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ABSTRACT 

The need for sustainable and renewable energy alternatives is driven by the depletion of 

fossil fuels, which supply over 80% of the world's energy. Tidal, wind, geothermal, and solar 

energy are examples of clean energy, often known as renewable energy, because they can 

all be recycled naturally. As a renewable energy source, solar energy (including 

concentrating solar power (CSP) and solar photovoltaic (PV) power) contributes 3.6% of 

global electricity output. Nonetheless, it has cemented its position among other renewable 

energy technologies, accounting for more than 31% of total installed renewable energy 

capacity in 2022. Nonetheless, various faults, such as hotspots have an impact on the 

effectiveness and performance of solar panels. Underperformance of solar projects is 

becoming an increasing concern for solar energy system owners.The purpose of this study 

is to design a system that can easily detect defects on photovoltaic arrays of varying sizes 

and environmental conditions by developing an AI-based defect detection system using 

thermal imaging sensors to collect real-time temperature data from photovoltaic arrays and 

implement efficient algorithms for accurate defect identification, making it accessible and 

practical for the solar energy industry. This study is also to analyze the effectiveness and 

consistency of the AI-based defect detection system which uses YOLO v8. At first, The 

datasets are acquired from Google Images. Then, the datasets are acquired by flying a drone 

autonomously and capture thermal images of solar panels at a solar farm. The datasets are 

annotated using Roboflow. The AI model is trained and tested the AI model at 25, 50, 75 

and 100 epochs. The effects of the number of epochs and the size of the datasets on the 

performance of the AI model was also analyzed. These findings are important in selecting 

the optimum object detection model. 
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ABSTRAK 

Keperluan untuk alternatif tenaga yang mampan dan boleh diperbaharui didorong oleh 

kehabisan bahan api fosil, yang membekalkan lebih 80% tenaga dunia. Tenaga pasang surut, 

angin, geoterma dan suria adalah contoh tenaga bersih, selalunya dikenali sebagai tenaga 

boleh diperbaharui, kerana semuanya boleh dikitar semula secara semula jadi. Sebagai 

sumber tenaga boleh diperbaharui, tenaga suria (termasuk kuasa suria pemusatan (CSP) dan 

kuasa fotovoltaik suria (PV)) menyumbang 3.6% daripada keluaran elektrik global. Namun 

begitu, ia telah mengukuhkan kedudukannya di kalangan teknologi tenaga boleh 

diperbaharui yang lain, menyumbang lebih daripada 31% daripada jumlah kapasiti tenaga 

boleh diperbaharui terpasang pada tahun 2022. Namun begitu, pelbagai kerosakan, seperti 

titik panas mempunyai kesan ke atas keberkesanan dan prestasi panel solar. Prestasi projek 

suria yang kurang baik semakin menjadi kebimbangan bagi pemilik sistem tenaga suria. 

Tujuan kajian ini adalah untuk mereka bentuk sistem yang boleh mengesan kecacatan pada 

tatasusunan fotovoltaik dengan pelbagai saiz dan keadaan persekitaran dengan 

membangunkan sistem pengesanan kecacatan berasaskan AI menggunakan haba. penderia 

pengimejan untuk mengumpul data suhu masa nyata daripada tatasusunan fotovoltaik dan 

melaksanakan algoritma yang cekap untuk pengecaman kecacatan yang tepat, 

menjadikannya mudah diakses dan praktikal untuk industri tenaga suria. Kajian ini juga 

adalah untuk menganalisis keberkesanan dan ketekalan sistem pengesanan kecacatan 

berasaskan AI yang menggunakan YOLO v8. Pada mulanya, set data diperoleh daripada 

Google Images. Kemudian, set data diperoleh dengan menerbangkan dron secara autonomi 

dan menangkap imej haba panel solar di ladang solar. Set data dianotasi menggunakan 

Roboflow. Model AI dilatih dan menguji model AI pada 25, 50, 75 dan 100 zaman. Kesan 

bilangan zaman dan saiz set data pada prestasi model AI juga dianalisis. Penemuan ini 

penting dalam memilih model pengesanan objek yang optimum. 
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INTRODUCTION 

1.1 Background 

The depletion of fossil fuels, which account for more than 80% of global energy 

consumption, needs prompt research into sustainable and renewable energy alternatives. 

Clean energy, or renewable energy, is defined as energy that can be recycled in nature, such 

as tidal energy, wind energy, geothermal energy, and solar energy. In comparison to the 

traditional non-renewable energy that is dwindling, it is endless, and its regeneration is 

automatic, without human intervention, and will not cause undue environmental damage [1]. 

Renewable energy is gaining popularity as a future energy source around the world. Solar 

energy is a readily available, sustainable, and renewable energy source. Solar energy 

(includes concentrating solar power (CSP) and solar photovoltaic (PV) power) contributes 

3.6% of worldwide electricity output as a renewable energy source. It has, nevertheless, 

solidified its position among other renewable energy technologies, contributing for over 31% 

of total installed renewable energy capacity in 2022. With a capacity of 1053 GW in 2022, 

solar energy is the second most deployed renewable energy technology, trailing only 

hydroelectric technology [2]. 

 Solar energy, which originates from the sun in the form of solar irradiance, can be 

transformed directly to electricity using photovoltaic (PV) technology. PV technology 

employs semiconductor-based solar cells to capture solar radiation and convert it to electrical 

energy [3]. Solar energy has garnered a lot of attention in recent years as a feasible 

replacement for fossil fuels. It is a renewable and sustainable energy source. Nonetheless, 

various faults, such as cells, diodes, or multiple cells and multiple diodes, may have an 

impact on the effectiveness and performance of solar panels. These defects can considerably 

impair energy generation; hence it is vital to discover, categories and overcome them as soon 

as possible to avoid loss of money [4]. 
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1.2 Problem Statement  

Solar energy is a widely available, sustainable, and renewable source of energy. Solar 

energy, being a renewable resource, has the potential to replace the extensively used fossil 

fuel supply in the near future [2]. Solar energy has garnered a lot of attention in recent years 

as a feasible replacement for fossil fuels. It is a renewable and sustainable energy source. 

Nonetheless, various faults, such as cells, diodes, or multiple cells and multiple diodes, may 

have an impact on the effectiveness and performance of solar panels. These defects can 

considerably impair energy generation; hence it is vital to discover, categories and overcome 

them as soon as possible to avoid loss of money [4]. 

 Underperformance of solar projects is becoming an increasing concern for solar 

energy system owners. Underperformance from anomalies roughly doubled from 2019 to 

2022, from 1.61% to 3.13%, according to Raptor Maps data from analyzing 24.5 GW of 

large-scale solar systems in 2022. As systems age, solar panel underperformance due to 

equipment-related downtime and anomalies becomes more typical. Unfortunately, these 

challenges come at a high financial cost. The predicted annual income loss from the study 

sample's 24.5 GW was $82 million, resulting in a $2.5 billion loss for the whole solar energy 

business. According to the 2023 Solar Risk Assessment, there are various potential concerns 

that could impair solar system performance. Extreme weather risks, the increased use of 

solar systems in harsh weather areas, and the difficulty of estimating equipment-related 

performance are all significant considerations [5].  

 Another study by The National Renewable Energy Laboratory (NREL) provides a 

more realistic image of the deterioration of solar panels. In this study, which examined the 

rates of deterioration for nearly 2,000 solar systems in various regions around the globe, it 

was discovered that monocrystalline panels manufactured after 2000 only declined at a rate 

of 0.4%, which is less than half of the 1% rate specified in the warranties [6]. 
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1.3 Motivation 

Solar energy has received a lot of attention in recent years as a viable alternative to 

fossil fuels. It is a renewable and long-term energy source [4]. However, every item that is 

created will deteriorate over time. Solar panels are no exception. It will defect in the future. 

These flaws can significantly decrease energy generation; thus, it is critical to identify, 

categorize, and overcome them as soon as possible to avoid financial loss. As mention 

previously, according to Raptor Maps data from analyzing 24.5 GW of large-scale solar 

systems in 2022, underperformance from anomalies roughly doubled from 2019 to 2022, 

from 1.61% to 3.13% [5].  

Tables 1.1 and 1.2 illustrate the global installed solar capacity during the last 10 

years, as well as the contributions of the top fourteen countries. Table 2.1 indicates a massive 

22% rise in solar energy installed capacity between 2021 and 2022. While the top three 

installers are China, the United States, and Japan, China's relative contribution accounts for 

approximately 37% of total solar installation in 2022. Figure 2.2 depicts the contribution of 

energy sources to total installed power capacity and electricity generation by 2050. As seen 

in Figure 2.2, renewables accounted for almost 30% of global installed capacity in 2016, 

accounting for nearly a quarter of global energy generation. Solar power (PV+CSP) 

contributed roughly 8% of renewable electricity output. As illustrated in Figure 2.2, solar 

PV technology is estimated to have the most installed capacity (8519 GW) by 2050, making 

it the second most dominant production source after wind power, and to generate nearly 25% 

of total electricity needs by 2050 [2]. For this paper, the researcher will be focusing on solar 

photovoltaic (PV) power as it is the most common type of solar energy.  

The precision of the current solar array defect detection techniques is frequently 

lacking, which lowers energy output and increases maintenance expenses. Variations in 

temperature between arrays can be useful markers of faults, but current systems are unable 

to take advantage of this feature since real-time thermal data is not available. The goal of 

this project is to create a complete and affordable system that combines thermal imaging 

sensors with AI algorithms to provide reliable flaw identification and ongoing monitoring. 

In addition, it addresses issues with data quality, real-time analysis, and reducing false 

positives, all of which lead to the production of solar energy that is more dependable and 

efficient. 
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Table 1.1 Global installed solar capacity from 2013 to 2022 

 

 

Table 1.2 Top fourteen solar energy installers in 2022 

 
 

 

Figure 1.1 The contribution of energy sources in both electricity generation and total 

installed power capacity by 2050 
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1.4 Objective 

Our objectives for this project are: 

i. To design a system that can easily detect defects on photovoltaic arrays of varying 

sizes and environmental conditions 

ii. To develop a model for AI-based defect detection system that refers to thermal 

imaging sensors  

iii. To analyze the effectiveness and consistency of the AI-based defect detection system 

which uses YOLO v8. 

1.5 Scope 

i. The model is mainly for detecting defect on photovoltaic arrays of varying sizes and 

environmental conditions. 

ii. The model uses thermal imaging sensor to collect real-time temperature data from 

the photovoltaic arrays and will not be using any other types of sensors to collect 

data.  

iii. The model is an AI-based defect detection system that uses YOLO v8 which is the 

latest YOLO v Series. This model will not focus on other types of AI-based defect 

detection system such as TensorFlow. 

iv. The model will be using a drone to move and position the thermal imaging sensor. 

The drone is self-operated. 

v. The model will be solely focus on the development of the AI-based defect detection 

system and not the development of the drone and thermal imaging sensor. 

vi. The model will be solely detecting defects on photovoltaic arrays by its temperature 

attributes. This model will not detect cracks and other types of defects. 

vii. The model will be using a drone that is already available in the market and will not 

make any enhancement or improvement on the drone. There also will be no any type 

of development related to drone. 

viii. The model will be using a thermal imaging sensor that is already available in the 

market and will not make any enhancement or improvement on the thermal imaging 

sensor. There also will be no any type of development related to thermal imaging 

sensor. 



20 

ix. The model will capture the thermal imaging images on a bright sunny day with a 

luminescent of 20000 to 60000 lux. 

1.6 Expected Results 

At the end of the project, it is expected that the Design and Analysis of Photovoltaic Array 

Temperature Attributes Using Thermal Imaging Sensor Device for AI-based Defect 

Detection System can: 

 

i. Detect defects on photovoltaic arrays of varying sizes and environmental conditions, 

making it accessible and practical for the solar energy industry. 

ii. Enhanced defect detection accuracy by using an AI-based defect detection system 

using thermal imaging sensors to collect real-time temperature data from 

photovoltaic arrays and implement efficient algorithms for accurate defect 

identification. 

iii. Achieved a effective and consistent result of the AI-based defect detection system 

which uses YOLO v8. 
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LITERATURE REVIEW 

2.1 Renewable Energy  

As an alternative to conventional energy sources, the usage of renewable energy 

sources is growing quickly [7]. Renewable energy is energy generated from naturally 

replenished sources such as the sun and wind. Renewable energy can be used to generate 

power, heat and cool buildings, and move people [8]. Throughout human history, energy has 

been a vital subject that has almost completely surrounded existence. Although conventional 

energy resources such as coal, oil, and gas have been widely used to supply energy, oil 

reserves run out in 50 years, gas reserves last only 70 years, and coal reserves are totally 

depleted in 200 years. As a result, the traditional world is looking for alternative energy 

sources. Some countries raise awareness about renewable energy in order to kickstart the 

new eco-friendly energy usage. The primary goal of energy policy is to obtain energy in a 

dependable, continuous, clean, and cost-effective manner, while also expanding the sources 

[9].  

The current global energy system is unsustainable, and transitioning to renewable 

energy could benefit both people and the environment [10]. Promoting renewable energy 

policy can improve equity, health, and employment while reducing greenhouse gas 

emissions [11]. But the debate about switching to only renewable energy can get divisive, 

and some scholars have argued that it is not conceivable from an institutional, technological, 

or economic standpoint [12], [13], [14]. Such arguments highlight concerns about how 

markets can include energy from renewable sources, potential environmental effects, and the 

capacity to deal with the frequently ephemeral character of these sources. On the other hand, 

it has been stated that it is technically and economically possible to switch to a system that 

uses only renewable energy [15], [16], [17]. It has been suggested that these kinds of systems 

will provide advantages including lower levelized energy costs and lower water usage. 

Studies analysing a transition to 100% renewable energy have examined the electrification 

of every industry, including transportation, heating, and desalination. It has been 

demonstrated that electrification from renewable sources allows for more flexibility, which 
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results in efficient systems. The technical and financial advantages of an electricity system 

based on renewable energy also include reduced energy supply prices and a decrease in the 

levelized cost of heat and electricity [18], [19], [20]. In today's world, there are many types 

of renewable energy. Some forms of renewable energy that we have today are hydropower, 

energy meteorology, solar energy, biomass, storage technology and wind energy. Due to its 

rising popularity and request from some companies and development organizations during 

the second half of the Eighties, the Postgraduate Programme Renewable Energy (PPRE) was 

founded [9]. In this paper, the researcher focuses on solar energy. Figure 2.1 shows where 

renewable energy is growing. 

 

 

Figure 2.1 The growth of renewable energy 
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2.2 Solar Energy 

The increasing depletion of fossil fuels, which account for over 80% of global energy 

usage, necessitates immediate research into sustainable and renewable energy alternatives. 

Recent years have seen a sharp rise in the demand for clean, environmentally friendly energy, 

which has raised energy prices globally [21]. The need for this renewable energy drives our 

efforts to create greener energy sources and, soon, to decarbonize the earth. [22], [23]. The 

use of renewable energy as a future energy supply is gaining a lot of interest around the 

world. Solar energy is a widely available, sustainable, and renewable source of energy [1].  

Renewable energy technologies are alluring energy sources that are clean, friendly to the 

environment, and help meet the world's energy needs [24], [25], [26].  Applications for 

renewable energy include solar, wind, biomass, and geothermal energy. Solar energy is the 

most widely used application technology, followed by wind energy [27], [28]. 

 

As a renewable energy source, solar energy (including concentrating solar power 

(CSP) and solar photovoltaic (PV) power) contributes 3.6% to global electricity output. 

However, it has firmly established itself among other renewable energy technologies, 

accounting for almost 31% of total installed renewable energy capacity in 2022. Solar 

energy, with an installed capacity of 1053 GW in 2022, is the second largest installed 

renewable energy technology, trailing only hydroelectric technology, which has 1392 GW 

[2]. 

Concentrated solar power (CSP) technology harnesses the sun's rays to heat a liquid 

and produce steam in a limited area by the use of mirrors or lenses [29]. After that, the steam 

turns a turbine to generate energy. This method allows for the classification of CSP systems 

into three groups: power towers, parabolic troughs, and dish-stirling systems [30], [31]. The 

key is solar PV technology, which is the most promising clean and renewable energy source 

due to its cheap maintenance costs, ease of installation, dependability, and lack of fuel 

requirements [32]. Furthermore, the photovoltaic modules offer major advantages in clean 

energy production due to their low cost and lack of wear and noise [33]. Since photovoltaic 

solar technology has advanced so much in recent years, solar PV capacity has been installed 

all over the world to meet demand for electricity [27], [28]. As a result, solar energy has a 

huge chance to contribute significantly to the switch to cleaner, more sustainable energy 

sources. Additionally, solar energy initiatives provide an affordable and reliable source of 
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electricity. Table 2.1 summarises solar energy classifications by energy induced, 

applications, and efficiency. Figure 2.2 shows the yearly world solar photovoltaic estimated 

deployments from 2000–2050 [34]. 

 

Table 2.1 Lists of solar energy technology classification 

 

 

 

Figure 2.2 Yearly world solar photovoltaic estimated deployments from 2000–2050 [64] 
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2.3 Solar Photovoltaic (PV) Power  

Photovoltaic (PV) solar energy is generated by converting sunlight (solar radiation) 

into electricity using solar panels, a photoelectric effect-based technology. Photovoltaic cells 

in solar panels convert sunlight into direct current (DC) power, which is subsequently 

transformed into alternating current (AC) electricity for usage in homes and businesses. 

Monocrystalline, polycrystalline, amorphous silicon, and other thin-film semiconductor 

materials can be used to make solar cells. Because it is modular, it can be utilized in 

installations ranging from massive ground-mounted solar plants to small roof panels. As a 

result of this characteristic, solar PV has emerged as the major type of solar energy in use in 

recent years, accounting for more than 95% of all installations [3]. 

   

Tables 2.2 and 2.3 show the global installed solar PV capacity during the last 10 

years, as well as the contributions of the top fourteen nations. In the early years of solar PV 

development, Europe was the largest donor to worldwide solar PV projects. As seen in Table 

2.2, this continent accounted for 60% of the world's solar PV installations in 2013. Since 

2013, rapid solar PV development has occurred in various areas, particularly in China. In 

2017, China surpassed Europe as the largest solar PV market, accounting for around one-

third of global installed capacity. In 2022, the world's cumulative installed solar PV 

generating capacity will surpass 1046 GW. Table 2.3 illustrates a massive growth in solar 

PV installed capacity of around 22% (192 GW) between 2021 and 2022. While the top three 

installers are China, the United States, and Japan, China's relative contribution accounts for 

roughly 37% of total solar PV installation in 2022. The most substantial growth in the solar 

PV industry happened in China, the United States, and India in 2022, with increases of 86.1 

GW, 17.8 GW, and 13.5 GW, respectively [2]. 

  

Figure 2.3 shows the contribution of each continent in the world’s solar PV installed 

capacity in 2018, followed by 2030 and 2050 based on IRENA’s REmap analysis. In 

comparison to the PV installations in 2018 (481 GW), the world’s PV installed capacity is 

projected to increase almost six times by 2030 (to 2841 GW) and almost 18 times by 2050 

(to 8519 GW, of which the distributed scale (rooftop) would account for 40% while the 

remaining 60% would be utility scale). Asia will proceed to lead the solar PV market by 

about 65% of the world’s PV installations (mainly China with 76% of the total), followed 
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by North America at 15% (primarily the US with over 90% of the total) and Europe at 10% 

by 2030. By 2050, Asia, primarily China, is expected to maintain its leadership in the solar 

PV market with 4837 GW (about 57% of the world’s PV installations), followed by North 

America at 21% and Europe at 11%. Meanwhile, a much larger market growth is anticipated 

for both Africa and South America by 2050, as shown in Figure 2.3. By 2030, Asia will have 

over 65% of the world's PV installations (mostly China with 76% of the total), followed by 

North America at 15% (largely the US with over 90% of the total) and Europe at 10%. Asia, 

particularly China, is predicted to maintain its leadership in the solar PV market by 2050, 

with 4837 GW (about 57% of the world's PV installations), followed by North America 

(21%), and Europe (11%). Meanwhile, as illustrated in Figure 2.3, Africa and South America 

are expected to have substantially bigger market growth by 2050 [1]. 

 

Figure 2.4 depicts the evolution of the global weighted-average total installed cost of 

solar PV plants from 2014 to 2050. The global weighted-average total installed cost of solar 

PV projects decreased by almost 67% from 2652 USD/kW in 2014 to 876 USD/kW in 2022. 

The 2022 weighted-average total installed cost was recently reduced by around 4% as 

compared to the 2021 number. According to the findings of IRENA's REmap analysis, the 

global weighted-average total installed cost of solar PV projects would fall from 876 

USD/kW in 2022 to 340-834 USD/kW by 2030 and 165-481 USD/kW by 2050 [1]. 

  

Figure 2.5 depicts the difference in total installed cost trends for solar PV projects in 

fifteen main markets from 2010 to 2022. The country-weighted average total installed cost 

dropped from 2010 to 2022 in the top fifteen markets, with India experiencing the greatest 

reduction (89%) and Germany experiencing the smallest reduction (76%) in total installed 

cost. The reduction in total installed cost in 2022 compared to 2021 values ranged from 22% 

in Chile to 4% in the US, while the increase in total installed cost in 2022 compared to 2021 

values ranged from 34% in Germany and France to 2% in India. India had the lowest total 

installed cost among the top fifteen markets in 2022, at 640 USD/kW, followed by Turkey 

(690 USD/kW), China (715 USD/kW), Italy (771 USD/kW), and Spain (778 USD/kW). 

Japan had the highest 2022 total installed cost among the aforementioned fifteen major 

markets, at 1905 USD/kW, followed by the Netherlands (1221 USD/kW) and France (1157 

USD/kW) [1]. 
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Since 2010, the global weighted-average LCOE for solar PV plants has varied as seen 

in Figure 2.6. The global weighted-average LCOE of solar PV technology has been 

decreased by approximately 89%, from 0.445 USD/kWh in 2010 to 0.049 USD/kWh in 

2022. Since 2014, the LCOE of PV technology has fallen into the range of fossil fuel 

electricity costs. The most recent global weighted-average LCOE reduction from 2021 to 

2022 was roughly 3%. According to the findings of IRENA's REmap analysis, the LCOE 

for solar PV projects would fall from 0.049 USD/kWh in 2022 to an average of 0.02-0.08 

USD/kWh by 2030 and 0.014-0.05 USD/kWh by 2050 [1]. 

 

Since 2010, Figure 2.7 depicts the regional weighted-average LCOE of solar PV 

projects in the top fifteen markets. The country weighted average LCOE decreased in the 

top fifteen markets between 2010 and 2022, with Australia having the highest and lowest 

decreases (91%) and the United States having the lowest (75%). The reduction in the 2022 

LCOE relative to the 2021 estimates ranged from 9% in Chile and Australia to 1% in the 

United States. Meanwhile, the rise in 2022 LCOE over 2021 values ranged from 27% in 

Germany and Mexico to 2% in India. The observed countries weighted-average LCOE in 

2022 was within 0.037-0.1 USD/kWh [1]. 

 

Figure 2.8 depicts the change in global weighted-average capacity factor for solar PV 

plants between 2010 and 2022. From 13.8% in 2010 to 16.9% in 2022, there has been a trend 

towards greater capacity factors. The observed increase in capacity factor is primarily 

attributable to three essential factors: 1) system performance enhancement through loss 

reduction, 2) use of solar tracking devices, and 3) preference for deployment in areas with 

greater radiation levels [1]. 

 

 

Table 2.2 Global installed solar PV capacity from 2013 to 2022. 
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Table 2.3 Top fourteen solar PV energy installers in 2022. 

 

 

 

Figure 2.3 The world solar PV installed capacity by 2050. 
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Figure 2.4 The global weighted-average total installed cost of solar PV projects since 2014, 

followed by 2050. 
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Figure 2.5 The total installed cost trends for solar PV projects in major markets since 2010. 
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Figure 2.6 The global levelized cost of electricity for solar PV projects since 2010, 

followed by 2050. 
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Figure 2.7 Regional weighted average levelized cost of electricity for solar PV projects in 

the major markets since 2010. 
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Figure 2.8 The global weighted average LCOE, capacity factor, and total installed costs for 

CSP projects between 2010 and 2022. 

 

2.4 Defects on Photovoltaic Panels 

Solar energy has garnered a lot of attention in recent years as a feasible replacement 

for fossil fuels. It is a renewable and sustainable energy source. Nonetheless, various faults, 

such as cells, diodes, or multiple cells and multiple diodes, may have an impact on the 

effectiveness and performance of solar panels. These defects can considerably impair energy 

generation; hence it is vital to discover and categories them as soon as possible [4]. 

When examining solar monitoring data or performing visual inspections, there are 

various indicators that solar panels are underperforming. A large decline in energy 

production relative to the rated capacity of the PV system plainly indicates 

underperformance. Regularly monitor solar energy production and compare it to the 

projected output. The collection of dust, grime, or debris on the panels might diminish 

efficiency. Shade from neighboring trees or buildings can also cast shadows on the panels, 

reducing their performance. Cracks, cracks, and other obvious damage to the surface of the 

panels might impair their ability to convert sunlight into electricity. Electrical issues with 

the system, such as loose connections, broken inverters, or malfunctioning wiring, can also 

result in decreased performance [5]. 
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2.4.1 Snail Trails 

Snail trails are a sort of fault that can be observed with the naked eye as dark or 

discolored patterns on the surface of solar panels. They are created by a chemical reaction 

caused by moisture and oxygen within the panel's encapsulation material. Over time, this 

process might result in the creation of conductive channels, lowering the overall efficiency 

of the panel. In order to detect snail trails, regularly inspect the surface of the panels for any 

noticeable dark streaks or deterioration. Under some lighting circumstances, such as direct 

sunlight, snail trails are more visible [5]. Figure 2.9 shows snail trails defect on a 

photovoltaic panel. 

 

 

Figure 2.9 Snail trails defect on a photovoltaic panel. 

2.4.2 Hotspots 

Hotspots form when certain cells inside a solar panel overheat as a result of localized 

shadowing, dirt, or manufacturing flaws. These hotspots might cause irreversible damage to 

the damaged cells and lower the panel's overall output.  Use thermal imaging during the day, 

when the panels are in direct sunlight, to find hotspots. Hotspots are parts of the panel that 

have significantly greater temperatures than the rest of the panel [5]. Figure 2.10 shows 

hotspots defect on a photovoltaic panel. Figure 2.11 and Figure 2.12 shows hotspots defect 

on a photovoltaic panel under thermal imaging.  
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Figure 2.10 Hotspots defect on a photovoltaic panel. 

 

 

Figure 2.11 Hotspots defect on a photovoltaic panel under thermal imaging. 

 

 

Figure 2.12 Hotspots defect on a photovoltaic panel under thermal imaging. 
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2.4.3 Shading and Shadowing 

Shading and shadowing are typical problems that can have a negative impact on the 

performance of solar panels. Even partial shade on a single cell can significantly reduce the 

overall energy output of the panel. During the day, inspect the panels for shade and 

shadowing difficulties, especially when the sun is at a low angle. Look for shadows cast by 

objects, surrounding structures, or plants on the panels. Homeowners and business owners 

can keep an eye on this as they spend more time around the panels; make sure they know to 

call their installer if they see excessive shading or shadowing. Analyze the system's 

monitoring data as well for any odd dips in energy production [5]. Figure 2.13 shows shading 

and shadowing defect on photovoltaic panels. 

 

 

Figure 2.13 Shading and shadowing defect on photovoltaic panels. 

2.4.4 Microcracks 

Microcracks, also known as microfractures, are microscopic fissures found in 

photovoltaic cells. Mechanical stress during installation, shipping, or environmental 

conditions such as temperature variations are common causes of this sort of solar damage. 

These microcracks can impair panel performance. Visually inspect the panel's surface under 

adequate lighting to detect microcracks; cracks may show as faint lines on the cells or the 
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surrounding material. You can also utilize electroluminescence crack detection (ELCD) 

testing, which detects microcracks that a visual inspection may miss [5]. Figure 2.14 shows 

microcracks defect on photovoltaic panels. 

 

 

Figure 2.14 Microcracks defect on photovoltaic panels. 

2.4.5 Delamination 

PV panel delamination is a major problem that happens when the layers of materials 

within the PV module separate or become separated. It can occur as a result of moisture 

entering the back sheet through fractures, resulting in a drop in panel efficiency and busbar 

corrosion. Conduct a thorough visual inspection of the solar panels to detect delamination. 

Look for bubbles, blisters, or separations between the panel's layers, as well as discoloration 

or dark areas on the panel's surface. Electroluminescence (EL) testing, which captures 

images of the panel in the dark, can also reveal delamination [5]. Figure 2.15 shows 

delamination defect on a photovoltaic panel. 
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Figure 2.15 Delamination defect on a photovoltaic panel. 

2.4.6 Potential Induced Degradation (PID) 

Potential Induced Degradation PID is a phenomenon that impairs the performance of 

solar panels as a result of a high voltage potential difference between the solar cells and the 

frame, glass, or mount. This potential difference can cause solar cells to degrade, resulting 

in lower energy output. To detect PID, keep a close eye on the functioning of the solar panels 

and look for symptoms of declining efficiency. PID symptoms include a quick decrease in 

energy output or a considerable drop in performance when exposed to high humidity and 

high temperatures [8]. Figure 2.16 shows before and after PID defect on a photovoltaic panel. 

Dark cells represent PID susceptible cells [35]. 
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Figure 2.16 Before and after PID defect on a photovoltaic panel. 

 

2.4.7 Diode Failure 

Diodes are critical components in solar panels that prevent reverse current flow. Short-

circuited bypass diodes cause power losses of 33% or more and can cause hotspots. To detect 

diode failure, check the system's performance on a regular basis, looking for any substantial 

dips in energy generation or unexpected patterns in the monitoring data. Inspect the panels 

for evident signs of damage or discoloration as well [5]. Figure 2.17 shows diode failure 

defect on a photovoltaic panel. 
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Figure 2. 17 Diode failure defect on a photovoltaic panel . 

 

2.5 Defect Detection 

Renewable energy generation has been expanding at an exponential rate every year. 

The capacity of photovoltaic (PV) solar power facilities has increased by roughly 28% every 

year on average. The rise in capacity is primarily due to improvements in photovoltaic panel 

efficiency and the size of these solar power facilities. As the capacity of solar power facilities 

has increased in recent years, elaborate systems to manage their maintenance and operations 

have become necessary. PV modules degrade over time due to a variety of internal and 

external variables, resulting in power output as low as 50% for certain severe flaws. As a 

result, these flaws must be identified as soon as feasible to stop further deterioration. Faults 

in PV modules are issues that diminish power output and can be characterized as either 

permanent (electrical disconnection, wiring losses, and ageing) or transient (dust, shadow, 

and bird droppings). It is therefore critical to not only identify the defect but also to determine 

the type of fault so that suitable steps can be implemented [36]. 

  

For monitoring purposes, a lot of solar power plants currently use manual inspection 

procedures [36]. Traditional solar panel evaluation involves staff visiting the solar park and 

visually assessing each panel. This procedure is time-consuming and frequently results in 

errors [4].  Power stations with millions of PV modules distributed across a vast region 

cannot use this technology. These power plants have very high operating and maintenance 

costs; thus, we need an automated system that can lower these costs and increase system 

efficiency. Techniques based on electrical characteristics, Infrared imaging, visual 
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inspection, ultrasonic inspection, electroluminescence imaging, and lock-in thermography 

are among the general categories of existing fault analysis techniques. Because thermal 

imaging is readily accessible and applicable to large solar plants, we employ it in our work 

to identify problems in solar power facilities [36]. Automation of this process is now possible 

because to advancements in deep learning and computer vision technology, which will make 

it faster, more effective, and less expensive [4]. 

2.5.1 Previous Work on Defect Detection 

This section addresses earlier attempts to discover and characterize flaws in solar 

panels, as well as their limitations. A thermography-based approach for detecting defects 

and faults in PV systems was developed by Aghaei et al. [37]. Their program discovered 

infrared photos with a hot temperature zone. To reduce noise, the original image was 

transformed to grayscale before using Gaussian filtering. After that, the images were 

processed to a binary model to distinguish between hot and cool regions in the PV modules. 

Finally, the Laplacian model was utilized to describe the features of problematic components 

and evaluate the boundary region of the panel. 

  

Jaffery et al. [38] devised an approach for detecting faults using infrared technology. 

The diagnosis system employs fuzzy logic for intelligent and automatic detection. A 

significant difference in colour pattern between faulty and healthy panels is used to classify 

different defects. The knowledge for classification is used to define the fuzzy rule basis. 

Nonetheless, this article only provides the type of problem and not the location or region of 

the fault. 

  

Dunderdale et al. [39] used a scale invariant feature transform (SIFT) feature 

descriptor, spatial pyramid matching, and deep learning to recognize and classify thermal 

infrared images of PV modules. SIFT descriptor is used in conjunction with the random 

forest model and SVM kernels, specifically the polynomial and radial basis functions, to 

detect defects. In this 2-class classification challenge, random forest is found to perform 

better. Defect classification is performed utilizing five classes and methodologies such as 

the bag of visual words model, spatial pyramid matching, and deep learning. Deep learning 

models based on VGG-16 and MobileNet outperformed feature-based techniques. The 
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implemented models have the best flaw detection accuracy of 91.2% and classification 

accuracy of 89.5%. Even however, not enough data have been used in this investigation, and 

the location of the issue has not been determined, which could have simplified the 

maintenance tasks. 

  

Hazem Munawer Al-Otum created an effective fault detection and classification 

strategy employing multi-scale convolutional neural networks (CNN) based models in two 

scenarios: a) a transfer learning-based approach based on two selected deep neural networks 

(DNN) (ResNet18 and ShuffleNet) and b) an independent light-depth CNN (denoted as 

CNN-ILD). CNN-ILD is a lightweight CNN that employs parallel convolutional branches 

with low-to-high kernel sizes. CNN-ILD was able to capture a wide range of features, from 

basic to particular textures and patterns, thanks to this design. Following proper 

preprocessing and class categorization, the public ELPV dataset was used. The experimental 

results showed promising classification results of PV cell abnormalities in 

electroluminescence pictures (88.41%-98.05%). CNN-ILD has an advantage over the other 

two proposed pretrained DNNs in terms of computational power/time and stability [40]. 

Figure 2.18 shows electroluminescence imaging setup. Figure 2.19 shows examples on EL 

images taken form the ELPV dataset: a) mono c-Si cells (mc-Si), and b) poly c-Si cells (pc-

Si). 

  

B Sandeep, D Saiteja Reddy, Aswin R and R Mahalakshmi propose a way to monitor 

PV modules and hotspots detection using TensorFlow. This method consists of creating 

hotspot images that are comparable to real solar panel photographs, training the model, 

verifying it with validating images, and then testing images in which the model determines 

the hotspot kind and classification. The model is trained using several hotspot image kinds, 

and once each generated image has been validated, it can identify and categories the hotspot 

type, indicating that the hotspot classification is complete. By identifying the type of hotspot, 

the appropriate action can be done right away to prevent panel damage. The results of this 

method shows that images must be fed into the model in order for it to classify them. This 

can be done by uploading images to Python Tkinter and identifying the type of hotspot. 

Because this model can also identify the sort of hotspot, it was able to detect the colour of 

the hotspot and classify it. Figure 2.20 shows the image classification result. Using the 

generated data, the model was tested and trained. Figure 2.21 displays the accuracy results 
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from training and validation, whereas Figure 2.22 displays the loss. As a result of the training 

and validation accuracy improving linearly for each epoch, the model's accuracy in 

identifying hotspots is improved. It is clear from the loss graph that each epoch's loss is 

reducing linearly. The validation loss graph does not show the training loss spike that occurs 

at one point in time. Consequently, precision is enhanced [41].  

  

Jing Huang, Keyao Zeng, Zijun Zhang and Wanhan Zhong develop a solar panel defect 

detection design based on YOLO v5 algorithm. To compensate for the low detection 

efficiency of the conventional defect detection techniques, the YOLO v5 algorithm is 

enhanced. To improve the LCA attention mechanism, it is first improved based on coordinate 

attention to obtain a larger target range, which can improve the sensing range of target 

features in addition to fully capturing feature information; second, the feature information 

with excessive pixel differences is balanced by assigning different weights to the weighted 

bidirectional feature pyramid, which is more conducive to multi-scale fast fusion of features; 

and finally, the typical coupled head of the YOLO series is replaced with a decoupled head, 

which can improve the task branch and detection accuracy. Comparative studies conducted 

on the solar panel defect detection data set reveal that following algorithmic improvements, 

the mAP is up to 95.5%, 2.5% higher than pre-improvement levels, and the recall rate 

increases by 2.4% and 1.5% overall. It can more precisely identify any flaws, standardise 

solar panel quality, and guarantee electrical safety [42]. Figure 2.23 shows the YOLO v5 

network structures. 

  

In this paper, the researcher decided to use YOLO v8 as the model to detect defect on 

PV modules. The researcher believes that YOLO v8 will provide a higher accuracy result. 

The reseacher will use thermal imaging sensor to detect the temperature attributes of the PV 

modules. The model and the thermal imaging sensor will be attach to a drone to allow human 

to detect defects in one place. Table 2.4 summarize the previour work on defect detection. 
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Figure 2.18 EL imaging setup. 

 

 

Figure 2.19 Examples on EL images taken form the ELPV dataset: a) mono c-Si cells (mc-

Si), and b) poly c-Si cells (pc-Si). 
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Figure 2.20 Image classification result. 

 

 

Figure 2.21 Accuracy results. 

 

 

Figure 2.22 Loss results. 
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Figure 2.23 YOLO v5 network structure. 
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Table 2.4 Comparison of previous work. 

Reseacher/s 
Type of Technology 

Used to Detect Defect 
AI Model 

Jaffery [38] Infrared technology Fuzzy logic 

Dunderdale [39] Thermal infrared VGG-16 and MobileNet 

Hazem Munawer Al-

Otum [40] 
Electroluminescence 

ResNet18, ShuffleNet 

and light-depth CNN 

B Sandeep, D Saiteja 

Reddy, Aswin R and R 

Mahalakshmi [41] 

Hotspot images TensorFlow 

Jing Huang, Keyao Zeng, 

Zijun Zhang and Wanhan 

Zhong [42] 

Excessive pixel 

differences 
YOLO v5 

 

 

2.6 Artificial Intelligence 

Artificial intelligence (AI) is a method that refers to a system or a machine that 

imitates human intelligence in order to accomplish real-world operations. AI enables the 

system to be trained from data and to reason and learn from experience in order to address 

specific challenges. Based on the facts, it can heuristically refine itself. AI applications 

include enhanced web search engines, self-driving cars, games, human speech recognition, 

recommendation systems, and healthcare, among others [43].  
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AI was developed in the computer science sector around 1950, and it mimicked the 

human mind to create machines that can analyze, methodize, and perform based on the data 

presented to the system, which will be advantageous when massive amounts of datasets are 

employed. AI machines are widely employed in the industrial domain, prompting greater 

research in engineering domains such as NLP (natural language processing), disease 

detection and medical, and science. AI computers used to learn from their previous 

experiences, which was useful in problem solving, and it has been applied in several 

application areas to improve AI machine performance. Figure 2.24 depicts the relationship 

between Artificial Intelligence, Machine Learning, Deep Learning, and Explainable 

Artificial Intelligence [43]. 

  

Machine Learning (ML) is a technology that allows a computer to recognize patterns, 

make more accurate predictions, and perfect itself through experience without being 

explicitly programmed to do so. Machine Learning is utilized to create an AI-powered 

application. The ML Methodologies are used in this procedure. The ML procedure is 

depicted in Figure 2.25. AI is frequently utilized to make choices. When combined with AI, 

the system can do jobs more quickly and predict the judgements required to handle complex 

problems, assess risks, and evaluate company success [43]. 

  

Deep learning (DL) is the study of algorithms that are impacted by the structure and 

function of the human brain. DL use artificial neural networks to build an intelligent model 

and tackle complex issues. To train a model, DL uses both structured and unstructured data 

(e.g., visual assistants like Siri, Alexa, and facial recognition, among others). DL is utilized 

in medical research and the prognosis of potentially fatal diseases. Deep Neural Networks 

(DNNs) have recently demonstrated exceptional prediction performance [43]. 

 

Deep learning has made significant progress in recent years as a result of its improved 

computing power and ability to deliver a better solution for a wider number of datasets. Deep 

Learning (DL) is a subtype of AI that is generated using an artificial neural network. The 

input data in this DL procedure will be trained by themselves over mathematical illustration. 

Convolutional Neural Networks (CNN), Visual Geometric Group Net (VGGNet), Residual 

Network (ResNet), Fully Convolutional Networks (FCNs), U-net, Deep feed forward 

networks, Siamese Neural Networks, and Graph Neural Networks are some DL models [17]. 
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Figure 2.24 The relationship between Artificial Intelligence, Machine Learning, Deep 

Learning, and Explainable Artificial Intelligence. 

 

 

Figure 2.25 Process of Machine Learning. 

2.7 You Only Look Once (YOLO) 

The method of identifying objects YOLO has fundamentally altered computer vision. 

It is intended to conduct real-time object detection in pictures and videos, setting a new 

industry benchmark. Unlike traditional algorithms that rely on many stages, YOLO has a 

unified architecture that predicts bounding boxes and class probabilities simultaneously. 

Because of its unique detection technique, YOLO can reach amazing detection speed while 

maintaining high accuracy. Because of its effectiveness, simplicity, and ability to handle 

real-time situations, YOLO has acquired appeal and widespread implementation [44]. 

 

You Only Look Once (YOLO) is a popular and well-known algorithm. YOLO is 

well-known for its ability to detect objects. The first YOLO version was introduced in 2015 

by Redmon et al. Scholars have produced various YOLO later versions referred to as YOLO 
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v2, YOLO v3, YOLO v4, YOLO v5, YOLO v6, YOLO v7 and YOLO v8. There are a few 

limited-edition revisions, such as YOLO-LITE [45]. Table 2.5 shows the evolution of YOLO 

object detection versions. 

 

The model's small size and high calculation speed are at the heart of the YOLO target 

detection technique. YOLO's structure is easy. The neural network may immediately output 

the position and category of the bounding box. YOLO's speed is rapid since it simply needs 

to enter the image into the network to acquire the final detection result, therefore YOLO can 

also realize video time detection. YOLO detects objects directly using the global image, 

which may encode the global information and reduce the inaccuracy of perceiving the 

background as the object [46]. 

 

In this paper, the researcher focuses on YOLO v5 and YOLO v8. This is due to that 

the researcher will be using YOLO v8 for this project and will compare a previous work that 

uses YOLO v5. A brief introduction to YOLO v5 and YOLO v8, YOLO v5 was introduced 

in 2020. It was an unofficial version developed by Ultralytics, not endorsed by the original 

creators, with differences in architecture and implementation compared to YOLOv4 [45]. 

YOLO v8 was introduced in 2023. It was published by Ultralytics, considered the best 

YOLO model to date, incorporating new features and improvements for enhanced 

performance and flexibility. Suitable for various object detection, tracking, instance 

segmentation, image classification, and pose estimation tasks [44]. 
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Table 2.5 The evolution of YOLO object detection versions. 

 

2.7.1 YOLO v5 vs YOLO v8 

As previously mention, based on the YOLO v5 algorithm, Jing Huang, Keyao Zeng, 

Zijun Zhang, and Wanhan Zhong create a solar panel fault detecting design. The YOLO v5 

algorithm is improved in order to make up for the low detection efficiency of the traditional 

flaw detection techniques. The LCA attention mechanism is enhanced in three ways: first, 

by using coordinate attention to obtain a larger target range, which can enhance target feature 

sensing range in addition to fully capturing feature information; second, by giving different 

weights to the weighted bidirectional feature pyramid, which is more favourable to multi-

scale Fast feature fusion; and third, by substituting the typical coupled head of the YOLO 

series with a decoupled head, which can enhance task branch and detection accuracy. 

..Comparative analyses on the solar panel defect detection data set show that after 

algorithmic enhancements, the recall rate rises by 2.4% and 1.5% overall, and the mAP 

reaches up to 95.5%, 2.5% higher than pre-improvement levels. It can ensure electrical 

safety, standardize solar panel quality, and more accurately pinpoint any problems [47].  

 

Table 2.6 compares the experimental results. Aside from the comparison with the 

original YOLO v5 model network, alternative target detection networks such as SSD, Faster- 
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RCNN, YOLO v3, YOLO v4, and YOLO v7 models were trained and tested using the 

identical solar panel defect detection dataset and model parameters. Except for Faster-

RCNN, all of the models in the preceding networks are one-stage network models. Because 

the YOLO v5-BDL model has a larger network structure than the YOLO v5, its weight is 

12.93 MB larger, and its detection speed is 26.73 fs 1, but other indicators such as Precision 

(P), Recall (R), and average accuracy (mAP) increase by 1.5%, 2.4%, and 2.5%, 

respectively. MAP increases by 3.3%, 22.32%, 5.3%, 3.1%, and 2.3%, respectively, when 

compared to SSD, Faster-RCNN, YOLOv3, YOLOv4, and YOLOv7 models, and the 

detection speed of a single image is faster and the file percentage is less. The comparison 

above clearly demonstrates that the YOLOv5-BDL model maintains superior performance 

in memory and other software costs, while boosting detection accuracy and performance 

[47]. 

 

YOLOv8 is the most recent model in the YOLO family, introduced by Ultralytics in 

2022. YOLOv8 is based on the YOLOv5 framework and offers architectural and developer 

experience enhancements. It is faster and more accurate than YOLOv5, and it offers a unified 

framework for training models for object identification, instance segmentation, and image 

classification [47]. 

 

There are numerous models available for object detection. However, YOLOv8 and 

YOLOv5 are two of Ultralytics' most popular and cutting-edge versions. YOLOv8 is the 

newest member of the YOLO family, building on the success of previous versions while 

introducing new features and upgrades to improve performance and flexibility. In contrast, 

YOLOv5 is noted for its speed, simplicity, and precision. Table 2.7 shows the object 

detection performance comparison between YOLO v8 and YOLO v5 [47]. 

 

YOLOv8 and YOLOv5 are both fast object identification models that can process 

photos in real time. However, YOLOv8 is faster than YOLOv5, making it a superior 

alternative for real-time object detection applications. When selecting an object detection 

model, accuracy is a vital issue to consider. YOLOv8 is more accurate in this way than 

YOLOv5, thanks to various architectural advancements. Both YOLOv8 and YOLOv5 are 

simple to use, with YOLOv5 being the more user-friendly of the two. YOLOv5 is built on 

the PyTorch framework, making it simple to use and deploy for developers. YOLOv8 
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provides a unified training framework for models that perform object detection, instance 

segmentation, and picture classification. This makes it a better choice for those looking for 

a more extensive set of tools [47]. 

  

As a conclusion, when it comes to selecting the optimum object detection model, both 

YOLOv8 and YOLOv5 offer advantages and disadvantages. YOLOv5 is more user-friendly, 

however YOLOv8 is faster and more accurate. YOLOv8 is the best solution for applications 

that require real-time object detection. Finally, the model to utilize will be determined by the 

unique requirements of your application [47]. 

 

Table 2.6 Comparison of experimental result. 

 

 

Table 2.7 Object detection performance comparison between YOLO v8 and YOLO v5. 
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2.8 Thermal Imaging Sensor. 

Since 1960, thermal imaging has been restricted to military and medical uses; but, 

with recent advances in chip technology and decreased costs, thermal imaging has gained 

mainstream popularity. Thermal imaging uses photons in the infrared section of the 

spectrum, specifically wavelengths ranging from 3 to 14 μm. Table 2.8 shows how these 

wavelengths are separated into distinct subbands. Thermal imagers use the infrared section 

of the spectrum to create a map of the spatial temperature distribution of the acquired scene. 

The temperature map's pixels represent the relative temperature of that spot in the 

environment. With proper calibration, bias reduction, and other processing, these 

temperature maps can be easily used for real-time applications [48]. 

  

Thermal imaging technique is independent of any external light source because it is 

based purely on the detection of infrared radiations (IRs) emitted by objects. As a result, the 

technology is proven to have a higher processing speed than its RGB counterparts. Due to 

decreasing chip costs, greater portability, and flexible designs, thermal imaging devices are 

now widely employed in civilian applications such as fever scanners, insulation detectors, 

and electrical hotspot detectors [48]. 

 

Thermal cameras' exceptional sensitivity has allowed them to be used in optical 

applications as well. Thermal imaging can also be used for fire prediction, weather 

forecasting, and animal monitoring. RGB cameras rely on illumination and reflection from 

objects, but thermal cameras detect emitted IR even when the object is cold. Thermal 

cameras have an edge over regular RGB cameras in discriminating between similar things 

since each object's heat signature is unique [48]. 

 

Table 2.8 Subbands in the infrared spectrum. 
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2.8.1 Principle of Thermal Sensing 

Thermal imaging is a noncontact and nondestructive way of measuring an object's 

temperature. Thermal imaging uses the infrared radiation emitted by an object to create a 

visual temperature profile of the captured scene. The infrared spectrum is separated into 

distinct subbands based on wavelength, as indicated in Table 2.8. The intensity of IR emitted 

is determined by the wavelength [48].  

 

Thermal imaging technology makes use of this energy intensity to produce a 

temperature map of the photographed image. The amount of thermal radiation emitted by a 

body is principally determined by its temperature (T) and emissivity factor (). The emissivity 

factor is the ratio of energy emitted by a body to that emitted by a perfect blackbody at the 

same temperature. For a perfect blackbody, the emissivity factor is one, and for a perfect 

white body, it is zero. Based on the IR energy radiated from a body, the surface temperature 

Ts of the body can be calculated as follows: 

𝑊 = [
2𝜋5𝑘4

15𝑐2ℎ3
] 𝑇4 =  𝜎𝑇𝑠

4 

where W represents the energy flux emitted per unit area (Wm−2) of the body, c is the speed 

of light in vacuum (3 × 108 ms−1), k is Boltzmann’s constant (1.38 × 10−23 JK−1), σ is 

Stefan–Boltzmann’s constant (5.67 × 10−8 Wm−2K−4), h is Planck’s constant (6.63 × 

10−34 Js), and T is the temperature of the body in Kelvin [48]. When (1) is applied to real 

objects, then the surface temperature is computed as 

𝑊 =  𝜀𝜎𝑇4 

where ε is the object’s emissivity. By utilizing W, we can obtain a thermal visualization of 

the captured scene which is the basis of thermal imaging. 

  

The thermal detector/sensor is the most important component of a thermal imaging 

system. The thermal detector is in charge of converting the incident IR to a temperature 

value. Thermal detectors are categorized into three types based on their operating principles: 

pyroelectric, thermoelectric, and bolometer sensors. Pyroelectric sensors are comprised of 

specific materials that build charge in response to incident infrared light. A change in 

temperature in the captured scene causes a proportionate change in the collected charge. This 

shift in the collected charge is utilized to compute the scene's thermal profile. The Seebeck 

(1) 

(2) 
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effect, on the other hand, governs the operation of thermoelectric sensors. The Seebeck effect 

is a phenomenon that produces a voltage difference based on the temperature difference 

between two dissimilar electrical conductors. In comparison to pyroelectric sensors, 

thermoelectric sensors are more reliable and less expensive. Nonlinearity difficulties plague 

thermoelectric sensors due to the nonlinear relationship between output voltage and sensed 

temperature [48]. 

  

Bolometer-based thermal detectors have recently acquired popularity due to their high 

thermal sensitivity, small size, and great accuracy. A bolometer is a particular material whose 

electrical resistance changes in response to the amount of IR incident on it. Vanadium oxide 

(VOx) and amorphous silicon (a-Si) are two common materials used in bolometers. The 

FLIR Lepton 3.5 is one example of a bolometer-based thermal sensor. For thermal imaging, 

the FLIR Lepton 3.5 employs a VOx-based microbolometer array. Figure 2.26 depicts a 

simplified block diagram of a microbolometer-based heat sensor in operation. The optical 

lens system focuses the incident infrared (IR) onto the focal plane array (FPA), as shown in 

Figure 2.26. Every element on the FPA is a pixel, and every pixel is a VOx microbolometer 

that changes temperature in response to incident flux. The microbolometer's resistance is 

proportionate to the temperature change. Voltage fluctuations pick up the change in 

resistance and feed it into a system-on-chip (SoC). The SoC processes the required signals 

and outputs the scene's thermal profile [48]. 

 

 

Figure 2.26 Working of the bolometer-based thermal sensor. 



57 

2.8.2 Latest Developments in Thermal Cameras 

The variations of thermal camera models are displayed in Table 2.9 along with a few 

important metrics that can be used to determine which thermal camera is best for a certain 

application. The appropriateness of thermal camera models from FLIR and MOBOTIX for 

different applications has been covered in this paper [48].  

 

Predictive maintenance makes use of FLIR thermal imaging cameras. In order to 

identify and address electrical problems, isolation problems, and other problems, they are 

also equally utilized by technicians and electricians. Accurate temperature profiles can be 

obtained from long-distance inspections using these cameras. Moreover, these cameras' 

multispectral dynamic imaging (MSX) function allows MSX to enhance the quality of the 

thermal images. Additionally, the interfaces are well-developed to provide simple output 

data transfer. The T-series, Ex, and Exx models of FLIR thermal cameras have this feature 

[48]. 

 

The E4, E5, E6, and E8 thermal cameras in the E-series are all very portable and useful 

for finding hidden flaws. This enables professionals to respond to a crisis before it gets too 

serious by acting quickly. These cameras are equipped with visual, thermal, and MSX 

imaging. The IR imaging resolution of the E4 (up to 4800 pixels), E5 (up to 10 800 pixels), 

E6 (up to 19 200 pixels), and E8 (up to 76 800 pixels) models can all be changed. The E40, 

E50, and E60 models are intended for wide-angle and frequent onsite technician and 

electrician inspection. These cameras also feature touchscreen controls and strong wifi 

connectivity, enabling immediate analysis of the thermal images they've taken [48]. 

 

The FLIR T-series is appropriate for measurements in harsh environments, including 

far-off places or warm temperatures. It can accurately aim the target for precise measurement 

and a superior perspective for analysis and capture thanks to its rotating optical block and 

autorotation feature. The integrated GPS in the T620 and T640 allows for better labelling of 

thermal images by adding a location. Applications requiring a fixed thermal camera mount 

can employ the FLIR A655sc. The FLIR A6200sc thermal camera is appropriate for InGaAs 

detection. High-speed mid-wave infrared (MWIR) technology is promising for the FLIR 

X8400sc series [48]. 



58 

 

Thermal cameras from MOBOTIX are frequently utilized in surveillance settings. The 

M16 Thermal features two neighbouring lenses that perform thermal overlay on the optical 

image to identify hotspots, such as areas impacted by fire, in an image. A low-power camera 

with an extra thermal radiometry capability that makes it possible to measure the amount of 

thermal radiation in the image is the M16 TR thermal camera. Because of the sturdy housing 

surrounding the dual-camera sensor arrangement, the S16 DualFlex is a flexible dual-

thermal camera with one or two waterproof sensors that can survive all environmental 

conditions[48]. 

 

As a long-term investment, selecting a thermal camera for a certain application 

necessitates careful consideration of a number of aspects. The proper supplier must be 

considered because the hardware of the thermal camera plays a major role in its operation. 

The various criteria for choosing a thermal camera are displayed in Figure 2.27 [48]. 

 

Table 2.9 Popular thermal cameras and their specifications. 
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Figure 2.27 Components, selection criteria, and classification of thermal cameras. 

 

2.9 Drone 

Unmanned Aerial Vehicles (UAVs), or drones, were originally intended to be 

military weapons. Since then, they have been widely used for a variety of purposes, such as 

video surveillance, crowd management, public safety, and more. Drones have been 

incorporated into a number of distinct industries, including photography, videography, and 

transportation. By including additional functionalities such as camera visualization, 

microphone, and intelligent decision-making, these drones can achieve even greater heights 

in terms of surveillance and commerce [49]. 

 

Without a question, one of the sectors in the world that is expanding the fastest right 

now is the drone industry. Drone technology has limitless potential provided it continues to 
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expand and receive funding, which are necessary for it to be classified as an emerging 

technology. The best argument for an expanding commercial sector is thus made by the 

drone industry. Drone technology continues to serve an increasing number of sectors [50]. 

  

Using drones instead of traditional methods can result in significant cost savings and 

wider acceptance, all while boosting the value of the data acquired. This is due to the fact 

that traditional procedures can be time-consuming and prone to human mistake. As a result, 

a lot of new enterprises and startups are currently creating and discovering new applications 

and use cases for drones, propelling the drone industry ahead. Table 2.10 and 2.11 compares 

some of the drones that are available in the market.  

 

Table 2.10 Drones that are available in the market. 

 

 

 

Table 2.11 Drones that are available in the market. 
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2.10 Summary 

This section is a summary for literature review. The use of renewable energy is 

becoming more and more important for promoting sustainable growth and reducing global 

warming. Renewable energy sources, like solar energy, are endless and environmentally 

benign in contrast to fossil fuels, which have a limited supply and harm the environment. 

The pressing need to cut greenhouse gas emissions and decrease reliance on non-renewable 

resources is what is driving the switch to renewable energy. 

Utilizing photovoltaic (PV) panels and concentrating solar power systems, among 

other technologies, solar energy is one of the most promising renewable energy sources. 

Particularly, photovoltaic (PV) technology uses semiconductor materials to directly convert 

sunlight into electricity, making it a popular renewable energy source. Its increasing 

scalability and falling costs have added to its appeal on a worldwide scale. 

PV systems have grown significantly on a global scale thanks to favourable 

regulations and advances in technology. According to available research, photovoltaic (PV) 

systems are becoming more and more cost-effective, making them a feasible choice for 

large-scale energy production. PV systems can range from massive utility-scale setups to 

residential and business installations, depending on the use. 

PV panels can have a number of faults, though, which can reduce its lifespan and 

performance. Typical flaws include shade and shadowing, which lower energy production 

when impediments block sunlight, snail trails, which are discolouration lines brought on by 

moisture and chemical reactions, and hotspots, which are localised regions of high 

temperature brought on by shading or cell destruction. Other defects such as microcracks, 

small fractures in the cells that decrease efficiency; delamination, where layers in the panel 

separate often due to moisture ingress; potential induced degradation (PID), which involves 

voltage stress causing performance loss; and diode failure, where malfunctioning bypass 

diodes lead to energy loss, also affect PV panels. 

Finding these flaws is essential to keeping PV systems operating efficiently. 

Traditional inspection techniques have several drawbacks since they are labour- and time-

intensive. Recent developments have made it possible to automate the fault identification 
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process by using thermal imaging and artificial intelligence (AI). Artificial intelligence 

models, namely those that utilise the You Only Look Once (YOLO) algorithm, have proven 

to be highly accurate in detecting and categorising flaws in photovoltaic panels. 

The accuracy and efficiency of the fault identification procedure are greatly improved 

by AI. The YOLO method is well known for its real-time object identification capabilities, 

especially in its most recent versions (YOLO v5 and v8). YOLO v8 is a better option for 

defect detection tasks because to its significant speed and accuracy improvements over v5, 

as demonstrated by comparisons between the two versions. 

Thermal imaging sensors are essential for detecting temperature changes on 

photovoltaic panels. Because these sensors pick up on infrared radiation, they are crucial for 

identifying faults such as hotspots and other thermal irregularities. The resolution and 

sensitivity of thermal cameras have been enhanced recently, which increases their usefulness 

for PV panel examinations. 

Thermal camera-equipped drones provide an economical and effective way to 

examine massive solar arrays. These drones are able to take thermal pictures on their own, 

which are then processed by AI systems to find flaws. This creative concept offers a 

workable answer for the solar energy sector by drastically cutting the time and labour 

involved with conventional inspection techniques. 

In conclusion, there has been a significant development in the detection of PV panel 

defects thanks to the integration of AI with modern imaging technologies like heat sensors 

and drones. These innovations enhance the overall performance and dependability of solar 

energy systems in addition to increasing the precision and effectiveness of inspections. The 

optimisation and further growth of solar energy as a major renewable energy source depend 

on this integration. 
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METHODOLOGY 

3.1 Introduction 

This chapter explains the method that was used to develop the model for defect 

detection. The model will be developed by using YOLO v8 to detect defect using thermal 

imaging sensor and will be attached to a drone. 

3.2 Flowchart 

 

Figure 3.1 Flowchart for model generation. 

YOLO v8 accuracy less 

than 90% 

YOLO 

v8 

accuracy 

less than 

90% 

Accurate 

YOLO v8 accuracy more 

than 90% 
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3.3 Acquiring Dataset 

For FYP 1, the researcher will acquire the dataset by downloading images of defected 

photovoltaic panels from the Internet. The images vary in size and environmental condition. 

A total of 339 images were acquired.  

In FYP 2, the researcher has visited Gading Kencana solar farm located in Ayer 

Keroh, Malacca. The solar farm has a total of 29,092 photovoltaic panels which supplies 

8MW of electricity. The solar spans 14.1 acres and is designed to maximize land use 

efficiency through innovative panel arrangement and mounting techniques. The researcher 

has also brought a drone for capturing thermal images. By using Drone Harmony for route 

planning, the drone which is a DJI Mavic 2 Enterprise model is flown autonomously above 

the photovoltaic panel. Drone Harmony is a sophisticated 3D flight management software 

for drones and UAVs that is especially beneficial for mapping, inspection, and surveying 

operations. It was founded in Switzerland in 2016 and provides innovative tools for 

automated flight planning, data collecting, and data evaluation, making it an adaptable 

solution for a wide range of industries, including mining, construction, industrial inspection, 

and more. Some of the key features of Drone Harmony is full 3D flight management 

interface and automated mission planning. The researcher managed to acquire a total of 3064 

images of defected photovoltaic panels. It is also important to note that the researcher capture 

the thermal images on a bright sunny day with a luminescent of 20000 to 60000 lux. 

Capturing the thermal images with a luminescent of more than 60000 lux will cause the solar 

panels to appear too hot under thermal imaging thus the real hotspot not be able to detect.  

This is a very significant increase in number of datasets which is nearly,10 times 

more than the dataset acquired in FYP 1. This number of datasets benefits the researcher in 

providing a better a result than FYP 1. Figure 3.2 shows the route planning using Drone 

Harmony. Figure 3.3 shows the DJI Mavic 2 Enterprise taking off autonomously by using 

Drone Harmony. Figure 3.4 shows the DJI Mavic 2 Enterprise flying above the photovoltaic 

panels autonomously by using Drone Harmony. Figure 3.5 shows the lux meter with a 

reading of 55700 lux during the drone capturing thermal images. 
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Figure 3.2 Drone Harmony route planning 

 

Figure 3.3 Drone take off 
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Figure 3.4 Drone flying autonomously above the photovolltaic panel 

 
Figure 3.5 Lux meter with 55700 lux 

3.4 Annotating Dataset 

Annotating is a process where a specific object from an image is highlighted by using 

an annotating tool. The researcher will be using Roboflow to annotate the acquired dataset. 

Roboflow enabled the researcher to efficiently edit and manage the dataset, with AI support 

for bounding boxes, polygons, and instance segmentation. Roboflow supports a variety of 

input formats, including JPG, PNG, BMP, MOV, MP4, and AVI, making it simple to import 

the photos required for dataset construction. The software also supports easy export in a 

variety of formats, including coco JSON, VGG, Vott JSON, Marmot XML, YOLO PyTorch, 

YOLO Darknet TXT, and Kaggle CSV, making it easy to use the data in a variety of machine 
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learning frameworks. One of the most significant benefits of utilizing Roboflow was its 

simple UI and clever defaults. This enabled the researcher to annotate photographs swiftly 

and properly without the requirement for substantial training or specialized knowledge. 

Furthermore, Roboflow has strict privacy and security standards in place, guaranteeing that 

our data is safe and secure. 

 To achieve the best results possible, the researcher manually segmented each image 

from edge to edge, ensuring that the YOLO model had accurate and thorough data to work 

with. This attention to detail and emphasis on accuracy will ensure that the algorithm can 

detect defect on photovoltaic panels in real-world circumstances. With the help of 

Roboflow's sophisticated features and careful manual image segmentation, the researcher 

was able to produce a high-caliber dataset that will allow our model to function at its peak 

even in demanding situations.  

In FYP 1, the researcher annotated 339 images of defected solar panels. This process 

took 5 hours to complete. In FYP 2, the researcher annotates 3064 images of defected solar 

panels. As expected, this process took significantly took more time to complete. It took the 

researcher 4 days to complete the annotation for all 3064 images. This annotation process 

will help the AI model to learn and recognize hotspots. Figure 3.5, 3.6 and 3.7 shows the 

Roboflow tool. Figure 3.8 and 3.9 shows the researcher annotating the hotspots. 

 

Figure 3.6 Roboflow tool. 
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Figure 3.7 Roboflow tool (Uploading images). 

 

 

Figure 3.8 Roboflow tool (Annotating images). 
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Figure 3.9 Annotation of hotspots 

 

Figure 3.10 Annotation of hotspots 

 

3.5 Structure of Dataset 

The researcher’s model which uses YOLO v8 will undergo intensive training and 

testing. Before the training process begin, the researcher will need to make to make a 

structure for the dataset. There are two types of dataset structure that can be used to train an 

AI model. The first structure is train and test the model using the same dataset. The 

researcher will transfer all the dataset into the model and the model will begin training. Once 

the done, the same dataset will be used to train the model. 
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 The second structure is called Train/Test split. The Train/Test split structure is when 

the model learned only a portion of the dataset and the rest of the dataset will be used for 

testing. It is said that the Train/Test split structure allows the model to give a more accurate 

result and prediction in real life circumstances. This is due to the model able to test itself on 

a dataset that the model has not learned which is crucial in providing accurate result or 

prediction. The researcher has decided to use the Train/Test split structure for training and 

testing the model.  

In both FYP 1 and FYP 2, the researcher split the dataset into 70% for training, 20% 

for validation and 10% for testing. This structure allows the AI model to learn and train many 

datasets while allowing to test itself using datasets that the AI model has not learned.  Figure 

3.10 shows the structure of dataset for FYP 2 using Roboflow. Table 3.1 shows the structure 

of dataset for both FYP. Figure 3.11 shows the code to train the model.  

 

Table 3.1 Structure of dataset for both FYP 

FYP No. Of Dataset Train (70%) 
Validation 

(20%) 
Testing (10%) 

1 339 237 68 34 

2 3064 2151 603 310 
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Figure 3.11 Structure of dataset for FYP 2 

 

3.6 Training and Testing 

3.6.1 Google Collab 

YOLO v8 uses Python language. In FYP 1, the researcher uses Google Collab to train 

the AI model. Google Collaboratory, or Collab, is an as-a-service version of Jupyter 

Notebook that enables you to write and execute Python code through your browser. Google 

Collab is built around Project Jupyter code and hosts Jupyter notebooks without requiring 

any local software installation. But while Jupyter notebooks support multiple languages, 

including Python, Julia and R, Collab currently only supports Python. Google Collab is free, 

but has limitations. There are some code types that are forbidden, such as media serving and 

crypto mining. Available resources are also limited and vary depending on demand, though 

Google Collab offers a pro version with more reliable resourcing. The researcher trains the 

YOLO v8 model at 4 different epochs, 25, 50, 75 and 100 epochs with 339 datasets. The 

Google Collab has already all the necessary code to train and test the YOLO v8 model. 

Therefore, the researcher will only require to copy the api key for the datasets from Roboflow 

and paste it into the code. Once done, the researcher will begin the training and testing 

process. Figure 3.11 shows the training and testing using Goolge Collab. Figure 3.12 shows 

the code for installing and importing Roboflow using Google Collab. Figure 3.13 shows the 

code to train the model using Google Collab. 
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Figure 3.12 Training and testing using Goolge Collab 

 

 

Figure 3.13 Installing and importing Roboflow 

 

 
Figure 3.14 Code to train the model using Google Collab 
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3.6.2 Offline 

In FYP 2, the researcher trains the AI model via offline. The researcher uses 

command prompt, a built-in command line interpreter application available in most 

Windows operating systems. The researcher trains the YOLO v8 model at the same 4 

different epochs, 25, 50, 75 and 100 epochs with 3064 datasets. In order to begin training 

and testing the YOLO v8 model using command prompt, the researcher must first set the 

desired directory. Once set, the researcher then has to create a python environment and 

activate the necessary python scripts. Then, the researcher needs to install the latest version 

of python by using “pip install –upgrade” command. After that, the researcher will need to 

install Ultralytics. Once installed, the researcher can begin training and testing the AI model. 

Initially, the researcher trains and tests the AI model using CPU but due limitation, 

the researcher opted to train and test the AI model using GPU. In order for the researcher to 

convert the training and testing process from using CPU to GPU, the researcher needs install 

Torch, TorchVision and TorchAudio. Once installed, the researcher runs a code to check if 

the GPU is available. If it is available, the researcher begins training and testing the AI 

model. It is important to note that the researcher must run the command prompt as 

administrator to avoid any issues the training and testing. Figure 3.14 shows the command 

prompt to train offline. Figure 3.15 shows the necessary steps to train and test using CPU. 

Figure 3.16 the researcher activated the Python environment and ready to begin training and 

testing. Figure 3.17 shows the steps to convert CPU to GPU. Figure 3.18 shows that GPU is 

available for training and testing. Figure 3.19 shows the code for training and testing the 

YOLO v8 offline. 
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Figure 3.15 Command prompt to train offline 

 

Figure 3.16 Steps to train and test using CPU 
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Figure 3.17 Python environment activated 

 

Figure 3.18 Steps to convert CPU to GPU 
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Figure 3.19 GPU is available 

 

 

 
Figure 3.20 Code to train the model using Offline 

 

3.7 Summary 

During the first phase of the Final Year Project (FYP 1), the researcher generated a 

dataset by downloading 339 photos of defective solar panels from the Internet. These photos 

ranged in size and environmental conditions, giving a diverse foundation for preliminary 

research. During the second phase (FYP 2), the researcher went to the Gading Kencana solar 

farm in Ayer Keroh, Malacca, which covers 14.1 acres and has 29,092 photovoltaic panels 

capable of producing 8MW of electricity. The farm's design maximizes land usage efficiency 

by utilizing unique panel arrangement and mounting techniques. 

The study used a DJI Mavic 2 Enterprise drone with Drone Harmony, a sophisticated 

3D flight control software, to acquire thermal photos of the photovoltaic panels. Drone 

Harmony, created in Switzerland in 2016, offers advanced capabilities for automated flight 

planning, data gathering, and evaluation, making it ideal for mapping, inspection, and 
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surveying jobs in a variety of industries. Using this approach, the researcher collected 3,064 

photos of defective panels, a considerable increase over the collection from FYP 1. 

The study used Roboflow for the annotating process, which is an efficient tool that 

supports a variety of input formats and gives AI aid with bounding boxes, polygons, and 

instance segmentation. Roboflow's user-friendly interface and strict privacy requirements 

made it easier to annotate photographs quickly and accurately, which is required for training 

the YOLO model. The researcher methodically divided each image to provide complete data 

for the YOLO model, which is critical for reliable defect identification in real-world 

scenarios. This technique required five hours for 339 photographs in FYP 1 and four days 

for 3064 images in FYP 2. 

The researcher adopted the Train/Test split structure for dataset organization, 

dividing the dataset into 70% for training, 20% for validation, and 10% for testing. This 

strategy allows the model to learn from a major amount of the data while validating its 

accuracy on unseen data, boosting its real-world prediction skills. 

In FYP 1 and FYP 2, training the YOLO v8 model required the use of Python in 

several contexts. Using Google Collab, a cloud-based Jupyter Notebook service, the 

researcher trained the model in FYP 1 across 25, 50, 75, and 100 epochs using the initial 

dataset. Although useful, Google Collab has restrictions on the types of code that may be 

executed and the availability of resources. 

For the larger dataset in FYP 2, the researcher switched to offline training with a 

GPU and a command prompt. Installing relevant libraries, configuring a Python 

environment, and verifying GPU compatibility were all necessary for this. The investigator 

employed a methodical approach, which involved setting up Torch, TorchVision, and 

TorchAudio, to effectively utilize GPU capabilities for YOLO v8 model training and testing. 

The goal of this painstaking configuration was to improve the model's performance by 

getting around the drawbacks of CPU-based training. 
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RESULTS AND DISCUSSIONS 

4.1 Custom Training Dataset  

4.1.1 Google Collab 

As mentioned in Chapter 3, in FYP 1 the researcher used Google Collab to train and 

test the YOLO v8 model. The researcher trains and tests at 4 different epochs, 25, 50, 75 and 

100 epochs with 339 datasets. The researcher was able to achieve all results for all epochs. 

All results were automatically generated and saved in Google Collab. The researcher also 

has the option to save in PC. However, when the researcher wants to the train the AI model 

with 3064 datasets at the same epochs, there was a limitation. The usage time exceeds the 

time limit. Therefore, in FYP 2 the researcher trains the YOLO v8 model via offline. Figure 

4.1 to Figure 4.5 shows the training and testing at 25 epochs with 339 datasets process in 

Google Collab. 

 

Figure 4.1 Training and testing process in Google Collab 
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Figure 4.2 Training and testing process in Google Collab 

 

Figure 4.3 Training and testing process in Google Collab 



80 

 

Figure 4.4 Training and testing process in Google Collab 

 

Figure 4.5 Training and testing process in Google Collab 

 

4.1.2 Offline 

The researcher uses command prompt, a built-in command line interpreter 

application available in most Windows operating systems. With the same 4 different epochs, 

25, 50, 75 and 100 epochs, at 3064 datasets, the researcher trains the YOLO v8 model using 

CPU. However, by using CPU to train the YOLO v8 model, it took a very significant amount 

of time.  For 25 epochs, it took the researcher 15 hours to complete the whole training and 

testing process and 30 hours for 50 epochs. The researcher did not continue the training and 

testing for 75 epochs and 100 epochs as it will damage the CPU. Therefore, the researcher 

opted to train the YOLO v8 model using GPU. 
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By using GPU to train the YOLO v8 model, the researcher was able to reduce amount 

of time for training and testing significantly. For 25 epochs with 3064 datasets, the training 

and testing process was reduced from 15 hours to 1 hour. At 50 epochs with 3064 datasets, 

the training and testing process was reduced from 30 hours to 1 hour and 30 minutes. 

Therefore, the researcher was able to continue the training and testing process for 75 and 

100 epochs with 3064 datasets. Table 4.1 shows the method and time taken for training and 

testing for each epochs. Figure 4.6 to Figure 4.9 shows the training and testing at 25 epochs 

with 339 datasets process via offline. 

 

 

Figure 4.6 Training and testing process via offline 

 

Figure 4.7 Training and testing process via offline 



82 

 

Figure 4.8 Training and testing process via offline 

 

 

Figure 4.9 Training and testing process via offline 
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Table 4.1 Method and time taken for training and testing 

Method 
No. of 

Dataset 

Time Taken 

(25 Epochs) 

Time Taken 

(50 Epochs) 

Time Taken 

(75 Epochs) 

Time Taken 

(100 Epochs) 

Google 

Collab 
339 20 Minutes 40 Minutes 60 Minutes 80 Minutes 

CPU  

(offline) 
3064 15 Hours 30 Hours N/A N/A 

GPU 

(offline) 
3064 60 Minutes 90 Minutes 120 Minutes 150 Minutes 

 

 

4.2 Confusion Matrix and Graph 

A confusion matrix is a simple table used to evaluate the performance of a 

classification model. It shows the actual versus predicted values, giving the researcher a clear 

idea of how well the model is identifying each class. In the matrix, true positives (TP) and 

true negatives (TN) represent correct predictions, whereas false positives (FP) and false 

negatives (FN) represent errors. It is a fundamental tool for understanding a model's 

predictive accuracy, allowing us to measure metrics like precision and recall. Table 4.2 

shows the general confusion matrix. Below explains the definition of true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN). 

 

• True Positives (TP): The cases in which the model correctly predicted the positive 

class. For example, there is defect on solar panel and the developed system also 

detects there is defect on solar panel 
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• True Negatives (TN): The cases in which the model correctly predicted the negative 

class. For example, there is no defect on solar panel and the developed system also 

detects there is no defect on solar panel. 

• False Positives (FP): The cases in which the model incorrectly predicted the positive 

class (also known as Type I error). For example, there is defect on solar panel, but 

the developed system detects there is no defects on solar panel. 

• False Negatives (FN): The cases in which the model incorrectly predicted the 

negative class (also known as Type II error). For example, there is no defect on solar 

panel, but the developed system detects there is defect on solar panel. 

 

The evaluation of the model's performance involves calculating key metrics: 

accuracy, precision, recall, and the F1 score. These metrics are derived from the confusion 

matrix, a tool that summarizes the model's predictions, allowing for a detailed analysis of its 

ability to correctly identify defects. Accuracy measures the overall correctness of the model, 

precision assesses its ability to identify true positives out of all positive predictions, recall 

evaluates the model's capability to detect true positives from the actual positives, and the F1 

score provides a balance between precision and recall, offering a single measure of the 

model's efficiency. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

  

(3) 

(4) 

(5) 

(6) 
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Table 4.2 Confusion matrix 

Confusion Matrix 

Actual Class 

Positive Negative 

Predicted Class 

Positive True Positive (TP) True Negative (TN) 

Negative False Positive (FP) False Negative (FN) 

 

4.2.1 Google Collab 

As mentioned previously, in FYP 1 the YOLO v8 model is trained and tested using 

Google Collab. The researcher trains and tests at 4 different epochs, 25, 50, 75 and 100 

epochs with 339 datasets. All results were automatically generated and saved in Google 

Collab. The researcher also saved all the results in PC.  

Figure 4.10 shows that at TP, 65% of the time the model correctly detects the hotspot 

as a hotspot while at FP, 35% of the time the model falsely detects the hotspot as a 

background. At TN, 100% of the time the model correctly detects the background as a 

background while at FN, 0% of the time the model falsely detects a hotspot even though 

there is no hotspot. Figure 4.11 shows graph results for the model. However, the researcher 

focuses on the train/box loss and train/cls loss graph. Both graphs show the desired gradient 

however there are still room for improvement. Both matrix and graphs are the result of the 

model trained at 25 epochs with 339 datasets via Google Collab. 

 Figure 4.12 shows that 69% of the time the model correctly detects the hotspot as a 

hotspot while 31% of the time the model falsely detects the hotspot as a background. Figure 

4.13 shows graph results for the model. At TN, 100% of the time the model correctly detects 

the background as a background while at FN, 0% of the time the model falsely detects a 

hotspot even though there is no hotspot. Both train/box loss and train/cls loss graphs show 

the desired gradient however there are still room for improvement. Both matrix and graphs 

are the result of the model trained at 50 epochs with 339 datasets via Google Collab. 
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 Figure 4.14 shows that 67% of the time the model correctly detects the hotspot as a 

hotspot while 33% of the time the model falsely detects the hotspot as a background. Figure 

4.15 shows graph results for the model. At TN, 100% of the time the model correctly detects 

the background as a background while at FN, 0% of the time the model falsely detects a 

hotspot even though there is no hotspot. Both train/box loss and train/cls loss graphs show 

the desired gradient however there are still room for improvement. Both matrix and graphs 

are the result of the model trained at 75 epochs with 339 datasets via Google Collab. 

Figure 4.16 shows that 68% of the time the model correctly detects the hotspot as a 

hotspot while 32% of the time the model falsely detects the hotspot as a background. Figure 

4.17 shows graph results for the model. At TN, 100% of the time the model correctly detects 

the background as a background while at FN, 0% of the time the model falsely detects a 

hotspot even though there is no hotspot. Both train/box loss and train/cls loss graphs show 

the desired gradient however there are still room for improvement. Both matrix and graphs 

are the result of the model trained at 100 epochs with 339 datasets via Google Collab. Table 

4.3 shows all the results for all epochs with 339 datasets via Google Collab. Table 4.4 shows 

the number of images detected for all epochs with 339 datasets via Google Collab. 

By obtaining the confusion matrix for all epochs, the researcher can begin evaluating 

the AI model’s accuracy, precision, recall and F1 scorer for each epoch. Table 4.5 shows the 

performance metrics for all epochs with 339 datasets via Goggle Collab. The AI model has 

the highest accuracy of 84.5% at 50 epochs with 339 datasets. This contradicts the 

reseacher’s hypothesis that the more extensive training the AI model undergoes, the higher 

the accuracy of the AI model. 
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Figure 4.10 Confusion matrix at 25 epochs (Google Collab) 

 

Figure 4.11 Results graph at 25 epochs (Google Collab) 
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Figure 4.12 Confusion matrix at 50 epochs (Google Collab) 

 

Figure 4.13 Results graph at 50 epochs (Google Collab) 
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Figure 4.14 Confusion matrix at 75 epochs (Google Collab) 

 

 

Figure 4.15 Results graph at 75 epochs (Google Collab) 
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Figure 4.16 Confusion matrix at 100 epochs (Google Collab) 

 

 

Figure 4.17 Results graph at 100 epochs (Google Collab) 
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Table 4.3 Results for all epochs (Google Collab) 

Number of 

Epochs 
TP FP TN FN 

25 0.65 0.35 1.00 0.00 

50 0.69 0.31 1.00 0.00 

75 0.67 0.33 1.00 0.00 

100 0.68 0.32 1.00 0.00 

 

 

Table 4.4 Number of images detected for all epochs (Google Collab) 

Number of 

Epochs 
TP FP TN FN 

25 220 119 339 0 

50 233 106 339 0 

75 227 112 339 0 

100 231 108 339 0 

 

 

Table 4.5 Performance metrics for all epochs (Google Collab) 

Number of 

Epochs 
Accuracy Precision Recall F1 Score 

25 0.825 0.65 1.0 0.7879 

50 0.845 0.69 1.0 0.8166 

75 0.835 0.67 1.0 0.8024 

100 0.84 0.68 1.0 0.8095 
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4.2.2 Offline 

In FYP 2, the AI model is trained and tested via offline using CPU and GPU at 4 

different epochs, 25, 50, 75 and 100 epochs with 3064 datasets. Both CPU and GPU shows 

the same result as it was trained and tested on the same number of epochs and datasets. The 

only difference is the time taken to complete the whole process. All results were 

automatically generated and saved in the PC. 

Figure 4.18 shows that at TP, 93% of the time the model correctly detects the hotspot 

as a hotspot while at FP, 7% of the time the model falsely detects the hotspot as a 

background. At TN, 100% of the time the model correctly detects the background as a 

background while at FN, 0% of the time the model falsely detects a hotspot even though 

there is no hotspot. Figure 4.19 shows graph results for the model. However, as mention 

previously, the researcher focuses on the train/box loss and train/cls loss graph. Both graphs 

show the desired gradient however there are still room for improvement. Both matrix and 

graphs are the result of the model trained at 25 epochs with 3064 datasets via offline. 

 Figure 4.20 shows that 92% of the time the model correctly detects the hotspot as a 

hotspot while 8% of the time the model falsely detects the hotspot as a background. Figure 

4.21 shows graph results for the model. At TN, 100% of the time the model correctly detects 

the background as a background while at FN, 0% of the time the model falsely detects a 

hotspot even though there is no hotspot. Both train/box loss and train/cls loss graphs show 

the desired gradient however there are still room for improvement. Both matrix and graphs 

are the result of the model trained at 50 epochs with 3064 datasets via offline. 

 Figure 4.22 shows that 92% of the time the model correctly detects the hotspot as a 

hotspot while 8% of the time the model falsely detects the hotspot as a background. Figure 

4.23 shows graph results for the model. At TN, 100% of the time the model correctly detects 

the background as a background while at FN, 0% of the time the model falsely detects a 

hotspot even though there is no hotspot. Both train/box loss and train/cls loss graphs show 

the desired gradient however there are still room for improvement. Both matrix and graphs 

are the result of the model trained at 75 epochs with 3064 datasets via offline. 
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Figure 4.24 shows that 92% of the time the model correctly detects the hotspot as a 

hotspot while 8% of the time the model falsely detects the hotspot as a background. Figure 

4.25 shows graph results for the model. At TN, 100% of the time the model correctly detects 

the background as a background while at FN, 0% of the time the model falsely detects a 

hotspot even though there is no hotspot. Both train/box loss and train/cls loss graphs show 

the desired gradient however there are still room for improvement. Both matrix and graphs 

are the result of the model trained at 100 epochs with 3064 datasets via offline. Table 4.6 

shows all the results for all epochs with 3064 datasets via offline. Table 4.7 shows the 

number of images detected for all epochs with 3064 datasets via offline. 

By obtaining the confusion matrix for all epochs, the researcher can begin evaluating 

the AI model’s accuracy, precision, recall and F1 scorer for each epoch. Table 4.8 shows the 

performance metrics for all epochs with 3064 datasets via offline. The AI model at 50, 75 

and 100 epochs with 3064 datasets have the same accuracy of 96%. The AI model at 25 

epochs with3064 datasets has a slightly higher accuracy of 96.5%. This slightly contradicts 

the reseacher’s hypothesis that the more extensive training the AI model undergoes, the 

higher the accuracy of the AI model. 
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Figure 4.18 Confusion matrix at 25 epochs (Offline) 

 

Figure 4.19 Results graph at 25 epochs (Offline) 
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Figure 4.20 Confusion matrix at 50 epochs (Offline) 

 

Figure 4.21 Results graph at 50 epochs (Offline) 
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Figure 4.22 Confusion matrix at 75 epochs (Offline) 

 

Figure 4.23 Results graph at 75 epochs (Offline) 
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Figure 4.24 Confusion matrix at 100 epochs (Offline) 

 

Figure 4.25 Results graph at 100 epochs (Offline) 
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Table 4.6 Results for all epochs (offline) 

Number of 

Epochs 
TP FP TN FN 

25 0.93 0.07 1.00 0.00 

50 0.92 0.08 1.00 0.00 

75 0.92 0.08 1.00 0.00 

100 0.92 0.08 1.00 0.00 

 

 

Table 4.7 Number of images detected for all epochs (offline) 

Number of 

Epochs 
TP FP TN FN 

25 2849 215 3064 0 

50 2819 245 3064 0 

75 2819 245 3064 0 

100 2819 245 3064 0 

 

 

Table 4.8 Performance metrics for all epochs (offline) 

Number of 

Epochs 
Accuracy Precision Recall F1 Score 

25 0.965 0.93 1.0 0.964 

50 0.96 0.92 1.0 0.958 

75 0.96 0.92 1.0 0.958 

100 0.96 0.92 1.0 0.958 
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4.3 Validation and Inference Results 

Validation is an important stage in the machine learning pipeline that allows the 

researcher to evaluate the quality of the AI models. Val mode in Ultralytics YOLO v8 offers 

a comprehensive set of tools and metrics for assessing the effectiveness of the object 

detection algorithms. By using YOLO v8 Val mode, the researcher can get accurate metrics 

like mAP50, mAP75 and mAP50-95 o comprehensively evaluate the AI model. YOLO v8 

Val mode utilizes built-in features that remember training and testing settings thus 

simplifying the validation process. The researcher can validate the AI model with the same 

or different datasets and image size. By using the validation metrics, the researcher can 

further fine-tune the AI model for better performance. Figure 4.26 shows the code for YOLO 

v8 Val mode.  

Inference is the process of applying the learned AI model to fresh, unobserved data. 

At this point, the model is put to use and implemented in practical applications. Figure 4.27 

shows the code for inference custom model where it randomly chose images for hotspots 

detection. By applying 25% confidence level, the AI model will show any hotspots detection 

above 0.25. 

 

Figure 4.26 Valdiation code 
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Figure 4.27 Inference code 

 

4.3.1 Google Collab 

 

This section is to showcase the valdiation and inference custom model result for 25, 

50, 75 and 100 epochs with 339 datasets via Google Collab. Figure 4.28 to 4.31 shows the 

results for 25, 50, 75 and 100 epochs respectively. 

 

 

Figure 4.28 Result at 25 epochs (Google Collab) 
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Figure 4.29 Result at 50 epochs (Google Collab) 

 

Figure 4.30 Result at 75 epochs (Google Collab) 
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Figure 4.31 Result at 100 epochs (Google Collab) 
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4.3.2 Offline 

 

This section is to showcase the valdiation and inference custom model result for 25, 

50, 75 and 100 epochs with 3064 datasets via offline. Figure 4.32 to 4.35 shows the results 

for 25, 50, 75 and 100 epochs respectively. 

 

 

Figure 4.32 Result at 25 epochs (Offline) 



104 

 

Figure 4.33 Result at 50 epochs (Offline) 

 

Figure 4.34 Result at 75 epochs (Offline) 
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Figure 4.35 Result at 100 epochs (Offline) 

 

 

4.4  Comparison Between Epochs and Dataset 

This section investigates the effects of different training epochs and the number of 

datasets on the model's hotspot detection capability in solar panels. The analysis analyses 

photos processed after 25, 50, 75, and 100 epochs to determine the best training length for 

improved detection accuracy and fewer false positives. The analysis also analyses photos 

processed from datasets of sizes 339 and 3064 to determine whether a larger dataset leads to 

better performance. This comparison reveals the model's learning development and 

efficiency at various training phases, providing useful insights into optimizing deep learning 

procedures for better fault detection in photovoltaic systems. 
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4.4.1 Comparison Between Epochs 

In both FYP 1 and FYP 2, the researcher trains and tests the AI model at four different 

epochs, 25, 50, 75 and 100 epochs. This is to determine the best training length for improved 

detection accuracy and fewer false positives. In FYP 1, the researcher used 339 datasets to 

train and test the AI model. Once the training and testing process completed, the researcher 

begins the validation and inference process. The researcher applies the AI model with unseen 

images for practical application. Figure 4.36 shows the comparison between epoch with 339 

datasets. In FYP 1, the AI model at 50 epochs achieved the highest accuracy with 84.5%. 

However, the AI model at 100 epochs shows the highest confidence with 0.89 and 0.83. 

However, when compare the gap between the confidence level, 75 epochs shows the least 

gap between the confidence level, 0.81 and 0.83. This shows that the AI model at 75 epochs 

produced a more consistent result while achieving a relatively high confidence level. Thus, 

75 epochs shows the most desirable result. This contradicts the researcher’s hypothesis that 

the more extensive training and testing the AI model undergoes leads to the higher the 

accuracy and the higher the confidence level. 

In FYP 2, the researcher used 3064 datasets to train and test the AI model. The 

researcher also undergoes the validation and inference process. The researcher applies the 

AI model with unseen images for practical application. Figure 4.37 shows the comparison 

between epoch with 3064 datasets. In FYP 2, the AI model at 20 epochs achieved the highest 

accuracy with 96.5%. However, the AI model at 100 epochs shows the highest confidence 

with 0.79 and 0.72. However, when compare the gap between the confidence level, the same 

occurrence happens. The AI model at 75 epochs shows the least gap between the confidence 

level, 0.74 and 0.76. This also shows that the AI model at 75 epochs produced a more 

consistent result while achieving a relatively high confidence level. Thus, 75 epochs shows 

the most desirable result. This also contradicts the researcher’s hypothesis that the more 

extensive training and testing the AI model undergoes leads to the higher the accuracy and 

the higher the confidence level.  

As a conclusion, in FYP 1 and FYP 2, both 75 epochs achieved the most desirable 

result, having the least gap between confidence while achieving a relatively high confidence 

level, leading to a consistent result. 
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Figure 4.36 Comparsion between epoch with 339 datasets 
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Figure 4.37 Comparsion between epoch with 3064 datasets 

 

 

4.4.2 Comparison Between Size of Datasets 

This section the resesarcher compares the effect of the size of datasets on the 

performance of the AI model while training and testing at the same number of epochs. As 

mention previously, at 75 epochs the AI model produced the most desirable result in both 

FYP 1 and FYP 2, thus the researcher compares the performance of the AI model at 75 

epochs with 339 datasets and 3064 datatsets. Table 4.9 shows the confusion matrix for both 

75 epochs with 339 datasets and 3064 datasets. The AI model with 3064 datasets has a 

significantly higher true positive (TP) and lower false positive (FP) value than the AI model 

with 339 datasets. This shows that the AI model with 3064 datasets is able to detect more 

hotspot correctly than the AI model with 339 datasets.  

Table 4.10 shows the overall performance of the AI model at 75 epocsh with 339 

datasets and 3064 datasets. The AI model with 3064 datasets achieved a significantly higher 

accuracy, precision and recall value than the AI model with 339 datasets. This suggests that 
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AI model with 3064 datasests has a better overall performance than the AI model at 339 

datasets. 

Figure 4.38 and 4.39 shows the performance graph result for both AI model at 75 

epochs at 339 datasets and 3064 datasets respectively. Both the AI model achieved the 

desirable gradient for train/box loss and train/cls loss graph. However, when the researcher 

compares the val and metrics graphs, the AI model with 339 datasets has a lot of spikes 

whereas the AI model with 3064 datasets has a smoother line. This results the AI model with 

339 datasets has an inconsistency when detecting hotspots causing some hotspots were not 

detected. Since that, the AI model with 3064 datasets has smoother line on the graphs, this 

results a more consistent results and more hotspots were detected by the AI model.  

As a conclusion, the more datasets the AI model trains and tests, the better the overall 

performance of the AI model. 

 

Table 4.9 Confusion Matrix at 75 epochs 

Number of 

Epochs 

Size of 

Datasets 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

True 

Negative 

(TN) 

False 

Negative 

(FN) 

75 339 0.67 0.33 1.00 0.00 

75 3064 0.92 0.08 1.00 0.00 
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Table 4.10 Performance at 75 epochs 

Number of 

Epochs 

Size of 

Datasets 
Accuracy Precision Recall F1 Score 

75 339 0.835 0.67 1.0 0.8024 

75 3064 0.96 0.92 1.0 0.958 

 

 

Figure 4.38 Results graph at 75 epochs with 339 datasets 

 

 

Figure 4.39 Results graph at 75 epochs with 3064 datasets 
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4.5 Graphical User Interface (GUI) 

In this section, the researcher explains and discusses the graphical user interface 

(GUI) and its development for this research. A graphical user interface (GUI) is a digital 

interface that allows users to interact with graphical elements including icons, buttons, and 

menus. In a GUI, the visuals displayed in the user interface transmit pertinent information 

as well as actions that the user can perform. The GUI is designed and created for users to 

easily the AI model to detect hotspots on solar panels.  

The researcher uses Visual Studio Code to code and create the GUI in which the 

researcher uses Python language to code. Before the researcher begins to code, the researcher 

must design the GUI not only to determine the elements that are needed but also to allow the 

researcher to properly visualize how the GUI to look like. The researcher uses a web-based 

tool called Make Real.Tldraw to design the GUI. Make Real.Tldraw allows the researcher 

to draw and design a user interface (UI) and make it real. However, the researcher only uses 

it to draw and design the GUI.  

Figure 4.40 shows the researcher designs the GUI using Make Real.Tldraw. The blue 

boxes represent the buttons for GUI. On the top left, there are two buttons named “Choose 

Image” and Choose Button.” This allows the users to either choose only one image or a 

folder that contains many images for the AI model to detect hotspots. The light grey box on 

the left is where the original images will be displayed once the users have select. The right 

grey box is where the result images will be displayed once the AI model have generated the 

results. Below those light grey boxes are four buttons. These four buttons will allow the users 

to select between four AI models either 25, 50, 75 and 100 epochs. Below the four buttons 

is a box that will display the AI model directory path. Below the directory path box is the 

“Start” button that users will press once the users have selected the images and the AI model. 

At the top right shows the UTeM and Faculty of Electrical Engineering & Technology 

(FTKE) logo. 

Once the researcher has a design for the GUI, the researcher begins making it into 

reality. The researcher codes the GUI using Python Language and Visual Studio Code 

(VSCode). The researcher installs Tkinter and CustomTkinter packages by using the pip 

command at the VSCode terminal. The Tkinter package is the standard Python interface to 
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the Tcl/Tk GUI toolkit. Tkinter are available on most Unix platforms, including macOS, as 

well as on Windows systems. Tkinter is not a thin wrapper, but adds a fair amount of its own 

logic to make the experience more pythonic. CustomTkinter is a python UI-library based on 

Tkinter, which provides new, modern and fully customizable widgets. CustomTkinter are 

created and used like normal Tkinter widgets and can also be used in combination with 

normal Tkinter elements. The widgets and the window colors either adapt to the system 

appearance or the manually set mode ('light', 'dark'), and all CustomTkinter widgets and 

windows support HighDPI scaling (Windows, macOS). With CustomTkinter the researcher 

gets a consistent and modern look across all desktop platforms (Windows, macOS, Linux). 

Figure 4.41 shows the first stage of the GUI. This GUI only allows the user to choose 

an image and display it on the GUI. Although the GUI is very simple, this helps the 

researcher to understand and learn to code for choosing image in the system and display it 

on the GUI.  Figure 4.42 shows the second stage of the GUI. The researcher not only now is 

able to display two images, the researcher is also able to choose the AI model and show the 

directory path for the AI model. The researcher simply defines the left and right frame for 

the GUI to display two images. However, the AI model is still not able to put into to use. 

Figure 4.43 shows the third stage of the GUI. The GUI now allows the AI model to be put 

into for practical application. The researcher defines the “Start” button with the code for 

prediction task for the GUI. The AI model detects whatever image that has been displayed 

on the left frame and generate result by detecting hotspots. Once the result has been 

generated, the result will be displayed on the right frame. The result is also saved in the PC. 

However, this GUI only allows the user to generate results for only one image.  

Figure 4.44 shows the fourth stage of the GUI. The GUI now allows the users to 

select a folder that contains many images and generate result for every images. However, 

the users still need to browse through the PC to select the AI model. Figure 4.45 shows the 

fifth stage of the GUI. The GUI now allows the users to select between for AI model, 25, 

50, 75 and 100 epochs, without browsing through the PC. The users can now simply click 

the buttons for 25, 50, 75 or 100 epochs. The researcher code the GUI to create four buttons 

and defines each button with the directory path for each AI model. However, the GUI still 

looks like in development and the researcher plans to make it look cleaner so that it will be 

user friendly and can be commercialize.  
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Figure 4.46 shows the final stage for the GUI. The GUI now looks cleaner, user 

friendly and can be commercialize. The researcher adjusts the position for each element of 

the GUI for the GUI to look cleaner and uniform. The researcher also adds the UTeM and 

FTKE logo. Figure 4.47 and 4.48 shows the popup message for the GUI. The GUI also 

display a popup message that tells the users where the results have been saved, the number 

of hotspots the AI model detected and the status of the solar panels whether there is a defect 

or not. This popup message will ease the users to instantly find the directory path for the 

results and know the number of hotspots detected and the status of the solar panels. 

 

 

Figure 4.40 GUI design using Make Real.Tldraw 
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Figure 4.41 GUI first stage 

 

Figure 4.42 GUI second stage 
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Figure 4.43 GUI third stage 

 

 

Figure 4.44 GUI fourth stage 
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Figure 4.45 GUI fifth stage 

 

Figure 4.46 GUI final stage 
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Figure 4.47 Popup message 

 

 

Figure 4.48 Popup message 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

Fossil fuels supply more than 80% of the energy in the world. However, the depletion 

of fossil fuels is inevitbale. As a result, the demand for clean/environmentally friendly 

energy has greatly expanded recently. Renewable energy technologies are alluring energy 

sources that are clean, friendly to the environment, and help meet the world's energy needs. 

Renewable energy has multiple applications, including solar, wind, biomass, and 

geothermal. The most common application technology is solar energy, followed by wind 

energy. Solar energy is divided into two types: concentrated solar power (CSP) and solar 

photovoltaic (PV). The latter is more extensively used. Recent advancements in photovoltaic 

solar technology have led to widespread deployment of solar PV capacity to meet global 

energy demands. 

However, solar panels will defect overtime. Defects such as hotspots, snail trails, 

delamination, cracks and microcracks will occur after some time. In this research, the 

researcher focusses on hotspots. When specific solar panel cells overheat due to localised 

shadowing, dirt buildup, or manufacturing defects, hotspots are created. These hotspots may 

reduce the overall output of the panel and harm damaged cells irreversibly.  To locate 

hotspots, use thermal imaging during the day while the panels are exposed to direct sunlight. 

A hotspot is an area on the panel where the temperature is noticeably higher than it is 

elsewhere. 

The researcher has come up with three objectives to overcome this problem and 

further boost the efficiency of solar panels. With this research, the researcher has achieved 

all three objectives. The first objective is to design a system that can easily detect defects on 

photovoltaic arrays of varying sizes and environmental conditions. The researcher design a 

system that uses a DJI Mavic 2 Enterprise drone that has a built-in high definition camera 

and thermal imaging device to fly autonomously above the photovoltaic panels using Drone 
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Harmony and capture thermal images and uses YOLO v8, an AI model,  to detect hotspots 

on photovoltaic panels.  

The second objective that has been achieved is to develop a model for AI-based 

defect detection system that refers to thermal imaging sensors. The researcher create a 

YOLO v8 model to detect hotspots on photovoltaic panels. The researcher uses Roboflow 

to annotate 339 images in FYP 1 and 3064 images in FYP 2 in order to help the YOLO v8 

model to learn and recognize the hotspots. Then, the researcher splits the datasets into 70% 

for training, 20% for validation and 10% for testing. This method not only let the YOLO v8 

model to learn the hotspots, but also test itself with unseen images of hotspots for practical 

application. Based on the results achieved by the researcher, it proves that the AI model is 

able to detect hotspots by using thermal imaging camera. 

The third objective is to analyze the effectiveness and consistency of the AI-based 

defect detection system which uses YOLO v8. In both FYP, the researcher trains and tests 

the YOLO v8 model at 25, 50, 75 and 100 epochs and found that the YOLO v8 model at 75 

epochs has the most favourable result. The researcher also found that there is an increase in 

the overall YOLO v8 performance when the researcher increases the size of datasets. This 

contradicts the researcher’s hypothesis that the more extensive training the YOLO v8 model 

undergoes, the better the performance of the YOLO v8 model. However, the hypothesis that 

the more the size of datasets leads to better the performance of the YOLO v8 model remains 

valid. Thus, the researcher achieved the third objective of analyzing the effectiveness and 

consistency of the YOLO v8-based hotspot detection system. 

As a conclusion, this research has proven to increase the efficiency of photovoltaic 

panels by using AI, drone and thermal imaging camera to detect hotspots. By implementing 

this system, it also decreases human labor. The researcher has personally installed 998 

photovoltaic panels at Lotus Parit Raja, Batu Pahat. During the installation, a thermal 

inspection must be done. There were two people did the inspection and it took three days to 

complete. So, imagine if the researcher did the thermal inspection at a solar farm which 

contains thousands of photovoltaic panels. Not only that the inspection will consume a lot 

of time but the company needs to hire more people. This system also increases inspection 

efficiency. A human will feel tired but a machine don’t. When humans feel tired, their 

efficiency in doing tasks decreases thus this affects the inspection efficiency. A machine 
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don’t feel tired thus the inspection efficiency will not be affected. To conclude this research 

has definitely proven to increase the efficiency of photovoltaic panels by detecting hotspots. 

5.2 Future Work 

The researcher's future plans to improve the AI model's functionality and expand its 

use in photovoltaic (PV) panel defect detection are described in this part. These programs 

seek to improve PV system dependability and efficiency, which advances the overarching 

objective of maximizing the generation of solar energy. 

Growing the number of the datasets used to train the AI model is one of the main 

goals for the future. A bigger dataset will include more sorts of defects, different climatic 

circumstances, and panel changes, which will enhance the model's ability to generalize. The 

AI model will be better able to recognize flaws in many scenarios by training on a more 

varied and larger dataset, which will improve performance and dependability. In order to 

complete this project, additional real-world data from different PV installations will need to 

be gathered and annotated. This may be accomplished by working with industry partners and 

making use of publicly accessible datasets. 

Apart from augmenting the quantity of the dataset, the researcher intends to improve 

the AI model by integrating the identification of a broader range of imperfections. At the 

moment, common flaws like hotspots and shading problems are the main focus. Subsequent 

research endeavors aim to expand this potential to encompass more intricate and subtle flaws 

such as microcracks, delamination, cracks, and snail trails. If not found promptly, flaws and 

microcracks—which are frequently undetectable to the unaided eye—can seriously impair 

panel efficiency. PV panel delamination, or the separation of panel layers, can result in 

moisture intrusion and additional damage. Discoloration lines, or snail trails, can reveal 

underlying chemical reactions and moisture problems. The AI model will be trained to 

identify these extra flaws, giving the system a more complete diagnostic tool for preserving 

the health of PV panels. 

In order to increase functionality and usability, the researcher also intends to improve 

the user interface. The redesigned interface will let users prioritize whatever type of defect 

detection to utilize instead of forcing them to select the number of training epochs. Thanks 
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to this customization, customers will be able to adjust the AI model's focus to suit their own 

operating requirements or common problems with their PV systems. With an interface like 

this, the tool will be easier to use and more flexible to meet the needs of many users, which 

will increase its usefulness. 

One important improvement for future efforts is to include localization features in 

the output of the AI model. Maintaining a PV array will be made much easier with the 

capacity to locate flaws precisely. The time and effort required for inspections will be 

decreased since users will be able to easily locate and access the precise panels that need 

maintenance. By combining GPS data with the inspection drones and using sophisticated 

image processing techniques, this localization capability will be accomplished. The solution 

will improve overall operating efficiency and ease the maintenance process by giving exact 

position information.  

Lastly, the researcher intends to enhance the AI model's capacity to automatically 

classify inspection results into panels with and without problems in order to further expedite 

the defect identification procedure. Users will be able to prioritize maintenance tasks by 

immediately determining the amount of problems within their PV installations thanks to this 

automated categorization. The technology will facilitate more effective resource allocation 

and early interventions by providing a comprehensive overview of the defect status across 

all inspected panels. 

In conclusion, the work described in this part will hopefully greatly improve the AI 

model's ability to identify and maintain PV panel defects. The researcher aims to develop a 

robust and comprehensive tool by increasing the size of the dataset, diversifying the types 

of problems that may be detected, enhancing the user interface, incorporating automatic 

classification and localization features, incorporating predictive maintenance, and 

guaranteeing scalability. These developments will serve the larger objective of renewable 

energy adoption and sustainability by optimizing solar energy systems. 
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