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ABSTRACT 

Drowsiness detection algorithms implemented on general-purpose processors 

perform well but suffer from portability issues and high power consumption. This 

project aims to overcome these limitations by designing and developing a drowsiness 

detection system on the PYNQ-Z1 FPGA platform. The project transitions from a 

software-based model to an FPGA-optimized design using high-level synthesis (HLS) 

of the Xilinx FINN compiler. By leveraging the parallel processing capabilities of 

FPGAs, the drowsiness detection is optimized for latency, power consumption, and 

resource utilization. The system monitors yawning and blinking, ensuring high 

performance while improving computational efficiency and power consumption. The 

integration of convolutional neural networks with FPGA frameworks demonstrates 

the synergy between neural network architectures and reconfigurable hardware. The 

results show that switching from a 6-bit model to a 2-bit model significantly reduced 

memory usage by 45.24%. Additionally, the quantized model on the PYNQ-Z1 

reduces power consumption by 95.52% compared to the CPU. This research not only 

advances FPGA-based deployment, but also lays the foundation for future innovations 

in hardware design, neural networks, and artificial intelligence, enhancing the visual 

perception capabilities of computer vision and autonomous systems. 
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ABSTRAK 

Algoritma pengesanan rasa mengantuk yang dilaksanakan pada pemproses tujuan 

umum berfungsi dengan baik, namun mempunyai masalah isu mudah alih dan 

penggunaan kuasa yang tinggi. Projek ini bertujuan mengatasi kekurangan tersebut 

dengan membangunkan sistem pengesanan mengantuk pada platform FPGA PYNQ-

Z1. Projek ini beralih daripada model berasaskan perisian kepada reka bentuk FPGA 

yang dioptimumkan dengan menggunakan pengkompil Xilinx FINN high-level 

synthesis (HLS). Dengan memanfaatkan keupayaan pemprosesan selari FPGA, 

pengesanan rasa mengantuk dioptimumkan untuk kependaman, penggunaan kuasa 

dan penggunaan sumber. Sistem akan memantau aktiviti menguap dan kelipan mata 

untuk membolehkan prestasi tinggi dapat dicapai sambil meningkatkan kecekapan 

pengiraan dan mengurangkan penggunaan kuasa. Penyepaduan Rangkaian Neural 

Konvolusi dengan rangka kerja FPGA menunjukkan sinergi di antara seni bina 

rangkaian neural dan perkakasan yang boleh dikonfigurasikan semula. Keputusan 

menunjukkan bahawa menukar daripada model 6-bit kepada model 2-bit 

mengurangkan penggunaan memori dengan ketara sebanyak 45.24%. Selain itu, 

model terkuantisasi pada PYNQ-Z1 mengurangkan penggunaan kuasa sebanyak 

95.52% berbanding dengan CPU. Penyelidikan ini bukan sahaja memajukan 
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penggunaan berasaskan FPGA, tetapi juga meletakkan asas untuk inovasi masa 

hadapan dalam reka bentuk perkakasan, rangkaian saraf, dan kecerdasan buatan, 

meningkatkan keupayaan persepsi visual penglihatan komputer dan sistem autonomi. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

This chapter is divided into 5 sections. Section 1.2 will discuss the background 

study for the project followed by the problem statement in Section 1.3. The objectives 

of the project are discussed in Section 1.4 and the scope of the work is discussed in 

Section 1.5. The thesis layout will be introduced in Section 1.6. 

1.2 Background of Project 

Drowsiness is a state of being drowsy, tired, exhausted, or mentally or physically 

weak. A sleepy person has a low concentration level, which may make it difficult for 

them to maintain a certain level of focus. If this happens to a driver, a mechanic 

operating a heavy machine, or a railway operator, it may lead to an accident. Car 

accidents are one of the fatal accidents and are considered a major problem in society. 
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In Malaysia, a study by the Malaysian Institute of Road Safety Research (MIROS) 

reported that fatigue is one of the biggest causes of car, truck, and bus accidents. In 

addition to this, another study conducted by MIROS on commuter accident victims in 

the Klang Valley reported that about 15% of them were involved in accidents due to 

drowsiness or fatigue [1]. 

Drowsiness detection analysis has become an interesting field, and many methods 

have been introduced based on different categories of invasive and non-invasive. With 

invasive methods, the subject needs to attach a sensory device (such as electrodes) to 

the body to measure signals from certain parts of the body (such as brain signals and 

heart signals). This can be uncomfortable for the subject, and any large movements 

can affect the signal. In contrast, non-invasive methods are more user-friendly, flexible, 

and more acceptable as they do not require any connection to the human body. But as 

of now, we know that deploying drowsiness detection on traditional computing 

platforms such as CPUs and GPUs often encounters difficulties, including excessive 

power consumption, high cost, and heat dissipation issues. 

This project aims to implement drowsiness detection by analyzing the signs of 

drowsiness through eye and mouth activities using non-invasive techniques focusing 

on image processing methods. By the end of the project, it is expected that the 

developed algorithm will be able to detect blink and yawn with low latency within the 

limited resource constraints of the FPGA. 

1.3 Problem Statement 

The implementation of drowsiness detection is usually done on CPUs and GPUs 

because they have better speed and resources [2]. However, the energy and processing 

requirements of the drowsiness detection process remain high in pursuit of higher 
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throughput. This project aims to address the power consumption issue by studying the 

implementation of drowsiness detection using FPGAs. This is because FPGAs have 

become a possible alternative for implementing drowsiness detection. After all, they 

consume less power and fewer resources than traditional computing platforms. FPGAs 

are known for their portability, reconfigurability, and power consumption levels. 

FPGA implementation also means the algorithm is embedded in the system while only 

a single board deployment is required. 

The basic idea to solve the problems of traditional computing platforms is to reduce 

their high-power consumption and use the parallel processing and reconfigurable 

capabilities of FPGAs to provide a more economical and effective platform for 

implementing drowsiness detection. Energy efficiency is crucial to ensure drowsiness 

detection can operate for extended periods without draining the power source in the 

vehicle system. However, the challenges of doing so are also foreseeable. Due to the 

resource and power limitations and architecture of FPGAs, several efforts need to be 

made to implement drowsiness detection on FPGAs successfully [3]. Analysis is also 

required to validate the issues with traditional computing platforms and FPGA-based 

drowsiness detection solutions. The need for energy-efficient hardware acceleration 

of drowsiness detection on FPGAs must be emphasized [4]. 

1.4 Objectives 

i. To design and implement drowsiness detection on FPGA. 

ii. To explore optimization techniques for improving the drowsiness detection 

performance on FPGA. 

iii. To analyze FPGA-based drowsiness detection performance in terms of 

latency, power consumption, and resource utilization. 
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The primary goal of this project is to design and implement drowsiness detection 

on a field programmable gate array (FPGA) and verify it on a board to ensure that it 

works properly on the board. Due to the resource limitations of the FPGA, the 

drowsiness detection needs to be optimized to ensure that it can be implemented on 

the actual FPGA board. Finally, analyzing the performance of the FPGA-based 

drowsiness detection is also critical to gaining a deeper understanding of the project. 

1.5 Scope of Work 

The scope of work for this project is to design and implement drowsiness detection 

on the Xilinx Zynq-7000 PYNQ-Z1 FPGA board using optimization techniques and 

to perform performance analysis of the drowsiness detection implemented on the 

board. The datasets used are the WIDER FACE dataset and the Yawning Detection 

Dataset (YawDD). The software and frameworks used are Docker, Brevitas, Jupyter 

Notebook, Vivado, and Vitis HLS. 

1.6 Thesis Layout 

Chapter 1 provides the overall concept of the project and covers the introduction of 

drowsiness detection, problem statement, objectives, scope of work, and thesis layout. 

This will help us understand more details and the specific reasons for undertaking this 

project. 

Chapter 2 includes a literature review based on the architecture and platform that 

will be used in the project. For this project, face detection, drowsiness sign methods, 

and the FPGA platform are the core architectures for drowsiness detection. The 

corresponding literature review will refine and delve into the concepts that are closely 

related to the project through diagrams. The chapter ends with a discussion section 

where all the reviewed methods are discussed based on their pros and cons. 
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Chapter 3 presents the methodology of the implementation and analysis process of 

drowsiness detection architecture in the FPGA platform. This chapter will provide a 

flowchart of the project and describe each process in detail. In the last section, the 

techniques to obtain drowsiness sign analysis are described. 

Chapter 4 presents the results obtained in this project and the performance analysis. 

The dataset will be validated on the FPGA to verify that drowsiness detection is well 

implemented. This chapter presents the results of accuracy, latency, power 

consumption, and resource utilization. 

Chapter 5 is the last and will present the conclusion of this project after completing 

all the theories, results, and analysis. In addition, this chapter also involves suggestions 

for future work.



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

2.1 Introduction 

This chapter focuses on the background research and literature review of this 

project to investigate the latest progress in this field. The background research will 

cover drowsiness, face detection, signs of drowsiness, and field programmable gate 

arrays (FPGAs). In addition, a review of related projects and literature will be provided 

to illustrate the relevance and progress in these areas. 

2.2 Drowsiness 

Drowsiness is a state of feeling tired due to lack of sleep, which can affect a 

person’s level of consciousness and is particularly fatal for drivers. A drowsy person 

lacks a certain level of consciousness or alertness, which triggers the desire or 

tendency to fall asleep. Unfortunately, many fatigued drivers often experience 
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microsleep. This is a state in which people do not realize that they are falling asleep 

after driving for hours due to a poor mental state. For drivers who drive for a long time, 

drowsiness is often caused by various medications, lack of sleep, and boredom. 

Drowsy drivers may lose control of their vehicles, resulting in accidents. So far, an 

increasing number of traffic accidents are caused by low driver alertness, which has 

become a serious problem in society. When drivers are drowsy, accidents tend to be 

more serious because they cannot react and control the vehicle to avoid crashing. 

Three technologies can detect signs of drowsiness, namely physiological-based 

measurements, vehicle-based measurements, and behavior-based measurements. 

Generally, vehicle-based measurements are used in drowsiness detection research by 

observing driving patterns. Steering wheel movements, braking patterns, lane changes, 

and speed are examples of driving patterns that can be observed to indicate drowsiness. 

However, this approach is limited to the type of vehicle and road conditions. Instead, 

the presence of camera technology has enabled researchers to apply behavior-based 

measurement techniques that use image processing methods to detect drowsiness 

through the driver’s behavior [5]. This approach is more user-friendly and easier to 

implement compared to intrusive methods. Head rotations, blinking patterns, gaze 

estimation, and yawning activities are behaviors that have been used as indicators to 

detect drowsiness stages. 

2.2.1 Physiological Based Approach 

Physiological-based measurement is an invasive method to detect signs of 

drowsiness. This technique measures signs of drowsiness by acquiring signals from 

certain parts of the body, such as the heart rate, called electrocardiogram (ECG), or 

brain wave patterns, called electroencephalogram (EEG). A sensing device is required, 
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or multiple electrodes are used to acquire the signals. The electrodes are used to 

analyze drowsiness and fatigue states through EEG data. A method for predicting 

driver drowsiness by evaluating heart rate variability (HRV) through ECG devices is 

introduced [6]. Users need to place electrodes on body parts, which is uncomfortable, 

inefficient, and dangerous to implement in real-time. 

 Therefore, as technology develops, researchers have found a way to develop new 

wireless sensing devices to record the rate of physiological signals. EEG channels are 

selected to record signals to detect sleepiness stages [6]. Certain mobile headphones 

are used to record EEG signals. Figure 2.1 shows a driver alertness monitoring system 

for drowsiness detection using wired wearable EEG, which is typically embedded in 

the driver’s hat [7]. 

2.2.2 Vehicle Based Approach 

In addition to measurements based on physiological signals, another approach to 

detecting signs of drowsiness is to analyze the driver’s driving pattern, mainly 

recording lane changes, steering wheel movements, and vehicle speed changes. This 

approach is a non-invasive method and does not require the device to be worn or 

attached to the user. 

Figure 2.1: Electroencephalogram (EEG) Signals [7]  
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Figure 2.2 shows the Lane Departure Warning (LDW) system as one of the vehicle-

based measurement categories [8]. The system completely relies on the detection of 

lane markings on the road, which requires the lane markings to be always visible for 

the system to work properly [9]. Occlusion caused by the preceding vehicle or weather 

conditions during heavy rain may degrade the performance of the system. Moreover, 

road conditions may lead to false detection of signs of drowsiness. For example, if 

there are potholes on the road, some drivers may suddenly change lanes. Therefore, 

the system is preferably implemented only on straight roads or highways. 

Steering Wheel Angle (SWA) is another approach used to detect signs of 

drowsiness in vehicles, where triaxial measurement of SWA is implemented. Driver 

drowsiness is monitored by calculating SWA data obtained from a sensor mounted on 

the steering column [10]. Analyzing the data is challenging because it is acquired from 

a real-time environment and random vibrations may cause the retrieved data to vary 

slightly. The main reason is that the vibration of the wheel and suspension system 

interferes with the frequency range of the steering signal. It turns out that SWA is not 

a perfect indicator of signs of drowsiness because it requires complex calculations and 

pre-processing operations. In addition, drowsiness detection based on steering wheel 

angle is not reliable to implement on FPGA because it requires the use of many sensors 

and is computationally complex. 

Figure 2.2: Lane Departure Warning [8] 
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2.2.3 Behavioral Based Approach 

The simplest way to detect whether a driver is drowsy is through his behavior 

because behavior shows the most obvious signs. For example, a drowsy driver tends 

to move his head frequently to avoid the feeling of falling asleep or a drowsy driver 

will show rapid blinking activities. Like vehicle-based measurements, this method is 

a non-invasive method and does not require the user to wear any equipment. Eye 

features are one of the common indicators for detecting signs of drowsiness. A system 

for detecting drowsy drivers is developed by combining three parameters of eye 

movement, namely, percentage of eye closure (PERCLOS), blinking frequency, and 

eye closure duration [11]. In addition to eye features, yawning is another method for 

measuring drowsiness based on driver behavior, which has been widely used. 

Moreover, the head pose is one of the obvious signs of sleepiness because sleepy 

drivers nod frequently. However, implementing this measure in real-time is dangerous 

because the sign of nodding indicates that the driver is already in the final stage of 

drowsiness. 

2.3 Face Detection 

Face detection has received much attention and is one of the most promising 

applications in the field of image analysis. Face detection is an important component 

of biometrics, video surveillance, and human-computer interaction. Many image face 

detection methods have been proposed, which gave all researchers more inspiration to 

improve the performance, speed, and accuracy of the algorithms. For this, they have 

managed to obtain various algorithms for detecting faces, each with their 

characteristics, which will be compared in more detail in this chapter. Face detection 

is a critical initial step in detecting signs of drowsiness based on facial features, as 

successfully detecting a face will provide accurate true positive results for detecting 
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other facial features. There are three main techniques for detecting faces and their 

facial features, including eyes and mouth, namely the haar cascade algorithm, the 

convolutional neural network architecture, and the skin colour technique. 

2.3.1 Haar Cascade Algorithm 

The Viola-Jones algorithm is widely used in face detection algorithms because it is 

the first face detection system ever [12]. The proposal of this framework can process 

images very quickly while achieving high detection rates. According to the research, 

the algorithm consists of three parts that work simultaneously to achieve fast and 

accurate detection. First, the image is converted into an “integral image”, which allows 

for faster calculation of the features used by the detector. Second, the classifier used 

is an efficient and straightforward classifier built using the AdaBoost learning 

algorithm. Finally, the classifier is generated by combining weak classifiers into a 

“cascade”, which allows for the rapid elimination of background areas of the image 

while spending more computation to improve face-like areas. Figure 2.3 shows more 

details on how the Viola-Jones algorithm works in face detection [13]. 

AdaBoost is a mechanism for cascading training of simple classifiers. By applying 

the AdaBoost learning algorithm, it can help reduce the number. The AdaBoost 

algorithm for feature selection and attention cascade can allocate computational 

Figure 2.3: Haar Cascade Algorithm [13] 
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resources to the image more efficiently [14]. Using symmetric AdaBoost can help 

produce linear combinations, which means that stability of positive and negative errors 

can be achieved using the AdaBoost algorithm. 

2.3.2 Convolutional Neural Network Architecture 

Convolutional neural networks (CNNs) have revolutionized face detection by 

automatically learning and extracting hierarchical features from raw images [15]. 

Unlike traditional approaches that rely on manually designed features and cascaded 

classifiers such as Viola-Jones algorithms, CNNs use multiple layers of convolutional 

filters to capture the spatial hierarchy in the data. This enables CNNs to recognize low-

level features such as edges and textures in the initial layers, as well as more complex 

patterns such as facial structure and expression in deeper layers [15]. CNN methods 

typically involve training deep networks on large datasets of labeled images, enabling 

the network to learn complex patterns associated with faces. Recent advances, such as 

the development of architectures such as YOLO (You Only Look Once) and its 

variants, have further improved the speed and accuracy of CNN-based face detection, 

making it suitable for real-time applications. 

CNNs are neural networks specialized for processing grid-like data such as images 

and videos [16]. They consist of multiple layers, including convolutional layers, 

pooling layers, and fully connected layers as shown in Figure 2.4. Convolutional 

layers apply filters to detect local patterns while pooling layers down to sample the 

data to reduce its size and dimensionality while retaining key information. Activation 

functions introduce nonlinearity to the network, enabling it to learn more complex 

patterns. Common activation functions are ReLU and sigmoid functions. Fully 

connected layers perform classification tasks based on the extracted features. CNNs 
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are generally well-suited for tasks such as classification of image, object detection, 

and image segmentation. 

Despite the many advantages of CNNs, they also face some challenges in 

implementation. Training and running CNNs are computationally expensive and 

require powerful hardware resources to ensure adequate performance. CNNs are prone 

to overfitting, especially when working with small datasets. In addition, due to the 

complex internal representation of CNNs, it is difficult to understand how they make 

decisions, resulting in poor feature interpretability. Overall, convolutional neural 

networks are an excellent tool for solving problems such as image classification 

because they can learn and extract relevant features from images [15]. Despite the 

challenges, CNNs need to be studied and analyzed on various platforms to better 

understand and apply them to improve human life. 

2.3.3 Skin Colour Technique 

For skin colour detection, the process is implemented using colour space 

transformation. A binary image is obtained and the pixel region around the largest 

connected component is considered as the search region. A robust face detection that 

employs hybrid skin colour under different illuminations is proposed [17]. Using the 

International Commission on Illumination colour space, skin-like pixels and skin 

contours are detected using a finite threshold and the facial region is identified based 

Figure 2.4: CNN architecture [16] 
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on that threshold. The application of skin colour in face detection is straightforward 

as it identifies the largest connected component, which includes various features such 

as eyes, nose, and mouth. However, a significant limitation is that false detections may 

occur when the algorithm encounters a skin colour background or when the user wears 

skin colour clothes. 

To improve the accuracy of unidentified photos, three colour spaces which are RGB, 

YcbCr, and HSI are combined. This combination made it possible to develop a new 

skin colour-based detection algorithm, which improved accuracy. Figure 2.5 shows 

how the combination conducted the skin colour-based face detection algorithm [18]. 

There are several disadvantages to using skin colour as a feature for face detection. 

The facial colour representation obtained by the camera can be affected by factors 

such as ambient light and object motion. Different types of cameras can also produce 

significantly different colour values. In addition, colour cues affect the algorithm’s 

sensitivity to changes in lighting colour, such as RGB to lighting intensity. 

2.4 Drowsiness Signs 

Detecting signs of drowsiness is a key factor in improving safety, especially in 

situations such as driving or operating heavy machinery. Monitoring eye activity has 

emerged as one of the most effective methods for detecting drowsiness. This method 

Figure 2.5: Skin Colour Detection [18]  
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involves analyzing various eye parameters that indicate a person’s level of alertness. 

Based on the human face, many human behaviors can be measured as they contain 

rich information. This project focuses on detecting human behaviors related to signs 

of drowsiness based on the eyes and mouth as they provide key information for drowsy 

drivers and non-intrusive systems. 

2.4.1 Eye Activities 

The human eye is one of the main components of the human body and contains rich 

information that can be used to distinguish the degree of sleepiness. A study was 

conducted to determine the parameters suitable for detecting sleepiness and found that 

eye characteristics are one of the best indicators for detecting sleepiness [19]. Based 

on these eye characteristics, three eye activity parameters can provide important 

insights into the vigilance state of a person. The key parameters include blink rate, 

duration of eye closure (ECD), and percentage of eyelid closure (PERCLOS). 

2.4.1.1 Eye Blink 

Blinking is the action of opening and closing the eyelids at the same time and is 

one of the obvious signs of sleepiness. If a person is drowsy, he will blink more 

frequently than someone who is not sleepy [19]. Figure 2.6 shows the difference 

between the pupil colour and the white of the eye is the basis for detecting blinks [20]. 

The pupil is not a suitable parameter for detecting blinks due to its small size and easy 

occlusion. In addition, it may be occluded by light reflected from the glass. In terms 

of size, the iris is more suitable as a parameter for detecting blinks. Blink detection 

methods based on the iris area are easier to build even if they are occluded. The iris 

area comes from the aspect ratio of the iris bounding box. Blinks are observed 
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according to the calculated ratio, and when the area is reduced, a blink of the eye is 

detected. 

2.4.1.2 Eye Closure Duration (ECD) 

Eye closure duration, commonly referred to as ECD, is another parameter that can 

be used to indicate drowsiness [21]. ECD can be defined as the amount of time the 

eyes remain closed. Typically, if a person is drowsy, their eyes will remain closed 

longer than usual. Eye closure duration measures the time interval during each blink 

cycle that the eyes remain closed. Prolonged eye closure is a clear sign of drowsiness 

as it reflects difficulty keeping the eyes open. Systems used to detect drowsiness will 

often set an ECD threshold to trigger an alarm to alert the individual or operator. ECD 

is determined by applying equation 2.1. 

𝐸𝐶𝐷 = 𝑇𝑜𝑡𝑎𝑙𝐸𝑦𝑒𝐶𝑙𝑜𝑠𝑒 × 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑛𝑒𝐹𝑟𝑎𝑚𝑒 (2.1) 

2.4.1.3 Percentage of Eyelid Closure (PERCLOS) 

Blinking frequency and duration are reliable indicators of drowsiness. When people 

are drowsy, blinking frequency may decrease, and the duration of each blink increases. 

This is because drowsy people tend to have slower reaction times and reduced eye 

muscle control, resulting in longer blinks. Therefore, monitoring blinking patterns can 

provide real-time data on the onset of drowsiness. PERCLOS, or percentage of eyelid 

closure over the pupil over time, is the percentage of time that the eyes are closed for 

Figure 2.6: Eye [20] 
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a specific period [22]. It is widely considered to be one of the most accurate indicators 

of drowsiness. High PERCLOS values are strongly associated with a higher risk of 

falling asleep, making it a key parameter in drowsiness detection systems. By 

continuously monitoring PERCLOS, these systems can issue timely warnings, helping 

to prevent accidents caused by drowsiness. Equation 2.2 shows how the PERCLOS is 

determined. 

𝑃𝐸𝑅𝐶𝐿𝑂𝑆 =
𝐸𝑦𝑒 𝐶𝑙𝑜𝑠𝑒 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
  (2.2) 

2.4.2 Mouth Activities 

In addition to eye activity, monitoring mouth activity can also provide valuable 

information about a person’s drowsiness. Certain behaviors, such as yawning, are 

strongly associated with the onset of drowsiness and fatigue [21]. By referencing the 

mouth area, only one feature can be used to indicate a sign of sleepiness, which is 

yawning activity. Generally, there is a way to measure mouth opening to indicate 

yawning, mainly by tracking lip movement and quantifying the width of the mouth. 

2.4.2.1 Yawning 

Yawning is an involuntary mouth-opening movement that usually occurs when a 

person feels tired or sleepy. Moreover, yawning can be classified as an early sign of 

sleepiness before a person enters a full-blown sleepy mode. Yawning is one of the 

prominent parameters that point out signs of sleepiness that a person exhibits [21]. 

Yawning is a physiological response that usually indicates tiredness and decreased 

alertness. The frequency and duration of yawning can serve as a reliable indicator of 

sleepiness.  An increased number of yawns is usually associated with the need for rest 

and decreased concentration and alertness. When the detection identifies frequent 

yawning, it can signal that the individual is becoming drowsy and may need to take a 
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break or engage in activities that increase alertness. This approach is particularly 

useful in environments such as driving, where maintaining high alertness is crucial for 

safety. 

2.4.3 Combination of Few Parameters Drowsiness Signs Detection 

While individual parameters such as eye activity and mouth activity can provide 

valuable indicators of sleepiness, combining multiple parameters can improve the 

accuracy and reliability of drowsiness detection systems. By integrating data from a 

variety of sources, these systems can provide a more comprehensive assessment of an 

individual’s alertness [23]. 

One effective approach is to simultaneously monitor blink rate, eye closure 

duration (ECD), percentage of eyelid closure (PERCLOS), and yawn frequency [23]. 

Each of these parameters provides unique information about the state of alertness. For 

example, increased eye closure duration and high PERCLOS values indicate 

prolonged eye closure, while frequent yawning indicates high levels of fatigue. By 

combining these indicators, the system can cross-validate the presence of sleepiness 

more strongly than relying on a single parameter. 

Advanced drowsiness detection systems use machine learning algorithms to 

analyze the combined data in real-time. These algorithms can be trained on datasets 

containing a variety of sleepiness indicators, allowing them to identify complex 

patterns associated with sleepiness episodes. When multiple parameters reach their 

respective thresholds simultaneously, the system can issue a more reliable alarm, 

prompting the individual to take necessary actions to prevent accidents or errors. This 

multi-parameter approach greatly improves the effectiveness of drowsiness detection, 

ensuring timely and accurate responses in critical situations. 



19 

 

2.5 Field Programmable Gate Arrays 

A field programmable gate array (FPGA) is an integrated circuit that combines 

reconfigurability with high performance. Unlike traditional processors such as 

application-specific integrated circuits (ASICs), FPGAs can be reprogrammed, 

allowing users to customize them for specific needs and applications. This flexibility 

makes FPGAs well-suited for a wide range of applications, enabling researchers to 

reuse them in different projects [24]. 

FPGAs are semiconductor devices built around a matrix of configurable logic 

blocks (CLBs) interconnected by programmable connections. FPGAs consist of 

multiple logic blocks that act as building blocks and are configured to perform specific 

logic functions as required by the algorithm [24]. Common components in FPGAs 

include lookup tables (LUTs), flip-flops, multiplexers, block RAMs (BRAMs), and 

digital signal processing (DSP) units. LUTs are essentially tables that produce outputs 

based on given inputs. Flip-flops (FFs) maintain the state of the chip, storing single 

bits of information. Multiplexers select one input from multiple inputs. BRAMs are 

used as memory within FPGAs to store large amounts of data, while DSP units handle 

complex mathematical calculations. 

FPGAs are programmed using a hardware description language (HDL) such as 

Verilog or VHDL [24]. These languages enable designers to specify the desired 

functionality of a digital circuit, detailing how logic blocks should be interconnected 

and how data should flow through the system. The inherent parallelism in FPGA 

processing gives them superior performance in certain applications, providing speed 

and efficiency advantages over traditional processors such as CPUs and GPUs. 

However, programming and optimizing FPGAs can be difficult without a full 
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understanding of their architecture, resource utilization, and timing constraints, all of 

which must be carefully configured for optimal performance. 

2.5.1 High Level Synthesis 

High-level synthesis (HLS), also known as C synthesis, is an automated process 

that converts abstract behavioral specifications of digital systems into register transfer 

level (RTL) structures that implement the specified behavior. HLS enables 

programmers to write algorithms in high-level programming languages such as C, 

C++, and Python. Through the HLS process, these high-level algorithms are converted 

into hardware description language (HDL) code that can then be used in FPGAs. This 

automation is critical because designing complex algorithms directly in HDL is a very 

complex task. HLS simplifies the implementation of complex models on FPGAs by 

automatically synthesizing high-level language descriptions into low-level HDL code. 

Despite the many benefits of HLS, using HLS effectively requires considerable 

knowledge of the hardware architecture to be implemented. Designers must carefully 

manage data flow, memory usage, and performance constraints to ensure that the 

synthesized hardware performance is comparable to traditional computing platforms. 

Many FPGA vendors provide integrated HLS tools in their development environments. 

For example, Xilinx provides Vivado and Vitis as HLS tools for its FPGA boards. 

In summary, high-level synthesis helps implement high-level language algorithms 

onto hardware platforms such as FPGAs that require low-level HDL coding. By 

automating the synthesis from high-level languages to low-level languages, HLS 

enables designers to implement complex algorithms on FPGAs more easily and 

efficiently. 
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2.5.2 PYNQ 

PYNQ is an open-source project from AMD that aims to simplify the use of the 

Adaptive Compute Platform, as shown in Figure 2.7. By leveraging the Python 

language, Jupyter notebooks, and a broad ecosystem of Python libraries, PYNQ 

enables designers to harness the power of programmable logic and microprocessors to 

develop more advanced and innovative electronic systems [25]. PYNQ facilitates the 

creation of high-performance applications by enabling parallel hardware execution, 

high frame rate video processing, hardware-accelerated algorithms, real-time signal 

processing, high bandwidth I/O, and low latency control. 

PYNQ is intended for a wide range of designers and developers, including software 

developers who want to exploit the capabilities of the Adaptive Compute Platform 

without resorting to traditional ASIC design tools, system architects seeking a user-

friendly software interface and framework to rapidly prototype and develop Zynq, 

Alveo, and AWS-F1 designs, and hardware designers who want to make their designs 

accessible to the widest audience possible [25]. PYNQ is compatible with a wide range 

of AMD devices and boards, including Zynq 7000, Zynq UltraScale, Kria, Zynq 

RFSoC, Alveo Accelerator Board, and AWS-F1. 

Figure 2.7: PYNQ Framework [25] 
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Jupyter Notebook is a browser-based interactive computing environment that 

allows users to create documents containing live code, interactive widgets, charts, 

explanatory text, equations, images, and videos. PYNQ-enabled boards can be 

programmed directly in Jupyter Notebook using Python. Developers can take 

advantage of hardware libraries and overlays on programmable logic that improve 

software performance on Zynq or Alveo boards and allow for customization of 

hardware platforms and interfaces [25]. By integrating these technologies, PYNQ 

makes it easier for developers to fully exploit the potential of adaptive computing 

platforms using a familiar and flexible programming environment. 

2.6 Literature Review 

After comparing all the researcher journals that had been using the architecture of 

drowsiness detection in their project, there were six related projects. This part would 

make a comparison of the algorithm and platform they were using, which is known as 

the drowsiness detection algorithm and FPGA platform in their research. 

2.6.1 System-on-Chip Based Driver Drowsiness Detection and Warning 

System 

In the research of this article, the project aims to develop a driver drowsiness 

detection system that combines high accuracy and low response time, using a cost-

effective method suitable for implementation on a single processor system [26]. The 

initial implementation of the project used PERCLOS and CNN methods, achieving 

over 98% accuracy using the MobileNetV2 network. However, this setup was too slow, 

taking over 2 seconds to detect drowsiness on a single processor. The final system 

uses a combination of facial landmarks, haar cascade classifiers, and eye aspect ratio 

(EAR) methods to achieve a balance between speed and accuracy. 
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The optimized system detects driver drowsiness with 92% accuracy and 0.8 

seconds of latency. The system consumes as little as 2W of power and can run all day 

using a power bank of over 10,000 mAh [26]. The main drawback is the performance 

degradation at night, which can be mitigated by using a night vision camera. The audio 

module of the PYNQ-Z2 board is used to implement the sound warning system. The 

system outperformed methods using SVM, random forest, and naive Bayes, with an 

accuracy only 2% lower than the neural network-based application. In conclusion, the 

developed driver fatigue detection system has high accuracy and efficiency, making it 

a viable option for practical applications. The integration of different detection 

methods ensures strong performance even on low-cost hardware, although nighttime 

performance still needs to be improved. 

2.6.2 Heterogeneous FPGA-based System for Real-Time Drowsiness Detection 

The project proposes an efficient hardware architecture to achieve real-time 

drowsiness detection by monitoring the driver’s blinking behavior using the 

PERCLOS (Percentage of Eye Closure) metric [27]. The key features of the project 

include real-time detection, processing 250 VGA frames per second at low power 

consumption (1.6W) on a Xilinx Zynq XC7Z020 FPGA SoC. In terms of efficiency 

and performance, the proposed system is 33.3 times faster and occupies 2.6 times less 

area than the state-of-the-art system, enabling efficient integration into modern 

vehicles. In terms of hardware-software co-design, the project adopts a hybrid 

hardware-software approach to balance the computational load. Time-consuming 

tasks such as face detection and eye state monitoring are offloaded to dedicated 

hardware accelerators designed using high-level synthesis (HLS). In terms of pre-

processing to improve accuracy, the system includes pre-processing steps such as 
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RGB to grayscale conversion and histogram equalization to improve detection 

accuracy under different lighting conditions.  

As for face and eye detection, the architecture uses the Viola-Jones face detection 

algorithm and a novel eye state analysis method based on the standard deviation of the 

saturation channel in the HSV colour space [27]. The system calculates PERCLOS 

parameters by analyzing the eye closure rate over time to help determine the driver’s 

drowsiness. In terms of robustness and adaptability, the design can adapt to different 

environmental conditions, such as lighting changes, by setting appropriate eye state 

detection thresholds during the calibration phase. Overall, this project demonstrates 

significant progress in the field of Advanced Driver Assistance Systems (ADAS) by 

providing a robust, efficient, and real-time solution to detect driver drowsiness, 

thereby improving road safety. 

2.6.3 Design of ADAS Fatigue Control System using Pynq z1 and Jetson Xavier 

NX 

This project aims to develop an Advanced Driver Assistance System (ADAS) that 

uses computer vision techniques to detect driver fatigue and drowsiness [28]. It utilizes 

two main platforms, Pynq Z1 and Jetson Xavier NX, using their capabilities for 

efficient processing and detection. The system consists of several steps, namely 

training a classifier for facial feature detection using Haar techniques, acquiring and 

processing images, detecting faces and using facial landmark algorithms, and finally 

analyzing the state of the driver’s eyes to determine fatigue. Eye aspect ratio (EAR) is 

used to detect whether the eyes are open or closed, providing a basis for determining 

the driver’s alertness. Various video resolutions were tested to evaluate the 

performance of the system on different platforms. Jetson Xavier NX showed superior 
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performance and faster processing time compared to Pynq Z1 and CPU-based 

implementations [28]. For example, for a video resolution of 1024x768 pixels, Jetson 

Xavier NX is 18.75 times faster than Pynq Z1 and 2.62 times faster than the CPU 

implementation. This project successfully designed and implemented a robust and 

low-cost driver fatigue detection system on the Jetson Xavier NX and Pynq Z1 

platforms. The system was proven to be effective in real-time detection with 

significant speed advantages and design flexibility. 

2.6.4 Instruction Set Extension of a RiscV Based SoC for Driver Drowsiness 

Detection 

This paper presents a driver drowsiness detection (DDD) system implemented 

using a modified RiscV processor on an FPGA [29]. The system uses a trained 

convolutional neural network (CNN) to classify four driver expressions, which are 

distracted, natural, sleeping, and yawning, achieving 81.07% accuracy on validation 

data. The RiscV processor is enhanced with three custom instructions (custom store, 

conv2d(2×2), and MAC) to increase computation speed. The latency of the modified 

processor is improved by 1.7 times compared to the base processor. Automotive 

companies have invested heavily in systems that detect drowsiness and alert drivers to 

prevent accidents. Neural networks, especially CNNs, are known for their high 

accuracy in classification tasks, making them well-suited for drowsiness detection. 

Implementing these networks on FPGAs offers a viable solution due to the adaptability 

and efficiency of this hardware. 

Due to limited memory on low-cost FPGAs, the CNN model is designed with a 

small number of weights and biases [29]. Dynamic memory allocation is employed to 

efficiently manage intermediate variables, and custom instructions are used to improve 
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performance. These optimizations ensure that the system can run on resource-

constrained hardware without significantly reducing accuracy. This paper shows that 

extending the instruction set of the RiscV processor with custom instructions can 

significantly improve the performance of a CNN-based driver drowsiness detection 

system implemented on an FPGA. The approach operates within the memory 

constraints of low-cost FPGAs while balancing the need for accuracy and 

computational efficiency. 

2.6.5 Real-Time Drowsiness Alert System from EEG Signal Based on FPGA 

The project presents a comprehensive approach to detecting driver drowsiness 

using EEG signals processed in real-time on an FPGA platform [30]. The system uses 

EEG signals to monitor brain activity, capturing data indicating the driver’s alertness 

level. FPGAs, selected for their high-speed processing capabilities and flexibility, 

process these signals using complex algorithms designed to accurately detect 

drowsiness. The primary goal is to alert the driver in a timely manner, thereby 

preventing accidents caused by drowsiness. The implementation involves capturing 

EEG signals through electrodes placed on the driver’s scalp, which are then amplified 

and digitized for processing by the FPGA. The algorithm developed for this purpose 

classifies the EEG data into various states of alertness. This classification is achieved 

using machine learning techniques that are trained to recognize patterns in the EEG 

data that correspond to different levels of drowsiness.  

The real-time nature of the system ensures that any signs of drowsiness are detected 

immediately, and an alert is issued to the driver. The project results demonstrate that 

the FPGA-based system is capable of high-precision real-time processing, making it a 

viable solution for integration into vehicles to improve safety [30]. Using FPGAs 
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allows for a balance of speed and power efficiency, which is critical for in-vehicle 

applications. The study concluded that the system not only meets the performance 

requirements for real-time drowsiness detection but also provides a scalable and cost-

effective solution for automotive safety systems. 

2.6.6 A Fast FPGA Hardware Accelerator for Remote Heart Rate Detection 

Based on RGB Vision 

This project focuses on developing a hardware accelerator to estimate heart rate 

from video recorded by an RGB camera using a FPGA [31]. The technology used is 

remote photoplethysmography (rPPG), which detects physiological signals by 

analyzing subtle colour changes on the skin surface. This FPGA-based 

implementation aims to significantly increase computational speed compared to 

traditional software methods, making it suitable for real-time applications such as 

heart failure early warning for athletes and driver drowsiness detection. The core of 

the system involves capturing images using an RGB camera, processing the data to 

extract the blood volume pulse, and then determining the heart rate. The process 

begins by selecting a region of interest (ROI) on the subject’s face where the 

underlying physiological signals are strongest. The data is then preprocessed to 

remove noise, center, and whiten to facilitate independent component analysis (ICA). 

ICA helps separate the blood volume pulse from other signals by maximizing their 

statistical independence.  

The transformed signal is then analyzed in the frequency domain to identify peaks 

corresponding to the heart rate. The FPGA implementation of the algorithm offers 

several advantages, including reduced computation time and improved accuracy [31]. 

The study showed that the system can achieve heart rate detection accuracy of -0.76 ± 
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5.09 bpm and -0.70 ± 8.71 bpm in short recording times of 16 seconds and 8 seconds, 

respectively. This performance exceeds previous methods and effectively combines 

speed and accuracy. The ability of FPGAs to process data makes it an excellent choice 

for applications that require immediate physiological monitoring and response. 

2.6.7 Comparison of Related Literature Review 

Table 2.1 compares 6 related studies, understands the differences with previous 

research results, and compares FPGA-based drowsiness detection. 

Table 2.1: Literature Comparison 

Board Latency Power Method Pros and Cons 

FPGA (Xilinx 

PYNQ-Z2)  

[26], 2022 

0.8ms in 

640x480 
2W 

- Haar Cascade 

- EAR 

Advantages 

Outperformed methods 

using SVM, random forest, 

and naive Bayes 

Disadvantages 

Performance degradation at 

night 

FPGA (Xilinx 

ZYNQ XC7Z020) 

[27], 2022 

250 fps in 

640x480 
1.6W 

- Haar Cascade 

- PERCLOS 

Advantages 

Low latency 

Disadvantages 

No Mouth Activity 

FPGA (Xilinx 

PYNQ-Z1) 

[28], 2022 

12s in 

720x576 

- 
- Haar Cascade 

- EAR 

Disadvantages 

High latency 

Jetson Xavier NX 

[28], 2022 

0.2s in 

320x240 

Advantages 

Low latency 

Disadvantages 

Eye Activity Only 

FPGA (Xilinx 

Nexys 4 DDR) 

[29], 2022 

231ms in 

320x240 
- - CNN 

Advantages 

1.7 frame rate improvement 

Disadvantages 

High memory usage 

FPGA (Xilinx) 

[30], 2021 
- 1.116W - EEG Signal 

Advantages 

Low Power Consumption 

Disadvantages 

Intrusive method 

FPGA (Intel 

Altera DE-10 

Standard) 

[31], 2024 

16s in 

640x480 
- - Heart Rate Detect 

Advantages 

RGB Vision 

Disadvantages 

High latency 
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2.6.8 Research Gap 

The review “A High Performance and Robust FPGA Implementation of a Driver 

State Monitoring Application” by Christakos, P. et al. points out areas we can focus 

on to push the state of the art in drowsiness detection [32]. As mentioned in the paper, 

optimizing the drowsiness detection computation process is critical. This involves 

further extending and optimizing the rules to improve the robustness, and dynamically 

choosing the appropriate shape alignment ratio. In addition, access optimization 

requires more research on other data access methods and further improvements in 

hardware acceleration techniques. Proper management of scheduling and allocation 

issues, as detailed in the paper, can significantly improve the performance of FPGA 

implementations. Given the current research gaps in this area, it is worth further 

exploration. 

2.7 Summary 

The literature review comprehensively analyzes the existing research on 

drowsiness detection using FPGAs. It explores the basic concepts in depth, surveys 

related research, and identifies gaps in current research. This background study places 

the research in the broader field of hardware acceleration, highlighting the rationale 

for choosing FPGAs. This chapter lays the foundation for the objectives of the paper, 

which include FPGA-based drowsiness detection design, optimization exploration, 

and comprehensive performance analysis. 

Among the reviewed techniques, behavior-based measurements stand out as the 

most effective method due to their user-friendliness and cost-effectiveness. Driver 

drowsiness is mainly indicated by eye, mouth, and head behaviors. Advanced 
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drowsiness signs such as nodding and turning your head indicate that the driver may 

be extremely drowsy or has entered a sleep mode. Therefore, eye and mouth behaviors 

are selected as early and obvious signs of drowsiness in this project. 

Eye feature indicators include blinking, eye closure time (ECD), and percentage of 

eyelid closure (PERCLOS). Yawning is an indicator of mouth features. According to 

previous studies, these four indicators are most suitable for detecting sleepiness. A 

convolutional neural network feature-based method is adopted to analyze these 

indicators and use the parallel computing power of FPGA to accelerate the algorithm.



 

 

 

CHAPTER 3  

METHODOLOGY  

3.1 Introduction 

To achieve the research objectives, the methodology used in this study includes the 

comprehensive development and implementation of a convolutional neural network 

based on drowsiness detection. The methodology emphasizes the fusion of machine 

learning and hardware acceleration and aims to optimize the deployment of trained 

models on FPGAs and leverage the capabilities of the PYNQ-Z1 board for drowsiness 

detection. The subsequent chapters will step through the processes involved in data 

preparation, model training, high-level synthesis (HLS), FPGA implementation, 

fatigue detection, verification, and performance evaluation. The methodology will 

describe the implementation of the project. The first step is to select the appropriate 

dataset. The next step is to train two convolutional neural network models with 

different weight quantization. Next, after validating the two models, they are exported 
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into model types that can be recognized by HLS. After that, HLS is used to convert 

the two models into HDL in preparation for the implementation of the models on the 

FPGA. After generating the bitstream of the models, the bit files of the two models 

are transferred to the FPGA, and the drowsiness detection algorithm is added for test 

execution verification. A thorough analysis will be performed to gain a deep 

understanding of the FPGA. 

3.2 Project Planning 

The flowchart of this project is shown in Figure 3.1. The process starts with 

conducting background research and a comprehensive literature review. After this, a 

dataset is selected. Two models with different weights are trained on Google Colab 

using the WIDER FACE dataset. These models are then tested using the same dataset. 

The model configuration is adjusted until the mean average precision (mAP) for both 

training and testing exceeds 0.3. This threshold is chosen because the Yolov3-Tiny 

model also achieves a mAP of about 0.3 when quantized to 416×416 8-bit integers. 

Specifically, for the Yolov3-Tiny model in Xilinx Vitis, the mAP drops from 0.362 to 

0.296 after quantization [33]. After achieving the desired mAP, the model is exported 

to the ONNX format to be compatible with the FINN library. The FINN library runs 

in a Docker container, which is installed on an Ubuntu system on the host. The 

advantage of using a Docker container is that it provides a self-contained package 

capable of running all necessary applications. The software can be easily installed on 

the host by running script commands. 

After that, both the models are HLS converted using the FINN library. The HLS 

conversion and configuration steps optimize the hardware implementation of the 

models. Next, simulation and synthesis are performed to test the functionality of the 
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models before the actual deployment. After the synthesis process runs without any 

critical errors, bitstream generation is performed. The models are then deployed on the 

PYNQ-Z1 board by transferring the bit file, hardware configuration files, and drivers 

to the board and verifying them. After that, the drowsiness detection algorithm is 

added and verified using the yawning detection dataset, and the process continues if 

the latency remains at or below 200 milliseconds. If not, adjustments are made in the 

previous steps and retested. All the processes are logged and analyzed to get a report 

on the implementation and accuracy. These steps provide an in-depth understanding 

of the drowsiness detection implementation on the PYNQ-Z1 FPGA board. 

 

 

Figure 3.1: Flow Chart 
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3.2.1 Dataset Selection 

The WIDER FACE dataset is a good dataset for performing image recognition and 

classification tasks using convolutional neural networks [34]. The reason why the 

WIDER FACE dataset is suitable for the task is that it contains 60 event categories 

covering a wide range of real-world scenarios, which makes this dataset relevant for 

real-world applications, such as face detection of car drivers. The data quality of the 

WIDER FACE dataset is the key to its strength as it exhibits a high degree of 

variability in scale, pose, occlusion, expression, makeup, and lighting. The data quality 

that is closest to the real-world environment ensures that the model can adapt to images 

captured in real time. WIDER FACE is a large-scale face detection dataset that is often 

used as a benchmark. If a model is successfully implemented on WIDER FACE, it 

shows the capabilities of the model. Figure 3.2 shows the data in the WIDER FACE 

dataset and its labels. 

This project requires testing several scenarios to investigate the accuracy and speed 

of drowsiness detection implemented in FPGA. Six different video files from YawDD 

are used to investigate the accuracy and performance of drowsiness detection in FPGA. 

YawDD is a video dataset recorded by an onboard camera of drivers in real cars with 

various facial features, such as male and female, with and without glasses or 

sunglasses, different ethnicities, and in situations of talking, singing, silence, and 

yawning [35]. It is primarily used to develop and test algorithms and models for yawn 

Figure 3.2: WIDER DACE Dataset [34] 
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detection but can also be used to recognize and track faces and mouths. The videos are 

captured under natural and varying lighting conditions as shown in Figure 3.3. The 

camera is mounted on the driver’s dashboard. The set of videos provides different 

scenarios, each containing silent driving, driving while talking, and driving while 

yawning. 

3.2.2 FINN 

FINN is a Python package for FPGA machine learning inference [36]. The library 

uses a high-level synthesis language (HLS) to create firmware implementations of 

machine learning algorithms. It can be used to convert traditional open-source 

machine learning package models to HLS and can be configured for desired situations 

based on user needs. Figure 3.4 shows the hardware generation of the FINN compiler.  

Figure 3.3: Yawning Detection Dataset (YawDD) [35] 

Figure 3.4: FINN Compiler [36] 
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With the help of open-source tools such as PyTorch and Brevitas, machine learning 

models can be quickly and efficiently converted to high-level synthesis (HLS) code, 

which can then be translated and executed on FPGAs. Subsequently, HLS projects can 

be used to generate IP that can be integrated into complex designs or used to develop 

cores for co-processing CPUs. Users are free to define many parameters of the 

algorithm to best meet their needs. The FINN package can quickly prototype machine 

learning algorithms in FPGAs, greatly reducing the time required to obtain results [36]. 

It also provides users with guidance on how to design the best machine learning 

algorithm for their application while balancing latency, resource consumption, and 

performance requirements. FPGAs can be specifically programmed to perform a 

certain task, in this case, evaluating a neural network given a set of inputs, and can 

therefore be highly optimized for that task through tricks such as pipelining and 

parallel evaluation. However, this means that dynamic remapping at runtime is 

effectively impossible. 

FPGAs also typically have a relatively low power cost compared to CPUs and 

GPUs. This enables FINN to build HLS code from compressed neural networks, 

achieving latency predictions in the microsecond range. The FINN tool saves the time 

investment required to convert neural networks into hardware design languages or 

even HLS code, allowing for rapid prototyping. In summary, FINN is a bridge between 

advanced machine learning model development and efficient FPGA implementation. 

By automating the translation process and handling FPGA-specific optimizations, 

FINN simplifies the deployment of machine learning models on hardware, providing 

a valuable tool for developers seeking to take advantage of FPGA acceleration. 
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3.2.3 PYNQ-Z1 Board Implementation 

With the new open-source framework PYNQ, embedded programmers can harness 

the power of the Xilinx PYNQ-Z1 development board to create programmable logic 

circuits. Python is used to program the PYNQ-Z1 and is used to test and develop the 

code. The process of importing and programming programmable logic circuits is very 

similar to that of software libraries, which are imported as hardware libraries and 

programmed through their respective APIs. The PYNQ development board uses the 

Zynq system-on-chip, which combines multiple functions in a single chip but still can 

use multiple chips on the board to perform the same desired function.  

 An ARM processor is also included in the Zynq SoC. This makes it possible to 

implement hardware acceleration of CPU, DSP, and other components on the same 

chip or board. The flexibility of the PYNQ board is also an advantage since it can 

reprogram the SoC as needed. In summary, the PYNQ-Z1 FPGA board was chosen 

because of its flexibility, reprogramming ability, and lower challenges compared to 

other FPGAs. The PYNQ image and its built-in Python interface with Jupyter 

Notebook in the Zynq SoC provide a huge advantage for implementing the drowsiness 

detection for this project on board. The physical board is shown in Figure 3.5. 

3.3 Model Preparation 

Model preparation for our project involves four key steps to ensure efficient, 

accurate detection optimized for FPGA deployment. In terms of model selection, we 

Figure 3.5: PYNQ-Z1 FPGA [25] 
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chose YOLOv3-tiny for face detection because of its smaller architecture, fewer 

convolutional layers, and parameters. This choice strikes a balance between 

computational efficiency and accuracy, making it suitable for limited computing 

resources. 

For model quantization, the model was quantized using the Brevitas library to apply 

2-bit and 6-bit weights to each convolutional layer. This step reduces the size and 

computational requirements of the model, further improving efficiency. Both versions 

of the quantized model are trained to learn the features required for accurate face 

detection. Finally, the models are validated to ensure that they achieve the required 

mean average precision (mAP). After validation, the models are exported to ONNX 

format, enabling the FINN library to convert them to high-level synthesis (HLS) to 

generate FPGA bitstreams. 

3.3.1 Model Selection 

Yolov3-Tiny is a simplified version of the Yolov3 object detection CNN model 

designed for real-time applications with limited computational resources as shown in 

Table 3.1. It uses a smaller architecture with fewer convolutional layers and 

parameters, making it faster and more efficient while still maintaining reasonable 

accuracy. Yolov3-Tiny is particularly well suited for applications such as face 

detection that require fast and accurate responses. 

The max pooling layer, or max pooling, is a down sampling operation that reduces 

the dimensionality of each feature map while retaining the most important information. 

It does this by sliding a window over the input feature map and selecting the maximum 

value within the window. This process reduces the spatial size of the feature map, 

which reduces the number of parameters and computations in the network and helps 
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control overfitting. The ReLU (Rectified Linear Unit) layer introduces nonlinearity to 

the CNN. It applies the ReLU activation function to each element in the feature map, 

setting all negative values to zero and leaving positive values unchanged. This 

activation function helps the network learn complex patterns and relationships by 

introducing nonlinearity to the model. ReLU is computationally efficient and helps 

alleviate the vanishing gradient problem during training. 

Table 3.1: Yolov3-Tiny Architecture 

Layer Type Filters Size Input Output Activation 

Conv 16 3 x 3 / 1 416 x 416 x 3 416 x 416 x 16 ReLU 

MaxPool  2 x 2 / 2 416 x 416 x 16 208 x 208 x 16 - 

Conv 32 3 x 3 / 1 208 x 208 x 16 208 x 208 x 32 ReLU 

MaxPool  2 x 2 / 2 208 x 208 x 32 104 x 104 x 32 - 

Conv 64 3 x 3 / 1 104 x 104 x 32 104 x 104 x 64 ReLU 

MaxPool  2 x 2 / 2 104 x 104 x 64 52 x 52 x 64 - 

Conv 128 3 x 3 / 1 52 x 52 x 64 52 x 52 x 128 ReLU 

MaxPool  2 x 2 / 2 52 x 52 x 128 26 x 26 x 128 - 

Conv 256 3 x 3 / 1 26 x 26 x 128 26 x 26 x 256 ReLU 

MaxPool  2 x 2 / 2 26 x 26 x 256 13 x 13 x 256 - 

Conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512 ReLU 

MaxPool  2 x 2 / 2 13 x 13 x 512 13 x 13 x 512 - 

Conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x 1024 ReLU 

Conv 256 1 x 1 / 1 13 x 13 x 1024 13 x 13 x 256 ReLU 

Conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512 ReLU 

SimpleConv 255 3 x 3 / 1 13 x 13 x 512 13 x 13 x 255 Sigmoid 
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3.3.2 Model Quantization 

During the model quantization step, the Convolutional Neural Network (CNN) 

model was modified several times to optimize its efficient execution on FPGA 

hardware. The key changes include reducing the number of cores and using integer 

quantized forms of convolutional layers and activation functions. The number of filters 

in each convolutional layer was reduced by five times. This significant reduction helps 

reduce the complexity and computational load of the model, making it more suitable 

for resource-constrained environments such as FPGAs. The model uses QuantConv 

and QuantReLU layers, which are integer quantized versions of traditional 

convolutional and activation functions as shown in Table 3.2. These quantized layers 

replace floating-point operations with integer operations, which are more efficient and 

faster to compute on FPGA hardware. 

The CNN model accepts an input image of size 416x416x3 and outputs a 13x13x18 

result. This output represents a 13x13 grid of the image, where each grid cell contains 

the center x and y coordinates, width and height, category information, and the 

confidence score of the detected object. These six outputs are calculated for three 

different anchor boxes, enabling the model to detect objects with different aspect ratios. 

After the results are calculated, the resulting matrix is used to visualize the bounding 

boxes on the image. Non-maximum suppression (NMS) is then applied to eliminate 

overlapping bounding boxes, retaining only the most confident ones to provide clear 

and accurate detection output.  

To strike a balance between efficiency and accuracy, the first and last convolutional 

layers are preferably used with 8-bit integer values. This adjustment helps maintain 

better accuracy where precision is most critical. The Brevitas library in PyTorch is 
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used to implement these quantized layers and activation functions, providing the 

necessary tools to convert floating point operations into efficient integer operations 

suitable for FPGA deployment. This quantization process ensures that the model 

remains fast and efficient without significantly reducing accuracy. 

Table 3.2: Quantized Yolov3-Tiny Architecture 

Layer 

Type 
Weights Filters Size Input Output Activation 

QuantConv 8 bits 8 3 x 3 / 1 416 x 416 x 3 416 x 416 x 8 QuantReLU 

MaxPool   2 x 2 / 2 416 x 416 x 8 208 x 208 x 8 - 

QuantConv 2/6 bits 8 3 x 3 / 1 208 x 208 x 8 208 x 208 x 8 QuantReLU 

MaxPool   2 x 2 / 2 208 x 208 x 8 104 x 104 x 8 - 

QuantConv 2/6 bits 16 3 x 3 / 1 104 x 104 x 8 104 x 104 x 16 QuantReLU 

MaxPool   2 x 2 / 2 104 x 104 x 16 52 x 52 x 16 - 

QuantConv 2/6 bits 32 3 x 3 / 1 52 x 52 x 16 52 x 52 x 32 QuantReLU 

MaxPool   2 x 2 / 2 52 x 52 x 32 26 x 26 x 32 - 

QuantConv 2/6 bits 56 3 x 3 / 1 26 x 26 x 32 26 x 26 x 56 QuantReLU 

MaxPool   2 x 2 / 2 26 x 26 x 56 13 x 13 x 56 - 

QuantConv 2/6 bits 104 3 x 3 / 1 13 x 13 x 56 13 x 13 x 104 QuantReLU 

MaxPool   2 x 2 / 2 13 x 13 x 104 13 x 13 x 104 - 

QuantConv 2/6 bits 208 3 x 3 / 1 13 x 13 x 104 13 x 13 x 208 QuantReLU 

QuantConv 2/6 bits 56 3 x 3 / 1 13 x 13 x 208 13 x 13 x 56 QuantReLU 

QuantConv 2/6 bits 104 3 x 3 / 1 13 x 13 x 56 13 x 13 x 104 QuantReLU 

QuantSimp

leConv 
8 bits 18 3 x 3 / 1 13 x 13 x 104 13 x 13 x 18 

QuantHard 

Tanh 



42 

 

3.3.3 Model Training 

The model training process is a critical step in preparing the CNN model for 

accurate face detection. The training uses a dataset of 3.6k images from the 

WIDERFACE dataset, which is well-known for collecting images of faces in various 

scenarios. The dataset is split into 90% for training and 10% for validation. The model 

is trained for 120 epochs. Each epoch represents a complete pass over the entire 

training dataset. The batch size used is 128, which means 128 images are processed 

before updating the model parameters. This batch size helps balance computational 

efficiency and training stability. 

During training, the model learns to detect faces by adjusting its parameters to 

minimize the difference between the predicted output and the actual face locations and 

classes in the training images. The training process involves forward propagation 

(computing the model’s predictions) and backward propagation (updating the model’s 

parameters based on the prediction errors). After each epoch, the model’s performance 

is evaluated on the validation set. This helps monitor the model’s generalization ability 

and prevents overfitting by ensuring that the model performs well on unseen data. 

The model is trained using quantized values. Quantization involves representing 

the weights and activations with lower bit widths, which significantly reduces the 

computational and memory requirements. This step is crucial for ensuring that the 

model runs efficiently on FPGA hardware without sacrificing too much accuracy. 

Once training is complete, the model is saved as a .pt file (PyTorch model file). This 

file contains the learned parameters of the model and can be used later for inference. 

This training process ensures that the model is fully prepared to accurately detect faces 

in a variety of images using the robust features learned from the WIDERFACE dataset. 
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3.3.4 Model Validation 

The model validation process is critical to ensure that the trained model performs 

well on unseen data and is optimized for deployment. Once the validation is completed, 

the trained model is exported in the ONNX (Open Neural Network Exchange) format. 

ONNX is an open-source format designed for representing machine learning models, 

providing an intermediate representation that facilitates interoperability between 

different frameworks. Exporting the model to ONNX is a key step as it allows the 

model to be further processed and optimized by the FINN framework. FINN is a 

framework developed by Xilinx for accelerating quantized neural networks on FPGAs. 

During training, the Sigmoid function is used as the activation function for the last 

layer. The Sigmoid function is beneficial for learning because it smoothly maps the 

input values to a range between 0 and 1, which is ideal for probability predictions in 

classification tasks. For deployment, particularly for lowering latency and improving 

compatibility with the FINN framework, the Sigmoid function is replaced with a 

rescaled HardTanh function. HardTanh is a piecewise linear approximation of the 

Tanh function, which is computationally less expensive and thus reduces latency. The 

relationship between Tanh and Sigmoid function can be defined as equation 3.1. 

𝜎(𝑥) =
1+tanh (

𝑥

2
)

2
  (3.1) 

3.4 Board Implementation 

Each step of the board level implementation of this project is attached in this section. 

First, the quantized model is converted to HLS using the FINN framework. Next, the 

bitstream is generated to port the detection accelerator on the FPGA. At this stage, the 

output folder will contain two subfolders called the bit file folder and the driver folder 
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for porting the bitstream accelerator on the FPGA. The output folder will also contain 

the reports generated by FINN and Vivado. The bit file is deployed on the FPGA and 

compiled with the drowsiness detection algorithm. Blinks and yawns are calculated 

using the eye aspect ratio and mouth aspect ratio. 

3.4.1 High-Level Synthesis Conversion 

The FINN library is utilized to convert and compile a quantized convolutional 

neural network model into a hardware description language (HDL) representation 

suitable for FPGA (Field-Programmable Gate Array) deployment. The process of 

High-Level Synthesis (HLS) conversion for the quantized model involves several key 

steps to transform the trained neural network model into an FPGA-compatible format 

using the FINN framework. Initially, the model undergoes a series of transformations 

to prepare it for synthesis. These transformations include inferring shapes and data 

types, folding constants, and assigning unique and readable names to tensors and 

nodes in the computational graph. Specifically, the model is transformed using 

functions such as `InferShapes`, `FoldConstants`, `GiveUniqueNodeNames`, 

`GiveReadableTensorNames`, `InferDataTypes`, and `RemoveStaticGraphInputs`. 

Next, preprocessing steps are integrated into the model. Using the `ToTensor` 

function from the `finn.util.pytorch` module, the preprocessing step is designed to 

normalize input images by dividing uint8 inputs by 255. This preprocessing model is 

exported in ONNX format and merged with the core quantized model using the 

`MergeONNXModels` transformation. Additionally, an input quantization annotation 

is added, specifying that the input data type should be UINT8 for compatibility with 

the models. The prepared model is saved and re-validated through repeated 

transformations to ensure all shapes, constants, and data types are correctly inferred 
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and optimized. Finally, the model is saved in the ONNX format suitable for further 

processing. 

3.4.2 Simulation, Synthesis and Bitstream Generation 

Simulation and synthesis are performed using the command build from the FINN 

library. Estimated resource utilization reports are generated for analysis. The 

configuration of FINN is slightly different from the synthesis part, which uses the 

Vivado accelerator as the backend, while the synthesis process uses Vivado as the 

backend. 

The next phase involves setting up the configuration for dataflow build using the 

FINN framework. The `DataflowBuildConfig` is defined with various parameters, 

including the output directory, the folding configuration file specific to the Pynq-Z1 

board, and synthesis clock period settings. The build configuration specifies the target 

FPGA board and the desired output types, such as estimation reports, bit files, PYNQ 

drivers, and a deployment package. 

The  ̀build_dataflow_cfg` function is called with the model file and the 

configuration, initiating the conversion process. This step compiles the neural network 

into a hardware-friendly representation, generating the necessary files and reports for 

deploying the model on FPGA hardware, thus enabling efficient and high-speed 

detection using the model on the PYNQ-Z1 board. 

3.4.3 Deployment and Validation 

Download the image of the board and load it into the SD card so that the PYNQ-

Z1 board can work. After that, the driver can be used for drowsiness detection 
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inference for analysis. The accuracy of yawning and blinking on the board is being 

compared with that of the host computer. 

3.4.4 Eye State Determination 

For the blink detection method, Eye Aspect Ratio (EAR) algorithm will be used. 

EAR is defined as the ratio of the height and width of the eye [37]. First, extraction of 

the eye region from a set of facial landmarks. Based on Figure 3.6, there are six 

coordinates for each eye. These six coordinates will be used for calculation of EAR 

value. The calculation is done for both left and right eye. 

The equation 3.2 for EAR can be derived as the following: 

𝐸𝐴𝑅 =  
‖𝑃2−𝑃6‖+‖𝑃3−𝑃5‖

2×‖𝑃1−𝑃4‖
 (3.2) 

Where P1, P2, P3, P4, P5 and P6 are the facial landmark coordinates that have been 

obtained. Next, the system calculates the average of two EAR together with 

assumption that a person blinks both eyes at the same time. EAR value will be 

compared with the threshold value taken as 0.2. If the EAR value is below the 

threshold, the eye will be considered closed [37]. When an eye is closed, the two types, 

which are eye closure and eye blink will be differentiated. When the duration of eye 

closed is more than 0.2 seconds, it will be considered as eye closure or else as eye 

blink. 

Figure 3.6: Eye Aspect Ratio (EAR) [37] 
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3.4.5 Mouth State Determination 

For the yawn detection method, Mouth Aspect Ratio (MAR) algorithm will be used. 

MAR is defined as the ratio of the height and width of the mouth. First, extraction of 

the mouth region from a set of facial landmarks. To calculate the MAR, only those 

coordinates will be used at which are at the outer mouth [38]. There are 12 coordinates 

as shown in Figure 3.7. 

The equation 3.3 for MAR can be derived as the following: 

𝑀𝐴𝑅 =  
‖𝑃2−𝑃10‖+‖𝑃4−𝑃8‖+‖𝑃0−𝑃6‖

3
 (3.3) 

Where P1 to P12 are the facial landmark coordinates that this study obtained before. 

MAR value will be compared with the threshold value taken as 20. The value of 

threshold value was established by trial and error, with several values of threshold 

value being tested to ensure that the algorithm accurately classifies an instance of 

yawning and closed mouth. It shows that if the MAR value is bigger than threshold 

value, the mouth will be considered as yawning [38]. 

3.5 Performance Analysis 

Performance analysis of a drowsiness detection system on an FPGA focuses on 

several key metrics to assess its efficiency and effectiveness. Measuring inference time 

provides insight into the speed of the system, specifically its latency in milliseconds 

Figure 3.7: Mouth Aspect Ratio (MAR) [38] 
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per frame. Analyzing the resource utilization of the FPGA helps determine how 

efficiently the hardware resources, including logic elements, memory, and DSP blocks, 

are being used. Evaluating power consumption is critical to understanding the energy 

efficiency of the FPGA implementation. Evaluating the accuracy of detecting blinks 

and yawns ensures the reliability of the drowsiness detection system. This metric is 

critical to verifying the usefulness of the system in real-world scenarios. By examining 

these metrics, the performance analysis aims to gain a detailed understanding of the 

capabilities and advantages of the FPGA-based drowsiness detection system over 

traditional computing platforms. 

3.5.1 Inference Time 

Measure and discuss the inference time of the deployed model. In the context of 

FPGA deployment, the inference time is a critical metric reflecting the speed at which 

the model processes input data and produces classification results. The FPGA’s 

parallel processing capabilities are harnessed to optimize inference time, and 

measurements are taken to quantify the reduction achieved compared to a purely 

software-based implementation. This metric is critical to understanding the real-time 

capabilities of an FPGA-based system 

3.5.2 Resource Utilization 

Assess the FPGA resource utilization for the implemented system. Resource 

Utilization is the number of resources used by an FPGA for the design, in my project, 

it is the HLS quantized convolutional model. The aspects that are often considered are 

Lookup table, Digital Signal Processing (DSP), Flip Flops (FF), Block RAM and I/O 

block. They are affected by the architecture of the model and the designation of the 
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model and the HLS conversion technique. This evaluation is critical to optimizing the 

system and ensuring that it fits within the constraints of the target FPGA device. 

3.5.3 Power Consumption 

Analyze the power consumption of the deployed system. Power Consumption is 

the power needed for the FPGA to run the model. It is usually affected by the function 

and the frequency of the FPGA running. The design complexity and operating 

condition can also change the power consumption of FPGA. 

3.5.4 Blink and Yawn Count 

Analyze the system’s performance in detecting signs of drowsiness and assess the 

system’s effectiveness in monitoring eye and mouth activity. Accurate detection of 

blinks and yawns are important indicators of an individual’s drowsiness. By tracking 

the frequency and duration of blinks and yawns, a drowsiness detection system can 

measure alertness or fatigue levels in real time. Blink frequency and duration are 

important indicators because prolonged blinks or increased intervals between blinks 

are often associated with drowsiness. Similarly, yawn detection can provide valuable 

insights into an individual’s physiological state, with frequent or prolonged yawning 

indicating a higher likelihood of drowsiness. Accurate counting and analysis of blinks 

and yawns helps improve the overall effectiveness and reliability of the drowsiness 

detection system, enabling timely intervention to prevent potential incidents or errors 

caused by reduced alertness. 

3.5.5 Comparison with Traditional Platform 

Compare the performance with traditional platforms such as CPU. To visualize the 

advantages and limitations of FPGA comparing to the CPU, the comparison between 

them needs to be made and analyzed for gaining insight on both platforms 
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implementing the same model performing the same classification task. Comparing the 

performance of an FPGA-based system to traditional platforms such as CPUs can 

highlight advantages and potential trade-offs. This comparison provides a 

comprehensive view of the advantages in terms of speed, power efficiency, and 

resource utilization. 

3.5.6 Trade-offs and Optimization Strategies 

Discussing trade-offs and optimization strategies provides insight into the design 

choices made to balance performance, accuracy, and resource constraints. This 

analysis helps identify potential improvements and best practices for future 

implementations.



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter will record and measure all the results and output data of this project 

as data analysis. This section will discuss the latency, power consumption, and 

resource utilization of drowsiness detection. The performance of the two models in 

PYNQ-Z1 FPGA will also be presented in the form of results. 

4.2 Two-bit Quantization Model 

This section studies the performance of the 2-bit quantized model implemented on 

the FPGA platform shown in Figure 4.1. The analysis focuses on resource utilization, 

power consumption, and adherence to clock constraints and frequency. Through a 

comprehensive evaluation, we aim to gain insight into the feasibility and effectiveness 
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of deploying low-precision models on FPGA platforms, thereby facilitating the 

development of efficient and scalable machine learning solutions. 

4.2.1 Resource Utilization 

This section presents the implementation report of the resource utilization of the 

Vivado implementation of the 2-bit quantized YOLOv3-Tiny model on the PYNQ-Z1 

FPGA board. The resource utilization is shown in Figures 4.2, 4.3, and 4.4. Of the 

53,200 available Slice LUTs, 38,833 are used, which is 72.99% utilization as shown 

in Figure 4.2.  

These LUTs are used to implement combinatorial logic, of which 65.27% are 

configured for general logic use and 23.61% are allocated for memory use. Some Slice 

LUTs are dedicated to specific functions, such as distributed RAM and shift registers, 

of which 3,702 LUTs are used as distributed RAM and 406 LUTs are configured as 

shift registers. The utilization of the slice registers used to store intermediate values 

and results is 48.53%. All 51,632 registers are used, all configured as flip-flops, 

Figure 4.1: 2-bit Quantized Model 

Figure 4.2: 2-bit Model Slice Logic 
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indicating that they are mainly used for sequential logic. The F7 and F8 multiplexers, 

which are critical for signal routing within the FPGA, are utilized at 7.26% and 5.71% 

respectively, with 1,930 of the 26,600 F7 multiplexers being used and 760 of the 

13,300 F8 multiplexers being used. 

Figure 4.3 details the memory utilization, where the Block RAM Tile is used as the 

basic memory component, with 65 of the 140 instances being used, for a utilization of 

46.43%. Specific memory instances such as RAMB36/FIFO and RAMB36E1 each 

have 37 instances used, with both types having a utilization of 26.43%. These are 

critical for applications that require specialized memory structures such as FIFO 

implementations. The RAMB18 and RAMB18E1 blocks, known for their capacity 

and versatility, are each used at 56 of the 280 instances available, for a utilization of 

20.00%. 

The DSP resource utilization shown in Figure 4.4 shows that 29 instances are in 

use out of the available 220, a utilization of 13.18%. DSP blocks are critical for 

accelerating complex mathematical computations and signal processing tasks in 

FPGA designs. A comprehensive analysis of Slice Logic, DSP, and memory 

utilization demonstrates a holistic approach to resource management. A considerable 

portion of the DSP resources utilization indicates effective coordination of 

computational tasks with specialized hardware functions.  

Figure 4.3: 2-bit Model Memory 
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The balance between Slice Logic and memory utilization indicates that resource 

allocation for computational and data storage requirements is coordinated. A 

comprehensive analysis of resource utilization highlights the efficiency and 

effectiveness of the 2-bit quantized YOLOv3-Tiny model implementation on the 

PYNQ-Z1 board. 

4.2.2 Power 

Figure 4.5 shows the power report, which details the total power consumption of 

the chip in watts. The total on-chip power is approximately 2.014W, indicating the 

overall power consumption of the chip. The dynamic power consumption (indicating 

the power used when the chip is active or running) is approximately 1.856W. The 

device’s static power (indicating the power consumed when the chip is idle) is 

approximately 0.158W. 

Figure 4.4: 2-bit Model DSP 

Figure 4.5: 2-bit Model Power 
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In addition, the report also includes the effective TJA (C/W), which stands for the 

junction-to-ambient thermal resistance. This metric measures how effectively the chip 

transfers heat from the junction (the hottest part of the chip) to the surrounding 

environment. Lower TJA values indicate better cooling efficiency. The maximum 

ambient temperature represents the maximum ambient temperature (in degrees Celsius) 

at which the chip can operate effectively. The junction temperature refers to the 

temperature of the chip junction, which is usually the hottest point. This detailed 

power report provides a comprehensive overview of the power consumption and 

thermal management of the chip, which is critical to evaluating the efficiency and 

reliability of the 2-bit quantized model implementation on the PYNQ-Z1 board. 

4.2.3 Clock Constraint and Frequency 

As shown in Figures 4.6 and 4.7, a clock frequency of 100 MHz is used and no 

clock setup, hold, or pulse width requirements are violated, highlighting the robust 

design characteristics. In Vivado, the “worst slack” in the clock report refers to the 

timing margin of the critical path with the smallest margin to meet the specified timing 

constraints. These constraints define the desired performance goals of the model 

design, including maximum clock frequency, setup time, and hold time requirements. 

Timing margin represents the amount of time a signal can be delayed without 

violating the specified timing constraints. Positive margin values indicate that the 

design meets timing requirements, while negative margin values indicate timing 

violations. The “worst slack” is the smallest (most negative) margin value among all 

Figure 4.6: 2-bit Model Clock Summary 
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critical paths in the design. A negative worst margin means that the design fails to 

meet timing on the critical path. This failure can be caused by various factors, such as 

routing congestion, inefficient logic element placement, or insufficient clock-to-q 

delays for sequential elements on the critical path. 

This clock summary and timing analysis highlights the efficiency and reliability of 

the 2-bit quantized model implementation on the PYNQ-Z1 board, ensuring that the 

design meets the required performance criteria without violating timing. 

4.3 Six-bit Quantization Model 

In this section, we study the 6-bit quantized models as shown in Figure 4.8. Our 

analysis focuses on resource utilization, power consumption, and adherence to clock 

constraints and frequency. Through a comprehensive evaluation, we aim to gain 

insights into the feasibility and effectiveness of deploying low-precision models on 

FPGA platforms. This detailed investigation will highlight the potential benefits and 

challenges of implementing 6-bit quantized models, helping to advance the 

optimization of machine learning deployments on FPGA hardware. 

Figure 4.7: 2-bit Model Timing Details 

Figure 4.8: 6-bit Quantized Model 
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4.3.1 Resource Utilization 

Figures 4.9, 4.10, and 4.11 show the resource utilization report, detailing the 

performance of the 6-bit quantized model on the FPGA platform. The slice lookup 

tables (LUTs) that implement arbitrary Boolean logic functions have a utilization of 

74.14%, indicating that a large portion of the design logic relies on these LUTs. 

Specifically, 66.41% of the LUTs are used for general logic purposes, while 406 LUTs 

are used as small memories or shift registers, accounting for 23.61% of the total 

utilization. 

The utilization of slice registers, which are used to store data or state information 

in sequential logic, is 48.94%, and all used registers are configured as flip-flops, 

matching the utilization of slice registers. This indicates that the design primarily uses 

flip-flops as memory elements. The higher utilization percentage compared to the 2-

bit quantized model indicates that the 6-bit quantized model requires more resources. 

Block RAMs, which implement larger memory arrays that are necessary to store 

large amounts of data or coefficients, have a utilization of 84.29%, indicating that 

almost all available block RAM blocks are used. This marks a significant 

improvement in memory utilization compared to the 2-bit quantized model. 

Quantization reduces the precision of the neural network weights, such as converting 

Figure 4.9: 6-bit Model Slice Logic 
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32-bit floating point numbers to 6-bit integers, thereby reducing the memory and 

compute requirements of the model. The report shows that this low memory utilization 

is attributed to the effective use of quantization techniques, which shrinks the model’s 

memory footprint, allowing it to fit on the FPGA with sufficient resources available. 

This is particularly beneficial for embedded systems with limited memory and 

computer resources. 

The digital signal processor (DSP), which is critical for performing arithmetic 

functions such as multiply-accumulate operations in convolutional layers, has a 

utilization of 13.18%, indicating that a considerable portion of the DSP is used in the 

design. 

Overall, the detailed resource utilization highlights the efficiency and increased 

requirements of the 6-bit quantized model, proving its feasibility and effectiveness in 

deployment on FPGA platforms while maintaining efficient resource management. 

Figure 4.11: 6-bit Model DSP 

Figure 4.10: 6-bit Model Memory 
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4.3.2 Power 

Figure 4.12 details the power report, illustrating the power consumption metrics for 

a 6-bit quantized model implemented on an FPGA platform. The total on-chip power 

is approximately 2.133 Watts, representing the overall power consumption of the chip. 

Dynamic power represents the power consumed when the chip is active, which is 

approximately 1.964 Watts. Device static power represents the power consumed when 

the chip is idle, which is approximately 0.168 Watts. 

Effective TJA (C/W) or junction-to-ambient thermal resistance measures how 

effectively the chip transfers heat from the junction (the hottest part of the chip) to the 

surrounding environment. Lower TJA values indicate better cooling efficiency. 

Maximum ambient temperature represents the maximum ambient temperature (in 

degrees Celsius) at which the chip can operate effectively. Junction temperature refers 

to the temperature of the chip junction, which is typically the hottest point. 

The total on-chip power consumption of the 6-bit quantized model is higher 

compared to the 2-bit quantized model, indicating that the increased accuracy of the 

6-bit model results in increased power consumption. This comprehensive power 

analysis highlights the trade-off between model accuracy and power efficiency, which 

is critical for optimizing FPGA deployments for machine learning tasks. 

Figure 4.12: 6-bit Model Power 
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4.3.3 Clock Constraint and Frequency 

As stated in the Clock Summary report for the 6-bit quantized model, the clock 

frequency used is 100 MHz as shown in Figure 4.13.  

Figure 4.14 shows that no clock violations were found after the implementation 

process. This indicates that the design meets all setup, hold, and pulse width 

requirements, ensuring reliable performance. The absence of clock violations 

highlights the robustness of the 6-bit quantized model implementation, maintaining 

adherence to critical timing constraints and enabling efficient operation on FPGA 

platforms. 

4.4 PYNQ-Z1 board 

The final deployed model is validated on FPGA and its performance is summarized. 

The performance metrics obtained by FPGA implementation of 2-bit and 6-bit 

quantized models are compared. This step aims to analyze the performance of 

quantized model on FPGA. This ensures that the drowsiness detection based on FPGA 

implementation is meaningful. 

Figure 4.13: 6-bit Model Clock Summary 

Figure 4.14: 6-bit Model Timing Details 
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4.4.1 Validation 

The validation process is done which is shown in Figure 4.15 and to make sure the 

practical implementation of the drowsiness detection with 2-bit quantized model and 

the 6-bit quantized model works on the PYNQ-Z1 FPGA board. The inference process 

is done using the driver which is the communication protocol, the bit file and 

configuration file. 

4.4.2 Performance 

The performance of the drowsiness detection with blink and yawn accuracy with 

latency is tested in PYNQ-Z1 FPGA as shown in Table 4.1. 

Table 4.1: Performance on PYNQ-Z1 

Model 
Blink 

Accuracy 

Yawn 

Accuracy 

Total 

Accuracy 
Latency 

Haar Cascade - - - 910.25ms/frame 

Yolov3 Tiny - - - 3530.14ms/frame 

2-bit Quantized 

Yolov3 Tiny 
72% 76% 74% 191.72ms/frame 

6-bit Quantized 

Yolov3 Tiny 
77% 90% 83.5 224.35ms/frame 

 

Figure 4.15: PYNQ-Z1 Implementation 
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4.5 Central Processing Unit 

The yawning and blinking counts in drowsiness detection are also inferred on PC 

using CPU workspace for comparative analysis. 

4.5.1 Performance 

The performance of the blink and yawn accuracy with latency is tested in CPU as 

shown in Table 4.2. 

Table 4.2: Performance on CPU 

Model 
Blink 

Accuracy 

Yawn 

Accuracy 

Total 

Accuracy 
Latency 

Haar 

Cascade 
78% 85% 81.5% 22.25ms/frame 

Yolov3 Tiny 85% 92% 88.5% 49.10ms/frame 

 

4.5.2 Resource Utilization 

The resource utilization graph of the personal computer can be seen in Figure 4.16. 

The CPU usage of the drowsiness detection fluctuated from 0 to 49%, the memory 

usage for the models is at 40% average. 

4.6 Comparison Table 

Table 4.3 shows not only the comparison of drowsiness detection on different 

platforms with different models in terms of latency, power, and resource utilization, 

Figure 4.16: Resource Utilization 
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but also the comparison with other research results. All the data that had been 

measured and recorded had been compared. 

 Table 4.3: Result Comparison 

 

4.7 Discussion 

The PYNQ-Z1 FPGA achieved a significant 45.24% reduction in memory usage 

after converting from a 6-bit model to a 2-bit model. In addition, the quantized model 

on the PYNQ-Z1 reduced power consumption by 95.52% compared to CPU and 

improved latency by 46.12 times after converting from a pure PS (processing system) 

to a PS+PL (programmable logic) combined approach. As mentioned in [29], the 

FPGA uses a 320x240 (QVGA) resolution with low FPGA resource utilization, using 

only 9.57% of the look-up tables (LUTs), 1.77% of the registers, and 4.17% of the 

digital signal processing (DSP) blocks. This lower utilization allows for more 

flexibility in adding additional functionality or logic. However, this work also results 

 
Device Model Power 

Resource 

Utilization 
Latency 

Proposed 

in this 

project 

CPU  

(Ryzen 5600H) 

Haar 

Cascade 
65W - 22.25ms/frame 

CPU  

(Ryzen 5600H) 
Yolov3 Tiny 65W - 49.10ms/frame 

PYNQ-Z1 (PS) 
Haar 

Cascade 
2.4W - 791.62ms/frame 

PYNQ-Z1 (PS) Yolov3 Tiny 2.4W - 8344.53ms/frame 

PYNQ-Z1  

(PS + PL) 

2-bit 

Quantized 

Yolov3 Tiny 

2.014W 

72.99% LUT 

48.53% Registers 

13.18% DSP 

46.43% Memory 

180.92ms/frame 

PYNQ-Z1  

(PS + PL) 

6-bit 

Quantized 

Yolov3 Tiny 

2.133W 

74.14% LUT 

48.94% Registers 

13.18% DSP 

84.29% Memory 

199.12ms/frame 

S. K. 

Mousaviki

a et al. 

[29], 2022 

Xilinx Nexys 4 

DDR 
CNN - 

9.57% LUT 

1.77% Registers 

4.17% DSP 

99.26% Memory 

231ms/frame 
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in a memory utilization of almost 99.26% and a longer processing time of 231 

milliseconds per frame, which may not be suitable for real-time applications. The 

proposed work, while requiring more FPGA resources, provides faster processing time 

and more available memory, which is beneficial for real-time applications. 

The PYNQ-Z1 FPGA uses advanced parallel techniques such as pipelining to 

improve computational efficiency and performance. This hardware design strategy 

divides computation into multiple stages, allowing each stage to run simultaneously. 

By overlapping the execution of different stages, pipelining enhances concurrency and 

enables efficient parallel processing of multiple data elements in each stage, thereby 

optimizing overall computational performance. These parallelization techniques are 

automatically implemented by the FINN library, significantly improving the 

performance of the FPGA in terms of resource utilization, power consumption, and 

thermal management. However, due to the limitations of onboard RAM resources, the 

training process cannot be performed on the board itself. Figure 4.17 shows the degree 

of parallelism is determined by the number of processing elements (PEs) and single 

instruction multiple data (SIMD) units used per layer, which can be adjusted by setting 

the folding parameters. Increasing the number of PEs and SIMDs can increase 

parallelism and speed, but this also consumes more logic resources, so a balance needs 

to be struck between performance and resource utilization.  

Figure 4.17: Parallelism 
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4.8 Environmental and Sustainability 

Sustainable development is essential to ensure a balance between environmental 

protection and social progress, highlighting the importance of engineering solutions 

that minimize ecological impact while benefiting communities. 

4.8.1 Needs and Importance for Sustainable Development 

In today’s rapidly evolving technology landscape, especially in the field of 

automation, developing advanced computing for AI applications is essential. To meet 

the growing demand for AI applications, advanced computing solutions such as Field 

Programmable Gate Arrays (FPGAs) have become essential. FPGAs play a key role 

in promoting innovation and building resilient infrastructure aligning with SDG 9 as 

shown in Figure 4.18 [39]. Their scalability and flexibility are particularly beneficial 

for developing a neural network-based drowsiness detection system. By leveraging 

the adaptability of FPGAs, the project ensures that the technology can evolve with the 

rapid development of neural networks. This adaptability not only supports continued 

innovation, but also strengthens the infrastructure required for complex AI 

applications. Improving energy efficiency is a key aspect of the project, contributing 

to more sustainable consumption and production patterns. 

FPGAs are known for their high energy efficiency, making them an ideal solution 

for reducing the environmental impact of technology. By optimizing resource 

Figure 4.18: Sustainable Development Goals [39] 
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utilization and improving energy efficiency, the project promotes sustainability in 

technological development. This not only meets the goals of SDG 12, but also helps 

improve human lifestyles by minimizing the ecological footprint of advanced 

computing. By promoting innovation, strengthening infrastructure and improving 

energy efficiency, the project contributes to the achievement of SDG 9 and SDG 12, 

ensuring that technological progress is both sustainable and impactful. 

4.8.2 Impact of the Engineering Solution on Society 

Applying drowsiness detection on FPGA can promote the development of driver 

fatigue detection crisis to improve vigilance. Autonomous driving systems are 

becoming a trend. This project provides insights into real-time image recognition 

systems to improve the safety of advanced driver assistance systems (ADAS). When 

using reconfigurable FPGA-based convolutional neural networks for drowsiness 

detection, resource waste can be avoided. 

4.9 Summary 

Through comparative analysis of latency, power consumption, and resource 

consumption, the results of my project “Implementation and Performance Analysis of 

Drowsiness Detection using Hardware Acceleration on PYNQ-Z1 FPGA” show that 

high-level computing has both advantages and disadvantages for drowsiness 

detection. The advantage is the optimization of latency, power consumption and 

resource utilization. The disadvantage is that the training process cannot be completed 

on the PYNQ-Z1 board due to resource limitations. The results highlight the potential 

of FPGAs in meeting high-performance computing needs and provide a path for the 

development of drowsiness detection.



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Introduction 

This chapter will summarize the project results in terms of the project goals and 

future work that can improve the system. This chapter will present the conclusions of 

the project in Section 5.2 and future work on the project in Section 5.3. 

5.2 Conclusion 

This thesis focuses on the development of an optimized quantized convolutional 

neural network-based model for drowsiness detection on the PYNQ-Z1 FPGA. All 

goals of the project were achieved, successfully implementing drowsiness detection 

on the FPGA, using optimization techniques on the model, and analyzing the 

drowsiness detection performance of the quantized model in FPGA. 
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The first goal was to design and implement drowsiness detection on the FPGA. 

This goal was achieved by completing on-board validation and documenting the 

results. The second goal was to explore drowsiness detection optimization techniques 

in the model, which was also achieved by quantizing the model. Parallelization 

techniques were also used when converting the model to an HLS model, where 

pipelining, inlining, and partitioning arrays were performed to exploit the 

parallelization capabilities of the FPGA. The third goal was to perform a drowsiness 

detection performance analysis on the results to gain insight into how traditional 

computing platforms compare to FPGAs. This goal was achieved when we were able 

to infer the advantages and disadvantages of FPGAs compared to traditional 

computing platforms based on the power consumption, latency, and implementation 

reports generated. 

In summary, the successful achievement of these goals highlights the importance 

of FPGAs for drowsiness detection applications. The research results presented in this 

paper not only advance the current understanding of hardware-accelerated neural 

networks but also lay a solid foundation for future research and development in the 

pursuit of optimized, high-performance computing solutions in the field of artificial 

intelligence. 

5.3 Future works 

To further improve the limitations found in this project, several advanced 

techniques and methods can be considered. By quantizing the activation layers in the 

convolutional neural network model, we can potentially improve performance and 

efficiency. Integrating and optimizing more complex drowsiness detection methods 

(such as head pose analysis) can push the limits of FPGA capabilities. It is critical to 
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investigate further optimization techniques for specific FPGA architectures, as 

different FPGAs have unique capabilities and constraints that can be exploited to 

improve performance and resource utilization. 

In addition, fine-tuning the configuration of each layer in the convolutional neural 

network may help improve latency, power consumption, and resource utilization. 

Investigating other optimization techniques is also a promising direction to improve 

the performance of FPGA-based neural networks. In addition to CNNs, exploring 

other neural network models or drowsiness detection methods can fully understand 

the potential of FPGAs in various applications. Real-time inference using cameras on 

FPGAs presents significant challenges, but also provides opportunities to explore the 

ability of FPGAs to exploit real-time data. Ensuring cross-platform compatibility is 

critical to adapt to various FPGA architectures and expand the scope of 

implementation. 

Evaluating power consumption and efficiency through power-aware design 

techniques and dynamic reconfiguration can produce more energy-efficient models. 

Integrating the FPGA implementation with an edge computing platform and 

thoroughly benchmarking it against alternative FPGA-based solutions will provide 

valuable insights into the strengths and weaknesses of the proposed approach 

compared to existing solutions. In summary, these future research directions aim to 

push the boundaries of FPGA-accelerated drowsiness detection and advance the field 

of hardware-accelerated deep learning and edge computing. 
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