hassan
Date	······································

"I hereby o	declared that this report is a result of my own work except for the except that have been cited clearly in the references."
Signature	:
Name	:
Date	:

"Saya akui l	aporan ini adalah hasil kerja saya sendiri kecuali ringasan dan petikan yang tiap-tiap satunya saya jelaskan sumbernya."
Tandatangan	·
Nama	·
Tarikh	:

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most gracious and merciful, praise to Allah the lord of universe and may blessing and peace of Allah be upon his messenger Muhammad S.A.W. First and foremost thanks to Allah for giving me wellness and ideas to complete this project report. Without any of it, I surely can"t complete this project in the time given.

I would like to express my appreciation to my project supervisor, Pn Elia Erwani Bte Hassan for giving brilliant advices and guidance to me as well as provision of the valuable time management, encouragement and patience during the time period of completing this project.

Not forgetting, to most of my friends who help me in getting through most of the time. I am very grateful for helps that i get in constructing and achieving results and output from this project. Information, experience and knowledge are what I'm looking forward to in my way to achieve goals and aims in my project.

Last but not least, i also like to express my very thankful and send my grateful to all of my family for the moral and financial support. To those that I forget to mention, please forgive me. I do appreciate all the things you have done for me.

ABSTRACT

Since the conventional system is facing many problems such as the incremental of global fuel price and give higher environmental impact. This project was proposed to overcome that problem by designing the system that can generate the electrical energy source without use any fuel or electricity to run it. The approach is base on Perendev concept known as PERENDEV MAGNETIC MOTOR. This motor used magnetic force in order to rotate the stator. Therefore, the arrangement of the magnet for stator and rotor must be in accurate position to make sure the magnets are not in 'stable' position and static. This PERENDEV MAGNETIC MOTOR is use as a turbine (in hydro power plant) and will connect to generator. Then, during rotating, the generator will produce electricity. A brief explanation about this project is given in the introduction of this report regarding the purpose, the problem statement and the scope of the project. The explanation of the work progress is given in the methodology section. Lastly, the analysis and discussion for the overall project will be done.

ABSTRAK

Semenjak sistem janakuasa elektrik sedia ada berhadapan dengan pelbagai masalah seperti kenaikan harga minyak global, peningkatan harga barangan untuk penyelengaraan sistem, dan sistem yang memberi kesan kepada alam sekitar. Projek ini telah dicadangkan untuk mengatasi masalah dengan mereka sistem yang lebih bersih dan boleh menjana sumber tenaga elektrik tanpa menggunakan apa-apa bahan api atau bekalan elektrik untuk digunakan. Pendekatan yang digunakan berteraskan konsep Perendev atau lebih dikenalai sebagai PERENDEV MAGNETIC MOTOR. Penggunaan magnet adalah bertujuan untuk memutarkan motor. Oleh itu, susunan magnet untuk pemegun dan rotor mesti berada di dalam kedudukan yang tepat untuk memastikan magnet tidak berada dalam keadaan "stabil" Penjelasan ringkas tentang projek ini telah dinyatakan dalam pengenalan laporan ini mengenai tujuan, penyataan masalah dan skop projek tersebut. Penjelasan kemajuan kerja diberi dalam seksyen kaedah. Akhir sekali, analisis dan perbincangan untuk projek yang menyeluruh akan dibuat bagi mendapatkan keputusan yang lebih baik.

CONTENTS

CHAPTER	PAR	TICULARS	PAGE
	ACK	KNOLEDGEMENT	i
	ABS	TRACT	ii
	CON	NTENTS	iv
	LIST	Γ OF FIGURE	vii
	LIST	Γ OF TABLE	ix
1	INT	RODUCTION	1
	1.1	overview	2
	1.2	Problem statement	2
	1.3	Objective	2
	1.4	Scopes of work	2
2	LIT	ERATURE REVIEW	4
	2.1	Perendev movement concept	4
	2.2	Magnet position in Perendev motor	5
		2.2.1 main part of perendev motor	6
	2.3	Introduction into perendev motor	6
		2.3.1 Perendev motor model	6
		2.3.2 Calculation number of magnet	7
		2.3.3 Explaination why the perendev motor has move7	ement
	2.4	Study of similar system	8

		2.4.1 The reed's motor	8
		2.4.1.1 Additional comment from nelson camus	9
		2.4.2 Xpenzif Magnetic motor theory	10
		2.4.2.1 Explaination by Xpenzif	10
	2.5	Type of magnet that suitable for this project	11
		2.5.1 Ceramic	11
		2.5.2 Alnico	12
		2.5.3 Neodymium Iron Boron	13
		2.5.4 Selected magnet	13
	2.6	Magnetic material	14
	2.7	The static microscopic magnetic field	16
	2.8	Magnetic susceptibility	17
	2.9	Fractional magnetization graph	18
	2.10	Component needed to generate output voltage	19
		2.10.1 Dynamo principles	19
3		METHODOLOGY	
21			
	3.1	Introduction	21
	3.2	Overall methodology, step to develop project	
		21	
	3.3	Preliminary investigation phase	22
	3.4	System analysis phase	
		22	
	3.5	System design phase	22
	3.6	System development phase	23

3.7	Testing Phase	23
3.8	Discuss problem & execute solution	23
3.9	Project progress flowchart	24
3.10	First design of this project	25
	3.10.1 Function of each component	25
3.11	Second design of this project	26
	3.11.1 Project explanations	26
	3.11.2 Material use	27
3.12	Third design of this project (final design)	28
	3.12.1 Current design of this project	28
	3.12.2 Device operation	29
	3.12.3 Model of project	30
3.13	Component that use in this design	31
	3.13.1 Isolated magnet	32
	3.13.2 Cable tube	32
	3.13.3 Thin isolator coil	33
	3.13.4 PVC pipe	33
	3.13.5 PVP pipe rack and board	34
	3.13.6 Cable	34
	3.13.7 LED	35
	3.13.8 Multimeter	35
3.14	Comparison between wrapped magnet and custom magn	net 36

4	RES	SULTS AND DISCUSSIONS	37	
	4.1	Results	37	
	4.2	Problems	37	
	4.3	Solutions	38	
	4.4	Problem after solve the initial problem	38	
	4.5	Problem discussions	39	
	4.6	Component adding	40	
5		CONSLUSIONS AND RECOMMENDATIONS		
41				
	5.1	Introductions	41	
	5.2	Project advantage	41	
	5.3	Project disadvantage	41	
	5.4	Discussions	42	
	5.5	Recommendations	42	
	5.6	Conclusions	43	
	REF	TERENCE	44	
	App	endix A (Gantt chart)		
	App	Appendix B		
	App	Appendix C		
	App	endix D		
	App	endix E		

LIST OF FIGURE

NO		TITLE	PAGE
2.1		The magnets on the rotor being off-set to produce rotation	5
2.2.		Side view	5
2.3.		Main part	6
2.4.		Perendev motor	6
2.5.		Offset magnet	6
2.6		Cylinder type magnet	7
2.7		design and drawing of the Reed's Motor	8
2.8		Design from side view	9
2.9		Xpenzif model	
	10		
2.10		Ceramic or ferrite magnet	11
2.11		Alnico magnet	
	12		
2.12		NdFeb magnet	
2.12	13	Tvur eo mugner	
2.13		Alignment of magnetic moment	15
2.13		Intersectional of two functional	18
2.14		Dynamo	20
3.1		Draft model design	25

.3.2	Screw magnetic motor model	26
3.3	Polystyrene	27
3.4	Pure steel magnet	27
3.5	Ring rubber	27
3.6	Mini dynamo	27
3.7	Project model	28
3.8	Arrangement of magnet	29
3.9 a	Front view model	30
3.9 b	Top view model	30
3.9 c	left view model	30
3.9 d	right view model	30
3.10	Cylindrical magnet	31
3.12	Magnet wrapped with cable tube	32
3.13	Cable tube	32
3.14	Thin isolator coil	33
3.15	PVC pipe	33
3.16	PVC pipe holder and rack	34
3.17	Cable	34
4.18	LED	35
3.19	Multimeter	35
3.20 a	Wrapped magnet	36
3.20 b	Custom magnet	36
3.21 a	Wrapped magnet flux area	36

3.21 b	Custom magnet flux area	36
4.1	Region of flux magnet	38
4.2	Problem on this system	39
4.3	Component adding	40
4 4	limit switch	40

LIST OF TABLE

TABLE	TITLE	PAGE
3.1	Methodology steps	21
5.1	Advantages	41
5.2	Disadvantages	41

LIST OF ABBREVIATIONS

Light Emitting Diod LED

V Voltage

Ampere A

DC Direct current

AC Alternating current

PVC

Polyvinyl chloride

CHAPTER 1

INTRODUCTION

1.1 Overview

Nowadays, electrical energy is the most important component to our life and it is used mostly in all system in this era such as industrial and residential. Since the conventional system is facing many problems such as the incremental of global fuel price. So for long term usage, the alternative ways have find to solve that problem. Many developers in the electrical industry has been pursuing more intentionally on designing and developing a new system that can solve the problem and one of the solutions is develop a system that use renewable energy as the main part to run that system.

Renewable energy is made from resources that Mother Nature will replace, like wind, water and sunshine. Now, the production and use of renewable fuels has grown more quickly in recent years due to higher prices for oil and natural gas. In this project, the renewable concept is involved to develop the new system for the future. The main purpose of this project is to develop a system that can be generating the electrical energy source without use any fuel or electricity to run it. Then, Magnet is choose as the main source to replace the conventional fuel like natural gas and oil to generate turbine.

.

1.2 Problems statement

The conventional system has facing many problems and the existing problems are:

i. Environmental pollution.

 Traditional power generation method like oil generator can do harm to our environment. So with this system, it can protect our environment from the pollution.

ii. Fuel resource.

- The conventional power plants need fuel resources which not suitable to environmental friendly. Beside that, an incremental in fuel global price can be under by this alternative power plant
- All oil generator need a fuel to generate electricity so why not use magnet power instate buying fuel

iii. Fossil fuels

• Fossil fuel that being use every day in the course of time it will finish, so the alternative is renewable energy.

1.3 Project objective

To achieve the objective of this project, a few objectives have been set as guide line to finish the project, the objectives of this project are:

- i. This project is about to develop an electrical motor system by using Perendev magnetic motor theory and prove this system is function properly and can be commercialized to the consumer
- To study how the magnet can perform with each other in Perendev Magnetic Motor theory.
- iii. To develop an electrical energy system that will not run out in future and create a clean source of energy that has much lower environmental impact.

1.4 Project scope

In generally, every project has their scope project as a guide line to run the project smoothly according to the project planning expectation. The scope of this project is:

- i. To develop a system for consumers that can saves cost and generate a clean source of energy. It can be used at homes or industrial applications such as home appliances on the small scale, machines and automobile on the medium scale, and power stations on the large scale.
- ii. Manage to build this system until success without any problem occurs and hope the system will produce at least a few volts. Although the system only produces a small amount of energy, it it's fair enough to show that the theory of the system is right and this system can be developed in larger scale form.

CHAPTER 2

LITERATURE REVIEWS

This chapter has the explanation and research of the related project that currently being done. Besides that, in this chapter also has include the theory of the component that will be used to develop

2.1 Perendev movement concept

The principle is simply using same poles magnets in opposition, when the same pole of the magnet is face with each other, it will pushing with one another with the large amount of power. With this simple electromagnetic concept, it will be used as the main idea to rotate a motor system.

The figure 2.1 shows the different arrangement between the rotor and the stator magnet of the system. The red circle is represented as rotor magnet and the white circle is represented as stator magnet. It shows the magnet at the rotor is being off-set to make the system produce the rotation for the motor. As the stators become engaged, the rotors with off-set magnet alignment begin to spin. This motor designed to run a generator and convert it into useable electric energy.

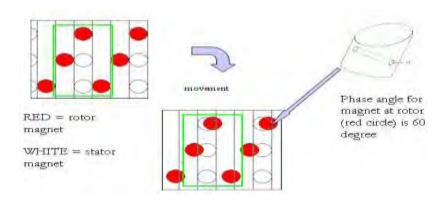


Figure 2.1: The magnets on the rotor being off-set to produce rotation

2.2 Magnet position in Perendev motor (side view)

Figure 2.2 show that the magnet of this system is set 60° to make the system produce the rotation.

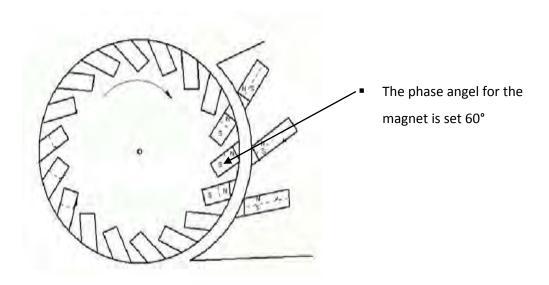
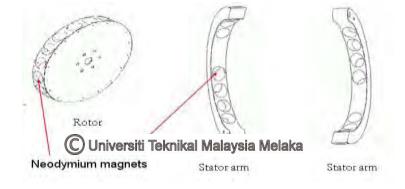



Figure 2.2 Side view

2.2.1 Main parts of Perendev Motor

Figure 2.3 shows the three main parts of the Perendev Magnetic Motor to produce a rotation. Rotor is the rotating part for this system and the other two parts is stator that is the stationary part of the rotor systems.

