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ABSTRACT

This paper examines the role of Simple Network Management Protocol
(SNMP) as a de-facto protocol in the field of network monitoring system. This paper
discusses in detail the transmission of SNMP protocol, how it works in the network
layer and also the three different revision that exists. Despite this popularity, there is
a genuine concern for the fundamental limitation of SNMP as a protocol, and there
are a growing number of network monitoring system shifting towards alternative
method, and one such system is RESTful API. This paper will explore the argument
towards the shift away from SNMP to APl based system, and compare the
differences between the two approaches. This paper also aims to analyze the actual
difference when implementing the system in the network level, such as the difference
delay of messages, the size of packets and the available security parameter on both

systems.
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ABSTRAK

Kertas kerja ini mengkaji peranan Simple Network Management Protocol
(SNMP) sebagai protokol de-facto dalam bidang sistem pentadbiran rangkaian.
Kertas kerja ini membincangkan secara terperinci protokol penghantaran SNMP,
fungsi yang tersedia dalam lapisan rangkaian dan juga tiga versi berbeza yang
wujud. Walaubagaimanapun, terdapat kebimbangan terhadap SNMP sebagai
protokol asas, dan terdapat semakin banyak sistem pentadbiran rangkaian yang
beralih ke kaedah alternatif, dan satu sistem sedemikian adalah RESTful API. Kajian
akan meneruskan penerokaan dan peralihan daripada SNMP kepada sistem
berasaskan API, dan membandingkan perbezaan antara kedua-dua pendekatan.
Kertas kerja ini juga bertujuan untuk menganalisis perbezaan di dunia nyata apabila
melaksanakan sistem dalam peringkat rangkaian, seperti kependaman rangkaian
mesej, saiz paket dan parameter keselamatan maklumat yang tersedia pada kedua-

dua sistem.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Monitoring and resource management has been dominated by the protocol
Simple Network Management Protocol (SNMP) since 1988 from RFC 1065. Despite
numerous revision and changes to the protocol, launching version 2, version 2c and
even version 3, the protocol is over-engineered, not being fully utilized, and the over-
extend configuration of the protocol leads to massive issues with proprietary

compatibility issues and more importantly security issues.

Hence there is a need to pivot to protocols other than SNMP, and RESTful
service are one of the architectural solutions for solving the underlying problem. It
utilizes the most common protocols, more specifically HTTP(s) service as a stateless

client-server service.

1.2 Problem Statement

One of the issues that plagues SNMP is the concern of privacy and security
when sending the SNMP traffic. SNMP has undergone several revisions, with each
one addressing the flaws of the previous version. The SNMPv2c, second revision
brings some feature improvement, but it does not even support encrypted message.
Even the implementation of SNMPvV3 is considered not secure as it uses stateless
protocol to secure the traffic, opting out the more secure challenge-handshake

authentication protocol. Moreover, most of the hardware that runs SNMPv2c either



require firmware update, or some compatibility issue makes supporting SNMPv3
impossible.

This brings to the issue of interoperability and compatibility issue. Some
network engineers opt to still use SNMPv2c because of the mentality “don’t change
it if it works”, and even that the SNMPv3 adoption rate is slow because the different
network device vendor does not have a consensus on how to implement the cipher
due to lack of RFC that defined AES-192 and AES-256. The issue is exacerbated by
the major equipment vendor over-extend the proprietary configuration which it

makes the convoluted system that much harder to navigate.

1.3 Project Question

a) Why the REST API and the SNMP protocol are relevant when discussing

about network monitoring?

b) What are the transmission methods, network traffic and available security
parameters between the two REST APl and SNMP?

c) What is the performance difference that concerns the network engineer

that intends to evaluate the current system of SNMP API

14 Project Objective

a) To configure a basic RESTful API system alongside SNMP system that

makes the transmission of network monitoring information possible.

b) To explain, compare and contrast the fundamental differences between
the protocols, and how the differences is reflected on how the data is

transmitted between devices

c) To test and investigate the performance between different protocols and

how each configuration differences impact the monitoring process.



1.5

1.6

Project Scope

. The project able to convey the functionality and overview of each of the

protocols, why the protocols are relevant and how both of the SNMP and
REST API works in brief.

. The project also includes the exploration the differences between SNMP

protocol and REST API. It highlights the difference between the two
protocols in terms of transmission, traffic generation and also security

parameters.

Based on the exploration, gather the data for each of the highlighted
parameters, and make comparison for the both protocols, and make summary

of each of the analyzed data.

Project Contribution

a) The project benefits system admin that wants to explore the alternative of
SNMP, where some researchers argue that there should be a pivot of

monitoring system towards alternative method such as REST API

b) The project helps to have a more understanding of the two protocols, the
initial idea of the pivot, the differences and constraint of each method of
monitoring for a more comprehensive decision in choosing a monitoring

method.

c) Explore the difference concern of both the protocols, and be a reference
for engineers in deciding the protocols, based on the relevant performance

parameters.



CHAPTER 2: LITERATURE REVIEW AND PROJECT
METHODOLOGY

2.1 Introduction

SNMP is an extremely useful tool for a network engineer as it is a well-
established protocol supported by most devices in an IP network. However, the
protocol is also notorious for the many limitations, such as the unreliability of UDP
transport, poor SNMP agent implementation, outdated 32-bit counters and also the

persistent security concerns despite there is already 3 revisions of the protocol.

Every problem is an opportunity for you to create a solution, as the scale of
network infrastructure is growing in an enormous rate especially with the
introduction of cloud-based system, the unresolved issue poses challenge in keeping
up the demand of increasing connectivity. Few alternative ideas are starting to float
around, and one of the more prominent ways to complement the function of SNMP
protocol seems to utilize another well-defined and established protocol, HTTP to

create a RESTful based system.

2.2 Simple Network Management Protocol (SNMP)

When the topic of Network Management System is discussed among the
network administrator, The Simple Network Management Protocol (SNMP) is the
most widely used protocol, or even the preferred choice for the management of IP-
based networks and internets. SNMP is an official standard protocol and it is defined
and governed by an organization called Internet Engineering Task Force (IETF). The
IETF publishes Requests for Comments (RFCs), which are the specification for the

widely used protocol that exist for devices in the internet to communicate. As of



2023, there are three version of SNMP, which are SNMPv1l, SNMPv2c and
SNMPv3, with the respective RFC as shown in Table 2.2.1 below.

SNMP Version Year RFC Document

1990 | RFC1157 (Official Standard)

SNMP Version 1 (SNMPv1) o
RFC1155, 1212 (Definition language)

1996 | RFC1902, 1903, 1904, 1905, 1906,1907

SNMP Version 2 (SNMPv2c) ] o
RFC 1908 (Coexistence and transition)

2002 | RFC3410, 3411, 3412, 3413, 3414, 3415

SNMP Version 3 (SNMPv3) ] .
RFC 3416 (Coexistence and transition)

Table 2.2.1 SNMP version with corresponding RFC documents

Based on publication by W. Stallings in the IEEE Communication Magazine
in March 1998, the SNMP protocol consists of three specifications, which are the
protocol for exchanging information between management system and agents
(protocol), the framework for format and storage of management information (MIB),
and also the general-purpose management information objects or variables (data
definition). At the time of publication, there is only two version of SNMP protocol.
They author made a survey and concluded that the first version of SNMP is flawed
when it gained widespread use, and the second version, SNMPv2 did not received

the acceptance as anticipated by the protocol designers.

Management Station Managed Systemn

SMNMP Manager SMNMP Agent Ao .
Process Process
h F 3

sall2ni
salday
sde]
s108(00
$5200Y
eleq
sdel]

<
*

SHMP - SMNMP messages > SHMP
UDP UDP
P IP

Figure 2.2.1 Overview of SNMP Interactions

Referring the Figure 2.2.1 above, the SNMPv1 framework describes the
encapsulation of SNMP Protocol Data Unit (PDU) in the message between different
entities and the distinction between application or protocol entities. (Case, Fedor,
Schoffstall, & Davin, 1990) The document describes the protocol operation in PDU



on list of variable bindings. The basic operators are get, get-next, get-response, set-
request and trap. The document also defines the layering of protocol on a

connectionless transport service (or better known as UDP).

As the SNMP protocol becomes widespread, as mentioned above, the
drawbacks of the first version become apparent especially the protocol is considered
barebone and lacks functionality, and require changes for things such as transfer

efficiency for it to continue being a viable protocol, hence SNMPv2c is proposed.

The SNMPv2c provides several changes and advantages over SNMPv1, one
of the most important is the massive efficiency improvement with the introduction of
GetBulk command and also changes to Get command. It is only possible for
SNMPvV1 to retrieve information from the table one row at a time and a tedious series
of get/response transaction is required if the manager needs to retrieve the whole
table. This command GetBulk in SNMPv2 could retrieve the whole table in one
transaction, and even retrieve additional information from the same message. It is
similar with the Get command, where the SNMPv1 agent will reject the command if
even one value is missing. SNMPv2 introduces partial results to return, where it
ignores the value that could not be retrieved. These two major changes improve the
efficiency by reducing the exchange across network.

The SNMPv1 and SNMPv2c implements security in the form of community
string, which are the cleartext password that the devices need to be allowed to
exchange information when SNMP requests occur. However, the implementation is
massively flawed and with the popularization of internet services, the security is
inadequate moving forward, hence the next version is proposed, with the main focus

being the enhancement of security.

The SNMPv3 architecture introduces the User-based Security Model (USM)
and View-based Access Control Model (VACM) for message security and access
control respectively. It also supports SNMP Engine ID identifier, is a unique
identifier for SNMP entities, and is used to generate key for authentication. The

model of SNMPv3 security is comprised of two parts, which are Authentication and



Encryption or Privacy. In RFC 2574, the security levels for the USM MIB are
defined in three levels, as shown in Table 2.2.2 below. (Blumenthal & Wijnen, 1999)

Security Level Definition
noAuthnoPriv Communication without authentication and privacy
] Communication with authentication only. The protocol supported are
authNoPriv
MD5 and SHA
Communication with authentication and privacy.
authPriv Protocol for Auth: MD5 and SHA

Protocol for Priv: AES and DES

Table 2.2.2 SNMPv3 Authentication and Encryption levels

In a survey of SNMP by Pallavi et al. (2017), the paper states SNMP has its
demerits, it builds very complex software agents, and sometimes it reduces the
bandwidth of the network. The paper describes in depth about the security issues that
arise from the SNMP protocol itself, in their words, “By enabling SNMP services it
is easy to administrate any network adequately and productively yet enabling it will

make a network defenseless to security attacks”

The paper continues to advocate for the usage of SNMPv3, the third version
of the SNMP. It highlights the few security mechanisms that exists in the particular
revision such as strong privacy, view-based access control, authentication and
integrity. It also briefly touches the introduction of 64-bit counter instead of the

previous version of 32-bit counter.

2.3 The fall of SNMP and the transition towards alternative protocol

The problem of deploying SNMP as the internet standard is long in
discussion and in 2002, an organization called 1AB discussed the concerns about the
protocol. (Schoenwaelder, 2002 ) One of the conclusions that they made from two
papers was to investigate alternative network management technologies that take
advantage of protocols such as XML or web service. The biggest benefit is that the
protocol is a generic technology that was supported by many vendors on multiple
different protocol, and was more well-established than even SNMP itself, and still

dominating the web traffic even today.



XML as the gateway for SNMP has been researched by Choi & Hong (2002),
As part of their research, they investigated the performance difference between the
two protocols. The authors concluded that for their test set-up, the XML performed
marginally better than the SNMP itself.

The research that was done by P. Aiko et al. (2004) also proves the point
above where for individual retrieval SNMP is much efficient but it reverses when
more object is required. The choice of encoding that they used in the testing, BER
and XML have negligible effect and is not the determining factor in performances.
The choice of encoding that are the most popular with the web technology are XML
and JSON. There is different use case for the two different encodings but based on
the information K. Alnafjan (2017) has gathered, XML is a great in type definition,
schema similar to SNMP and it is longer in the market. JSON on the other hand is
much programmer friendly, ease of serial or de-serialization, and most modern
devices able to interpret JSON better. Each of them has their strengths and
weaknesses and should consider the workload of the particular task before deciding

either one.

The latest revision of the SNMPv3 protocol is still flawed even if the protocol
was updated with security in mind, (Taha et al. 2021), as they created a lightweight
script, scoured the whole internet network for SNMP traffic, and analyzed the
detailed information that were gathered. Their proof-of-concept campaign
fingerprinted more than 12 million devices and around 350k network routers, directly
highlight the more fundamental issue of the SNMP protocol that still persists even

with multiple revisions.



2.4 HTTP as a protocol

One of the arguably the most widely used application layer protocol that have
ever existed in the Internet protocol suite is most probably the Hypertext Transfer
Protocol (HTTP). This first version of HTTP/1 was finalized and ratified in 1996
under the RFC 1945 by the infamous Tim Berners-Lee from CERN. HTTP is the
foundation of data communication for the World Wide Web (WWW). In essence the
HTTP protocol is a stateless request-response protocol that exchange information
between client and server using a reliable network transport protocol (TCP). HTTP
uses the port 80 to communicate or port 443 for a secure variant of HTTP protocol
called HTTPS, with the resources identified and located on the network by the
Uniform Resource Identifiers (URI) scheme ‘http’ and ‘https’ using Uniform
Resource Locator (URLS) as defined in RFC 3986.

As the popularity of this protocol exploded, there are multiple revisions of
HTTP since the inception in 1996, with the introduction of HTTP/2 in March of 2012
that aims to improve upon the performance, latency and data compression while
maintain a high-level compatibility with the older HTTP/1.1 protocol. The HTTP/2
specification was published under the RFC 7540 on May 14 2015 and became the
de-factor standard for the data transfer in WWW.

The HTTP traffic by default is transmitted in plain text form, and as more
service integrate with the HTTP protocol, especially more sensitive information such
as banking industries are exploring the technology, the security aspect becomes one
of the fundamental aspects for wider adoption of this protocol. Hence, a
cryptographic protocol called Transport Layer Security (TLS) was introduced. This
TLS protocol aims to provide confidentiality, integrity and authenticity (CIA trinity)
through the use of RSA certificates in asymmetric encryption. The protocol that
implements the TLS is identified as Hypertext Transfer Protocol Secure (HTTPS)
with the URI starting with HTTPS, an extra ‘S’ compared to the plaintext variant of
HTTP and

The internet traffic is increasing in an exponential manner, with low latency
with high throughput being the focus in order to provide a seamless experience for

everyday users, and some Internet Service Provider, more specifically based on one
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blog post by Gigaspaces company even claims that a 100ms extra delay on the
network potentially costs millions of dollars of losses.

2.5 Representational State Transfer (RESTful API) and RESTCONF

Representational state transfer (REST) is one of the predominant application
integration mechanism or software architectural style over the Internet. (Bergmann,
Bormann & Gerdes, 2020). REST architectural style is becoming popular in recent
years due to its ease of implementation as APl compared to Simple Object Access
Protocol (SOAP) and XML-RPC (Wenhui, Yu, Xueyang & Chen, 2017). With the
advent and growth of agile software development paired with the popularization of
DevOps methodology, there is a genuine requirement for a simpler and faster
iteration that could keep up with the change of demands, hence, API exists to bridge
the gap and fill the role as the first choice, especially the capability of automating
tasks such as testing and integration.

There is no formal definition of what REST is, but as introduced and defined
in a 2000 doctoral dissertation by Fielding, R. T., the concept is that the server will
respond with representation of a resource, (commonly in the form of HTML, XML,
JSON or YANG), and the state of the system change will be based on the resources
that contains the hypermedia link that can be followed. Fielding further clarifies in
the 11th Joint Meeting on Foundations of Software Engineering (2017),
acknowledging the lack of formal definition, and emphasized that the RESTful
concept is a set of architectural style, rather than an architecture itself.

Based on the Fielding and multiple different peer-review, REST architectural

style consists of six design principles or constraints:

1. resources are identified by one resource identifier mechanism — URI schema
is the most commonly used one at present;

2. resources have representations and representation metadata— a
representation is considered a series of bytes that could be described by

metadata;
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3. only a few primitive operations/methods are available to operate on
resources— these primitives have the same meaning for all the resources (i.e.,
are designed to operate exactly the same, no matter the target resource);

4. all interactions are stateless— all allowed primitives must receive complete
requests and requests must be processed independently;

5. idempotent behavior— usage of caching techniques (through resource’s
metadata) and idempotent behavior are encouraged;

6. intermediate entities are encouraged— such entities could provide for

proxy/caching techniques or could alter the requests and the responses.

The key concept in REST is the resource itself, and this protocol is often
confused with the HTTP itself due to the similarity of operations of functionality in
CRUD (Create, Read, Update, Delete) such as PUT, GET, DELETE, POST. It does
not help with the confusion where most developer migrate from SOAP and WS-*
based RPC approach to REST in web services with the minimal change of

perspective in application approach.

2.6 Critical review of current problem and justification

Choi M. and Hong J. has published several papers related to the design of
XML-SNMP gateway. The duo investigated the performances differences of XML
and SNMP by measuring the XML traffic as well as SNMP traffic in their set-up.
Usage of resources such as CPU and network resources are also gathered and
comparison of the factors shows that the XML system is comparable in small scale
with negligible difference, and a clear benefit for XML compared to SNMP for
larger data as the overhead of SNMP makes scaling more resource intensive. The
system is similar in concept but this project uses the REST based system instead of
XML.

In a paper published in June 2014 by Bergmann O. et. al, there is a study
titled REST-based access to SMIv2-structured information on constrained devices.
This study focuses on the 10T, specifically the constraint of 10T devices such as Low-
Power and Constrained Application Protocol (CoAP) in implementing services

especially SNMP. The predominant protocol for network management is SNMP,
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however in a constraint environment the extra complexity of adding layers of
protocol is not feasible. This paper explores the multiple existing technology in an
alternative way for SNMP, which uses Concise Binary Object Representation
(CBOR), utilizing Network Configuration Protocol or REST-based web technology
to transfer the information through network. This paper put the emphasis on
efficiency of data transfer such as payload size, with the goal of implementing it in a
hyper-efficient way. The method of implementation in this particular research is
similar with the current project, however with the wide range of devices and the
exponential growth of processing power efficiency, this project will less focused on
the efficiency of data encoding/decoding.

There is also another research about the SNMP and Web service by Ricardo
Neisse and Lisandro Granville. As a direct comparison of security features, they
enabled Secure HTTP for the security aspect. They also implement zlib compression
before transmitting the data. The conclusion is divided into two parts, where SNMP
gains edge in protocol level as it requires less header and bandwidth per message,
however at object level, web services perform much better if larger amount of object

are retrieved.



CHAPTER 3: METHODOLOGY

3.1 Introduction

In the previous section, there is sufficient research regarding both the SNMP
and also the RESTful system. Despite the many challenges the SNMP protocol faces
in this ever-changing industry, SNMP is still used extensively in networking devices
especially older-generation devices. However, as the computational power follows
the Moore law by increasing exponentially, more and more embedded devices are

more than capable of delivering more functionality with the extra CPU cycles.

This shift and push in the industry to support more modern streaming
telemetry sources with extra customizability has led to few alternatives to SNMP
such as NETCONF, gRPC and the focus of this research, REST based systems. This
shift arises few questions, particularly the performance difference between the two
system when performing basic tasks in terms of network transport. Hence, this paper
aims to answer the question of performance difference between SNMP and also

REST in terms of the network layer communication.

3.2 Methodology and research approach

The approach of this research will be based on a modified version of the
Spiral Model in the software development life cycle. There are four main phases in
the Spiral Model, which are review, then determine the feasibility of idea, continued
with implementation analysis and development, and then the data gathering and
analysis. Finally, the cycle will complete and there will be the plan for next iteration.
The focus of spiral model will be determining the risk of a project, this particular
project instead modifies it to instead focus on the feasibility of idea.
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3.3 Process of reviewing the project

This project starts with reviewing the idea of project itself. After obtaining an
idea of the project to be done, the first thing to be determine is the problem, or in
another word, what are the underlying problems that exists based on the idea itself.
In the case of this project, the idea is about the differences between SNMP and
HTTP Based REST API. The underlying problem is about the differences between
the two protocols, how each protocols work, which one are more beneficial
compared to others, what parameters or metrics will be changed based on which
protocols chosen.

From the numerous underlying problems that is determined, there is a need
for selecting few of the more specific problems to be assessed, as not every single
problem is able to be discussed within a project. This project narrowed down the
problem into three points, with the difference in the performance metric in terms of

transmission of data and security concerns as the focal point.

Based on the narrowed down problem statements, there is a need to highlight
the scope of the project. It helps in determining the specific goals, constraints,
strategies, task and deliverables that should accomplish. The scope helps in
preventing project being too broad or out of topic and potential delay or overwork
may hinder the progress itself. The project will be focused on the transmission of the
data. This project, despite the generation of data, and the format of data is also an
integral part of the discussion from the problem statements, it is not included within

the scope of the project.

34 Determining the feasibility of the idea

Before the actual process of gathering data, and going into the building of the
system, there must be an in-depth justification of all of the potential knowledge
required to actually analyze the project. The whole process of literature review is
where a more comprehensive understanding of the subject matter is laid out, and all

relevant information are being addressed before analysis could be understood.
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For this particular project there are two major components, SNMP and the
REST API process. The review starts with explaining the SNMP as a protocol, the
mechanism of the protocol, what are the details in terms of transport based on the
listed scope and the additional information that could help in making a more

comprehensive overview.

The review continues with an idea floating around in the network
management community where SNMP is inadequate despite it being a widely used
protocol. There are quite some researches also done in regards to the weaknesses of
that protocol despite there exists three iteration that tried to address the issues. The
researchers also hinted on the possibility of some form of alternative protocol

complement what SNMP has to offer.

The review then shifts to the alternative that was proposed, which is the
transmission of monitoring data through RESTful API using the existing HTTP
technology. The involved protocols, namely HTTP, the secure version of it, HTTPS,
and also the concept of REST is also laid out to create a comprehensive image on
how and what the alternate ideas consists, and how it could complement or in some

sense even replace the SNMP itself.

35 Implementation analysis and development of project

After all of the theory have laid out and the requirements are highlighted, the
preliminary research suggests that there is a demand for more research in this topic.
There are already few researches done before, more specifically the research done by
Choi M. and Hong J. about XML-SNMP gateway more than 20 years ago, which

actually was one of the papers that inspired this project.

Based on the project scope, the approach will be purely assessing the network
layer of the response between the server and the client. The test will involve two
different operating system, Cisco i0S and also Linux system. The Windows-based
system is not included in this testing because there will be concern of performance
degradation due to too much external services being included in said system, making

it hard to isolate the relevant traffic and potentially skewing the data. The test will be
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conducted for the two major component, SNMP based system, and then the RESTful

system.

The testing tools for SNMP is straightforward as there is already a standard
implementation the SNMP system in both Linux system and also Cisco devices and
also snmpwalk command to query all the SNMP system. The testing will involve two
different protocol versions from SNMP, namely SNMPv2c and SNMPv3. The
SNMPv3 will be tested with both the AuthPriv settings as well as the noAuthnoPriv

settings.

For the RESTful HTTP API system, the testing of network routers will be
utilizing the RESTCONF function that was supported in the Cisco operating system.
The testing of the Debian-based Linux system does not have a standard for
implementing RESTful system, hence the system will be built using a third party
software called YumaWorks. It also involves two iterations, the plaintext HTTP and
the secured HTTPS protocol.

3.6 Gathering and analysis of data.

The measurement of each of the testing will involve few key parameters.
Firstly, there will be a measurement of the processing duration parameter. The time

between the process of retrieving the data until the data is obtained is calculated.

Secondly will be the parameter of the size of packets. Each of the tasks will
be given a requirement of set of data to be retrieved. The measurement of the packets
will be based on all of the data sent between the network in one transaction including

all of the overhead and related packets.

The third parameter will be measuring the security of the system. Basic
analysis and security testing will be applied during the transport of messages
between the devices in order to make an assessment of how the system performs in

term of security.
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The data parameters will be repeated multiple times to get an average data
value, which in turn will be compared between all of the different iteration on both
SNMP and HTTP API.



CHAPTER 4: DESIGN

4.1 Introduction

As the project will be an analysis of the performance of a protocol, a system
should be designed and created in order for the protocol to function. In the previous
section, it is presented that the systems used will be Cisco iOS and also Linux

system.

This chapter will be the result of analysis of the preliminary design and also
the tools at my disposal. It will also highlight the actual physical and logical
implementation of this project, the software that was chosen to be operated and the

environment that makes the project able to be implemented.

4.2 Network System Architecture

Based on the hardware and tools at hand, the architecture of this testing will
be done in a virtualized environment. The architecture will be using a workstation,
and the testing environment will be based on a virtualized system on top of a host

system.

There will be argument about the performance degradation by conducting
analysis in a virtualized environment, but as the trend of computing moving towards
cloud computing and laaS is becoming the first choice for companies, it is fair to
argue this research also considers the performance parameter to be somewhat
resemble the cloud environment where all of the machines deployed in the cloud are

also actually virtualized.
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As mentioned above, the Windows System will be absent in the research as
the overhead of the whole system introduces too much noise, increasing the difficulty
of isolating the intended parameters and skewing the data that could be used to

compare and contrast the different protocols.

CPU AMD Ryzen 7 5800H (3201 MHz), 8 Cores, 16 Logical Processors

Memory 16 GB X 2 (3200 MHz) SODIMM

ON) Windows 11 Pro 21H2 Build 22000.1936

Software VMWare Workstation Pro Version: 17.0.0 build-20800274

Table 4.2.1 The specification of the WORKSTATION device

Table 4.2.1 below lists down the actual specification of the HOST PC that
will be virtualizing the operating systems. The software environment chosen will be

the latest VMWare Workstation and will be installed on Windows 11 operating

system.
Device Virtual Virtual Virtual | Network | Operating System
Processors Memory | HDD Adapter

CSR1000v 1 processor, 8 GB 8 GB VMnet Cisco I10S XE

(Cisco 2 core per vmxnet3 | Version 17.03.02

Router) processor

SRV-HOST | 2 processor, | 8 GB 15GB | VMnet Debian 11.6

(SNMP 2 core per vmxnet3 | Debian 5.10.158-2
(2022-12-13) x86_64

Agent) processor

SRV- 2 processor, | 8 GB 15GB | VMnet Debian 11.6

CLIENT 2 core per vmxnet3 | Debian 5.10.158-2
(2022-12-13) x86_64

(Managed processor

device)

Table 4.2.2 The specification of the virtualized devices for testing

Table 4.2.2 below summarizes all of the resources that are allocated for use in
each of the virtualized operating system. The network will be using vmxnet instead
of 1000 for better network performance as €1000 is an emulated interface while
vmxnet is para-virtualized. The operating system will be based on 10S-XE version of
Cisco routers that supported REST configuration, and also the Debian 11.6. As of
this writing of this report, there yet to be a later version of the Debian software.
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4.3 Logical and Physical Design

Referring to the Figure 4.3.1,

the topology will consist of two Linux system

and also one Cisco system. The network configuration is relatively simple with a

virtual switch interface of VMnetl connecting every single device and the host PC

also able to access through the virtual switch interface. The hardware will just consist
of a host PC, and all of the system will be virtualized in the host PC within VMWare

Workstation software environment.

CSR1000v

SRV-CLIENT

SRV-HOST

@ VMWare Workstation
E VMXNET3

‘Wireshark

VMXNET3 i

vN|C

=

VMXNET3

Figure 4.3.1 The physical layout of the topology
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The IP addressing will be using the same subnet of class C (192.168.1.0/24) and the
three system could communicate directly with each other using the assigned static IP
addresses. The HOST PC is also assigned an IP for ease of management. The

summary of the logical topology is shown on Figure 4.3.2

( 192.168.1.0 /24
Network Subnet

A ==

.

P = .100 CSR1000v
SRV-HOST
vINIC vSwitch
P
SRV-CLIENT

Workstation
~Laptop

Figure 4.3.2 The logical layout of the topology with IP addressing

4.4 Testing parameters and justification of decision

There are three distinct data points that will be gathered for each process. The
figure below shows the expected interaction between the server (SRV-HOST) and
the clients (CSR100v and SRV-CLIENT).

A SNMP interaction A

o ==

» (UDP 161)
» @
SNMP request
SNMP response >
<
SNMP request
SNMP response >
<

Figure 4.4.1 The interaction of SNMP between server and client
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5 RESTful API 5 e
(TCP 80/443) ~

SRV-HOST SRV-CLIENT

SYN + ACK

Request
Data (JSON)

FIN + ACK

Figure 4.4.2 The interaction of RESTful API between server and client

The first data point that will be gathered is the size of all the transmission
between two devices, including all of the traffic overhead. The protocol UDP is a
connectionless communication, while TCP is a connection-oriented communication,
and the data size calculation will include the headers and all of the security
negotiation if applicable. Figure 4.4.1 and Figure 4.4.2 will be the expected

interaction between system.

Based on the size of data, there will be multiple repetition of same iteration
with increasing number of items requested between the two devices, with the total
data transferred between the devices calculated. The data will be graphed and

compared between all of the iterations.

The second data point will be the time between the execution of data and the
displaying of the data on console. This will focus on the execution time and will be
exclusively measured in SRV-HOST. The measurement of delay will be the round-

trip instead of one-way communication.

The delay of communication will be done multiple time using the same
dataset, and the average of the delay will be calculated to show the average time
from the execution of command, the transfer delay, the processing of request and the
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processing of response. The summary of the measurement is shown as the Figure
4.4.3 below.

& Round Trip & e
= delay = u
» w » «
SRV-HOST SRV-CLIENT

Execution

Process Request

Round-trip Process
measurement Response -
Response
Process
N~ »

Figure 4.4.3 The summary of Round-Trip delay process

The third data point will be the security aspect, and the security part will be
evaluated. There are few configuration parameters that will be changed, namely the
SNMP version and the inclusion of TLS in REST. Few basic analyses on the security
aspect during transfer will be done and a simple preliminary assessment will be done
for each of the iteration regarding the security aspect, such as ease of deciphering

data and the error handling of unsolicited messages

The parameters chosen on this project is based on previous scholar paper that
investigates the approach for performance requirement verification by A. Waleed, X.
Chen and Unterkalmsteiner, M. Based on their study from few primary studies
chosen by the authors, they listed out 5 main performance aspect that affects a piece

of software which are the following:

Efficiency

Resource Utilization
Throughput/Speed
Capacity

o B~ w0 DD

Time Behavior

. This paper expands on the idea and apply it on network services, because

fundamentally every single network protocol used by network engineers in essence
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comprises of multiple different software on top of networking hardware. The choices
is further supported by the International Organization for Standardization, where they
actually prepared a standard, 1ISO/IEC 25010:2011 that standardizes the Software
Quality Requirements and Evaluation (SQuaRE). The performance efficiency is

defined as the Time Behavior, Resource Utilization and also Capacity.

When mapping the performance aspects to suit this project, the throughput
will be tested before the systems are actually implemented. The efficiency in
software typically measures the output of the work compared to the expected
outcome, hence the data size of transmission is the factor. The overhead and the
supporting protocols transmitted, although is required for the protocol to function
normally, still considered as unnecessary when talking about the actual data. This
also relates to the capacity of the protocol, where the degree of limits of system

parameter while still conforming to the network requirements.

The resource utilization refers to the performance and effort over an amount
of time. CPU utilization are always referred when talking about the resources
available, as these are the basic components where the software is executed. Time
behavior on the other hand relates to the response of the software, and this could
have different ways to measure the processing time of a certain software. This
project chooses the Round Time Trip that includes the query and response of the
software as the two exchanges is completed when both of the query and response are

done and received by both ends.

4.5 Flow of testing process

The testing of the environment will be separated into two parts, where each of
the configuration parameter are tested twice using two different tools, namely the
software iPerf and also Wireshark.
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@
- test++
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for test = 1 to 30 1 < test < 30%

test > 30
Y

l—l Gather output i

L Analyze RTT J ‘ Analyze CPU Cycle

L»/Dala analysis and graph /J

Figure 4.5.1 The flowchart of measuring the performance

Test using Perf
(30 times)

The Perf is a powerful tool that instrument CPU performance counter on
Linux systems. The tools provided are very detailed and technical, but the focus on
this testing will be only be two main parameters under the “perf stat”, which are the
total cycle of CPU to complete the task, and also the time elapsed for the particular
command. The command will be run for 30 times and the data will be averaged to

decrease the random fluctuation of individual data points.

Testing for the SNMP will be conducted under 5 different scenarios for each
of the SNMP version configurations. The testing will query different OID with
different amount of data within the request. Table below shows the chosen OID that

will be query and also the amount of data actually returned.

OID Value Node name Number of data
1.3.6.1.21.15 sysName 1

1.3.6.1.2.1.4.20 ipAddrTable 5

1.3.6.1.2.1.6 tep 19

1.3.6.1.2.15 icmp 1058

13.6.1.2.1 mib 2124

Table 4.5.1 The OID used to test the SNMP values
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The same thing will be used to test the REST API system, similar with SNMP

system, but instead of using OID values to retrieve data, REST API actually uses
URL with the HTTP GET method to obtain the data. The method requires

authentication, hence there are also few parameters need to be added on the header of

the HTTP Request. Table below shows the URL that will be queried and also the

amount of data actually returned.

URL Number of data
https://{ip}/restconf/data/Cisco-10S-XE-native:native/hostname 1
https://{ip}/restconf/data/ietf-interfaces:interfaces 16
https://{ip}/restconf/data/ietf-routing:routing-state 94

https:// {ip}/restconf/data/Cisco-10S-XE-native:native 184
https://{ip}/restconf/data/ietf-netconf-monitoring:netconf-state 2733

Table 4.5.2 The URL used to test the REST values

Start

Run command
to gather data
4

Capture data

it

PR

using
l Wireshark

a

Y

Calculate SNMP

Header (L1 - 4) PDU Fields

Calculate UDP
Packet size

Calculate SNMP
Variable-Bindings
(Actual Data)

4

Estimate and extrapolate
the expected bandwith
transmission

Compare with Analysis of
actual data data and
transmitted findings

Figure 4.5.2 The flowchart of measuring the size of transmission for SNMP
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The second part of the testing will be using the tool called Wireshark. It is an
open-source packet analyzer that contains a suite of tools for analysis and
troubleshooting of network environment. This project will only focus on one of the
available functionalities, which is the capture of the packets, understanding the flow

and also calculation of the byte size of each frame passing through the virtual switch.

Based on the data that was gathered, few assumptions will be made and a
simple formula will be made, namely the expected average size of actual data in the
PDU, as most of the fields should be fixed based on the configured environment. The
data is then extrapolated, and is compared with the actual data for a rough trendline
of how the data grows.

to gather data

l

| Capture data |
/' using :

[ Run command

E-"‘ Wireshark ‘.""‘
| /
|
v ‘ v ‘ I \ A
Calculate TCP Calculate Data Calculate HTTPS

Header (L1 - 3)
Packet size

actual data
(POST, GET)

TCP overhead | Secure Exchange Fragmentation and
(SYN, ACK, FIN) Key Process potential packets

Estimate and extrapolate
»  the expected bandwith
transmission

Calculate potential Calculate HTTPs

-+

]
Y
Compare with Analysis of
actual data > data and
transmitted findings

Figure 4.5.3 The flowchart of measuring the size of transmission for REST

The REST API will be following similar process as the process of the SNMP,
which there is also calculation of the byte size of each frame passing through the
virtual switch. However, there are some fundamental differences between the TCP
protocol used by the REST API and the SNMP that uses UDP protocol.

TCP protocol is a type of connection-oriented protocol, means that the

connection requires an established three-way handshake for communication between
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devices before data can be exchanged. TCP will start the connection with SYN
packets and ends with FIN packets, meanwhile the acknowledgement of packets
received is represented by the ACK packets. These packets are also taken into

account when calculating the total byte size.
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CHAPTER 5: IMPLEMENTATION

5.1 Introduction

Based on the previous chapter, the implementation will be done in a
virtualized environment. The implementation starts with the configuration of a clean
copy of the required virtual machines, which are CSR1000v 10S-XE Cisco VM, and

two Debian 11 bullseye CLI environment.

The next part is to configure a basic SNMP system on both of the testing VM,
and also implement RESTful API at the same time. The different protocol is

implemented simultaneously as there is no conflict for this particular configuration.

5.2 Basic Environment Setup

The setup starts with the installation of CSR1000v 10S-XE VM, that was
provided from Cisco. The steps are very simple as the clean image is already pre-

configured and just need to import the OVA into the VMWare.

The Debian 11.6 will be installed using the debian-11.6.0-amd64-DLBD-
1.iso. The packages will only install the SSH and the essential tools without any GUI

to reduce any variables and make it lightweight for the testing process.
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Virtual Machine Settings

Hardware Options

Device Summary
Ememory 8GB
Processors 2
(=4 Hard Disk (IDE) 3GE
CD/DVD (IDE) Using file E: YISO iamge\DEV...
CD/DVD 2 (IDE) Using file C5R.1000v-file2.iso
5 Netwark Adapter Custom (VMnets)
[ pisplay Auto detect

vitsh ver
o I0S XE Software, Version 17.83.82
o IDS Software [Amste , Virtual XE ftware (XB6_64_LINUX_IDSD-UNIVERSAL
Uersion 17 2, RELEASE
upport

Copyright (c) 2 y Cisco Systems,
Compiled Sat 31-0ct-28 13:16 by mcpre

o IDS-XE software, Copyright (c) 288 by cisco Sy ems, Inc.
All rights reserved. Certain components of Cisco IDS-XE software are
licensed under the GNU General Public Li e ("GPL™) Version 2.8. The
software code licensed under GPL Version is free software that comes
ith ABSOLUTELY NO WARRANTY. You can red ribute and7or modify such
GPL code under the terms of GPL Version .8. For more details, ee the
documentation or "License MNotice" file accompanying the IDS-XE software,
or the applicable URL provided on the flyer accompanying the I05-XE
softuware.

105-XE ROMMON

11kv uptime is 2 days, 18 hou 6 minutes
IJptiMe for this control processor is 2 days, 18 hours, 7 mMminutes

Figure 5.2.1 The setup of CSR1000v

B modul
ributor
1tion: Debian GNU/Linux 11 (bullseye)

amded #1 SMP Debian 5.10.158-2 ( 12-13 64 GNU/L inux

Virtual Machine Settings

Hardware  Options

Memory

Device Summary
Specify the amount of memory allocated to this virtual machine, The memory
= 868 size must be a mitisle of 4 M.
Processors 4
[E\Hard Disk (5CSI) 15GB Memory for this virtual machine: 8192 © | mB
CD/DVD (IDE) Using file D50 debian-11...
o Network Adapter Custom (VMnets) D
[Clisplay Auto detect 4GB

Figure 5.2.2 The setup of Linux Debian 11.6
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After the installation is done and all VM are setup with the IP address
assigned, a speed test is done between the devices. The tool that is used to test the

bandwidth between the devices is called iPerf.

iPerf is a network performance measurement tool. that is used commonly to
test the maximum achievable throughput between any two devices. A simple iPerf
test normally requires one side of the device running iPerf in server mode, and

another as client mode, connecting and testing the link with the server.

The implementation for iPerf in Linux is straightforward as the software is
included in the official repository. The CSR is a bit unique as the iPerf is installed on
top of the guestshell, sort of a virtualization layer running CentOS Linux on top of
the Cisco 10S operating system. The iPerf is tested between the SRV-HOST VM
with either CSR or SRV-CLIENT.

0ot@SRV-CLIENT:~# iperf -c 192.168.1.1 -t 20

Client connecting to 192.168.1.1, TCP port 5001
TCP window size: 85.0 KByte (default)

[ 3] local 192.168.1.101 port 45714 connected with 192.168.1.1 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0000-20.0001 sec 13.8 GBytes 5.57 Gbits/sec

:~# iperf -c 192.168.1.1 -t 20

Client connecting to 192.168.1.1, TCP port 5001
TCP window size: 85.0 KByte (default)

[ 3] local 192.168.1.101 port 42456 connected with 192.168.1.1 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] 0.0000-20.0002 sec 13.9 GBytes 5.99 Gbits/sec

:~# iperf -c 192.168.1.1 -t 20

Client connecting to 192.168.1.1, TCP port 5601
TCP window size: 85.0 KByte (default)

[ 3] local 192.168.1.101 port 50418 connected with 192.168.1.1 port 5001
[ ID] Interval Transfer Bandwidth
[ 3] ©0.0000-20.0002 sec 13.4 GBytes 5.76 Gbits/sec

Figure 5.2.3 iPerf bandwidth between SRV-HOST and SRV-CLIENT
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CSR1kvitguestshell
iperf -c 192.168.1.1

Client connecting to 192.168.1.1, TCP port 5001
TCP window size: 88.8 KByte (default)

[ 1] local 192.168.1.102 port 58614 connected with 192.168.1.1 port 5601
[ ID] Interval Transfer Bandwidth
[ 1] ©.60-20.63 sec 2.63 MBytes 1.07 Mbits/sec

iperf -c 192.168.1.1

Client connecting to 192.168.1.1, TCP port 5001
TCP window size: 88.8 KByte (default)

[ 1] local 192.168.1.182 port 58616 connected with 192.168.1.1 port 5601
[ ID] Interval Transfer Bandwidth
[ 1] ©.80-22.50 sec 3.38 MBytes 1.26 Mbits/sec

iperf -c 192.168.1.1

Client connecting to 192.168.1.1, TCP port 5001
TCP window size: 88.8 KByte (default)

[ 1] local 192.168.1.1082 port 58630 connected with 192.168.1.1 port 5001
[ ID] Interval Transfer Bandwidth
[ 1] ©.00-20.48 sec 2.50 MBytes 1.02 Mbits/sec

Figure 5.2.4 iPerf bandwidth between SRV-HOST and CSR1000v

Due to the absence of license for the Cisco devices, the bandwidth for the
CSR is capped at 1 Mbits/sec. This is a very different scenario as the bandwidth
between Linux machines are 5.7 Gbits/sec, which is a huge difference with CSR.

:~# iperf -u -s

Server listening on UDP port 5601
UDP buffer size: 208 KByte (default)

local 192.168.1.1 port 5001 connected with 192.168.1.101 port 50304
Interval Transfer Bandwidth Jitter Lost/Total Datagrams

0.0000-10.0153 sec 1.25 MBytes 1.05 Mbits/sec ©.048 ms 0/ 895 (%)
local 192.168.1.1 port 5001 connected with 192.168.1.101 port 40765

Interval Transfer Bandwidth Jitter Lost/Total Datagrams
0.0000-10.0155 sec 1.25 MBytes 1.85 Mbits/sec ©.036 ms 8/ 895 (%)
local 192.168.1.1 port 5001 connected with 192.168.1.101 port 33816

Interval Transfer Bandwidth Jitter Lost/Total Datagrams
0.0000-10.0152 sec 1.25 MBytes 1.85 Mbits/sec ©.037 ms 0/ 895 (0%)

Figure 5.2.5 iPerf jitter between SRV-HOST and SRV-CLIENT

Server listening on UDP port 5601
UDP buffer size: 208 KByte (default)
3] local 192.168.1.1 port 5001 connected with 192.168.1.102 port 46632
Interval Transfer Bandwidth Jitter Lost/Total Datagrams
0.0000-10.0154 sec 1.25 MBytes 1.05 Mbits/sec  9.043 ms 0/ 895 (0%)
local 192.168.1.1 port 5001 connected with 192.168.1.102 port 44290

0.0000-10.0152 sec 1.25 MBytes 1.85 Mbits/sec ©.033 ms 0/ 895 (0%)
local 192.168.1.1 port 5001 connected with 192.168.1.102 port 44771
Interval Transfer Bandwidth Jitter Lost/Total Datagrams

[

[

[

[

[ Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[

[

[

[ 0.0000-10.0152 sec 1.25 MBytes 1.85 Mbits/sec ©.053 ms 0/ 895 (0%)

Figure 5.2.6 iPerf jitter between SRV-HOST and CSR1000v
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When the bandwidth is being set to the same rate, which are 1.05 Mbits/sec,
there is no significant difference between the two devices, with no packet loss for
UDP connection, and a jitter less than 0.05 ms. The link between the two devices
could be considered stable, and it should be considering the VM are directly

connected to the same virtual switch within the same subnet.

5.3 SNMP Environment setup

After all of the system are installed and running, the implementation starts
with the configuration of the SNMP system. The setup of the SNMP server in the
CSR and Linux will involve the community psm2 for the SNMPv2, and also 3 users

for SNMPV3, each with different security levels based on the table below

Username Version Authentication Encryption

psm2-userl | v3 noAuthnoPriv | - -

psm2-user2 | v3 authNoPriv sha: Skills39 -

psm2-user3 | v3 authPriv sha: Skills39 aes: Skills39

Table 5.3.1 List of user and parameters for SNMP

SRV-HOST will be tested using the snmpwalk command to verify that the
SNMP server is functioning, with the command is listed below. The output should be

printed on the console.

Version Commands

v2c snmpwalk -v2c -c psm2 {ip address} {OID}

v3 noAuthnoPriv | snmpwalk -v3 -1 noAuthNoPriv -u psm2-userl {ip address} {OID}

v3 authNoPriv snmpwalk -v3 -l AuthNoPriv -u psm2-user2 -a sha -A Skills39 {ip
address} {OID}

v3 authPriv snmpwalk -v3 -l authPriv -u psm2-user3 -a SHA -A Skills39 -x AES -

X Skills39 {ip address} {OID}

Table 5.3.2 Commands to verify the functionality of SNMP server
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:~# snmpwalk -v3 -1 noAuthNoPriv -u psm2-userl 192.168.1.100 1.3.6.1.2.1.4.20
.4.20.1.1.192.168.1.100 IpAddress: 192.168.1.100

.4.20.1.2.192.168.1.100 INTEGER: 1

.4.20.1.3.192.168.1.100 IpAddress: 255.255.255.0

.4.20.1.4.192.168.1.100 = INTEGER: 1

.4.20.1.5.192.168.1.100 = INTEGER: 18024

:~# snmpwalk -v3 -1 noAuthNoPriv -u psm2-userl 192.168.1.1606 1.3.6.1.2.1.1.5
1.5.0 = STRING: "CSR1lkv"

Figure 5.3.1 SNMP commands example output

Based on the figure above, if configured correctly the terminal should output
the corresponding OID value with the value of the data. This shows that the

commands runs successfully and the SNMP system is running as expected.

54 RESTful Environment setup

The 10S-XE version of Cisco operating system by default supports the
RESTful API functionality. Before the REST is actually enabled, there are few pre-
requisites configuration need to be done. It starts with creating a user, in this
environment, a user with the credential of psm2 and password Skills39 is created.

Next, the RESTful API system only runs on HTTPS protocol, hence a
keypair is required to be generated as the self-signed certificate to secure the traffic.
Generate a keypair that is exportable for testing as shown in the figure below. Then
generate a certificate, and apply it in the ip http secure-server on the CSR.

CSRikv#tsh crypto key mypubkey rsa CSR-KEY

% Key pair was generated at: 15:59:26 UTC Sep 8 2823

Key mame: CSR-KEY

Rey type: RSA REYS

Storage Device: private-config

Usage: General Purpose Key

Rey is exportable. Redundancy enabled.

Key Data:
38828122 388DB6B9 2AB64886 F78DA181 B1A58BB3 B82818FBA 3BB82818A 82828181
BBASEBES CB1ECB8A D4F1B93E 2121347E D2D36F48 21EFDC11 819EEAB7 8869CC2C
3C25C92F 85BAB8B35 5SADD725E 17955F69 475BDB93 4389E3CB 7689DBB6 ES315B27
46BB18FE 472A5D26 SE849B93 729742EA BABDEFBF SBCFBICB 8DB81F89A 679F1D77
A9B4E839 B29C1869 58F84991 41FCDFEB 4BE3C636 A94EADBZ 36A49312 FGEBC3930
79CEFC4E 77623DD2 ES53E41B3 164E7AD4 7F5D8386 3111E9B8 BB38BAEBA 18754E1E
£5184731 5DB74CD2 5B67D3BS 959547E8 BSB4EEDF AFESC42F 6FCC334E 2C5FA8BY
DCE7198BB 68B88ABAD CF158111 91E974AA E3544855 D75FCC53 26D5C23B 2FEZEESS
3FD2B821 53F9548A 684C77AD D2DFB7D3 EDBCES13 ES7ECS84 B17AB7FS 88BDCC327
C5826381 ABA1

Figure 5.4.1 RSA Key on CSR1000v

Linux does not contain any standardized RESTCONF system, hence for this
testing purpose, a third-party software, YumaWorks will be implemented on the
Linux system. If the system is configured correctly, the HTTP request for the
RESTCONF should return code 200 OK.
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stconf/data

1@7:87 GMT

Pragma: no-cac he

Figure 5.4.2 Verification of RESTful API based on header and return code

“@SRV-HOST:~# curl -k --location 'https://192.168.1.100/restconf/
data/Clsco I0S-XE-native:native/hostname' --header 'Accept: applicat
ion/yang-data+json' --header ‘Authorization: Basic cHNtMjpTa2lsbHMzO

"Cisco-I0S-XE-native:hostname"”: "CSR1ikv"
'y

HOST:~# curl -k --location 'https://192.168.1.100/restconf/
data/Cisco-I0S-XE-native:native/version' --header ‘Accept: applicati
on/yang-data+json® --header 'Authorization: Basic cHNtMjpTa2lsbHMzOQ

"Cisco-I0S-XE-native:version™: "17.3"

Figure 5.4.3 Verification of RESTful API based on output

The return code is normally reflected on the header of the HTTP response,
the actual response with the desired value will be actually returned within the data
field of HTTP, in the form of JSON as shown in the figure above.

55 Capturing packets through Wireshark

The implementation is relatively simple, and the environment is designed to
focus on two systems, namely the SNMP and the RESTful API. In this testing case,
Wireshark is also used to discern the interaction and packets sent between the
different VM. The HOST PC is also connected to the virtual switch of the VM, hence
the Wireshark will be listening to every packet running through the virtual switch,

similar to the port mirroring of a physical switch
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Source Destination Protocol  Length Info

192.168.1.253 192.168.1.255 upP 86 57621 =+ 57621 Len=44

192.168.1.181 192.168.1.1 IcP 98 Echo (ping) request id=@xe375, seq=1/256, ttl=64 (reply in 3)
192.168.1.1 192.168.1.101 IcHp 98 Echo (ping) reply  id=Bxe375, seq=1/256, ttl=64 (request in 2)
VMware_75:32:ae Broadcast ARP 42 Who has 192.168.1.1@@? Tell 192.168.1.181

WVMware_d3:1d:d3 VMware_75:32:ae ARP 69 192.168.1.100 is at @0:0c:29:d3:1d:d3

192.168.1.161 192.168.1.100 ICMP 98 Echo (ping) request 1id=0x8b74, seq=1/256, ttl=64 (no response found!)
192.168.1.181 192.168.1.180 IcHP 98 Echo (ping) request id=Bx8b74, seq=2/512, ttl=64 (reply in 8)
192.168.1.100 192.168.1.101 IcMp 98 Echo (ping) reply id=@x8b74, seq=2/512, ttl=255 (request in 7)
WMware_89:40:7c VMware_75:32:ae ARP 42 Who has 192.168.1.1017 Tell 192.168.1.1

VMware_75:32:ae VMware_@9:4@:7c ARP 42 192.168.1.101 is at @@:0c:29:75:32:3e

VMware_75:32:ae VMware_@9:48:7c ARP 42 Whe has 192.168.1.12 Tell 192.168.1.101

VMware_89:480:7c VMware_75:32:ae ARP 42 192.168.1.1 is at 9@:0c:29:09:48:7cC

192.168.1.101 192.168.1.100 IcHP 98 Echo (ping) request id=pxBb74, seq=3/768, ttl=64 (reply in 14)
192.168.1.180 192.168.1.181 IcHP 98 Echo (ping) reply  id=Bx8b74, seq=3/768, ttl=255 (request in 13)
192.168.1.253 192.168.1.255 upP 86 57621 =+ 57621 Len=44

192.168.1.253 192.168.1.255 uDP 86 57621 = 57621 Len=44

fe8@::135F:e756:449.. ff@2::1:Ffb7:9656 ICHPVE 86 Neighbor Solicitation for fe8@::a62a:95ff:feb7:9656 from @@:50:56:c0:00:08
192.168.1.253 224.0.8.251 MDNS 87 Standard query @x8888 PTR _spotify-connect. tcp.local, "QM" question
fe8@::135F:e756:449.. ffo2::fb MDNS 107 standard query @x0@@@ PTR _spotify-connect._tcp.local, "QM" gquestion
192.168.1.253 239.255.255.25@ S5DP 167 M-SEARCH * HTTP/1.1

192.168.1.253 192.168.1.255 uoP 86 57621 + 57621 Len=44

192.168.1.1 192.168.1.108@ SNMP 186 get-request

192.168.1.108 192.168.1.1 SNMP 149 report 1.3.6.1.6.3.15.1.1.4.0

192.168.1.1 192.1638.1.100 SNMP 155 get-next-request 1.3.6.1.2.1.1.5

192.168.1.168 192.168.1.1 SHMP 161 get-response 1.3.6.1.2.1.1.5.8

192.168.1.1 192.168.1.108 SNMP 156 get-next-request 1.3.6.1.2.1.1.5.8

192.168.1.100 192.168.1.1 SNMP 163 get-response 1.3.6.1.2.1.1.6.8

Figure 5.5.1 Example of packet capturing in Wireshark

The figure shows an example of the packet capture of the virtual switch, with

many different types of traffic, such as ARP, ICMP and few more. The packets in
question for this project will be the SNMP UDP packets, and also the REST TCP
packets that comprises on TCP headers packets alongside the TLS encrypted packets

for the HTTPs protocol. There are a lot of details contained within the program, from

the individual fields exist on every frame to the overall byte size of every single

frame, which will be the main focus and also one of the key values that will be

extracted and further analyzed. Below shows one example from a frame from SNMP.

w

Frame 23: 149 bytes on wire (1192 bits), 149 bytes captured (1192 bits)
Ethernet II, Src: VMware_d3:1d:d3 (@8:8c:29:d3:1d:d3), Dst: VMware_B9:4
Internet Protocol Version 4, Src: 192.168.1.108, Dst: 192.168.1.1
User Datagram Protocol, Src Port: 161, Dst Port: 35491
Simple Network Management Protocol
msg¥ersion: snmpv3 (3)
msgGlobalData
msghuthoritativeEngineID: 500000092300088c29d31dd3
msghuthoritativeEngineBoots: 2
msgAuthoritativeEngineTime: 3823386
msgUseriame:
msghuthenticationParameters: <MISSING:
msgPrivacyParameters: <MISSING:
~ msgData: plaintext (@)
~ plaintext
contextEngineID: 30028882903880008c29d31dd3
contextMame:
v data: report (8)
v report
request-id: 1681914416
error-status: noError (@)
error-index: @
variable-bindings: 1 item

Figure 5.5.2 Example of detailed information of a frame in Wireshark
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CHAPTER 6: TESTING AND ANALYSIS

6.1 Introduction

The testing will be done once the environment is done, and the testing will be
mainly utilizing the SRV-HOST with mostly open-source tools provided on the

official Linux repository.

The testing comprises of three items, which are the byte size of data
transmitted, and also the performance of the protocols, namely the Round Time Trip
and also the CPU cycle. The transmission of data is also analyzed in terms of
security, such as the encryption method and also the available different options for

the security mechanism.

6.2 Interaction between devices

The measurement of data size is gathered using Wireshark that is hooked to
the Virtual Switch connecting the devices. The Wireshark is able to capture the

whole packets, and in turn display the total byte size of the frame itself.

The structure of the packets should be consistent with the standards that was
highlighted on RFC 9293 for TCP and also RFC 768 for UDP. Below summarizes
the packet header structure from Layer 1 to Layer 4 for the OSI model, with the byte
size of the testing environment. The byte size of the packets is consistent throughout
the testing, with the assumption the environment is in IPv4 with no additional header

information embedded on the frames.
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Layer 2 Header | Layer 3 Header | TCP Header %‘ Application Data
. ldbytes + 20bytes, '. L
34 bytes 32 bytes (SYN) 40 bytes
66 bytes

(SYN) 74 bytes

Figure 6.2.1 Header structure of TCP packets

Layer 2 Header

Layer 3 Header

UDP Header | Application Data

| 14 bytes

+ 20 bytes

+ 8bytes '

A2
42 bytes

Figure 6.2.2 Header structure of UDP packets

The size of header is different between the two protocols, however when

comparing the total size of transmission, the application data makes a big difference.
Below is the transmission SNMP packets, with the structure of the SNMP data fields.

' R‘N

>
B

get-next-request

SNMPv2 interaction e. '

get-response

get-next-request

get-response

Data
Variable-Bindings
H . Get-Next-Request Request- | Error- | Error-
Version | Community | [ cetresponse T st | e || MiB Object |[ Value |
- ~ N ~ S

11 bytes

*Assume community is "PSM2” with version of “v2¢”

16 bytes

Figure 6.2.3 Data Flow and Structure of SNMPv2
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msgVersion
SNMPV3 interaction MSG generated msglD
bv Message msgMaxSize

Processing Model msgFlags
a . ' msgSecurityModel

o I " 65 bytes for noAuthNoPriv
N msEAUtha"tatWEEngme'D > 78 bytes for authNoPriv
msgAuthoritativeEngineBoots 86 bytesfor authPriv
get-request MSG generated
b U s _t msgAuthoritativeEngineTime Add 1 bytefor get-request
Ser Securi dueto size of msgMaxSize
report Y Y msgUserName

Model (USM)

msgAuthenticationParameters

msgPrivacyParameters

get-next-request extEneinelD
PDU (Encrypted ore e
get-response Plaintext) contextName
] or

Data
1

get-next-request

get-response

Variable-Bindings
’(’/” Next-Req - T - * Assume user psm2-user2 for authNoPriv
equest- | Error- | Error- * Assume userpsm2-user3 for authPriv
| Status | Index | IIBObscy |

* Priv protocol of AES with key “Skills33”
* Auth protocol of SHA with key “Skills35"

Get-Response D

v

Y
16 bytes

Figure 6.2.4 Data Flow and Structure of SNMPv2

As shown on the diagram, for the SNMPv2, the request of data directly starts
with the client sends a GetNextRequest-PDU, and the server will response with
GetResponse-PDU, where the MIB and the actual value for the corresponding MIB
object is returned. The client then continues to query the next value by sending
GetNextRequest-PDU with the current value of MIB object, and asking the server to
return the next object. The process repeats until the server return the MIB object that
conceptually follows the table in the implementation of the MIB, signaling that the
table have been fully traversed.

When talking about SNMPv3, the biggest difference between the previous
version is the inclusion of the User-based Security Model (USM). The USM
specifies the authentication and encryption of the SNMPv3 packet. It also provides
few additional information such as the boot times, up time, the user associated, and

more importantly the engine ID for the key localization mechanism.

SNMPv3 starts with the Get-Request-PDU, where the client discover or
query the SNMP server for the contextEnginelD that is required to generate the
SNMPv3 packets. The server replies with Report-PDU, where the PDU will reply
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with contextEnginelD, the authentication and privacy if the parameters are

configured.

& HTTPS interaction e. '
...................... >
=)

Means ACK packet

» @
TCP SYN
c— TCP SYN, ACK
TCP ACK
TLS Negotiation
GET request (HTTP method)
e )
Response Data
TCP FIN, ACK } TCP FIN, ACK
TCP ACK

Figure 6.2.5 Data Flow of TCP HTTPS

HTTPS protocol operates very differently than the SNMP protocol, and it has
much more component as it was using TCP, compared to the SNMP protocol that
uses UDP. The connection starts with the TCP three-way handshake to establish the
connection. The next process is the negotiation of the TLS secure channel using the
cryptographic key to secure the traffic. The negotiated encryption method is then
used to secure and protect the data of the actual traffic, encrypting the traffic and
makes it almost impossible to intercept the data. The actual data is also accompanied
by the ACK packets, where the receiving side of the communication actually send an
acknowledgement packet (ACK) to notify the sender that the packets arrived

successfully.

The data is also structured in a way where the packets are split when the size
of the data exceeds the MTU of the device. As we are using the default
configuration, the MTU should be 1500, means each of the protocol data unit (PDU)
should not be more than 1500 byte. The overhead of the traffic will vary between
transmission based on a multitude of factors but one of the key indicators is the total

size of actual data communicated.
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6.3 Size of data transmission

Based on the interaction that was highlighted above, few educated guesses
could be made for each of the interactions above. The formula below summarizes
how the SNMPv2 interaction translates to the estimations of the byte size of each
data.

Packet size SNMPv2c =

Layer 2 data (14 bytes) +

Layer 3 data (20 bytes) +

UDP data (8 bytes) +

SNMP Header Data (11 bytes) +
PDU Header Data (16 bytes) +
Data (x) (OID value + Actual value)

Data sent for each SNMPv2c transaction =
2(69 + x) bytes of data

The value is based on the values that Wireshark provides when analyzing the
actual byte size for each segment of the frames. The values are consistent throughout
the transmission, hence for this part the values hold true for this particular
environment between Linux and CSR1000v queried through snmpwalk command.
The figure below shows the growth rate of data for the SNMP packets, with
assumption of average actual data size between 15 and 30 bytes per packet, and also

the actual data sent by the MIB.
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SNMPv2 Data

25000
20000
15000
10000

5000

Size of data transmission (bytes)

0

0 3 6 91215182124273033363942454851545760636669727578818487909396

Number of items retrieved
—— SNMPv2 v2 =15 —— SNMPv2 v2 =30 SNMPv2 Actual data

Figure 6.3.1 SNMPv2 Data Transmission

As shown on the graph, the growth of the data is based on a linear fashion,
where the data is growing at a constant rate with the extrapolation of the number of
data if the data of PDU is 15 bytes and also 30 bytes. The estimated bytes are 16400
bytes and 22800 bytes for the 15 bytes and 30 bytes PDU respectively.

The actual data based on the snmpwalk command also shows a consistent
growth in line with the expectation as the average of actual data on the PDU is
calculated to be around 18 bytes. The actual size of transmission based on frame
forwarded gathered by Wireshark shows to be 17713 bytes, within the expected

range.

The same can be applied to SNMPv3 of all configurations, where the data is

growing linearly
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Packet size SNMPv3 noAuthNoPriv =
Layer 2 data (14 bytes) +

Layer 3 data (20 bytes) +

UDP data (8 bytes) +

SNMPv3 Header Data (65 bytes) +
PDU Header Data (34 bytes) +

Data (x) (OID value + Actual value)

Data sent for each SNMPv3 noAuthNoPriv transaction =
(2(141 + x) + 1) bytes of data

|Inc|ude the get-request (106 bytes) and report (148 bytes) |

Packet size SNMPv3 AuthNoPriv =
Layer 2 data (14 bytes) +

Layer 3 data (20 bytes) +

UDP data (8 bytes) +

SNMPv3 Header Data (78 bytes) +
PDU Header Data (34 bytes) +

Data (x) (OID value + Actual value)

Data sent for each SNMPv3 AuthNoPriv transaction =
(2(154 + x) + 1) bytes of data

Include the get-request (106 bytes) and report (148 bytes) |

Packet size SNMPv3 authPriv =
Layer 2 data (14 bytes) +

Layer 3 data (20 bytes) +

UDP data (8 bytes) +

SNMPv3 Header Data (86 bytes) +
PDU Header Data (34 bytes) +

Data (x) (OID value + Actual value)

Data sent for each SNMPv3 authPriv transaction =
(2(162 + x) + 1) bytes of data

| Include the get-request (106 bytes) and report (148 bytes) |

Based on the formula above, there is an overhead of 106 bytes and 148 bytes of get-
request and report packets. This is to request values of Context EnginelD, Context
Name and also security parameters. Similar to the SNMPv2, the data grows in a
linear fashion, with the additional of the SNMPv3 header data that increases quite a

bit of overhead compared to SNMPv2.

The size of header is also determined by the type of security parameter configured,
where the noAuthNoPriv only uses 65 bytes, the authNoPriv uses 78 bytes and
authPriv uses 86 bytes. All others being equal, it should see a same trendline of data

with different growth rate.
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SNMPv3 Data

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

Size of data transmission (bytes)
o

01234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950
Number of items retrieved
SNMPv3 noAuthNoPriv SNMPv3 authNoPriv === SNMPVv3 authPriv

Figure 6.3.2 SNMPv3 Data Transmission

The same thing could not be said with the RESTful APl as the TCP
interaction is more complex than the connectionless UDP. The calculation will be
done in parts, where few assumptions will be made in to predict the growth of the
data. TCP is a connection-oriented protocol, hence there is a transmission of
SYNACK packets to establish connection and FINACK packets to terminate
connection. TLS also requires a close_notify message before ending the connection.

The packets are consistent throughout testing and is calculated as shown below.

SYN ACK data -> 74 + 74 +66 = 214 bytes
FIN ACK data -> 66 + 66 + 66 = 198 bytes
Close notify -> 66 + 57 + 66 = 189 bytes

The next part is the TLS negotiation, where the secure channel is created. This only
applies to the HTTPS protocol and this does not apply to the HTTP only protocol.

There are few steps involve, as shown in the figure below.
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ﬁ HTTP TLS negotiation e.'

Send ClientHello messages
Supported extensions
Cipher suites available

Client Hello

A Send ServerHello message
Send corresponding cert(s) chain(s)
* Assumption of one self-sign cert
ServerHello Done message

Server Hello ’

Send Client Key Exchange
Assume AES-256 Client Key Exchange

Send Change Cipher Spec message
Finished Handshake Protocol Change Cipher Spec Send Change Cipher Spec message

Finished Handshake Protocol

Assumption for Server Hello

) ) ™  Assumption for ClientKey Exchange
Assumption for ClientHello . .
Layer 1-4 TCP 66 Assumption for Cipher Spec

Dats TLS Record Layer (3) 15 Layer 1.4 TCP ss [ows | Byres |
Layer1-4TCP 56 ServerHello 104 TLSRecord Layer (x3) 15 Layer 1-4 TCP 66

L5 RecordLngry /6 Certificate 850 Client Key Exchange 262 TLS Record Layer (x2) 10
cSuel R ServerHello Done 4 Cipher Spec 1 Cipher Spec 1

C G D &6 ACK Packet 66 Finished Handshake 68 Finished Handshake 68

Figure 6.3.3 RESTful HTTPS TLS Interaction

Few assumptions are made during this testing, as different environment yields
massive discrepancy, but the numbers will be assumed based on the current testing
environment. The ClientHello in this case a 512-byte data is sent with the

information of the client such as the supported TLS version and cipher suites.

The certificate is also vary greatly based on the certificate infrastructure, as a
typical environment will have a multi-tiered certificate signed by a trusted Certificate
Authority provider. The certificate typically requires around an average of 1500
bytes with 2 more intermediate issuer certificates also included. However, as this is
an isolated lab environment, the certificate is self-signed and only uses around 850

bytes.

The next big assumption is the cipher suite used, that will affect the Client
Key Exchange. In this environment, the cipher used is AES-256, which means it uses
a symmetric encryption algorithm consists of a 256-bit key, and which translates to

the size of the exchange itself.

The estimated transmission size of the data will be around 2311 bytes, based

on the assumption and the calculation below.
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HTTPs Negotiation:

Client Hello=66 +5+ 512 + 66 =649

Server Hello=66+15+ 104 + 850 + 4 + 66 = 1105
Client Key Exchange =66+ 15+ 262 + 1+ 68 =412
Change Cipher Spec =66+ 10+ 1+ 68 = 145

Data sent for HTTPs negotiation =
(649 + 1105 + 412 + 145) = 2311 bytes of data

The fragmentation of packets makes it too complicated to make an educated
guess of the data transmitted, as it requires to take account of many things such as the
MTU and TCP MSS value, the PSH ACK configuration, the optimization of TCP
traffic within network, that influences how many packets are generated for each
transaction, and in turn the data transmitted, including the overhead of the ACK

packets.

Hence, the actual data are taken directly from Wireshark for analysis
purposes. Below is the graph of the data transmitted for both HTTP and HTTPS.

HTTP vs HTTPS Data

1 32 60 91 121 152 182 213 244 274 305 335 366 397 425 456 486

Number of data retrieved
—e—HTTP HTTPS

Figure 6.3.4 RESTful Data Transmission

The HTTP will have a much lower bytes required per data, and subsequent
data as the traffic is transmitted in plaintext, which eliminates the many inefficiencies
of encryption such as padding and chunking the data into blocks. The graph clearly
shows that the data of the HTTP grows in a much slower pace than the HTTPS.
There are however few limitations as the data points are small and there may be
some discrepancy between data points, however it should generally be true that the

HTTPS just require much less bandwidth to send the same amount of data.
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Based on the data that was gathered above, another graph is plotted for all of
the data points, based on the items retrieved and the actual transmitted data size.

There are few observations that could be made from this graph itself.

Data transmission growth over number of items

1 32 60 91
Number of items retrieved

—8—SMNPv2 v3 noAuthNoPriv ®— v3 authNoPriv —e—v3 authPriv —8—HTTPS —e—HTTP

Figure 6.3.5 Overall Data Transmission

The initial observation is that the HTTP consumes the least bandwidth per
data retrieved, followed by HTTPS, SNMPv2 and finally SNMPv3, with the authPriv
requires the most bandwidth for the same amount of data retrieved. This however
does not hold true as HTTPS require a significant amount of data from the
encryption negotiation, which makes HTTPS not a very good protocol for small
requests. SNMPV3 also requires 254 bytes for the get-request and report, but it does

not impact the overall bandwidth required.

Taking the data that was gathered, the efficiency of the protocol is also able
to be calculated. The calculation of efficiency is basically taking the data that is
intended, the actual data and divide it against the data that is transmitted, making the
formula as shown below. This formula gives a general idea of how much the actual
data is represented within all of the transmitted data. The table summarizes the result

of the calculationefficiency of the protocol

Efficiency of data transmission:
Actual data

= X 100%
Total data transmitted
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Version Data retrieved | Total Data Actual PDU | Efficiency
SNMPv2c 2125 bytes 373380 bytes | 97451 bytes | 26.10%
SNMPv3 noAuthnoPriv | 2125 bytes 681931 bytes | 97451 bytes | 14.29%
SNMPv3 authNoPriv 2125 bytes 734904 bytes | 97451 bytes | 13.26%
SNMPv3 authPriv 2125 bytes 779520 bytes | 97451 bytes | 12.50%
RESTful HTTP 1457 bytes 35563 bytes | 31135 bytes | 87.54%
RESTful HTTPS 2733 bytes 230714 bytes | 225201 bytes | 97.61%

Table 6.3.1 Efficiency of data transmission

There is a stark difference between the protocols of SNMP and REST. The
efficiency of the SNMP is quite abysmal as for every data retrieved, it requires
another packet Get-Next to retrieve next packet, that fact decreases the efficiency by
a big margin, with even SNMPv3 only able to achieve less than 20 percent of overall

data transmitted.

HTTP on the other hand paints a huge difference in regards to the efficiency,
where the HTTPS are able to achieve more than 95 percent efficiency despite the
massive initial overhead, and the constant ACK packets back to the sender. In terms
of the data transmission, RESTful API beats the SNMP by quite a big margin, with
the efficiency difference makes little to no sense for SNMP protocol.

The key takeaway in terms of the data transmission is that the HTTP protocol
is the most efficient in terms of the required bandwidth to transfer data, and should

be preferred in situation that require minimum bandwidth requirement.

The HTTPS equivalent is not preferred when the data set are small especially
with the introduction of TLS that makes the initial data query require much more
bandwidth than expected. This is made worse when multiple devices are involved,
making the header exponentially larger by negotiating TLS for each devices every
time the query is done

SNMP returns the most consistent result, where the number of items directly
correlate to the bandwidth required. This is a double edge sword as the more data is
transmitted, the worse SNMP perform against RESTful API.
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6.4 Performance metric

The factor to consider other than the pure bandwidth is the performance
metrics. There are myriad of complex performance metrics that measure the
protocols extensively, but the focus on this particular environment will be on two
main metrics, the time elapsed for each of the process, and also the CPU cycles for

the retrieval process.

The testing of the performance metric will be using the program called perf as

mentioned earlier. Below shows an example output of a perf command.

7?;11”1 cycles-frontend

cles-backend

Figure 6.4.1 Example of perf output

The section inside the yellow box shows the command used to test the
system. The data that this project will be analyzing is the CPU cycles highlighted in
red, and also the time elapsed, highlighted in blue.

The time elapsed in the output refers to the Round-Time trip for the particular
command, as mentioned above at Chapter 4. The graph below is the plotting of time
elapsed for each command both SNMP and also RESTful API.

RTT growth over number of items

Time Elapsed (seconds)

366
Number of items retrieved

—e—SMNPy2 v3 noAuthNoPriv —s—v3 authNoPriv.  —e—v3 authPriv = —e—HTTPS HTTP

Figure 6.4.2 RTT Growth over number of items
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Based on the graph with the items retrieved limited at 750 items, the HTTP
protocol seems to require the least amount of time for the same amount of data
retrieved, and the SNMPv3 requires the longest time, with the SNMPv3 authPriv

requires more than 1 second when the HTTP did not even require 0.1 second of time.

The interesting part is the HTTPS, as observed for small amount of data,
HTTPS is extremely inefficient and time consuming as it needs to negotiate the
secure channel which makes the initial request time much higher than the SNMPv3.
However, as the negotiation only occurs once, the required time is shorter for the
subsequent request, and the time required is decreased below the SNMPv3 but still
higher than SNMPv2.

CPU Cycles over number of items

300

Total CPU Cycle (in Millions)

1 366
Number of items retrieved
—e—SMNPv2 v3 noAuthNoPriv.  —e—v3 authNoPriv.  —e—v3 authPriv.  —e—HTTPS HTTP

Figure 6.4.3 CPU cycles over number of items

CPU cycles tend to fluctuate as the processor alongside the kernel is
constantly optimizing the calculation, hence there will never be a consistent number,
especially when different CPU architecture deals with the optimization differently,
however the cycles should reflect based on comparison with different command on

the same machine and same target.

The result for the CPU paints a slightly different picture for each of the
protocol. The SNMP is still the same where the SNMPvV2 requires the least amount

of CPU cycles, followed by noAuthNoPriv, authNoPriv and lastly authPriv.

RESTful API on the other hand paints a different picture compared to the
RTT, where SNMPV2 is slightly more CPU efficient than HTTP based API. The
interesting interaction is the HTTPS, where the growth of the CPU cycles requires is

quite steep, and based on extrapolation, HTTPS required a staggering 700 million
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cycles to complete the same task when the other protocols compared to the other
protocols that requires less than 200 million cycles.

The key takeaway for performance is quite interesting, where HTTP gains an
edge on the RTT time, where it is extremely responsive, with the SNMP and HTTPS
trailing not far behind. SNMPv3 requires more time and REST is more preferred in

terms of responsiveness.

SNMPV2 requires the least CPU cycle, with HTTP protocol performing
similarly between the SNMPv2 and SNMPv3.

HTTPS on the other hand portrays a very different picture in CPU
performance. The CPU efficiency of the HTTPS is sacrificed for the gains in terms
of RTT and especially data size that is much efficient than any protocol. TLS and

encryption also play in as a factor on why CPU usage is extremely high.

6.5 Security Parameters

SNMP and RESTful API are protocols that transmit monitoring data to the
relevant agent and programs, and some information such as the IP address should be

kept confidential and encrypted to prevent anyone eavesdropping.

SNMPv2 and HTTP based RESTful API is extremely simple to configure
with a robust track record as it was widely used during the infancy of the internet.
SNMP does provide some basic security system namely the community-based
approach, where a community string is set on the device, and the query requires the
exact same community string. HTTP also provides a more robust authentication
method, from the Basic username password, token based, OTP or even RSA key to
authenticate the request before actually sending the data, hence on the first glance
HTTP gains an edge compared to SNMPv2

Although it serves the purpose as networking monitoring protocol, it
inherently does not provide much security to the transmission of the data, especially

when the data are transmitted through plaintext form, which makes it basically an
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insecure protocol, hence it should never be used on internet-facing devices in

general.

Below is the example of Wireshark eavesdropping the HTTP and SNMP
traffic. Do take note of the plaintext nature of both the protocols, and the plaintext

data that was captured inside the red boxes.

Frame 5: 89 bytes on wire (712 bits), 89 bytes captured (712 bits)
Ethernet II, Src: VMware_d3:1d:d3 (©@:06c:29:d3:1d:d3), Dst: VMware_
Internet Protocol Version 4, Src: 192.168.1.100, Dst: 192.168.1.1
User Datagram Protocol, Src Port: 161, Dst Port: 40028
Simple Network Management Protocol
version: v2c (1)
community: psm2
~ data: get-response (2)
v get-response
request-id: 1694853826
error-status: noError (@)

< v v v v

error-index: ©

v variable-bindings: 1 item
v 1.3.6.1.2.1.1.5.0: "CSR1lkv"
Object Name: 1.3.6.1.2.1.1.5.0 (iso0.3.6.1.2.1.1.5.9)
Value (OctetString): "CSR1kv"
[Response To: 4
[Time: ©.001210600 seconds]

Figure 6.5.1 Example of Wireshark packet capture SNMPv2c

Frame 34: 71 bytes on wire (568 bits), 71 bytes captured (568 bits)
Ethernet II, Src: VMware_75:32:ae (00:0c:29:75:32:ae), Dst: VMware_
Internet Protocol Version 4, Src: 192.168.1.101, Dst: 192.168.1.1
Transmission Control Protocol, Src Port: 80, Dst Port: 36348, Seq:
[2 Reassembled TCP Segments (356 bytes): #32(351), #34(5)]
Hypertext Transfer Protocol
~ JavaScript Object Notation: application/json
v Object
v Member: yumaworks-server:server
v Object
v Member: module
> Array
Key: module
[Path: /yumaworks-server:server/module]
Key: yumaworks-server:server
[Path: /yumaworks-server:server]

Figure 6.5.2 Example of Wireshark packet capture REST HTTP

VoV v v v v

SNMPv3 is introduced as the next iteration of the protocol, with
improvement of the MIB, but more importantly the security of the data transmission.
Although there are three options for the SNMPv3, which are noAuthNoPriv,
authNoPriv and authPriv, but the implementation of all three of the protocols yield

massively different effect in terms of security.
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The noAuthNoPriv have the same problem as the SNMPv2 and HTTP, as the
name suggests, no authentication and no privacy or encryption included in the

transmission, hence it suffers the weakness of eavesdropping.

v Simple Network Management Protocol
msgVersion: snmpv3 (3)
> msgGlobalData
> msgAuthoritativeEngineID: 800000090300000c29d31dd3
msgAuthoritativeEngineBoots: 2
msgAuthoritativeEngineTime: 3173903
msgUserName: psm2-userl
msgAuthenticationParameters: <MISSING>
msgPrivacyParameters: <MISSING>
v msgData: plaintext (@)
v plaintext
> contextEngineID: 800000090300000c29d31dd3
contextName:
v data: get-response (2)
v get-response
request-id: 29340327
error-status: noError (0)
error-index: @
~ varlable-bindings: 1 1tem
v 1.3.6.1.2.1.1.5.0: "CSR1kv"
Object Name: 1.3.6.1.2.1.1.5.0 (is0.3.6.1.2.1.1.5.0)
> Value (OctetString): "CSR1kv"

Figure 6.5.3 Example of Wireshark packet capture SNMPv3 noAuthNoPriv

authNoPriv option for the SNMPV3 is a bit secure as it requires an
authentication key before the server replies to the query, but still suffer the same
problem as all of the protocol above, where the confidentiality is not preserved, and
the authentication is just to make sure the credentials provided are correct before
passing the values. Notice the difference between the authNoPriv and noAuthNoPriv,
where both the data are in plaintext form, the authentication for authNoPriv is

included on the green box.
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v Simple Network Management Protocol
msgVersion: snmpv3 (3)
> msgGlobalData
> msgAuthoritativeEngineID: 800000090300000c29d31dd3
msgAuthoritativeEngineBoots: 2
msgAuthoritativeEngineTime: 3174313
msgUserName: psm2-user2
msgAuthenticationParameters:If78a1dc4f50e7f75cff39540|
msgPrivacyParameters: <MISSING>
v msgData: plaintext (@)
v plaintext
> contextEngineID: 800000090300000c29d31dd3
contextName:
v data: get-response (2)
v get-response
request-id: 1876992927
error-status: noError (0)
error-index: @
v variable-bindings: 1 item
v 1.3.6.1.2.1.1.5.0: "CSR1lkv"
Object Name: 1.3.6.1.2.1.1.5.0 (iso0.3.6.1.2.1.1.5.0
> Value (OctetString): "CSR1kv"

Figure 6.5.4 Example of Wireshark packet capture SNMPv3 authNoPriv

The lack of the encryption or confidentiality makes the 4 options, namely
RESTful HTTP API, SNMPv2, SNMPv3 noAuthNoPriv and SNMPv3 authNoPriv
not recommended on internet-facing devices, or even in any environment that sends
sensitive information through the network. This leaves the desired SNMP option to
be the SNMPv3 authPriv configuration and the HTTP Secure (HTTPS) protocol.

SNMPv3 authPriv is considered the golden standard for the SNMP protocol,
and as the name suggests, it requires authentication and privacy for the SNMP
packets. This means in order for the SNMP to return the monitoring data, it is
required to send the authentication data, either in the form of MD5 or SHA. When
the request is authorized, the PDU of the data is encrypted by the configuration
choice of the device, either in the form of DES or AES. The output for a transaction

in SNMP captured from Wireshark is shown below.
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Frame 4108: 178 bytes on wire (1424 bits), 178 bytes captured (1424 bits) on interface \Devic
Ethernet II, Src: VMware 09:40:7c (00:0c:29:09:40:7c), Dst: VMware_d3:1d:d3 (@0:0c:29:d3:1d:d
Internet Protocol Version 4, Src: 192.168.1.1, Dst: 192.168.1.100
User Datagram Protocol, Src Port: 55452, Dst Port: 161
Simple Network Management Protocol
msgVersion: snmpv3 (3)
> msgGlobalData
> msgAuthoritativeEngineID: 800000090300000c29d31dd3
msgAuthoritativeEngineBoots: 2
msgAuthoritativeEngineTime: 3175133
msgUserName: psm2-user3
msgAuthenticationParameters:I33c8deelaef288fcf1858334I
msgPrivacyParameters: |487c829a9b4388e8 |
~ msgData: encryptedPDU (1)
encryptedPDU:|6c6d52459Sdbb3333ba99ceZ1b2ec762607e5bd7d892b880734a8e246a4c437cf1f94d@1]

< v v v v

Figure 6.5.5 Example of Wireshark packet capture SNMPv3 authPriv

On first glance, SNMPv3 achieved the initial objective of the authentication
and privacy of the data, where authentication is required and the encryption is done
on the actual monitoring data, and it mostly done what it was supposed to do.
However, there is one quite big problem with this approach in particular, namely the
USM of the SNMP.

There is a huge problem with the implementation of the USM model in
SNMPv3, with the glaring issue is the inclusion of few really critical information
within the fields. The USM model contains the msgAuthoritativeEngineBoots and
msgAuthoritativeEngineTime, both of the values represent the number of reboots
done on the device, and also the uptime of the device. This value is returned after the
device query by sending the get-request packet. The inclusion of the values in effect
means that even if the authentication and privacy parameters is incorrect, or any
unsolicited messages sent, the device will return both of the values, which does not

make much sense.

The intention to include both the fields are to prevent replay attack where the
request is replayed on a different time, which the boot time is not consistent and
SNMP could reject. The exposure of both the data is quite dangerous as sophisticated
attacker could use the data above instead to uniquely identify and fingerprint the
SNMP-enabled device.

The problem is made worse when the msgUserName is in plaintext form,
essentially making the brute force of the device easier. The figure below basically
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simulates an unsolicited request with wrong username and password, and although
the data is encrypted similarly as the request above, the fields highlighted are the

information that potential attackers are interested instead and could be used against
the SNMP device.

« Simple Network Management Protocol
msg¥ersion: snmpv3 (3)
msgGlobalData

msgnuthoritativeEnginEIDl BEBBBB@QEBBBBGBczﬂdBIddBI

msghuthoritativeEngineBoots:f| 2
msghuthoritativeEngineTime: 3176316
mngser‘Mame
msghuthenticationParameters: 1ba391d22d5928c9f395baf2

msgPrivacyParameters: e9d154e87a326e7f
« msgData: encryptedPDU (1)

encryptedPDU: 4a33f344e24022ehdbletefeb3debdbBad2c3B2bef2dc@4T31168bAT7O63065

Figure 6.5.6 Wireshark packet capture of unsolicited SNMPv3 authPriv

Another big problem is the implementation of the SNMP Engine ID. Given that
the Engine ID is 80:00:00:09:03:00:00:0c:29:d3:1d:d3, taken from the same
unsolicited message highlighted in blue, the steps below are the steps an attacker will
take to determine more information regarding the device.

1. The first four octets are 80:00:00:09, with the enterprise ID as 9, where the
IANA search shows it as Cisco devices.

i5n
o
m Domains Protocols Numbers About

Internet Assigned Numbers Authority

Private Enterprise Numbers (PENs)

Entries About Request/Modify Data

Search by Number, Email, Organization, Contact

Decimal Organization Contact Email

9 ciscoSystems Dave Jones davej@cisco.com

Figure 6.5.7 IANA Search for Private Enterprise 1D

2. The fifth octets are 03, which means the SNMP Engine ID is determined by
MAC Address.
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3. The remaining octets are 00:00:0c¢:29:d3:1d:d3, considering MAC address is
6 octets, and the leading two octets are padded with 0, the MAC shown is
00:0c:29:d3:1d:d3, and it exactly matches with the MAC address below

sh ip int br
Interface IP-Address OK? Method Status Protocol
GigabitEthernetl 192.168.1.160  YES manual up up

sh int gl

GigabitEthernetl is up, line protocol is up
Hardware is CSR vNIC, address is 0@0c.29d3.1dd3 (bia ©00c.29d3.1dd3)
Description: VBox
Internet address is 192.168.1.100/24

Figure 6.5.8 MAC Address for the CSR1kv

The attacker could gain quite some information regarding the device just by getting
the Engine ID value, which is actually easy to get by just sending an unsolicited
SNMP packet.

The mentioned inherent security weakness of the implementation of SNMP
creates a problem and the need of an alternative protocol to complement or even
replace it. HTTPS is considered to be the replacement and the next protocol to be

used as network monitoring.

HTTPS is considered much secure than all aforementioned protocols as the
method to secure the traffic does not use any password or pre-shared key, instead it
uses RSA cryptographic key, either symmetric or asymmetric public key

infrastructure.

Without getting too complicated, the idea is that both of the client and server
negotiates a secure channel using a cryptographic key. The key is verified by a third
party called Certificate Authority, where the entity is tasked only to create, and
revoke the key if necessary. The server will use the keys created by the Certificate
Authority where both parties trust. If any of the process is tampered, there are
multiple warnings on both sides, from the negotiation process, cipher suite to the
issuer of the certificates. This creates another layer of security as the only data
transmitted is the security protocol and certificates, which could be consider public

information.
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SSL Encryption (HTTPS)

Client Server -]
Hello Public Key
» |* ;i;
w Send Public Key o e ke
& m | Y
<=
Generate Session-Key Decrpyt Data by using
243 and encrypt it _ the Private Key and read
with the Server’s - Session-Key 243. Now, |
Public Key know our secret! We can

start exchanging encrypted
data

Transfer begins. All data is encrypted

with Session-Key 243.

-
-

v

sid-500.com

Figure 6.5.9 Cryptographic key negotiation process, courtesy of Patrick Gruenauer

To summarize, when discussing the security factors, HTTPS in most of the
situation is the preferred protocol in addition to being used widely for a multitude of
purposes. SNMPv3 authPriv is a bit interesting because although it achieves
confidentiality and authentication, few fundamental flaws make the protocol less
desirable than the HTTPS.

Although SNMPv3 authNoPriv and HTTPS does come with the ability to
authenticate the request, the transmission of the information is not encrypted and
susceptible to packet capture. SNMPv2 and SNMPv3 noAuthNoPriv is less than
desirable, with packet capture able to even capture the community-string in plaintext

that is the security basis of both of the packets.
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CHAPTER 7: CONCLUSION

71 Introduction

This project is research about network monitoring protocols of SNMP and
REST API. The project starts with highlighting few of the key objective and scope of
the project. It continues with the research and development of idea based on the
topic. This project will involve some testing based on a lab environment, hence the
testing methodology is highlighted. The design of the environment is then sketched
with the relevant configurations. Implementation and also the expected output is
mentioned, with relevant screenshots and commands. Based on the implementation,

data is gathered and analysis is done in line with the objective and scope.

7.2 Project Summarization

The project basically aims to explore the fundamental differences between
the two protocols in terms of the architecture, how the protocol works. The protocol
shows a very different approach and all of the detailed findings are explained on

Chapter 6: Testing and Analysis

The interaction between SNMP uses an inefficient way of asking for the next
data after each data retrieved. The REST API approaches it using a single URL with
relevant HTTP Header, and the data is returned in JSON format. The different

architecture will result in different bandwidth requirement, and the data sizes are
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calculated, taking into account of the number of data retrieved. One of the interesting
findings is that SNMP is much better for smaller number of data retrieved, with
HTTP and TCP header for REST gaining advantage on a larger number of data
retrieved, with HTTPS having an impressive 97 percent compared to SNMP 12.5
percent.

The performance is then measured, based on few basic parameters, namely
the Round Time Trip for each protocol, and also the CPU cycles. Round Time Trip is
quite straightforward and RESTful API takes the lead as there is only one request
and one response, compared to SNMP sends get-next-response after getting the
current value, which causes the elapsed time to be much higher.

CPU cycles is a different story, with the difference between HTTPS and
SNMP shows a massive gap. HTTPS sacrifices the CPU cycle with complicated
encryption and optimization, in turn gains in term of actual bandwidth and time

required for the same amount of item retrieved.

Security is a big topic and this project only scratch the surface for each
security parameters for each protocol. The HTTP protocol, SNMPv2, SNMPv3
noAuthNoPriv and SNMPv3 authNoPriv does not fare well in terms of privacy as all
of the data transmitted is in plaintext. HTTP and SNMPv3 authNoPriv contains the
mechanism to authenticate the user that queries the device which makes it slightly
more secure. SNMPv2 uses community string and SNMPv3 noAuthNoPriv uses
USM username to authenticate without password, which makes them worse than the

two aforementioned above.

There are few interesting discussions regarding the SNMPv3 authPriv option,
and although the SNMPv3 achieved the authentication and privacy part of the PDU
data, the implementation of authPriv actually makes the device more vulnerable, as
there are many unnecessary data transmitted within the USM model. Attackers could
gain valuable information from the exposed data. The data that is included is also not

encrypted which partially defeats the purpose of the authPriv aspect.
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The implementation of HTTPS is considered secure as majority of the web
from the small blog to the massive conglomerate of the likes of Google and Amazon
uses it. The security of HTTPS is always on the radar of many security researchers,

constantly finding the vulnerability of HTTPS.

7.3 Project Contribution

This project is helpful for network engineers to understand the differences
between the SNMP and API. Based on the information, particularly on the
performance, data and security, a comprehensive decision could be made in
designing the network for a particular company.

This project also put some emphasis on the flow of the data between two
devices for both the SNMP and also the RESTful API. In this ever-changing
industry, SNMP is starting to show its age and some institutions are embracing the
RESTful API in their network monitoring. Universities should look into the potential
of this, and make more contributions on the protocol, improving this idea alongside

the industry in making RESTful API a better protocol.

7.4 Project Limitation

There are few limitations exist in this project. One of the glaring issues is that
the over-emphasis of the security weakness of SNMP. There are also some
weaknesses of the HTTPS if configured incorrectly such as using self-signed
certificate, difference between asymmetric and symmetric encryption algorithm,
minimum cipher suite and so on. The inclusion of the topics is out of the scope of
this project. The security part is also run through a simple analysis that is able to be

gathered by any packet capture software.

The lack of variety during performance measurement is also one of the
limitations. There are quite some parameters that, although will not affect the overall
result, some small changes are not accounted might slightly alter the result, such as
the uptime, the testing in a virtualized environment that is also running other tasks.
As mentioned, there might also be some discrepancies between Linux and Cisco

Systems, with the bandwidth is different in the factor of thousands.
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The data points measured are also lacking and some extrapolation is done in
order to get a general view, hence the graph functions more like a trendline instead of

an actual representation on how the devices perform under the same condition.

75 Future Works

The performance could be measured in a more comprehensive way, where
physical device is used to replicate the actual production environment and minimize

noises due to virtualization of the devices.

The security part of the project could be expanded, increasing the scope of
the HTTPS weakness, and more importantly the possible attack surface of both
protocols, the flaws or mis-configuration of devices that attacker can exploit.
Mitigation techniques could also be introduced to prevent aforementioned attacks

from happening.

The data transmission only applies to one VM to another. Few parameters
could be tweaked to observe the changes in terms of data size, with one such
parameters being the MTU and TCP MSS of the interface. Effects such as high jitter
on interface could also be introduced, or even packet loss and how it influences the
actual data sent and received by devices.
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