

THE FUTURE OF SNMP – REST BASED API MONITORING

CHIA JIAN WEI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN

JUDUL: [THE FUTURE OF SNMP – REST BASED API MONITORING]

SESI PENGAJIAN: [2022 / 2023]

Saya: CHIA JIAN WEI

mengaku membenarkan tesis Projek Sarjana Muda ini disimpan di Perpustakaan Universiti

Teknikal Malaysia Melaka dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat

salinan unituk tujuan pengajian sahaja.

3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat

salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. * Sila tandakan (✓)

__________ SULIT (Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

__________ TERHAD (Mengandungi maklumat TERHAD yang

telah ditentukan oleh organisasi / badan di

mana penyelidikan dijalankan)

__________ TIDAK TERHAD

(TANDATANGAN PELAJAR) (TANDATANGAN PENYELIA)

Alamat tetap: _____________________

 Nama Penyelia

Tarikh: __________________________

Tarikh: __________________________

CATATAN: * Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

berkuasa.

i

THE FUTURE OF SNMP – REST BASED API MONITORING

CHIA JIAN WEI

This report is submitted in partial fulfillment of the requirements for the

Bachelor of Computer Science (Computer Networks) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

ii

DECLARATION

I hereby declare that this project report entitled

[THE FUTURE OF SNMP – REST BASED API MONITORING]

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : ______________________________________ Date : ________

(CHIA JIAN WEI)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

 Bachelor of Computer Science (Computer Networks) with Honours.

SUPERVISOR : ______________________________________ Date : ________

(PROFESSOR MADYA DR MOHD FAIZAL ABDOLLAH)

iii

DEDICATION

This research paper is sincerely dedicated to my supportive parents who

encouraged and inspired me in conducting this study. They have never left my side

throughout the process and gave me strength and hope when I thought of giving this

up. They provided me a great sense of enthusiasm and perseverance in continuing

this. This research is made possible with their love and assistance.

Moreover, I dedicate this research paper to this subject lecturer, Professor

Madya Dr Mohd Faizal Abdollah, who constantly guiding and teaching me to make

this study even better, to my family for cheering up for me, and to my friends who

have helped me in finishing this project. I really appreciate your words of advice and

in continuously giving me moral, and emotional support.

iv

ACKNOWLEDGEMENTS

This work would not have been possible without the support of Universiti

Teknikal Malaysia Melaka. I am especially indebted to Professor Madya Dr Mohd

Faizal Abdollah, who have been supportive of my career goals and who worked

actively to provide me with the protected academic time to pursue those goals.

I am grateful to all of those with whom I have had the pleasure to work

during this and other related projects. Nobody has been more important to me in the

pursuit of this project than the members of my family.

Each of the members of the PSM Committee has also provided me extensive

personal and professional guidance and taught me a great deal about both scientific

research and life in general. I would especially like to thank Professor Datuk Ts. Dr.

Shahrin Bin Sahib @ Sahibuddin, my evaluator for this project.

As my teacher and mentor, I would like to mention Ts Mohd Ropi bin

Abdollah, he has taught me more than I could ever give him credit for here, and I

could even say he was the one who made me who I am today.

Most importantly, I would like to thank my parents, whose love and guidance

are with me in whatever I pursue. They are supportive and a support throughout my

life, and ultimately my biggest and most personal role models.

v

ABSTRACT

This paper examines the role of Simple Network Management Protocol

(SNMP) as a de-facto protocol in the field of network monitoring system. This paper

discusses in detail the transmission of SNMP protocol, how it works in the network

layer and also the three different revision that exists. Despite this popularity, there is

a genuine concern for the fundamental limitation of SNMP as a protocol, and there

are a growing number of network monitoring system shifting towards alternative

method, and one such system is RESTful API. This paper will explore the argument

towards the shift away from SNMP to API based system, and compare the

differences between the two approaches. This paper also aims to analyze the actual

difference when implementing the system in the network level, such as the difference

delay of messages, the size of packets and the available security parameter on both

systems.

vi

ABSTRAK

Kertas kerja ini mengkaji peranan Simple Network Management Protocol

(SNMP) sebagai protokol de-facto dalam bidang sistem pentadbiran rangkaian.

Kertas kerja ini membincangkan secara terperinci protokol penghantaran SNMP,

fungsi yang tersedia dalam lapisan rangkaian dan juga tiga versi berbeza yang

wujud. Walaubagaimanapun, terdapat kebimbangan terhadap SNMP sebagai

protokol asas, dan terdapat semakin banyak sistem pentadbiran rangkaian yang

beralih ke kaedah alternatif, dan satu sistem sedemikian adalah RESTful API. Kajian

akan meneruskan penerokaan dan peralihan daripada SNMP kepada sistem

berasaskan API, dan membandingkan perbezaan antara kedua-dua pendekatan.

Kertas kerja ini juga bertujuan untuk menganalisis perbezaan di dunia nyata apabila

melaksanakan sistem dalam peringkat rangkaian, seperti kependaman rangkaian

mesej, saiz paket dan parameter keselamatan maklumat yang tersedia pada kedua-

dua sistem.

vii

TABLE OF CONTENTS

 PAGE

DECLARATION .. II

DEDICATION .. III

ACKNOWLEDGEMENTS ... IV

ABSTRACT .. V

ABSTRAK .. VI

TABLE OF CONTENTS .. VII

LIST OF TABLES ... X

LIST OF FIGURES ... XI

LIST OF ABBREVIATIONS .. XIII

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Problem Statement ... 1

1.3 Project Question ... 2

1.4 Project Objective .. 2

1.5 Project Scope ... 3

1.6 Project Contribution ... 3

CHAPTER 2: LITERATURE REVIEW AND PROJECT METHODOLOGY 4

2.1 Introduction .. 4

viii

2.2 Simple Network Management Protocol (SNMP) .. 4

2.3 The fall of SNMP and the transition towards alternative protocol 7

2.4 HTTP as a protocol .. 9

2.5 Representational State Transfer (RESTful API) and RESTCONF 10

2.6 Critical review of current problem and justification .. 11

CHAPTER 3: METHODOLOGY ... 13

3.1 Introduction .. 13

3.2 Methodology and research approach ... 13

3.3 Process of reviewing the project .. 14

3.4 Determining the feasibility of the idea... 14

3.5 Implementation analysis and development of project 15

3.6 Gathering and analysis of data. .. 16

CHAPTER 4: DESIGN .. 18

4.1 Introduction .. 18

4.2 Network System Architecture .. 18

4.3 Logical and Physical Design .. 20

4.4 Testing parameters and justification of decision ... 21

4.5 Flow of testing process .. 24

CHAPTER 5: IMPLEMENTATION .. 29

5.1 Introduction .. 29

5.2 Basic Environment Setup ... 29

5.3 SNMP Environment setup ... 33

ix

5.4 RESTful Environment setup .. 34

5.5 Capturing packets through Wireshark ... 35

CHAPTER 6: TESTING AND ANALYSIS ... 37

6.1 Introduction .. 37

6.2 Interaction between devices ... 37

6.3 Size of data transmission ... 41

6.4 Performance metric .. 49

6.5 Security Parameters ... 51

CHAPTER 7: CONCLUSION ... 59

7.1 Introduction .. 59

7.2 Project Summarization ... 59

7.3 Project Contribution ... 61

7.4 Project Limitation .. 61

7.5 Future Works ... 62

REFERENCES .. 63

x

LIST OF TABLES

 PAGE

Table 2.2.1 SNMP version with corresponding RFC documents 5

Table 2.2.2 SNMPv3 Authentication and Encryption levels 7

Table 4.2.1 The specification of the WORKSTATION device............................. 19

Table 4.2.2 The specification of the virtualized devices for testing 19

Table 4.5.1 The OID used to test the SNMP values .. 25

Table 4.5.2 The URL used to test the REST values .. 26

Table 5.3.1 List of user and parameters for SNMP .. 33

Table 5.3.2 Commands to verify the functionality of SNMP server 33

Table 6.3.1 Efficiency of data transmission ... 48

xi

LIST OF FIGURES

 PAGE

Figure 2.2.1 Overview of SNMP Interactions .. 5

Figure 4.3.1 The physical layout of the topology ... 20

Figure 4.3.2 The logical layout of the topology with IP addressing 21

Figure 4.4.1 The interaction of SNMP between server and client 21

Figure 4.4.2 The interaction of RESTful API between server and client 22

Figure 4.4.3 The summary of Round-Trip delay process 23

Figure 4.5.1 The flowchart of measuring the performance 25

Figure 4.5.2 The flowchart of measuring the size of transmission for SNMP 26

Figure 4.5.3 The flowchart of measuring the size of transmission for REST 27

Figure 5.2.1 The setup of CSR1000v .. 30

Figure 5.2.2 The setup of Linux Debian 11.6 ... 30

Figure 5.2.3 iPerf bandwidth between SRV-HOST and SRV-CLIENT 31

Figure 5.2.4 iPerf bandwidth between SRV-HOST and CSR1000v 32

Figure 5.2.5 iPerf jitter between SRV-HOST and SRV-CLIENT 32

Figure 5.2.6 iPerf jitter between SRV-HOST and CSR1000v 32

Figure 5.3.1 SNMP commands example output .. 34

Figure 5.4.1 RSA Key on CSR1000v .. 34

Figure 5.4.2 Verification of RESTful API based on header and return code 35

Figure 5.4.3 Verification of RESTful API based on output 35

Figure 5.5.1 Example of packet capturing in Wireshark 36

Figure 5.5.2 Example of detailed information of a frame in Wireshark 36

Figure 6.2.1 Header structure of TCP packets .. 38

Figure 6.2.2 Header structure of UDP packets.. 38

Figure 6.2.3 Data Flow and Structure of SNMPv2 ... 38

xii

Figure 6.2.4 Data Flow and Structure of SNMPv2 ... 39

Figure 6.2.5 Data Flow of TCP HTTPS ... 40

Figure 6.3.1 SNMPv2 Data Transmission .. 42

Figure 6.3.2 SNMPv3 Data Transmission .. 44

Figure 6.3.3 RESTful HTTPS TLS Interaction .. 45

Figure 6.3.4 RESTful Data Transmission .. 46

Figure 6.3.5 Overall Data Transmission .. 47

Figure 6.4.1 Example of perf output... 49

Figure 6.4.2 RTT Growth over number of items .. 49

Figure 6.4.3 CPU cycles over number of items .. 50

Figure 6.5.1 Example of Wireshark packet capture SNMPv2c 52

Figure 6.5.2 Example of Wireshark packet capture REST HTTP 52

Figure 6.5.3 Example of Wireshark packet capture SNMPv3 noAuthNoPriv ... 53

Figure 6.5.4 Example of Wireshark packet capture SNMPv3 authNoPriv 54

Figure 6.5.5 Example of Wireshark packet capture SNMPv3 authPriv 55

Figure 6.5.6 Wireshark packet capture of unsolicited SNMPv3 authPriv 56

Figure 6.5.7 IANA Search for Private Enterprise ID ... 56

Figure 6.5.8 MAC Address for the CSR1kv .. 57

Figure 6.5.9 Cryptographic key negotiation process, courtesy of Patrick

Gruenauer ... 58

xiii

LIST OF ABBREVIATIONS

FYP - Final Year Project

SNMP - Simple Network Management Protocol

REST - Representational State Transfer

API - Application Programming Interface

AES - Advanced Encryption Standard

JSON - JavaScript Object Notation

YAML - Yet Another Markup Language

ASCII - American Standard Code for Information Interchange

MIB - Management Information Base

OID - Object Identifier

HTTP - Hypertext Transfer Protocol

IETF - Internet Engineering Task Force

IEEE - Institute of Electrical and Electronics Engineers

RFC - Requests for Comments

PDU - Protocol Data Units

UDP - User Datagram Protocol

USM User-based Security Model

VACM View-based Access Control Model

MD5 Message-Digest Algorithm

SHA Secure Hash Algorithm

DES Data Encryption Standard

IAB - Internet Activities Board

XML - Extensible Markup Language

SMI - Structure Of Management Information

xiv

COAP - Constrained Application Protocol

CBOR - Concise Binary Object Representation

HTTP - Hypertext Transfer Protocol

WWW - World Wide Web

HTTPS - Hypertext Transfer Protocol Secure

URI - Uniform Resource Identifier

URL - Uniform Resource Locator

QUIC - Quick UDP Internet Connections

gRPC - gRPC Remote Procedure Calls

TCP - Transmission Control Protocol

VM - Virtual Machines

TLS - Transport Layer Security

MTU - Maximum Transmission Unit

USM User-based Security Model

xv

CHAPTER 1: INTRODUCTION

1.1 Introduction

Monitoring and resource management has been dominated by the protocol

Simple Network Management Protocol (SNMP) since 1988 from RFC 1065. Despite

numerous revision and changes to the protocol, launching version 2, version 2c and

even version 3, the protocol is over-engineered, not being fully utilized, and the over-

extend configuration of the protocol leads to massive issues with proprietary

compatibility issues and more importantly security issues.

Hence there is a need to pivot to protocols other than SNMP, and RESTful

service are one of the architectural solutions for solving the underlying problem. It

utilizes the most common protocols, more specifically HTTP(s) service as a stateless

client-server service.

1.2 Problem Statement

One of the issues that plagues SNMP is the concern of privacy and security

when sending the SNMP traffic. SNMP has undergone several revisions, with each

one addressing the flaws of the previous version. The SNMPv2c, second revision

brings some feature improvement, but it does not even support encrypted message.

Even the implementation of SNMPv3 is considered not secure as it uses stateless

protocol to secure the traffic, opting out the more secure challenge-handshake

authentication protocol. Moreover, most of the hardware that runs SNMPv2c either

2

require firmware update, or some compatibility issue makes supporting SNMPv3

impossible.

This brings to the issue of interoperability and compatibility issue. Some

network engineers opt to still use SNMPv2c because of the mentality “don’t change

it if it works”, and even that the SNMPv3 adoption rate is slow because the different

network device vendor does not have a consensus on how to implement the cipher

due to lack of RFC that defined AES-192 and AES-256. The issue is exacerbated by

the major equipment vendor over-extend the proprietary configuration which it

makes the convoluted system that much harder to navigate.

1.3 Project Question

a) Why the REST API and the SNMP protocol are relevant when discussing

about network monitoring?

b) What are the transmission methods, network traffic and available security

parameters between the two REST API and SNMP?

c) What is the performance difference that concerns the network engineer

that intends to evaluate the current system of SNMP API

1.4 Project Objective

a) To configure a basic RESTful API system alongside SNMP system that

makes the transmission of network monitoring information possible.

b) To explain, compare and contrast the fundamental differences between

the protocols, and how the differences is reflected on how the data is

transmitted between devices

c) To test and investigate the performance between different protocols and

how each configuration differences impact the monitoring process.

3

1.5 Project Scope

1. The project able to convey the functionality and overview of each of the

protocols, why the protocols are relevant and how both of the SNMP and

REST API works in brief.

2. The project also includes the exploration the differences between SNMP

protocol and REST API. It highlights the difference between the two

protocols in terms of transmission, traffic generation and also security

parameters.

3. Based on the exploration, gather the data for each of the highlighted

parameters, and make comparison for the both protocols, and make summary

of each of the analyzed data.

1.6 Project Contribution

a) The project benefits system admin that wants to explore the alternative of

SNMP, where some researchers argue that there should be a pivot of

monitoring system towards alternative method such as REST API

b) The project helps to have a more understanding of the two protocols, the

initial idea of the pivot, the differences and constraint of each method of

monitoring for a more comprehensive decision in choosing a monitoring

method.

c) Explore the difference concern of both the protocols, and be a reference

for engineers in deciding the protocols, based on the relevant performance

parameters.

CHAPTER 2: LITERATURE REVIEW AND PROJECT

METHODOLOGY

2.1 Introduction

SNMP is an extremely useful tool for a network engineer as it is a well-

established protocol supported by most devices in an IP network. However, the

protocol is also notorious for the many limitations, such as the unreliability of UDP

transport, poor SNMP agent implementation, outdated 32-bit counters and also the

persistent security concerns despite there is already 3 revisions of the protocol.

Every problem is an opportunity for you to create a solution, as the scale of

network infrastructure is growing in an enormous rate especially with the

introduction of cloud-based system, the unresolved issue poses challenge in keeping

up the demand of increasing connectivity. Few alternative ideas are starting to float

around, and one of the more prominent ways to complement the function of SNMP

protocol seems to utilize another well-defined and established protocol, HTTP to

create a RESTful based system.

2.2 Simple Network Management Protocol (SNMP)

When the topic of Network Management System is discussed among the

network administrator, The Simple Network Management Protocol (SNMP) is the

most widely used protocol, or even the preferred choice for the management of IP-

based networks and internets. SNMP is an official standard protocol and it is defined

and governed by an organization called Internet Engineering Task Force (IETF). The

IETF publishes Requests for Comments (RFCs), which are the specification for the

widely used protocol that exist for devices in the internet to communicate. As of

5

2023, there are three version of SNMP, which are SNMPv1, SNMPv2c and

SNMPv3, with the respective RFC as shown in Table 2.2.1 below.

SNMP Version Year RFC Document

SNMP Version 1 (SNMPv1)
1990 RFC1157 (Official Standard)

RFC1155, 1212 (Definition language)

SNMP Version 2 (SNMPv2c)
1996 RFC1902, 1903, 1904, 1905, 1906,1907

RFC 1908 (Coexistence and transition)

SNMP Version 3 (SNMPv3)
2002 RFC3410, 3411, 3412, 3413, 3414, 3415

RFC 3416 (Coexistence and transition)

Table 2.2.1 SNMP version with corresponding RFC documents

Based on publication by W. Stallings in the IEEE Communication Magazine

in March 1998, the SNMP protocol consists of three specifications, which are the

protocol for exchanging information between management system and agents

(protocol), the framework for format and storage of management information (MIB),

and also the general-purpose management information objects or variables (data

definition). At the time of publication, there is only two version of SNMP protocol.

They author made a survey and concluded that the first version of SNMP is flawed

when it gained widespread use, and the second version, SNMPv2 did not received

the acceptance as anticipated by the protocol designers.

Figure 2.2.1 Overview of SNMP Interactions

Referring the Figure 2.2.1 above, the SNMPv1 framework describes the

encapsulation of SNMP Protocol Data Unit (PDU) in the message between different

entities and the distinction between application or protocol entities. (Case, Fedor,

Schoffstall, & Davin, 1990) The document describes the protocol operation in PDU

6

on list of variable bindings. The basic operators are get, get-next, get-response, set-

request and trap. The document also defines the layering of protocol on a

connectionless transport service (or better known as UDP).

As the SNMP protocol becomes widespread, as mentioned above, the

drawbacks of the first version become apparent especially the protocol is considered

barebone and lacks functionality, and require changes for things such as transfer

efficiency for it to continue being a viable protocol, hence SNMPv2c is proposed.

The SNMPv2c provides several changes and advantages over SNMPv1, one

of the most important is the massive efficiency improvement with the introduction of

GetBulk command and also changes to Get command. It is only possible for

SNMPv1 to retrieve information from the table one row at a time and a tedious series

of get/response transaction is required if the manager needs to retrieve the whole

table. This command GetBulk in SNMPv2 could retrieve the whole table in one

transaction, and even retrieve additional information from the same message. It is

similar with the Get command, where the SNMPv1 agent will reject the command if

even one value is missing. SNMPv2 introduces partial results to return, where it

ignores the value that could not be retrieved. These two major changes improve the

efficiency by reducing the exchange across network.

The SNMPv1 and SNMPv2c implements security in the form of community

string, which are the cleartext password that the devices need to be allowed to

exchange information when SNMP requests occur. However, the implementation is

massively flawed and with the popularization of internet services, the security is

inadequate moving forward, hence the next version is proposed, with the main focus

being the enhancement of security.

 The SNMPv3 architecture introduces the User-based Security Model (USM)

and View-based Access Control Model (VACM) for message security and access

control respectively. It also supports SNMP Engine ID identifier, is a unique

identifier for SNMP entities, and is used to generate key for authentication. The

model of SNMPv3 security is comprised of two parts, which are Authentication and

7

Encryption or Privacy. In RFC 2574, the security levels for the USM MIB are

defined in three levels, as shown in Table 2.2.2 below. (Blumenthal & Wijnen, 1999)

Security Level Definition

noAuthnoPriv Communication without authentication and privacy

authNoPriv
Communication with authentication only. The protocol supported are

MD5 and SHA

authPriv

Communication with authentication and privacy.

Protocol for Auth: MD5 and SHA

Protocol for Priv: AES and DES

Table 2.2.2 SNMPv3 Authentication and Encryption levels

In a survey of SNMP by Pallavi et al. (2017), the paper states SNMP has its

demerits, it builds very complex software agents, and sometimes it reduces the

bandwidth of the network. The paper describes in depth about the security issues that

arise from the SNMP protocol itself, in their words, “By enabling SNMP services it

is easy to administrate any network adequately and productively yet enabling it will

make a network defenseless to security attacks”

The paper continues to advocate for the usage of SNMPv3, the third version

of the SNMP. It highlights the few security mechanisms that exists in the particular

revision such as strong privacy, view-based access control, authentication and

integrity. It also briefly touches the introduction of 64-bit counter instead of the

previous version of 32-bit counter.

2.3 The fall of SNMP and the transition towards alternative protocol

The problem of deploying SNMP as the internet standard is long in

discussion and in 2002, an organization called IAB discussed the concerns about the

protocol. (Schoenwaelder, 2002) One of the conclusions that they made from two

papers was to investigate alternative network management technologies that take

advantage of protocols such as XML or web service. The biggest benefit is that the

protocol is a generic technology that was supported by many vendors on multiple

different protocol, and was more well-established than even SNMP itself, and still

dominating the web traffic even today.

8

XML as the gateway for SNMP has been researched by Choi & Hong (2002),

As part of their research, they investigated the performance difference between the

two protocols. The authors concluded that for their test set-up, the XML performed

marginally better than the SNMP itself.

The research that was done by P. Aiko et al. (2004) also proves the point

above where for individual retrieval SNMP is much efficient but it reverses when

more object is required. The choice of encoding that they used in the testing, BER

and XML have negligible effect and is not the determining factor in performances.

The choice of encoding that are the most popular with the web technology are XML

and JSON. There is different use case for the two different encodings but based on

the information K. Alnafjan (2017) has gathered, XML is a great in type definition,

schema similar to SNMP and it is longer in the market. JSON on the other hand is

much programmer friendly, ease of serial or de-serialization, and most modern

devices able to interpret JSON better. Each of them has their strengths and

weaknesses and should consider the workload of the particular task before deciding

either one.

The latest revision of the SNMPv3 protocol is still flawed even if the protocol

was updated with security in mind, (Taha et al. 2021), as they created a lightweight

script, scoured the whole internet network for SNMP traffic, and analyzed the

detailed information that were gathered. Their proof-of-concept campaign

fingerprinted more than 12 million devices and around 350k network routers, directly

highlight the more fundamental issue of the SNMP protocol that still persists even

with multiple revisions.

9

2.4 HTTP as a protocol

One of the arguably the most widely used application layer protocol that have

ever existed in the Internet protocol suite is most probably the Hypertext Transfer

Protocol (HTTP). This first version of HTTP/1 was finalized and ratified in 1996

under the RFC 1945 by the infamous Tim Berners-Lee from CERN. HTTP is the

foundation of data communication for the World Wide Web (WWW). In essence the

HTTP protocol is a stateless request-response protocol that exchange information

between client and server using a reliable network transport protocol (TCP). HTTP

uses the port 80 to communicate or port 443 for a secure variant of HTTP protocol

called HTTPS, with the resources identified and located on the network by the

Uniform Resource Identifiers (URI) scheme ‘http’ and ‘https’ using Uniform

Resource Locator (URLs) as defined in RFC 3986.

As the popularity of this protocol exploded, there are multiple revisions of

HTTP since the inception in 1996, with the introduction of HTTP/2 in March of 2012

that aims to improve upon the performance, latency and data compression while

maintain a high-level compatibility with the older HTTP/1.1 protocol. The HTTP/2

specification was published under the RFC 7540 on May 14 2015 and became the

de-factor standard for the data transfer in WWW.

The HTTP traffic by default is transmitted in plain text form, and as more

service integrate with the HTTP protocol, especially more sensitive information such

as banking industries are exploring the technology, the security aspect becomes one

of the fundamental aspects for wider adoption of this protocol. Hence, a

cryptographic protocol called Transport Layer Security (TLS) was introduced. This

TLS protocol aims to provide confidentiality, integrity and authenticity (CIA trinity)

through the use of RSA certificates in asymmetric encryption. The protocol that

implements the TLS is identified as Hypertext Transfer Protocol Secure (HTTPs)

with the URI starting with HTTPS, an extra ‘S’ compared to the plaintext variant of

HTTP and

The internet traffic is increasing in an exponential manner, with low latency

with high throughput being the focus in order to provide a seamless experience for

everyday users, and some Internet Service Provider, more specifically based on one

10

blog post by Gigaspaces company even claims that a 100ms extra delay on the

network potentially costs millions of dollars of losses.

2.5 Representational State Transfer (RESTful API) and RESTCONF

Representational state transfer (REST) is one of the predominant application

integration mechanism or software architectural style over the Internet. (Bergmann,

Bormann & Gerdes, 2020). REST architectural style is becoming popular in recent

years due to its ease of implementation as API compared to Simple Object Access

Protocol (SOAP) and XML-RPC (Wenhui, Yu, Xueyang & Chen, 2017). With the

advent and growth of agile software development paired with the popularization of

DevOps methodology, there is a genuine requirement for a simpler and faster

iteration that could keep up with the change of demands, hence, API exists to bridge

the gap and fill the role as the first choice, especially the capability of automating

tasks such as testing and integration.

There is no formal definition of what REST is, but as introduced and defined

in a 2000 doctoral dissertation by Fielding, R. T., the concept is that the server will

respond with representation of a resource, (commonly in the form of HTML, XML,

JSON or YANG), and the state of the system change will be based on the resources

that contains the hypermedia link that can be followed. Fielding further clarifies in

the 11th Joint Meeting on Foundations of Software Engineering (2017),

acknowledging the lack of formal definition, and emphasized that the RESTful

concept is a set of architectural style, rather than an architecture itself.

Based on the Fielding and multiple different peer-review, REST architectural

style consists of six design principles or constraints:

1. resources are identified by one resource identifier mechanism – URI schema

is the most commonly used one at present;

2. resources have representations and representation metadata– a

representation is considered a series of bytes that could be described by

metadata;

11

3. only a few primitive operations/methods are available to operate on

resources– these primitives have the same meaning for all the resources (i.e.,

are designed to operate exactly the same, no matter the target resource);

4. all interactions are stateless– all allowed primitives must receive complete

requests and requests must be processed independently;

5. idempotent behavior– usage of caching techniques (through resource’s

metadata) and idempotent behavior are encouraged;

6. intermediate entities are encouraged– such entities could provide for

proxy/caching techniques or could alter the requests and the responses.

The key concept in REST is the resource itself, and this protocol is often

confused with the HTTP itself due to the similarity of operations of functionality in

CRUD (Create, Read, Update, Delete) such as PUT, GET, DELETE, POST. It does

not help with the confusion where most developer migrate from SOAP and WS-*

based RPC approach to REST in web services with the minimal change of

perspective in application approach.

2.6 Critical review of current problem and justification

Choi M. and Hong J. has published several papers related to the design of

XML-SNMP gateway. The duo investigated the performances differences of XML

and SNMP by measuring the XML traffic as well as SNMP traffic in their set-up.

Usage of resources such as CPU and network resources are also gathered and

comparison of the factors shows that the XML system is comparable in small scale

with negligible difference, and a clear benefit for XML compared to SNMP for

larger data as the overhead of SNMP makes scaling more resource intensive. The

system is similar in concept but this project uses the REST based system instead of

XML.

In a paper published in June 2014 by Bergmann O. et. al, there is a study

titled REST-based access to SMIv2-structured information on constrained devices.

This study focuses on the IoT, specifically the constraint of IoT devices such as Low-

Power and Constrained Application Protocol (CoAP) in implementing services

especially SNMP. The predominant protocol for network management is SNMP,

12

however in a constraint environment the extra complexity of adding layers of

protocol is not feasible. This paper explores the multiple existing technology in an

alternative way for SNMP, which uses Concise Binary Object Representation

(CBOR), utilizing Network Configuration Protocol or REST-based web technology

to transfer the information through network. This paper put the emphasis on

efficiency of data transfer such as payload size, with the goal of implementing it in a

hyper-efficient way. The method of implementation in this particular research is

similar with the current project, however with the wide range of devices and the

exponential growth of processing power efficiency, this project will less focused on

the efficiency of data encoding/decoding.

There is also another research about the SNMP and Web service by Ricardo

Neisse and Lisandro Granville. As a direct comparison of security features, they

enabled Secure HTTP for the security aspect. They also implement zlib compression

before transmitting the data. The conclusion is divided into two parts, where SNMP

gains edge in protocol level as it requires less header and bandwidth per message,

however at object level, web services perform much better if larger amount of object

are retrieved.

CHAPTER 3: METHODOLOGY

3.1 Introduction

In the previous section, there is sufficient research regarding both the SNMP

and also the RESTful system. Despite the many challenges the SNMP protocol faces

in this ever-changing industry, SNMP is still used extensively in networking devices

especially older-generation devices. However, as the computational power follows

the Moore law by increasing exponentially, more and more embedded devices are

more than capable of delivering more functionality with the extra CPU cycles.

This shift and push in the industry to support more modern streaming

telemetry sources with extra customizability has led to few alternatives to SNMP

such as NETCONF, gRPC and the focus of this research, REST based systems. This

shift arises few questions, particularly the performance difference between the two

system when performing basic tasks in terms of network transport. Hence, this paper

aims to answer the question of performance difference between SNMP and also

REST in terms of the network layer communication.

3.2 Methodology and research approach

The approach of this research will be based on a modified version of the

Spiral Model in the software development life cycle. There are four main phases in

the Spiral Model, which are review, then determine the feasibility of idea, continued

with implementation analysis and development, and then the data gathering and

analysis. Finally, the cycle will complete and there will be the plan for next iteration.

The focus of spiral model will be determining the risk of a project, this particular

project instead modifies it to instead focus on the feasibility of idea.

14

3.3 Process of reviewing the project

This project starts with reviewing the idea of project itself. After obtaining an

idea of the project to be done, the first thing to be determine is the problem, or in

another word, what are the underlying problems that exists based on the idea itself.

In the case of this project, the idea is about the differences between SNMP and

HTTP Based REST API. The underlying problem is about the differences between

the two protocols, how each protocols work, which one are more beneficial

compared to others, what parameters or metrics will be changed based on which

protocols chosen.

From the numerous underlying problems that is determined, there is a need

for selecting few of the more specific problems to be assessed, as not every single

problem is able to be discussed within a project. This project narrowed down the

problem into three points, with the difference in the performance metric in terms of

transmission of data and security concerns as the focal point.

Based on the narrowed down problem statements, there is a need to highlight

the scope of the project. It helps in determining the specific goals, constraints,

strategies, task and deliverables that should accomplish. The scope helps in

preventing project being too broad or out of topic and potential delay or overwork

may hinder the progress itself. The project will be focused on the transmission of the

data. This project, despite the generation of data, and the format of data is also an

integral part of the discussion from the problem statements, it is not included within

the scope of the project.

3.4 Determining the feasibility of the idea

Before the actual process of gathering data, and going into the building of the

system, there must be an in-depth justification of all of the potential knowledge

required to actually analyze the project. The whole process of literature review is

where a more comprehensive understanding of the subject matter is laid out, and all

relevant information are being addressed before analysis could be understood.

15

For this particular project there are two major components, SNMP and the

REST API process. The review starts with explaining the SNMP as a protocol, the

mechanism of the protocol, what are the details in terms of transport based on the

listed scope and the additional information that could help in making a more

comprehensive overview.

The review continues with an idea floating around in the network

management community where SNMP is inadequate despite it being a widely used

protocol. There are quite some researches also done in regards to the weaknesses of

that protocol despite there exists three iteration that tried to address the issues. The

researchers also hinted on the possibility of some form of alternative protocol

complement what SNMP has to offer.

The review then shifts to the alternative that was proposed, which is the

transmission of monitoring data through RESTful API using the existing HTTP

technology. The involved protocols, namely HTTP, the secure version of it, HTTPS,

and also the concept of REST is also laid out to create a comprehensive image on

how and what the alternate ideas consists, and how it could complement or in some

sense even replace the SNMP itself.

3.5 Implementation analysis and development of project

After all of the theory have laid out and the requirements are highlighted, the

preliminary research suggests that there is a demand for more research in this topic.

There are already few researches done before, more specifically the research done by

Choi M. and Hong J. about XML-SNMP gateway more than 20 years ago, which

actually was one of the papers that inspired this project.

Based on the project scope, the approach will be purely assessing the network

layer of the response between the server and the client. The test will involve two

different operating system, Cisco iOS and also Linux system. The Windows-based

system is not included in this testing because there will be concern of performance

degradation due to too much external services being included in said system, making

it hard to isolate the relevant traffic and potentially skewing the data. The test will be

16

conducted for the two major component, SNMP based system, and then the RESTful

system.

The testing tools for SNMP is straightforward as there is already a standard

implementation the SNMP system in both Linux system and also Cisco devices and

also snmpwalk command to query all the SNMP system. The testing will involve two

different protocol versions from SNMP, namely SNMPv2c and SNMPv3. The

SNMPv3 will be tested with both the AuthPriv settings as well as the noAuthnoPriv

settings.

For the RESTful HTTP API system, the testing of network routers will be

utilizing the RESTCONF function that was supported in the Cisco operating system.

The testing of the Debian-based Linux system does not have a standard for

implementing RESTful system, hence the system will be built using a third party

software called YumaWorks. It also involves two iterations, the plaintext HTTP and

the secured HTTPS protocol.

3.6 Gathering and analysis of data.

The measurement of each of the testing will involve few key parameters.

Firstly, there will be a measurement of the processing duration parameter. The time

between the process of retrieving the data until the data is obtained is calculated.

Secondly will be the parameter of the size of packets. Each of the tasks will

be given a requirement of set of data to be retrieved. The measurement of the packets

will be based on all of the data sent between the network in one transaction including

all of the overhead and related packets.

The third parameter will be measuring the security of the system. Basic

analysis and security testing will be applied during the transport of messages

between the devices in order to make an assessment of how the system performs in

term of security.

17

The data parameters will be repeated multiple times to get an average data

value, which in turn will be compared between all of the different iteration on both

SNMP and HTTP API.

CHAPTER 4: DESIGN

4.1 Introduction

As the project will be an analysis of the performance of a protocol, a system

should be designed and created in order for the protocol to function. In the previous

section, it is presented that the systems used will be Cisco iOS and also Linux

system.

This chapter will be the result of analysis of the preliminary design and also

the tools at my disposal. It will also highlight the actual physical and logical

implementation of this project, the software that was chosen to be operated and the

environment that makes the project able to be implemented.

4.2 Network System Architecture

Based on the hardware and tools at hand, the architecture of this testing will

be done in a virtualized environment. The architecture will be using a workstation,

and the testing environment will be based on a virtualized system on top of a host

system.

There will be argument about the performance degradation by conducting

analysis in a virtualized environment, but as the trend of computing moving towards

cloud computing and IaaS is becoming the first choice for companies, it is fair to

argue this research also considers the performance parameter to be somewhat

resemble the cloud environment where all of the machines deployed in the cloud are

also actually virtualized.

19

As mentioned above, the Windows System will be absent in the research as

the overhead of the whole system introduces too much noise, increasing the difficulty

of isolating the intended parameters and skewing the data that could be used to

compare and contrast the different protocols.

CPU AMD Ryzen 7 5800H (3201 MHz), 8 Cores, 16 Logical Processors

Memory 16 GB X 2 (3200 MHz) SODIMM

OS Windows 11 Pro 21H2 Build 22000.1936

Software VMWare Workstation Pro Version: 17.0.0 build-20800274

Table 4.2.1 The specification of the WORKSTATION device

Table 4.2.1 below lists down the actual specification of the HOST PC that

will be virtualizing the operating systems. The software environment chosen will be

the latest VMWare Workstation and will be installed on Windows 11 operating

system.

Device Virtual

Processors

Virtual

Memory

Virtual

HDD

Network

Adapter

Operating System

CSR1000v

(Cisco

Router)

1 processor,

2 core per

processor

8 GB 8 GB VMnet

vmxnet3

Cisco IOS XE

Version 17.03.02

SRV-HOST

(SNMP

Agent)

2 processor,

2 core per

processor

8 GB 15 GB VMnet

vmxnet3

Debian 11.6

Debian 5.10.158-2

(2022-12-13) x86_64

SRV-

CLIENT

(Managed

device)

2 processor,

2 core per

processor

8 GB 15 GB VMnet

vmxnet3

Debian 11.6

Debian 5.10.158-2

(2022-12-13) x86_64

Table 4.2.2 The specification of the virtualized devices for testing

Table 4.2.2 below summarizes all of the resources that are allocated for use in

each of the virtualized operating system. The network will be using vmxnet instead

of e1000 for better network performance as e1000 is an emulated interface while

vmxnet is para-virtualized. The operating system will be based on IOS-XE version of

Cisco routers that supported REST configuration, and also the Debian 11.6. As of

this writing of this report, there yet to be a later version of the Debian software.

20

4.3 Logical and Physical Design

Referring to the Figure 4.3.1, the topology will consist of two Linux system

and also one Cisco system. The network configuration is relatively simple with a

virtual switch interface of VMnet1 connecting every single device and the host PC

also able to access through the virtual switch interface. The hardware will just consist

of a host PC, and all of the system will be virtualized in the host PC within VMWare

Workstation software environment.

Figure 4.3.1 The physical layout of the topology

21

The IP addressing will be using the same subnet of class C (192.168.1.0/24) and the

three system could communicate directly with each other using the assigned static IP

addresses. The HOST PC is also assigned an IP for ease of management. The

summary of the logical topology is shown on Figure 4.3.2

Figure 4.3.2 The logical layout of the topology with IP addressing

4.4 Testing parameters and justification of decision

There are three distinct data points that will be gathered for each process. The

figure below shows the expected interaction between the server (SRV-HOST) and

the clients (CSR100v and SRV-CLIENT).

Figure 4.4.1 The interaction of SNMP between server and client

22

Figure 4.4.2 The interaction of RESTful API between server and client

The first data point that will be gathered is the size of all the transmission

between two devices, including all of the traffic overhead. The protocol UDP is a

connectionless communication, while TCP is a connection-oriented communication,

and the data size calculation will include the headers and all of the security

negotiation if applicable. Figure 4.4.1 and Figure 4.4.2 will be the expected

interaction between system.

Based on the size of data, there will be multiple repetition of same iteration

with increasing number of items requested between the two devices, with the total

data transferred between the devices calculated. The data will be graphed and

compared between all of the iterations.

The second data point will be the time between the execution of data and the

displaying of the data on console. This will focus on the execution time and will be

exclusively measured in SRV-HOST. The measurement of delay will be the round-

trip instead of one-way communication.

The delay of communication will be done multiple time using the same

dataset, and the average of the delay will be calculated to show the average time

from the execution of command, the transfer delay, the processing of request and the

23

processing of response. The summary of the measurement is shown as the Figure

4.4.3 below.

Figure 4.4.3 The summary of Round-Trip delay process

The third data point will be the security aspect, and the security part will be

evaluated. There are few configuration parameters that will be changed, namely the

SNMP version and the inclusion of TLS in REST. Few basic analyses on the security

aspect during transfer will be done and a simple preliminary assessment will be done

for each of the iteration regarding the security aspect, such as ease of deciphering

data and the error handling of unsolicited messages

The parameters chosen on this project is based on previous scholar paper that

investigates the approach for performance requirement verification by A. Waleed, X.

Chen and Unterkalmsteiner, M. Based on their study from few primary studies

chosen by the authors, they listed out 5 main performance aspect that affects a piece

of software which are the following:

1. Efficiency

2. Resource Utilization

3. Throughput/Speed

4. Capacity

5. Time Behavior

. This paper expands on the idea and apply it on network services, because

fundamentally every single network protocol used by network engineers in essence

24

comprises of multiple different software on top of networking hardware. The choices

is further supported by the International Organization for Standardization, where they

actually prepared a standard, ISO/IEC 25010:2011 that standardizes the Software

Quality Requirements and Evaluation (SQuaRE). The performance efficiency is

defined as the Time Behavior, Resource Utilization and also Capacity.

When mapping the performance aspects to suit this project, the throughput

will be tested before the systems are actually implemented. The efficiency in

software typically measures the output of the work compared to the expected

outcome, hence the data size of transmission is the factor. The overhead and the

supporting protocols transmitted, although is required for the protocol to function

normally, still considered as unnecessary when talking about the actual data. This

also relates to the capacity of the protocol, where the degree of limits of system

parameter while still conforming to the network requirements.

The resource utilization refers to the performance and effort over an amount

of time. CPU utilization are always referred when talking about the resources

available, as these are the basic components where the software is executed. Time

behavior on the other hand relates to the response of the software, and this could

have different ways to measure the processing time of a certain software. This

project chooses the Round Time Trip that includes the query and response of the

software as the two exchanges is completed when both of the query and response are

done and received by both ends.

4.5 Flow of testing process

The testing of the environment will be separated into two parts, where each of

the configuration parameter are tested twice using two different tools, namely the

software iPerf and also Wireshark.

25

Figure 4.5.1 The flowchart of measuring the performance

The Perf is a powerful tool that instrument CPU performance counter on

Linux systems. The tools provided are very detailed and technical, but the focus on

this testing will be only be two main parameters under the “perf stat”, which are the

total cycle of CPU to complete the task, and also the time elapsed for the particular

command. The command will be run for 30 times and the data will be averaged to

decrease the random fluctuation of individual data points.

Testing for the SNMP will be conducted under 5 different scenarios for each

of the SNMP version configurations. The testing will query different OID with

different amount of data within the request. Table below shows the chosen OID that

will be query and also the amount of data actually returned.

OID Value Node name Number of data

1.3.6.1.2.1.1.5 sysName 1

1.3.6.1.2.1.4.20 ipAddrTable 5

1.3.6.1.2.1.6 tcp 19

1.3.6.1.2.1.5 icmp 1058

1.3.6.1.2.1 mib 2124

Table 4.5.1 The OID used to test the SNMP values

26

The same thing will be used to test the REST API system, similar with SNMP

system, but instead of using OID values to retrieve data, REST API actually uses

URL with the HTTP GET method to obtain the data. The method requires

authentication, hence there are also few parameters need to be added on the header of

the HTTP Request. Table below shows the URL that will be queried and also the

amount of data actually returned.

URL Number of data

https://{ip}/restconf/data/Cisco-IOS-XE-native:native/hostname 1

https://{ip}/restconf/data/ietf-interfaces:interfaces 16

https://{ip}/restconf/data/ietf-routing:routing-state 94

https:// {ip}/restconf/data/Cisco-IOS-XE-native:native 184

https://{ip}/restconf/data/ietf-netconf-monitoring:netconf-state

2733

Table 4.5.2 The URL used to test the REST values

Figure 4.5.2 The flowchart of measuring the size of transmission for SNMP

27

The second part of the testing will be using the tool called Wireshark. It is an

open-source packet analyzer that contains a suite of tools for analysis and

troubleshooting of network environment. This project will only focus on one of the

available functionalities, which is the capture of the packets, understanding the flow

and also calculation of the byte size of each frame passing through the virtual switch.

Based on the data that was gathered, few assumptions will be made and a

simple formula will be made, namely the expected average size of actual data in the

PDU, as most of the fields should be fixed based on the configured environment. The

data is then extrapolated, and is compared with the actual data for a rough trendline

of how the data grows.

Figure 4.5.3 The flowchart of measuring the size of transmission for REST

The REST API will be following similar process as the process of the SNMP,

which there is also calculation of the byte size of each frame passing through the

virtual switch. However, there are some fundamental differences between the TCP

protocol used by the REST API and the SNMP that uses UDP protocol.

TCP protocol is a type of connection-oriented protocol, means that the

connection requires an established three-way handshake for communication between

28

devices before data can be exchanged. TCP will start the connection with SYN

packets and ends with FIN packets, meanwhile the acknowledgement of packets

received is represented by the ACK packets. These packets are also taken into

account when calculating the total byte size.

29

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

Based on the previous chapter, the implementation will be done in a

virtualized environment. The implementation starts with the configuration of a clean

copy of the required virtual machines, which are CSR1000v IOS-XE Cisco VM, and

two Debian 11 bullseye CLI environment.

The next part is to configure a basic SNMP system on both of the testing VM,

and also implement RESTful API at the same time. The different protocol is

implemented simultaneously as there is no conflict for this particular configuration.

5.2 Basic Environment Setup

The setup starts with the installation of CSR1000v IOS-XE VM, that was

provided from Cisco. The steps are very simple as the clean image is already pre-

configured and just need to import the OVA into the VMWare.

The Debian 11.6 will be installed using the debian-11.6.0-amd64-DLBD-

1.iso. The packages will only install the SSH and the essential tools without any GUI

to reduce any variables and make it lightweight for the testing process.

30

Figure 5.2.1 The setup of CSR1000v

Figure 5.2.2 The setup of Linux Debian 11.6

31

After the installation is done and all VM are setup with the IP address

assigned, a speed test is done between the devices. The tool that is used to test the

bandwidth between the devices is called iPerf.

iPerf is a network performance measurement tool. that is used commonly to

test the maximum achievable throughput between any two devices. A simple iPerf

test normally requires one side of the device running iPerf in server mode, and

another as client mode, connecting and testing the link with the server.

The implementation for iPerf in Linux is straightforward as the software is

included in the official repository. The CSR is a bit unique as the iPerf is installed on

top of the guestshell, sort of a virtualization layer running CentOS Linux on top of

the Cisco IOS operating system. The iPerf is tested between the SRV-HOST VM

with either CSR or SRV-CLIENT.

Figure 5.2.3 iPerf bandwidth between SRV-HOST and SRV-CLIENT

32

Figure 5.2.4 iPerf bandwidth between SRV-HOST and CSR1000v

Due to the absence of license for the Cisco devices, the bandwidth for the

CSR is capped at 1 Mbits/sec. This is a very different scenario as the bandwidth

between Linux machines are 5.7 Gbits/sec, which is a huge difference with CSR.

Figure 5.2.5 iPerf jitter between SRV-HOST and SRV-CLIENT

Figure 5.2.6 iPerf jitter between SRV-HOST and CSR1000v

33

When the bandwidth is being set to the same rate, which are 1.05 Mbits/sec,

there is no significant difference between the two devices, with no packet loss for

UDP connection, and a jitter less than 0.05 ms. The link between the two devices

could be considered stable, and it should be considering the VM are directly

connected to the same virtual switch within the same subnet.

5.3 SNMP Environment setup

After all of the system are installed and running, the implementation starts

with the configuration of the SNMP system. The setup of the SNMP server in the

CSR and Linux will involve the community psm2 for the SNMPv2, and also 3 users

for SNMPv3, each with different security levels based on the table below

Username Version Authentication Encryption

psm2-user1 v3 noAuthnoPriv - -

psm2-user2 v3 authNoPriv sha: Skills39 -

psm2-user3 v3 authPriv sha: Skills39 aes: Skills39

Table 5.3.1 List of user and parameters for SNMP

SRV-HOST will be tested using the snmpwalk command to verify that the

SNMP server is functioning, with the command is listed below. The output should be

printed on the console.

Version Commands

v2c snmpwalk -v2c -c psm2 {ip address} {OID}

v3 noAuthnoPriv snmpwalk -v3 -l noAuthNoPriv -u psm2-user1 {ip address} {OID}

v3 authNoPriv snmpwalk -v3 -l AuthNoPriv -u psm2-user2 -a sha -A Skills39 {ip

address} {OID}

v3 authPriv snmpwalk -v3 -l authPriv -u psm2-user3 -a SHA -A Skills39 -x AES -

X Skills39 {ip address} {OID}

Table 5.3.2 Commands to verify the functionality of SNMP server

34

Figure 5.3.1 SNMP commands example output

Based on the figure above, if configured correctly the terminal should output

the corresponding OID value with the value of the data. This shows that the

commands runs successfully and the SNMP system is running as expected.

5.4 RESTful Environment setup

The IOS-XE version of Cisco operating system by default supports the

RESTful API functionality. Before the REST is actually enabled, there are few pre-

requisites configuration need to be done. It starts with creating a user, in this

environment, a user with the credential of psm2 and password Skills39 is created.

Next, the RESTful API system only runs on HTTPS protocol, hence a

keypair is required to be generated as the self-signed certificate to secure the traffic.

Generate a keypair that is exportable for testing as shown in the figure below. Then

generate a certificate, and apply it in the ip http secure-server on the CSR.

Figure 5.4.1 RSA Key on CSR1000v

Linux does not contain any standardized RESTCONF system, hence for this

testing purpose, a third-party software, YumaWorks will be implemented on the

Linux system. If the system is configured correctly, the HTTP request for the

RESTCONF should return code 200 OK.

35

Figure 5.4.2 Verification of RESTful API based on header and return code

Figure 5.4.3 Verification of RESTful API based on output

The return code is normally reflected on the header of the HTTP response,

the actual response with the desired value will be actually returned within the data

field of HTTP, in the form of JSON as shown in the figure above.

5.5 Capturing packets through Wireshark

The implementation is relatively simple, and the environment is designed to

focus on two systems, namely the SNMP and the RESTful API. In this testing case,

Wireshark is also used to discern the interaction and packets sent between the

different VM. The HOST PC is also connected to the virtual switch of the VM, hence

the Wireshark will be listening to every packet running through the virtual switch,

similar to the port mirroring of a physical switch

36

Figure 5.5.1 Example of packet capturing in Wireshark

The figure shows an example of the packet capture of the virtual switch, with

many different types of traffic, such as ARP, ICMP and few more. The packets in

question for this project will be the SNMP UDP packets, and also the REST TCP

packets that comprises on TCP headers packets alongside the TLS encrypted packets

for the HTTPs protocol. There are a lot of details contained within the program, from

the individual fields exist on every frame to the overall byte size of every single

frame, which will be the main focus and also one of the key values that will be

extracted and further analyzed. Below shows one example from a frame from SNMP.

Figure 5.5.2 Example of detailed information of a frame in Wireshark

37

CHAPTER 6: TESTING AND ANALYSIS

6.1 Introduction

The testing will be done once the environment is done, and the testing will be

mainly utilizing the SRV-HOST with mostly open-source tools provided on the

official Linux repository.

The testing comprises of three items, which are the byte size of data

transmitted, and also the performance of the protocols, namely the Round Time Trip

and also the CPU cycle. The transmission of data is also analyzed in terms of

security, such as the encryption method and also the available different options for

the security mechanism.

6.2 Interaction between devices

The measurement of data size is gathered using Wireshark that is hooked to

the Virtual Switch connecting the devices. The Wireshark is able to capture the

whole packets, and in turn display the total byte size of the frame itself.

The structure of the packets should be consistent with the standards that was

highlighted on RFC 9293 for TCP and also RFC 768 for UDP. Below summarizes

the packet header structure from Layer 1 to Layer 4 for the OSI model, with the byte

size of the testing environment. The byte size of the packets is consistent throughout

the testing, with the assumption the environment is in IPv4 with no additional header

information embedded on the frames.

38

Figure 6.2.1 Header structure of TCP packets

Figure 6.2.2 Header structure of UDP packets

The size of header is different between the two protocols, however when

comparing the total size of transmission, the application data makes a big difference.

Below is the transmission SNMP packets, with the structure of the SNMP data fields.

Figure 6.2.3 Data Flow and Structure of SNMPv2

39

Figure 6.2.4 Data Flow and Structure of SNMPv2

As shown on the diagram, for the SNMPv2, the request of data directly starts

with the client sends a GetNextRequest-PDU, and the server will response with

GetResponse-PDU, where the MIB and the actual value for the corresponding MIB

object is returned. The client then continues to query the next value by sending

GetNextRequest-PDU with the current value of MIB object, and asking the server to

return the next object. The process repeats until the server return the MIB object that

conceptually follows the table in the implementation of the MIB, signaling that the

table have been fully traversed.

When talking about SNMPv3, the biggest difference between the previous

version is the inclusion of the User-based Security Model (USM). The USM

specifies the authentication and encryption of the SNMPv3 packet. It also provides

few additional information such as the boot times, up time, the user associated, and

more importantly the engine ID for the key localization mechanism.

SNMPv3 starts with the Get-Request-PDU, where the client discover or

query the SNMP server for the contextEngineID that is required to generate the

SNMPv3 packets. The server replies with Report-PDU, where the PDU will reply

40

with contextEngineID, the authentication and privacy if the parameters are

configured.

Figure 6.2.5 Data Flow of TCP HTTPS

HTTPS protocol operates very differently than the SNMP protocol, and it has

much more component as it was using TCP, compared to the SNMP protocol that

uses UDP. The connection starts with the TCP three-way handshake to establish the

connection. The next process is the negotiation of the TLS secure channel using the

cryptographic key to secure the traffic. The negotiated encryption method is then

used to secure and protect the data of the actual traffic, encrypting the traffic and

makes it almost impossible to intercept the data. The actual data is also accompanied

by the ACK packets, where the receiving side of the communication actually send an

acknowledgement packet (ACK) to notify the sender that the packets arrived

successfully.

The data is also structured in a way where the packets are split when the size

of the data exceeds the MTU of the device. As we are using the default

configuration, the MTU should be 1500, means each of the protocol data unit (PDU)

should not be more than 1500 byte. The overhead of the traffic will vary between

transmission based on a multitude of factors but one of the key indicators is the total

size of actual data communicated.

41

6.3 Size of data transmission

Based on the interaction that was highlighted above, few educated guesses

could be made for each of the interactions above. The formula below summarizes

how the SNMPv2 interaction translates to the estimations of the byte size of each

data.

The value is based on the values that Wireshark provides when analyzing the

actual byte size for each segment of the frames. The values are consistent throughout

the transmission, hence for this part the values hold true for this particular

environment between Linux and CSR1000v queried through snmpwalk command.

The figure below shows the growth rate of data for the SNMP packets, with

assumption of average actual data size between 15 and 30 bytes per packet, and also

the actual data sent by the MIB.

42

Figure 6.3.1 SNMPv2 Data Transmission

As shown on the graph, the growth of the data is based on a linear fashion,

where the data is growing at a constant rate with the extrapolation of the number of

data if the data of PDU is 15 bytes and also 30 bytes. The estimated bytes are 16400

bytes and 22800 bytes for the 15 bytes and 30 bytes PDU respectively.

The actual data based on the snmpwalk command also shows a consistent

growth in line with the expectation as the average of actual data on the PDU is

calculated to be around 18 bytes. The actual size of transmission based on frame

forwarded gathered by Wireshark shows to be 17713 bytes, within the expected

range.

The same can be applied to SNMPv3 of all configurations, where the data is

growing linearly

43

Based on the formula above, there is an overhead of 106 bytes and 148 bytes of get-

request and report packets. This is to request values of Context EngineID, Context

Name and also security parameters. Similar to the SNMPv2, the data grows in a

linear fashion, with the additional of the SNMPv3 header data that increases quite a

bit of overhead compared to SNMPv2.

The size of header is also determined by the type of security parameter configured,

where the noAuthNoPriv only uses 65 bytes, the authNoPriv uses 78 bytes and

authPriv uses 86 bytes. All others being equal, it should see a same trendline of data

with different growth rate.

44

Figure 6.3.2 SNMPv3 Data Transmission

The same thing could not be said with the RESTful API as the TCP

interaction is more complex than the connectionless UDP. The calculation will be

done in parts, where few assumptions will be made in to predict the growth of the

data. TCP is a connection-oriented protocol, hence there is a transmission of

SYNACK packets to establish connection and FINACK packets to terminate

connection. TLS also requires a close_notify message before ending the connection.

The packets are consistent throughout testing and is calculated as shown below.

The next part is the TLS negotiation, where the secure channel is created. This only

applies to the HTTPS protocol and this does not apply to the HTTP only protocol.

There are few steps involve, as shown in the figure below.

45

Figure 6.3.3 RESTful HTTPS TLS Interaction

Few assumptions are made during this testing, as different environment yields

massive discrepancy, but the numbers will be assumed based on the current testing

environment. The ClientHello in this case a 512-byte data is sent with the

information of the client such as the supported TLS version and cipher suites.

The certificate is also vary greatly based on the certificate infrastructure, as a

typical environment will have a multi-tiered certificate signed by a trusted Certificate

Authority provider. The certificate typically requires around an average of 1500

bytes with 2 more intermediate issuer certificates also included. However, as this is

an isolated lab environment, the certificate is self-signed and only uses around 850

bytes.

The next big assumption is the cipher suite used, that will affect the Client

Key Exchange. In this environment, the cipher used is AES-256, which means it uses

a symmetric encryption algorithm consists of a 256-bit key, and which translates to

the size of the exchange itself.

The estimated transmission size of the data will be around 2311 bytes, based

on the assumption and the calculation below.

46

 The fragmentation of packets makes it too complicated to make an educated

guess of the data transmitted, as it requires to take account of many things such as the

MTU and TCP MSS value, the PSH ACK configuration, the optimization of TCP

traffic within network, that influences how many packets are generated for each

transaction, and in turn the data transmitted, including the overhead of the ACK

packets.

Hence, the actual data are taken directly from Wireshark for analysis

purposes. Below is the graph of the data transmitted for both HTTP and HTTPS.

Figure 6.3.4 RESTful Data Transmission

The HTTP will have a much lower bytes required per data, and subsequent

data as the traffic is transmitted in plaintext, which eliminates the many inefficiencies

of encryption such as padding and chunking the data into blocks. The graph clearly

shows that the data of the HTTP grows in a much slower pace than the HTTPS.

There are however few limitations as the data points are small and there may be

some discrepancy between data points, however it should generally be true that the

HTTPS just require much less bandwidth to send the same amount of data.

47

Based on the data that was gathered above, another graph is plotted for all of

the data points, based on the items retrieved and the actual transmitted data size.

There are few observations that could be made from this graph itself.

Figure 6.3.5 Overall Data Transmission

The initial observation is that the HTTP consumes the least bandwidth per

data retrieved, followed by HTTPS, SNMPv2 and finally SNMPv3, with the authPriv

requires the most bandwidth for the same amount of data retrieved. This however

does not hold true as HTTPS require a significant amount of data from the

encryption negotiation, which makes HTTPS not a very good protocol for small

requests. SNMPv3 also requires 254 bytes for the get-request and report, but it does

not impact the overall bandwidth required.

Taking the data that was gathered, the efficiency of the protocol is also able

to be calculated. The calculation of efficiency is basically taking the data that is

intended, the actual data and divide it against the data that is transmitted, making the

formula as shown below. This formula gives a general idea of how much the actual

data is represented within all of the transmitted data. The table summarizes the result

of the calculationefficiency of the protocol

,

48

Version Data retrieved Total Data Actual PDU Efficiency

SNMPv2c 2125 bytes 373380 bytes 97451 bytes 26.10%

SNMPv3 noAuthnoPriv 2125 bytes 681931 bytes 97451 bytes 14.29%

SNMPv3 authNoPriv 2125 bytes 734904 bytes 97451 bytes 13.26%

SNMPv3 authPriv 2125 bytes 779520 bytes 97451 bytes 12.50%

RESTful HTTP 1457 bytes 35563 bytes 31135 bytes 87.54%

RESTful HTTPS 2733 bytes 230714 bytes 225201 bytes 97.61%

Table 6.3.1 Efficiency of data transmission

There is a stark difference between the protocols of SNMP and REST. The

efficiency of the SNMP is quite abysmal as for every data retrieved, it requires

another packet Get-Next to retrieve next packet, that fact decreases the efficiency by

a big margin, with even SNMPv3 only able to achieve less than 20 percent of overall

data transmitted.

HTTP on the other hand paints a huge difference in regards to the efficiency,

where the HTTPS are able to achieve more than 95 percent efficiency despite the

massive initial overhead, and the constant ACK packets back to the sender. In terms

of the data transmission, RESTful API beats the SNMP by quite a big margin, with

the efficiency difference makes little to no sense for SNMP protocol.

The key takeaway in terms of the data transmission is that the HTTP protocol

is the most efficient in terms of the required bandwidth to transfer data, and should

be preferred in situation that require minimum bandwidth requirement.

 The HTTPS equivalent is not preferred when the data set are small especially

with the introduction of TLS that makes the initial data query require much more

bandwidth than expected. This is made worse when multiple devices are involved,

making the header exponentially larger by negotiating TLS for each devices every

time the query is done

SNMP returns the most consistent result, where the number of items directly

correlate to the bandwidth required. This is a double edge sword as the more data is

transmitted, the worse SNMP perform against RESTful API.

49

6.4 Performance metric

The factor to consider other than the pure bandwidth is the performance

metrics. There are myriad of complex performance metrics that measure the

protocols extensively, but the focus on this particular environment will be on two

main metrics, the time elapsed for each of the process, and also the CPU cycles for

the retrieval process.

The testing of the performance metric will be using the program called perf as

mentioned earlier. Below shows an example output of a perf command.

Figure 6.4.1 Example of perf output

The section inside the yellow box shows the command used to test the

system. The data that this project will be analyzing is the CPU cycles highlighted in

red, and also the time elapsed, highlighted in blue.

The time elapsed in the output refers to the Round-Time trip for the particular

command, as mentioned above at Chapter 4. The graph below is the plotting of time

elapsed for each command both SNMP and also RESTful API.

Figure 6.4.2 RTT Growth over number of items

50

Based on the graph with the items retrieved limited at 750 items, the HTTP

protocol seems to require the least amount of time for the same amount of data

retrieved, and the SNMPv3 requires the longest time, with the SNMPv3 authPriv

requires more than 1 second when the HTTP did not even require 0.1 second of time.

The interesting part is the HTTPS, as observed for small amount of data,

HTTPS is extremely inefficient and time consuming as it needs to negotiate the

secure channel which makes the initial request time much higher than the SNMPv3.

However, as the negotiation only occurs once, the required time is shorter for the

subsequent request, and the time required is decreased below the SNMPv3 but still

higher than SNMPv2.

Figure 6.4.3 CPU cycles over number of items

CPU cycles tend to fluctuate as the processor alongside the kernel is

constantly optimizing the calculation, hence there will never be a consistent number,

especially when different CPU architecture deals with the optimization differently,

however the cycles should reflect based on comparison with different command on

the same machine and same target.

The result for the CPU paints a slightly different picture for each of the

protocol. The SNMP is still the same where the SNMPv2 requires the least amount

of CPU cycles, followed by noAuthNoPriv, authNoPriv and lastly authPriv.

RESTful API on the other hand paints a different picture compared to the

RTT, where SNMPv2 is slightly more CPU efficient than HTTP based API. The

interesting interaction is the HTTPS, where the growth of the CPU cycles requires is

quite steep, and based on extrapolation, HTTPS required a staggering 700 million

51

cycles to complete the same task when the other protocols compared to the other

protocols that requires less than 200 million cycles.

The key takeaway for performance is quite interesting, where HTTP gains an

edge on the RTT time, where it is extremely responsive, with the SNMP and HTTPS

trailing not far behind. SNMPv3 requires more time and REST is more preferred in

terms of responsiveness.

SNMPv2 requires the least CPU cycle, with HTTP protocol performing

similarly between the SNMPv2 and SNMPv3.

HTTPS on the other hand portrays a very different picture in CPU

performance. The CPU efficiency of the HTTPS is sacrificed for the gains in terms

of RTT and especially data size that is much efficient than any protocol. TLS and

encryption also play in as a factor on why CPU usage is extremely high.

6.5 Security Parameters

SNMP and RESTful API are protocols that transmit monitoring data to the

relevant agent and programs, and some information such as the IP address should be

kept confidential and encrypted to prevent anyone eavesdropping.

SNMPv2 and HTTP based RESTful API is extremely simple to configure

with a robust track record as it was widely used during the infancy of the internet.

SNMP does provide some basic security system namely the community-based

approach, where a community string is set on the device, and the query requires the

exact same community string. HTTP also provides a more robust authentication

method, from the Basic username password, token based, OTP or even RSA key to

authenticate the request before actually sending the data, hence on the first glance

HTTP gains an edge compared to SNMPv2

 Although it serves the purpose as networking monitoring protocol, it

inherently does not provide much security to the transmission of the data, especially

when the data are transmitted through plaintext form, which makes it basically an

52

insecure protocol, hence it should never be used on internet-facing devices in

general.

Below is the example of Wireshark eavesdropping the HTTP and SNMP

traffic. Do take note of the plaintext nature of both the protocols, and the plaintext

data that was captured inside the red boxes.

Figure 6.5.1 Example of Wireshark packet capture SNMPv2c

Figure 6.5.2 Example of Wireshark packet capture REST HTTP

SNMPv3 is introduced as the next iteration of the protocol, with

improvement of the MIB, but more importantly the security of the data transmission.

Although there are three options for the SNMPv3, which are noAuthNoPriv,

authNoPriv and authPriv, but the implementation of all three of the protocols yield

massively different effect in terms of security.

53

The noAuthNoPriv have the same problem as the SNMPv2 and HTTP, as the

name suggests, no authentication and no privacy or encryption included in the

transmission, hence it suffers the weakness of eavesdropping.

Figure 6.5.3 Example of Wireshark packet capture SNMPv3 noAuthNoPriv

 authNoPriv option for the SNMPv3 is a bit secure as it requires an

authentication key before the server replies to the query, but still suffer the same

problem as all of the protocol above, where the confidentiality is not preserved, and

the authentication is just to make sure the credentials provided are correct before

passing the values. Notice the difference between the authNoPriv and noAuthNoPriv,

where both the data are in plaintext form, the authentication for authNoPriv is

included on the green box.

54

Figure 6.5.4 Example of Wireshark packet capture SNMPv3 authNoPriv

 The lack of the encryption or confidentiality makes the 4 options, namely

RESTful HTTP API, SNMPv2, SNMPv3 noAuthNoPriv and SNMPv3 authNoPriv

not recommended on internet-facing devices, or even in any environment that sends

sensitive information through the network. This leaves the desired SNMP option to

be the SNMPv3 authPriv configuration and the HTTP Secure (HTTPS) protocol.

 SNMPv3 authPriv is considered the golden standard for the SNMP protocol,

and as the name suggests, it requires authentication and privacy for the SNMP

packets. This means in order for the SNMP to return the monitoring data, it is

required to send the authentication data, either in the form of MD5 or SHA. When

the request is authorized, the PDU of the data is encrypted by the configuration

choice of the device, either in the form of DES or AES. The output for a transaction

in SNMP captured from Wireshark is shown below.

55

Figure 6.5.5 Example of Wireshark packet capture SNMPv3 authPriv

 On first glance, SNMPv3 achieved the initial objective of the authentication

and privacy of the data, where authentication is required and the encryption is done

on the actual monitoring data, and it mostly done what it was supposed to do.

However, there is one quite big problem with this approach in particular, namely the

USM of the SNMP.

 There is a huge problem with the implementation of the USM model in

SNMPv3, with the glaring issue is the inclusion of few really critical information

within the fields. The USM model contains the msgAuthoritativeEngineBoots and

msgAuthoritativeEngineTime, both of the values represent the number of reboots

done on the device, and also the uptime of the device. This value is returned after the

device query by sending the get-request packet. The inclusion of the values in effect

means that even if the authentication and privacy parameters is incorrect, or any

unsolicited messages sent, the device will return both of the values, which does not

make much sense.

The intention to include both the fields are to prevent replay attack where the

request is replayed on a different time, which the boot time is not consistent and

SNMP could reject. The exposure of both the data is quite dangerous as sophisticated

attacker could use the data above instead to uniquely identify and fingerprint the

SNMP-enabled device.

 The problem is made worse when the msgUserName is in plaintext form,

essentially making the brute force of the device easier. The figure below basically

56

simulates an unsolicited request with wrong username and password, and although

the data is encrypted similarly as the request above, the fields highlighted are the

information that potential attackers are interested instead and could be used against

the SNMP device.

Figure 6.5.6 Wireshark packet capture of unsolicited SNMPv3 authPriv

Another big problem is the implementation of the SNMP Engine ID. Given that

the Engine ID is 80:00:00:09:03:00:00:0c:29:d3:1d:d3, taken from the same

unsolicited message highlighted in blue, the steps below are the steps an attacker will

take to determine more information regarding the device.

1. The first four octets are 80:00:00:09, with the enterprise ID as 9, where the

IANA search shows it as Cisco devices.

Figure 6.5.7 IANA Search for Private Enterprise ID

2. The fifth octets are 03, which means the SNMP Engine ID is determined by

MAC Address.

57

3. The remaining octets are 00:00:0c:29:d3:1d:d3, considering MAC address is

6 octets, and the leading two octets are padded with 0, the MAC shown is

00:0c:29:d3:1d:d3, and it exactly matches with the MAC address below

Figure 6.5.8 MAC Address for the CSR1kv

The attacker could gain quite some information regarding the device just by getting

the Engine ID value, which is actually easy to get by just sending an unsolicited

SNMP packet.

The mentioned inherent security weakness of the implementation of SNMP

creates a problem and the need of an alternative protocol to complement or even

replace it. HTTPS is considered to be the replacement and the next protocol to be

used as network monitoring.

HTTPS is considered much secure than all aforementioned protocols as the

method to secure the traffic does not use any password or pre-shared key, instead it

uses RSA cryptographic key, either symmetric or asymmetric public key

infrastructure.

Without getting too complicated, the idea is that both of the client and server

negotiates a secure channel using a cryptographic key. The key is verified by a third

party called Certificate Authority, where the entity is tasked only to create, and

revoke the key if necessary. The server will use the keys created by the Certificate

Authority where both parties trust. If any of the process is tampered, there are

multiple warnings on both sides, from the negotiation process, cipher suite to the

issuer of the certificates. This creates another layer of security as the only data

transmitted is the security protocol and certificates, which could be consider public

information.

58

Figure 6.5.9 Cryptographic key negotiation process, courtesy of Patrick Gruenauer

To summarize, when discussing the security factors, HTTPS in most of the

situation is the preferred protocol in addition to being used widely for a multitude of

purposes. SNMPv3 authPriv is a bit interesting because although it achieves

confidentiality and authentication, few fundamental flaws make the protocol less

desirable than the HTTPS.

 Although SNMPv3 authNoPriv and HTTPS does come with the ability to

authenticate the request, the transmission of the information is not encrypted and

susceptible to packet capture. SNMPv2 and SNMPv3 noAuthNoPriv is less than

desirable, with packet capture able to even capture the community-string in plaintext

that is the security basis of both of the packets.

59

CHAPTER 7: CONCLUSION

7.1 Introduction

This project is research about network monitoring protocols of SNMP and

REST API. The project starts with highlighting few of the key objective and scope of

the project. It continues with the research and development of idea based on the

topic. This project will involve some testing based on a lab environment, hence the

testing methodology is highlighted. The design of the environment is then sketched

with the relevant configurations. Implementation and also the expected output is

mentioned, with relevant screenshots and commands. Based on the implementation,

data is gathered and analysis is done in line with the objective and scope.

7.2 Project Summarization

The project basically aims to explore the fundamental differences between

the two protocols in terms of the architecture, how the protocol works. The protocol

shows a very different approach and all of the detailed findings are explained on

Chapter 6: Testing and Analysis

The interaction between SNMP uses an inefficient way of asking for the next

data after each data retrieved. The REST API approaches it using a single URL with

relevant HTTP Header, and the data is returned in JSON format. The different

architecture will result in different bandwidth requirement, and the data sizes are

60

calculated, taking into account of the number of data retrieved. One of the interesting

findings is that SNMP is much better for smaller number of data retrieved, with

HTTP and TCP header for REST gaining advantage on a larger number of data

retrieved, with HTTPS having an impressive 97 percent compared to SNMP 12.5

percent.

The performance is then measured, based on few basic parameters, namely

the Round Time Trip for each protocol, and also the CPU cycles. Round Time Trip is

quite straightforward and RESTful API takes the lead as there is only one request

and one response, compared to SNMP sends get-next-response after getting the

current value, which causes the elapsed time to be much higher.

CPU cycles is a different story, with the difference between HTTPS and

SNMP shows a massive gap. HTTPS sacrifices the CPU cycle with complicated

encryption and optimization, in turn gains in term of actual bandwidth and time

required for the same amount of item retrieved.

Security is a big topic and this project only scratch the surface for each

security parameters for each protocol. The HTTP protocol, SNMPv2, SNMPv3

noAuthNoPriv and SNMPv3 authNoPriv does not fare well in terms of privacy as all

of the data transmitted is in plaintext. HTTP and SNMPv3 authNoPriv contains the

mechanism to authenticate the user that queries the device which makes it slightly

more secure. SNMPv2 uses community string and SNMPv3 noAuthNoPriv uses

USM username to authenticate without password, which makes them worse than the

two aforementioned above.

There are few interesting discussions regarding the SNMPv3 authPriv option,

and although the SNMPv3 achieved the authentication and privacy part of the PDU

data, the implementation of authPriv actually makes the device more vulnerable, as

there are many unnecessary data transmitted within the USM model. Attackers could

gain valuable information from the exposed data. The data that is included is also not

encrypted which partially defeats the purpose of the authPriv aspect.

61

The implementation of HTTPS is considered secure as majority of the web

from the small blog to the massive conglomerate of the likes of Google and Amazon

uses it. The security of HTTPS is always on the radar of many security researchers,

constantly finding the vulnerability of HTTPS.

7.3 Project Contribution

This project is helpful for network engineers to understand the differences

between the SNMP and API. Based on the information, particularly on the

performance, data and security, a comprehensive decision could be made in

designing the network for a particular company.

This project also put some emphasis on the flow of the data between two

devices for both the SNMP and also the RESTful API. In this ever-changing

industry, SNMP is starting to show its age and some institutions are embracing the

RESTful API in their network monitoring. Universities should look into the potential

of this, and make more contributions on the protocol, improving this idea alongside

the industry in making RESTful API a better protocol.

7.4 Project Limitation

There are few limitations exist in this project. One of the glaring issues is that

the over-emphasis of the security weakness of SNMP. There are also some

weaknesses of the HTTPS if configured incorrectly such as using self-signed

certificate, difference between asymmetric and symmetric encryption algorithm,

minimum cipher suite and so on. The inclusion of the topics is out of the scope of

this project. The security part is also run through a simple analysis that is able to be

gathered by any packet capture software.

The lack of variety during performance measurement is also one of the

limitations. There are quite some parameters that, although will not affect the overall

result, some small changes are not accounted might slightly alter the result, such as

the uptime, the testing in a virtualized environment that is also running other tasks.

As mentioned, there might also be some discrepancies between Linux and Cisco

Systems, with the bandwidth is different in the factor of thousands.

62

The data points measured are also lacking and some extrapolation is done in

order to get a general view, hence the graph functions more like a trendline instead of

an actual representation on how the devices perform under the same condition.

7.5 Future Works

The performance could be measured in a more comprehensive way, where

physical device is used to replicate the actual production environment and minimize

noises due to virtualization of the devices.

The security part of the project could be expanded, increasing the scope of

the HTTPS weakness, and more importantly the possible attack surface of both

protocols, the flaws or mis-configuration of devices that attacker can exploit.

Mitigation techniques could also be introduced to prevent aforementioned attacks

from happening.

The data transmission only applies to one VM to another. Few parameters

could be tweaked to observe the changes in terms of data size, with one such

parameters being the MTU and TCP MSS of the interface. Effects such as high jitter

on interface could also be introduced, or even packet loss and how it influences the

actual data sent and received by devices.

REFERENCES

Siggins, M. (2020, March 3). Avoid legacy SNMP threats with snmpv3. DPS

Telecom. https://www.dpstele.com/blog/avoid-legacy-snmp-threats-with-

snmpv3.php

Albakour, T., Gasser, O., Beverly, R., & Smaragdakis, G. (2021). Third Time’s

not A charm. Proceedings of the 21st ACM Internet Measurement Conference.

https://doi.org/10.1145/3487552.3487848

Aravind, H S, et al. International Conference on Signal, Image Processing,

Communication and Automation (ICSIPCA 2017). Grenze, 2018,

thegrenze.com/index.php?display=page&view=conferenceabstract&absid=1103&id=

53. Accessed 16 May 2023.

Roughan, M. (2010). A case study of the accuracy of SNMP measurements. Journal

of Electrical and Computer Engineering, 1–7. https://doi.org/10.1155/2010/812979

Adams, T. (2015, March 17). Fire, the art of war, and SNMP vs. API monitoring.

LinkedIn. https://www.linkedin.com/pulse/fire-art-war-snmp-vs-api-monitoring-

todd-adams. Accessed 16 May 2023.

Welling, J. (2022, February 10).Api Vs SNMP VS CLI: The best choice for network

devices. API vs SNMP vs CLI: The Best Choice for Network Devices.

https://www.cbtnuggets.com/blog/technology/networking/api-vs-snmp-vs-cli-the-

best-choice-for-network-devices. Accessed 16 May 2023.

Gamess, E., & Hernandez, S. (2021). Performance evaluation of snmpv1/2c/3

using different security models on Raspberry Pi. International Journal of Advanced

Computer Science and Applications, 12(11).

https://doi.org/10.14569/ijacsa.2021.0121101

Arlos, Patrik & Fiedler, Markus & Tutschku, Kurt & Chevul, Stefan & Nilsson,

Arne. (2002). Obtaining Reliable Bit Rate Measurements in SNMP-Managed

Networks.

Pras, A., Drevers, T., van de Meent, R., & Quartel, D. (2004). Comparing the

performance of SNMP and web services-based management. IEEE Transactions on

Network and Service Management, 1(2), 72–82.

https://doi.org/10.1109/tnsm.2004.4798292

Oh, YJ., Ju, HT., Choi, MJ., Hong, J.WK. (2002). Interaction Translation Methods

for XML/SNMP Gateway. In: Feridun, M., Kropf, P., Babin, G. (eds) Management

Technologies for E-Commerce and E-Business Applications. DSOM 2002. Lecture

Notes in Computer Science, vol 2506. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-36110-3_8

https://www.linkedin.com/pulse/fire-art-war-snmp-vs-api-monitoring-todd-adams
https://www.linkedin.com/pulse/fire-art-war-snmp-vs-api-monitoring-todd-adams
https://www.cbtnuggets.com/blog/technology/networking/api-vs-snmp-vs-cli-the-best-choice-for-network-devices
https://www.cbtnuggets.com/blog/technology/networking/api-vs-snmp-vs-cli-the-best-choice-for-network-devices

64

R. Neisse, R. L. Vianna, L. Z. Granville, M. J. B. Almeida and L. M. R. Tarouco,

"Implementation and bandwidth consumption evaluation of SNMP to Web services

gateways," 2004 IEEE/IFIP Network Operations and Management Symposium

(IEEE Cat. No.04CH37507), Seoul, Korea (South), 2004, pp. 715-728 Vol.1, doi:

10.1109/NOMS.2004.1317759. https://ieeexplore.ieee.org/document/1317759

Alnafjan, K. & Khan, Gul & Hussai, Tazar & Ullah, Hanif & Alghamdi, Abdullah.

(2012). Behavior based Comparative analysis of XML and JSON web technologies.

Bresciani, M. (2017, March 17). RESTful SNMP over http: Part I - dzone. RESTful

SNMP Over HTTP. https://dzone.com/articles/restful-snmp-over-http Accessed at

2023 May 15

O. Bergmann, C. Bormann and S. Gerdes. (2020). "REST-based access to SMIv2-

structured information on constrained devices," 2014 IEEE Network Operations and

Management Symposium (NOMS), Krakow, Poland, 2014, pp. 1-5,

https://doi.org/10.1109/NOMS.2014.6838367

WS-REST ’10: Proceedings of the First International Workshop on RESTful Design.

(2010). New York, NY, USA: Association for Computing Machinery.

A. Bierman, M. Bjorklund, K. Watsen, and R. Fernando, "RESTCONF Protocol,"

Internet Engineering Task Force, Internet-Draft draft-bierman-netconf-restconf-03,

December 2013, work in progress, https://doi.org/10.17487/RFC8040

Choi, M.-J., Hong, J. W., & Ju, H.-T. (2003). XML-based network management

for IP Networks. ETRI Journal, 25(6), 445–463.

https://doi.org/10.4218/etrij.03.0103.0062

W. Stallings, "SNMP and SNMPv2: the infrastructure for network management," in

IEEE Communications Magazine, vol. 36, no. 3, pp. 37-43, March 1998, doi:

10.1109/35.663326.

J. Liu and G. Liu, "Research and Implementation of SNMP-Based Network

Management System," 2011 4th International Conference on Intelligent Networks

and Intelligent Systems, Kuming, China, 2011, pp. 129-132, doi:

10.1109/ICINIS.2011.39.

A. Gupta and R. Bartos, "User Experience Evaluation of HTTP/3 in Real-World

Deployment Scenarios," 2022 25th Conference on Innovation in Clouds, Internet and

Networks (ICIN), Paris, France, 2022, pp. 17-23, doi:

10.1109/ICIN53892.2022.9758130.

Berners-Lee, T., Fielding, R., and H. Frystyk, "Hypertext Transfer Protocol --

HTTP/1.0", RFC 1945, DOI 10.17487/RFC1945, May 1996, https://www.rfc-

editor.org/info/rfc1945.

https://dzone.com/articles/restful-snmp-over-http

65

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI):

Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005,

<https://www.rfc-editor.org/info/rfc3986>.

Y. Einav, Amazon Found Every 100ms of Latency Cost them 1 % in Sales, [online]

Available: https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-

latency-cost-them-1-in-sales/. Accessed at 30 May 2023 22:05 UTC +8

S. M. Sohan, F. Maurer, C. Anslow and M. P. Robillard, "A study of the

effectiveness of usage examples in REST API documentation," 2017 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

Raleigh, NC, USA, 2017, pp. 53-61, doi: 10.1109/VLHCC.2017.8103450.

H. Wenhui, H. Yu, L. Xueyang and X. Chen, "Study on REST API Test Model

Supporting Web Service Integration," 2017 ieee 3rd international conference on big

data security on cloud (bigdatasecurity), ieee international conference on high

performance and smart computing (hpsc), and ieee international conference on

intelligent data and security (ids), Beijing, China, 2017, pp. 133-138, doi:

10.1109/BigDataSecurity.2017.35.

M. Jethanandani, "YANG, NETCONF, RESTCONF: What is this all about and how

is it used for multi-layer networks," 2017 Optical Fiber Communications Conference

and Exhibition (OFC), Los Angeles, CA, USA, 2017, pp. 1-65.

R. T. Fielding, R. N. Taylor, J. R. Erenkrantz, M. M. Gorlick, J. Whitehead, R.

Khare, et al., "Reflections on the REST Architectural Style and", Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering ser. ESEC/FSE,

pp. 4-14, 2017, 2017, [online] Available:

http://doi.acm.org/10.1145/3106237.3121282.

J. R. Erenkrantz, M. Gorlick, G. Suryanarayana and R. N. Taylor, "From

representations to computations: The evolution of web architectures", Proceedings of

the 6th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on The Foundations of Software Engineering ser.

ESEC-FSE ’07, pp. 255-264, 2007, [online] Available:

http://doi.acm.org/10.1145/1287624.1287660.

A. Archip, C. -M. Amarandei, P. -C. Herghelegiu, C. Mironeanu and E. şerban,

"RESTful Web Services – A Question of Standards," 2018 22nd International

Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania,

2018, pp. 677-682, doi: 10.1109/ICSTCC.2018.8540763

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. Publication Unpublished doctoral dissertation , University of

California, Irvine .

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

66

Blumenthal, U. and B. Wijnen, "User-based Security Model (USM) for version 3 of

the Simple Network Management Protocol (SNMPv3)", RFC 2574, DOI

10.17487/RFC2574, April 1999, <https://www.rfc-editor.org/info/rfc2574>.

Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management

Protocol (SNMP)", RFC 1157, DOI 10.17487/RFC1157, May 1990,

<https://www.rfc-editor.org/info/rfc1157>.

Schoenwaelder, J., "Overview of the 2002 IAB Network Management Workshop",

RFC 3535, DOI 10.17487/RFC3535, May 2003, <https://www.rfc-

editor.org/info/rfc3535>.

ISO: Software product quality model—

iso25010. <https://iso25000.com/index.php/en/iso-25000-standards/iso-25010>

Accessed 12 September 2023

Abdeen, W., Chen, X. & Unterkalmsteiner, M. An approach for performance

requirements verification and test environments generation. Requirements Eng 28,

117–144 (2023). https://doi.org/10.1007/s00766-022-00379-3

https://www.rfc-editor.org/info/rfc1157
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

