

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF
DROWSINESS DETECTION USING HARDWARE

ACCELERATION ON PYNQ-Z1 FPGA

OOI HAN YI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF

DROWSINESS DETECTION USING HARDWARE

ACCELERATION ON PYNQ-Z1 FPGA

OOI HAN YI

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Computer Engineering with Honours

Faculty of Electronics and Computer Technology and

Engineering

Universiti Teknikal Malaysia Melaka

2024

Tajuk Projek : Implementation and Performance Analysis of

Drowsiness Detection using Hardware Acceleration

on PYNQ-Z1 FPGA

Sesi Pengajian : 2023/2024

Saya OOI HAN YI mengaku membenarkan laporan Projek Sarjana Muda ini

disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan

pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*
(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

TIDAK TERHAD

Disahkan oleh:

(COP DAN TANDATANGAN PENYELIA) (TANDATANGAN PENULIS)

,

Tarikh : . 20 Jun 2024 Tarikh : 26 Jun 2024

 *CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan
dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Ooi Han Yi

20 June 2024

Ooi Han Yi

20 June 2024

DECLARATION

I declare that this report entitled “Implementation and Performance Analysis of

Drowsiness Detection using Hardware Acceleration on PYNQ-Z1 FPGA” is the result

of my own work except for quotes as cited in the references.

Signature : …………………………………

Author : …………………………………

Date : …………………………………

Dr. Anis Suhaila Binti Mohd Zain

26 June 2024

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Computer Engineering with

Honours

Signature : ………………………………………

Supervisor Name : ………………………………………

Date : ………………………………………

DEDICATION

To my beloved parents, who have been my unwavering source of inspiration,

motivation, and encouragement throughout my academic journey. Without your love,

sacrifices, and steadfast support, I would not be where I am today. This paper is a

testament to your unfailing faith in me, and I dedicate it to you with all my heart. To

my supervisor, Dr. Anis Suhaila Binti Mohd Zain, and my co-supervisor, Ts. Dr. Sani

Irwan Bin Salim, whose expertise, guidance, and mentorship have shaped my research

and inspired me to push my limits. Your patience, constructive feedback, and valuable

insights have helped me grow as a researcher and scholar. I am grateful for the

opportunities you have given me to learn, collaborate, and contribute to the academic

community. To Universiti Teknikal Malaysia Melaka, which has provided me with a

rich academic environment, cutting-edge resources, and a platform to pursue my

educational passion. My experience at this university has transformed me, allowing

me to think critically, explore new ideas, and be exposed to different perspectives. I

am honoured to be a part of this academic community, and I dedicate this paper to this

university that has given me so much. Thank you.

i

ABSTRACT

Drowsiness detection algorithms implemented on general-purpose processors

perform well but suffer from portability issues and high power consumption. This

project aims to overcome these limitations by designing and developing a drowsiness

detection system on the PYNQ-Z1 FPGA platform. The project transitions from a

software-based model to an FPGA-optimized design using high-level synthesis (HLS)

of the Xilinx FINN compiler. By leveraging the parallel processing capabilities of

FPGAs, the drowsiness detection is optimized for latency, power consumption, and

resource utilization. The system monitors yawning and blinking, ensuring high

performance while improving computational efficiency and power consumption. The

integration of convolutional neural networks with FPGA frameworks demonstrates

the synergy between neural network architectures and reconfigurable hardware. The

results show that switching from a 6-bit model to a 2-bit model significantly reduced

memory usage by 45.24%. Additionally, the quantized model on the PYNQ-Z1

reduces power consumption by 95.52% compared to the CPU. This research not only

advances FPGA-based deployment, but also lays the foundation for future innovations

in hardware design, neural networks, and artificial intelligence, enhancing the visual

perception capabilities of computer vision and autonomous systems.

ii

ABSTRAK

Algoritma pengesanan rasa mengantuk yang dilaksanakan pada pemproses tujuan

umum berfungsi dengan baik, namun mempunyai masalah isu mudah alih dan

penggunaan kuasa yang tinggi. Projek ini bertujuan mengatasi kekurangan tersebut

dengan membangunkan sistem pengesanan mengantuk pada platform FPGA PYNQ-

Z1. Projek ini beralih daripada model berasaskan perisian kepada reka bentuk FPGA

yang dioptimumkan dengan menggunakan pengkompil Xilinx FINN high-level

synthesis (HLS). Dengan memanfaatkan keupayaan pemprosesan selari FPGA,

pengesanan rasa mengantuk dioptimumkan untuk kependaman, penggunaan kuasa

dan penggunaan sumber. Sistem akan memantau aktiviti menguap dan kelipan mata

untuk membolehkan prestasi tinggi dapat dicapai sambil meningkatkan kecekapan

pengiraan dan mengurangkan penggunaan kuasa. Penyepaduan Rangkaian Neural

Konvolusi dengan rangka kerja FPGA menunjukkan sinergi di antara seni bina

rangkaian neural dan perkakasan yang boleh dikonfigurasikan semula. Keputusan

menunjukkan bahawa menukar daripada model 6-bit kepada model 2-bit

mengurangkan penggunaan memori dengan ketara sebanyak 45.24%. Selain itu,

model terkuantisasi pada PYNQ-Z1 mengurangkan penggunaan kuasa sebanyak

95.52% berbanding dengan CPU. Penyelidikan ini bukan sahaja memajukan

iii

penggunaan berasaskan FPGA, tetapi juga meletakkan asas untuk inovasi masa

hadapan dalam reka bentuk perkakasan, rangkaian saraf, dan kecerdasan buatan,

meningkatkan keupayaan persepsi visual penglihatan komputer dan sistem autonomi.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to all those who played an important

role in the completion of this thesis. First, I would like to express my sincere gratitude

to my supervisor, Dr. Anis Suhaila Binti Mohd Zain, and co-supervisor, Ts. Dr. Sani

Irwan Bin Salim, for their unwavering guidance, valuable insights, and continuous

support throughout the research process. Their expertise and encouragement were

crucial in determining the direction of this work. Their expertise has greatly enriched

the content and methodology of this thesis. Not to forget, special thanks to my beloved

father and my beloved mother for their external support. I would also like to thank my

good friends who always stayed by my side to cheer me up. I am lucky to have such a

warm and loving family and friends. I would like to thank Universiti Teknikal

Malaysia Melaka, Malaysia, for providing the necessary resources and research

facilities to facilitate the implementation of this project. Finally, I would like to thank

all my friends and supervisors who contributed in various ways to the completion of

this thesis. Your support is indeed invaluable. This thesis is a testament to the spirit of

cooperation and collective efforts of the people I met in my academic journey. Thank

you all for your support and encouragement.

v

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iv

Table of Contents v

List of Figures xi

List of Tables xiii

List of Symbols and Abbreviations xiv

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background of Project 1

1.3 Problem Statement 2

1.4 Objectives 3

1.5 Scope of Work 4

vi

1.6 Thesis Layout 4

CHAPTER 2 BACKGROUND STUDY 6

2.1 Introduction 6

2.2 Drowsiness 6

2.2.1 Physiological Based Approach 7

2.2.2 Vehicle Based Approach 8

2.2.3 Behavioral Based Approach 10

2.3 Face Detection 10

2.3.1 Haar Cascade Algorithm 11

2.3.2 Convolutional Neural Network Architecture 12

2.3.3 Skin Colour Technique 13

2.4 Drowsiness Signs 14

2.4.1 Eye Activities 15

2.4.1.1 Eye Blink 15

2.4.1.2 Eye Closure Duration (ECD) 16

2.4.1.3 Percentage of Eyelid Closure (PERCLOS) 16

2.4.2 Mouth Activities 17

2.4.2.1 Yawning 17

2.4.3 Combination of Few Parameters Drowsiness Signs Detection 18

2.5 Field Programmable Gate Arrays 19

vii

2.5.1 High Level Synthesis 20

2.5.2 PYNQ 21

2.6 Literature Review 22

2.6.1 System-on-Chip Based Driver Drowsiness Detection and Warning

System 22

2.6.2 Heterogeneous FPGA-based System for Real-Time Drowsiness

Detection 23

2.6.3 Design of ADAS Fatigue Control System using Pynq z1 and Jetson

Xavier NX 24

2.6.4 Instruction Set Extension of a RiscV Based SoC for Driver Drowsiness

Detection 25

2.6.5 Real-Time Drowsiness Alert System from EEG Signal Based on FPGA

 26

2.6.6 A Fast FPGA Hardware Accelerator for Remote Heart Rate Detection

Based on RGB Vision 27

2.6.7 Comparison of Related Literature Review 28

2.6.8 Research Gap 29

2.7 Summary 29

CHAPTER 3 METHODOLOGY 31

3.1 Introduction 31

3.2 Project Planning 32

3.2.1 Dataset Selection 34

3.2.2 FINN 35

viii

3.2.3 PYNQ-Z1 Board Implementation 37

3.3 Model Preparation 37

3.3.1 Model Selection 38

3.3.2 Model Quantization 40

3.3.3 Model Training 42

3.3.4 Model Validation 43

3.4 Board Implementation 43

3.4.1 High-Level Synthesis Conversion 44

3.4.2 Simulation, Synthesis and Bitstream Generation 45

3.4.3 Deployment and Validation 45

3.4.4 Eye State Determination 46

3.4.5 Mouth State Determination 47

3.5 Performance Analysis 47

3.5.1 Inference Time 48

3.5.2 Resource Utilization 48

3.5.3 Power Consumption 49

3.5.4 Blink and Yawn Count 49

3.5.5 Comparison with Traditional Platform 49

3.5.6 Trade-offs and Optimization Strategies 50

CHAPTER 4 RESULTS AND DISCUSSION 51

ix

4.1 Introduction 51

4.2 Two-bit Quantization Model 51

4.2.1 Resource Utilization 52

4.2.2 Power 54

4.2.3 Clock Constraint and Frequency 55

4.3 Six-bit Quantization Model 56

4.3.1 Resource Utilization 57

4.3.2 Power 59

4.3.3 Clock Constraint and Frequency 60

4.4 PYNQ-Z1 board 60

4.4.1 Validation 61

4.4.2 Performance 61

4.5 Central Processing Unit 62

4.5.1 Performance 62

4.5.2 Resource Utilization 62

4.6 Comparison Table 62

4.7 Discussion 63

4.8 Environmental and Sustainability 65

4.8.1 Needs and Importance for Sustainable Development 65

4.8.2 Impact of the Engineering Solution on Society 66

x

4.9 Summary 66

CHAPTER 5 CONCLUSION AND FUTURE WORKS 67

5.1 Introduction 67

5.2 Conclusion 67

5.3 Future works 68

REFERENCES 70

xi

LIST OF FIGURES

Figure 2.1: Electroencephalogram (EEG) Signals 8

Figure 2.2: Lane Departure Warning 9

Figure 2.3: Haar Cascade Algorithm 11

Figure 2.4: CNN architecture 13

Figure 2.5: Skin Colour Detection 14

Figure 2.6: Eye 16

Figure 2.7: PYNQ Framework 21

Figure 3.1: Flow Chart 33

Figure 3.2: WIDER DACE Dataset 34

Figure 3.3: Yawning Detection Dataset (YawDD) 35

Figure 3.4: FINN Compiler 35

Figure 3.5: PYNQ-Z1 FPGA 37

Figure 3.6: Eye Aspect Ratio (EAR) 46

Figure 3.7: Mouth Aspect Ratio (MAR) 47

Figure 4.1: 2-bit Quantized Model 52

Figure 4.2: 2-bit Model Slice Logic 52

Figure 4.3: 2-bit Model Memory 53

Figure 4.4: 2-bit Model DSP 54

xii

Figure 4.5: 2-bit Model Power 54

Figure 4.6: 2-bit Model Clock Summary 55

Figure 4.7: 2-bit Model Timing Details 56

Figure 4.8: 6-bit Quantized Model 56

Figure 4.9: 6-bit Model Slice Logic 57

Figure 4.10: 6-bit Model Memory 58

Figure 4.11: 6-bit Model DSP 58

Figure 4.12: 6-bit Model Power 59

Figure 4.13: 6-bit Model Clock Summary 60

Figure 4.14: 6-bit Model Timing Details 60

Figure 4.15: PYNQ-Z1 Implementation 61

Figure 4.16: Resource Utilization 62

Figure 4.17: Parallelism 64

Figure 4.18: Sustainable Development Goals 65

xiii

LIST OF TABLES

Table 2.1: Literature Comparison 28

Table 3.1: Yolov3-Tiny Architecture 39

Table 3.2: Quantized Yolov3-Tiny Architecture 41

Table 4.1: Performance on PYNQ-Z1 61

Table 4.2: Performance on CPU 62

Table 4.3: Result Comparison 63

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

FPGA : Field Programmable Gate Array

SoC : System on Chip

CNN : Convolutional Neural Network

ReLU : Rectified Linear Unit

ONNX : Open Neural Network Exchange

HLS : High-Level Synthesis

YawDD : Yawning Detection Dataset

EAR : Eye Aspect Ratio

MAR : Mouth Aspect Ratio

PERCLOS : Percentage of Eyelid Closure

ECD : Eye Closure Duration

YOLO : You Only Look Once

ECG : Electrocardiogram

EEG : Electroencephalogram

HRV : Heart Rate Variability

LDW : Lane Departure Warning

SWA : Steering Wheel Angle

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter is divided into 5 sections. Section 1.2 will discuss the background

study for the project followed by the problem statement in Section 1.3. The objectives

of the project are discussed in Section 1.4 and the scope of the work is discussed in

Section 1.5. The thesis layout will be introduced in Section 1.6.

1.2 Background of Project

Drowsiness is a state of being drowsy, tired, exhausted, or mentally or physically

weak. A sleepy person has a low concentration level, which may make it difficult for

them to maintain a certain level of focus. If this happens to a driver, a mechanic

operating a heavy machine, or a railway operator, it may lead to an accident. Car

accidents are one of the fatal accidents and are considered a major problem in society.

2

In Malaysia, a study by the Malaysian Institute of Road Safety Research (MIROS)

reported that fatigue is one of the biggest causes of car, truck, and bus accidents. In

addition to this, another study conducted by MIROS on commuter accident victims in

the Klang Valley reported that about 15% of them were involved in accidents due to

drowsiness or fatigue [1].

Drowsiness detection analysis has become an interesting field, and many methods

have been introduced based on different categories of invasive and non-invasive. With

invasive methods, the subject needs to attach a sensory device (such as electrodes) to

the body to measure signals from certain parts of the body (such as brain signals and

heart signals). This can be uncomfortable for the subject, and any large movements

can affect the signal. In contrast, non-invasive methods are more user-friendly, flexible,

and more acceptable as they do not require any connection to the human body. But as

of now, we know that deploying drowsiness detection on traditional computing

platforms such as CPUs and GPUs often encounters difficulties, including excessive

power consumption, high cost, and heat dissipation issues.

This project aims to implement drowsiness detection by analyzing the signs of

drowsiness through eye and mouth activities using non-invasive techniques focusing

on image processing methods. By the end of the project, it is expected that the

developed algorithm will be able to detect blink and yawn with low latency within the

limited resource constraints of the FPGA.

1.3 Problem Statement

The implementation of drowsiness detection is usually done on CPUs and GPUs

because they have better speed and resources [2]. However, the energy and processing

requirements of the drowsiness detection process remain high in pursuit of higher

3

throughput. This project aims to address the power consumption issue by studying the

implementation of drowsiness detection using FPGAs. This is because FPGAs have

become a possible alternative for implementing drowsiness detection. After all, they

consume less power and fewer resources than traditional computing platforms. FPGAs

are known for their portability, reconfigurability, and power consumption levels.

FPGA implementation also means the algorithm is embedded in the system while only

a single board deployment is required.

The basic idea to solve the problems of traditional computing platforms is to reduce

their high-power consumption and use the parallel processing and reconfigurable

capabilities of FPGAs to provide a more economical and effective platform for

implementing drowsiness detection. Energy efficiency is crucial to ensure drowsiness

detection can operate for extended periods without draining the power source in the

vehicle system. However, the challenges of doing so are also foreseeable. Due to the

resource and power limitations and architecture of FPGAs, several efforts need to be

made to implement drowsiness detection on FPGAs successfully [3]. Analysis is also

required to validate the issues with traditional computing platforms and FPGA-based

drowsiness detection solutions. The need for energy-efficient hardware acceleration

of drowsiness detection on FPGAs must be emphasized [4].

1.4 Objectives

i. To design and implement drowsiness detection on FPGA.

ii. To explore optimization techniques for improving the drowsiness detection

performance on FPGA.

iii. To analyze FPGA-based drowsiness detection performance in terms of

latency, power consumption, and resource utilization.

4

The primary goal of this project is to design and implement drowsiness detection

on a field programmable gate array (FPGA) and verify it on a board to ensure that it

works properly on the board. Due to the resource limitations of the FPGA, the

drowsiness detection needs to be optimized to ensure that it can be implemented on

the actual FPGA board. Finally, analyzing the performance of the FPGA-based

drowsiness detection is also critical to gaining a deeper understanding of the project.

1.5 Scope of Work

The scope of work for this project is to design and implement drowsiness detection

on the Xilinx Zynq-7000 PYNQ-Z1 FPGA board using optimization techniques and

to perform performance analysis of the drowsiness detection implemented on the

board. The datasets used are the WIDER FACE dataset and the Yawning Detection

Dataset (YawDD). The software and frameworks used are Docker, Brevitas, Jupyter

Notebook, Vivado, and Vitis HLS.

1.6 Thesis Layout

Chapter 1 provides the overall concept of the project and covers the introduction of

drowsiness detection, problem statement, objectives, scope of work, and thesis layout.

This will help us understand more details and the specific reasons for undertaking this

project.

Chapter 2 includes a literature review based on the architecture and platform that

will be used in the project. For this project, face detection, drowsiness sign methods,

and the FPGA platform are the core architectures for drowsiness detection. The

corresponding literature review will refine and delve into the concepts that are closely

related to the project through diagrams. The chapter ends with a discussion section

where all the reviewed methods are discussed based on their pros and cons.

5

Chapter 3 presents the methodology of the implementation and analysis process of

drowsiness detection architecture in the FPGA platform. This chapter will provide a

flowchart of the project and describe each process in detail. In the last section, the

techniques to obtain drowsiness sign analysis are described.

Chapter 4 presents the results obtained in this project and the performance analysis.

The dataset will be validated on the FPGA to verify that drowsiness detection is well

implemented. This chapter presents the results of accuracy, latency, power

consumption, and resource utilization.

Chapter 5 is the last and will present the conclusion of this project after completing

all the theories, results, and analysis. In addition, this chapter also involves suggestions

for future work.

CHAPTER 2

BACKGROUND STUDY

2.1 Introduction

This chapter focuses on the background research and literature review of this

project to investigate the latest progress in this field. The background research will

cover drowsiness, face detection, signs of drowsiness, and field programmable gate

arrays (FPGAs). In addition, a review of related projects and literature will be provided

to illustrate the relevance and progress in these areas.

2.2 Drowsiness

Drowsiness is a state of feeling tired due to lack of sleep, which can affect a

person’s level of consciousness and is particularly fatal for drivers. A drowsy person

lacks a certain level of consciousness or alertness, which triggers the desire or

tendency to fall asleep. Unfortunately, many fatigued drivers often experience

7

microsleep. This is a state in which people do not realize that they are falling asleep

after driving for hours due to a poor mental state. For drivers who drive for a long time,

drowsiness is often caused by various medications, lack of sleep, and boredom.

Drowsy drivers may lose control of their vehicles, resulting in accidents. So far, an

increasing number of traffic accidents are caused by low driver alertness, which has

become a serious problem in society. When drivers are drowsy, accidents tend to be

more serious because they cannot react and control the vehicle to avoid crashing.

Three technologies can detect signs of drowsiness, namely physiological-based

measurements, vehicle-based measurements, and behavior-based measurements.

Generally, vehicle-based measurements are used in drowsiness detection research by

observing driving patterns. Steering wheel movements, braking patterns, lane changes,

and speed are examples of driving patterns that can be observed to indicate drowsiness.

However, this approach is limited to the type of vehicle and road conditions. Instead,

the presence of camera technology has enabled researchers to apply behavior-based

measurement techniques that use image processing methods to detect drowsiness

through the driver’s behavior [5]. This approach is more user-friendly and easier to

implement compared to intrusive methods. Head rotations, blinking patterns, gaze

estimation, and yawning activities are behaviors that have been used as indicators to

detect drowsiness stages.

2.2.1 Physiological Based Approach

Physiological-based measurement is an invasive method to detect signs of

drowsiness. This technique measures signs of drowsiness by acquiring signals from

certain parts of the body, such as the heart rate, called electrocardiogram (ECG), or

brain wave patterns, called electroencephalogram (EEG). A sensing device is required,

8

or multiple electrodes are used to acquire the signals. The electrodes are used to

analyze drowsiness and fatigue states through EEG data. A method for predicting

driver drowsiness by evaluating heart rate variability (HRV) through ECG devices is

introduced [6]. Users need to place electrodes on body parts, which is uncomfortable,

inefficient, and dangerous to implement in real-time.

 Therefore, as technology develops, researchers have found a way to develop new

wireless sensing devices to record the rate of physiological signals. EEG channels are

selected to record signals to detect sleepiness stages [6]. Certain mobile headphones

are used to record EEG signals. Figure 2.1 shows a driver alertness monitoring system

for drowsiness detection using wired wearable EEG, which is typically embedded in

the driver’s hat [7].

2.2.2 Vehicle Based Approach

In addition to measurements based on physiological signals, another approach to

detecting signs of drowsiness is to analyze the driver’s driving pattern, mainly

recording lane changes, steering wheel movements, and vehicle speed changes. This

approach is a non-invasive method and does not require the device to be worn or

attached to the user.

Figure 2.1: Electroencephalogram (EEG) Signals [7]

9

Figure 2.2 shows the Lane Departure Warning (LDW) system as one of the vehicle-

based measurement categories [8]. The system completely relies on the detection of

lane markings on the road, which requires the lane markings to be always visible for

the system to work properly [9]. Occlusion caused by the preceding vehicle or weather

conditions during heavy rain may degrade the performance of the system. Moreover,

road conditions may lead to false detection of signs of drowsiness. For example, if

there are potholes on the road, some drivers may suddenly change lanes. Therefore,

the system is preferably implemented only on straight roads or highways.

Steering Wheel Angle (SWA) is another approach used to detect signs of

drowsiness in vehicles, where triaxial measurement of SWA is implemented. Driver

drowsiness is monitored by calculating SWA data obtained from a sensor mounted on

the steering column [10]. Analyzing the data is challenging because it is acquired from

a real-time environment and random vibrations may cause the retrieved data to vary

slightly. The main reason is that the vibration of the wheel and suspension system

interferes with the frequency range of the steering signal. It turns out that SWA is not

a perfect indicator of signs of drowsiness because it requires complex calculations and

pre-processing operations. In addition, drowsiness detection based on steering wheel

angle is not reliable to implement on FPGA because it requires the use of many sensors

and is computationally complex.

Figure 2.2: Lane Departure Warning [8]

10

2.2.3 Behavioral Based Approach

The simplest way to detect whether a driver is drowsy is through his behavior

because behavior shows the most obvious signs. For example, a drowsy driver tends

to move his head frequently to avoid the feeling of falling asleep or a drowsy driver

will show rapid blinking activities. Like vehicle-based measurements, this method is

a non-invasive method and does not require the user to wear any equipment. Eye

features are one of the common indicators for detecting signs of drowsiness. A system

for detecting drowsy drivers is developed by combining three parameters of eye

movement, namely, percentage of eye closure (PERCLOS), blinking frequency, and

eye closure duration [11]. In addition to eye features, yawning is another method for

measuring drowsiness based on driver behavior, which has been widely used.

Moreover, the head pose is one of the obvious signs of sleepiness because sleepy

drivers nod frequently. However, implementing this measure in real-time is dangerous

because the sign of nodding indicates that the driver is already in the final stage of

drowsiness.

2.3 Face Detection

Face detection has received much attention and is one of the most promising

applications in the field of image analysis. Face detection is an important component

of biometrics, video surveillance, and human-computer interaction. Many image face

detection methods have been proposed, which gave all researchers more inspiration to

improve the performance, speed, and accuracy of the algorithms. For this, they have

managed to obtain various algorithms for detecting faces, each with their

characteristics, which will be compared in more detail in this chapter. Face detection

is a critical initial step in detecting signs of drowsiness based on facial features, as

successfully detecting a face will provide accurate true positive results for detecting

11

other facial features. There are three main techniques for detecting faces and their

facial features, including eyes and mouth, namely the haar cascade algorithm, the

convolutional neural network architecture, and the skin colour technique.

2.3.1 Haar Cascade Algorithm

The Viola-Jones algorithm is widely used in face detection algorithms because it is

the first face detection system ever [12]. The proposal of this framework can process

images very quickly while achieving high detection rates. According to the research,

the algorithm consists of three parts that work simultaneously to achieve fast and

accurate detection. First, the image is converted into an “integral image”, which allows

for faster calculation of the features used by the detector. Second, the classifier used

is an efficient and straightforward classifier built using the AdaBoost learning

algorithm. Finally, the classifier is generated by combining weak classifiers into a

“cascade”, which allows for the rapid elimination of background areas of the image

while spending more computation to improve face-like areas. Figure 2.3 shows more

details on how the Viola-Jones algorithm works in face detection [13].

AdaBoost is a mechanism for cascading training of simple classifiers. By applying

the AdaBoost learning algorithm, it can help reduce the number. The AdaBoost

algorithm for feature selection and attention cascade can allocate computational

Figure 2.3: Haar Cascade Algorithm [13]

12

resources to the image more efficiently [14]. Using symmetric AdaBoost can help

produce linear combinations, which means that stability of positive and negative errors

can be achieved using the AdaBoost algorithm.

2.3.2 Convolutional Neural Network Architecture

Convolutional neural networks (CNNs) have revolutionized face detection by

automatically learning and extracting hierarchical features from raw images [15].

Unlike traditional approaches that rely on manually designed features and cascaded

classifiers such as Viola-Jones algorithms, CNNs use multiple layers of convolutional

filters to capture the spatial hierarchy in the data. This enables CNNs to recognize low-

level features such as edges and textures in the initial layers, as well as more complex

patterns such as facial structure and expression in deeper layers [15]. CNN methods

typically involve training deep networks on large datasets of labeled images, enabling

the network to learn complex patterns associated with faces. Recent advances, such as

the development of architectures such as YOLO (You Only Look Once) and its

variants, have further improved the speed and accuracy of CNN-based face detection,

making it suitable for real-time applications.

CNNs are neural networks specialized for processing grid-like data such as images

and videos [16]. They consist of multiple layers, including convolutional layers,

pooling layers, and fully connected layers as shown in Figure 2.4. Convolutional

layers apply filters to detect local patterns while pooling layers down to sample the

data to reduce its size and dimensionality while retaining key information. Activation

functions introduce nonlinearity to the network, enabling it to learn more complex

patterns. Common activation functions are ReLU and sigmoid functions. Fully

connected layers perform classification tasks based on the extracted features. CNNs

13

are generally well-suited for tasks such as classification of image, object detection,

and image segmentation.

Despite the many advantages of CNNs, they also face some challenges in

implementation. Training and running CNNs are computationally expensive and

require powerful hardware resources to ensure adequate performance. CNNs are prone

to overfitting, especially when working with small datasets. In addition, due to the

complex internal representation of CNNs, it is difficult to understand how they make

decisions, resulting in poor feature interpretability. Overall, convolutional neural

networks are an excellent tool for solving problems such as image classification

because they can learn and extract relevant features from images [15]. Despite the

challenges, CNNs need to be studied and analyzed on various platforms to better

understand and apply them to improve human life.

2.3.3 Skin Colour Technique

For skin colour detection, the process is implemented using colour space

transformation. A binary image is obtained and the pixel region around the largest

connected component is considered as the search region. A robust face detection that

employs hybrid skin colour under different illuminations is proposed [17]. Using the

International Commission on Illumination colour space, skin-like pixels and skin

contours are detected using a finite threshold and the facial region is identified based

Figure 2.4: CNN architecture [16]

14

on that threshold. The application of skin colour in face detection is straightforward

as it identifies the largest connected component, which includes various features such

as eyes, nose, and mouth. However, a significant limitation is that false detections may

occur when the algorithm encounters a skin colour background or when the user wears

skin colour clothes.

To improve the accuracy of unidentified photos, three colour spaces which are RGB,

YcbCr, and HSI are combined. This combination made it possible to develop a new

skin colour-based detection algorithm, which improved accuracy. Figure 2.5 shows

how the combination conducted the skin colour-based face detection algorithm [18].

There are several disadvantages to using skin colour as a feature for face detection.

The facial colour representation obtained by the camera can be affected by factors

such as ambient light and object motion. Different types of cameras can also produce

significantly different colour values. In addition, colour cues affect the algorithm’s

sensitivity to changes in lighting colour, such as RGB to lighting intensity.

2.4 Drowsiness Signs

Detecting signs of drowsiness is a key factor in improving safety, especially in

situations such as driving or operating heavy machinery. Monitoring eye activity has

emerged as one of the most effective methods for detecting drowsiness. This method

Figure 2.5: Skin Colour Detection [18]

15

involves analyzing various eye parameters that indicate a person’s level of alertness.

Based on the human face, many human behaviors can be measured as they contain

rich information. This project focuses on detecting human behaviors related to signs

of drowsiness based on the eyes and mouth as they provide key information for drowsy

drivers and non-intrusive systems.

2.4.1 Eye Activities

The human eye is one of the main components of the human body and contains rich

information that can be used to distinguish the degree of sleepiness. A study was

conducted to determine the parameters suitable for detecting sleepiness and found that

eye characteristics are one of the best indicators for detecting sleepiness [19]. Based

on these eye characteristics, three eye activity parameters can provide important

insights into the vigilance state of a person. The key parameters include blink rate,

duration of eye closure (ECD), and percentage of eyelid closure (PERCLOS).

2.4.1.1 Eye Blink

Blinking is the action of opening and closing the eyelids at the same time and is

one of the obvious signs of sleepiness. If a person is drowsy, he will blink more

frequently than someone who is not sleepy [19]. Figure 2.6 shows the difference

between the pupil colour and the white of the eye is the basis for detecting blinks [20].

The pupil is not a suitable parameter for detecting blinks due to its small size and easy

occlusion. In addition, it may be occluded by light reflected from the glass. In terms

of size, the iris is more suitable as a parameter for detecting blinks. Blink detection

methods based on the iris area are easier to build even if they are occluded. The iris

area comes from the aspect ratio of the iris bounding box. Blinks are observed

16

according to the calculated ratio, and when the area is reduced, a blink of the eye is

detected.

2.4.1.2 Eye Closure Duration (ECD)

Eye closure duration, commonly referred to as ECD, is another parameter that can

be used to indicate drowsiness [21]. ECD can be defined as the amount of time the

eyes remain closed. Typically, if a person is drowsy, their eyes will remain closed

longer than usual. Eye closure duration measures the time interval during each blink

cycle that the eyes remain closed. Prolonged eye closure is a clear sign of drowsiness

as it reflects difficulty keeping the eyes open. Systems used to detect drowsiness will

often set an ECD threshold to trigger an alarm to alert the individual or operator. ECD

is determined by applying equation 2.1.

𝐸𝐶𝐷 = 𝑇𝑜𝑡𝑎𝑙𝐸𝑦𝑒𝐶𝑙𝑜𝑠𝑒 × 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑛𝑒𝐹𝑟𝑎𝑚𝑒 (2.1)

2.4.1.3 Percentage of Eyelid Closure (PERCLOS)

Blinking frequency and duration are reliable indicators of drowsiness. When people

are drowsy, blinking frequency may decrease, and the duration of each blink increases.

This is because drowsy people tend to have slower reaction times and reduced eye

muscle control, resulting in longer blinks. Therefore, monitoring blinking patterns can

provide real-time data on the onset of drowsiness. PERCLOS, or percentage of eyelid

closure over the pupil over time, is the percentage of time that the eyes are closed for

Figure 2.6: Eye [20]

17

a specific period [22]. It is widely considered to be one of the most accurate indicators

of drowsiness. High PERCLOS values are strongly associated with a higher risk of

falling asleep, making it a key parameter in drowsiness detection systems. By

continuously monitoring PERCLOS, these systems can issue timely warnings, helping

to prevent accidents caused by drowsiness. Equation 2.2 shows how the PERCLOS is

determined.

𝑃𝐸𝑅𝐶𝐿𝑂𝑆 =
𝐸𝑦𝑒 𝐶𝑙𝑜𝑠𝑒 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
 (2.2)

2.4.2 Mouth Activities

In addition to eye activity, monitoring mouth activity can also provide valuable

information about a person’s drowsiness. Certain behaviors, such as yawning, are

strongly associated with the onset of drowsiness and fatigue [21]. By referencing the

mouth area, only one feature can be used to indicate a sign of sleepiness, which is

yawning activity. Generally, there is a way to measure mouth opening to indicate

yawning, mainly by tracking lip movement and quantifying the width of the mouth.

2.4.2.1 Yawning

Yawning is an involuntary mouth-opening movement that usually occurs when a

person feels tired or sleepy. Moreover, yawning can be classified as an early sign of

sleepiness before a person enters a full-blown sleepy mode. Yawning is one of the

prominent parameters that point out signs of sleepiness that a person exhibits [21].

Yawning is a physiological response that usually indicates tiredness and decreased

alertness. The frequency and duration of yawning can serve as a reliable indicator of

sleepiness. An increased number of yawns is usually associated with the need for rest

and decreased concentration and alertness. When the detection identifies frequent

yawning, it can signal that the individual is becoming drowsy and may need to take a

18

break or engage in activities that increase alertness. This approach is particularly

useful in environments such as driving, where maintaining high alertness is crucial for

safety.

2.4.3 Combination of Few Parameters Drowsiness Signs Detection

While individual parameters such as eye activity and mouth activity can provide

valuable indicators of sleepiness, combining multiple parameters can improve the

accuracy and reliability of drowsiness detection systems. By integrating data from a

variety of sources, these systems can provide a more comprehensive assessment of an

individual’s alertness [23].

One effective approach is to simultaneously monitor blink rate, eye closure

duration (ECD), percentage of eyelid closure (PERCLOS), and yawn frequency [23].

Each of these parameters provides unique information about the state of alertness. For

example, increased eye closure duration and high PERCLOS values indicate

prolonged eye closure, while frequent yawning indicates high levels of fatigue. By

combining these indicators, the system can cross-validate the presence of sleepiness

more strongly than relying on a single parameter.

Advanced drowsiness detection systems use machine learning algorithms to

analyze the combined data in real-time. These algorithms can be trained on datasets

containing a variety of sleepiness indicators, allowing them to identify complex

patterns associated with sleepiness episodes. When multiple parameters reach their

respective thresholds simultaneously, the system can issue a more reliable alarm,

prompting the individual to take necessary actions to prevent accidents or errors. This

multi-parameter approach greatly improves the effectiveness of drowsiness detection,

ensuring timely and accurate responses in critical situations.

19

2.5 Field Programmable Gate Arrays

A field programmable gate array (FPGA) is an integrated circuit that combines

reconfigurability with high performance. Unlike traditional processors such as

application-specific integrated circuits (ASICs), FPGAs can be reprogrammed,

allowing users to customize them for specific needs and applications. This flexibility

makes FPGAs well-suited for a wide range of applications, enabling researchers to

reuse them in different projects [24].

FPGAs are semiconductor devices built around a matrix of configurable logic

blocks (CLBs) interconnected by programmable connections. FPGAs consist of

multiple logic blocks that act as building blocks and are configured to perform specific

logic functions as required by the algorithm [24]. Common components in FPGAs

include lookup tables (LUTs), flip-flops, multiplexers, block RAMs (BRAMs), and

digital signal processing (DSP) units. LUTs are essentially tables that produce outputs

based on given inputs. Flip-flops (FFs) maintain the state of the chip, storing single

bits of information. Multiplexers select one input from multiple inputs. BRAMs are

used as memory within FPGAs to store large amounts of data, while DSP units handle

complex mathematical calculations.

FPGAs are programmed using a hardware description language (HDL) such as

Verilog or VHDL [24]. These languages enable designers to specify the desired

functionality of a digital circuit, detailing how logic blocks should be interconnected

and how data should flow through the system. The inherent parallelism in FPGA

processing gives them superior performance in certain applications, providing speed

and efficiency advantages over traditional processors such as CPUs and GPUs.

However, programming and optimizing FPGAs can be difficult without a full

20

understanding of their architecture, resource utilization, and timing constraints, all of

which must be carefully configured for optimal performance.

2.5.1 High Level Synthesis

High-level synthesis (HLS), also known as C synthesis, is an automated process

that converts abstract behavioral specifications of digital systems into register transfer

level (RTL) structures that implement the specified behavior. HLS enables

programmers to write algorithms in high-level programming languages such as C,

C++, and Python. Through the HLS process, these high-level algorithms are converted

into hardware description language (HDL) code that can then be used in FPGAs. This

automation is critical because designing complex algorithms directly in HDL is a very

complex task. HLS simplifies the implementation of complex models on FPGAs by

automatically synthesizing high-level language descriptions into low-level HDL code.

Despite the many benefits of HLS, using HLS effectively requires considerable

knowledge of the hardware architecture to be implemented. Designers must carefully

manage data flow, memory usage, and performance constraints to ensure that the

synthesized hardware performance is comparable to traditional computing platforms.

Many FPGA vendors provide integrated HLS tools in their development environments.

For example, Xilinx provides Vivado and Vitis as HLS tools for its FPGA boards.

In summary, high-level synthesis helps implement high-level language algorithms

onto hardware platforms such as FPGAs that require low-level HDL coding. By

automating the synthesis from high-level languages to low-level languages, HLS

enables designers to implement complex algorithms on FPGAs more easily and

efficiently.

21

2.5.2 PYNQ

PYNQ is an open-source project from AMD that aims to simplify the use of the

Adaptive Compute Platform, as shown in Figure 2.7. By leveraging the Python

language, Jupyter notebooks, and a broad ecosystem of Python libraries, PYNQ

enables designers to harness the power of programmable logic and microprocessors to

develop more advanced and innovative electronic systems [25]. PYNQ facilitates the

creation of high-performance applications by enabling parallel hardware execution,

high frame rate video processing, hardware-accelerated algorithms, real-time signal

processing, high bandwidth I/O, and low latency control.

PYNQ is intended for a wide range of designers and developers, including software

developers who want to exploit the capabilities of the Adaptive Compute Platform

without resorting to traditional ASIC design tools, system architects seeking a user-

friendly software interface and framework to rapidly prototype and develop Zynq,

Alveo, and AWS-F1 designs, and hardware designers who want to make their designs

accessible to the widest audience possible [25]. PYNQ is compatible with a wide range

of AMD devices and boards, including Zynq 7000, Zynq UltraScale, Kria, Zynq

RFSoC, Alveo Accelerator Board, and AWS-F1.

Figure 2.7: PYNQ Framework [25]

22

Jupyter Notebook is a browser-based interactive computing environment that

allows users to create documents containing live code, interactive widgets, charts,

explanatory text, equations, images, and videos. PYNQ-enabled boards can be

programmed directly in Jupyter Notebook using Python. Developers can take

advantage of hardware libraries and overlays on programmable logic that improve

software performance on Zynq or Alveo boards and allow for customization of

hardware platforms and interfaces [25]. By integrating these technologies, PYNQ

makes it easier for developers to fully exploit the potential of adaptive computing

platforms using a familiar and flexible programming environment.

2.6 Literature Review

After comparing all the researcher journals that had been using the architecture of

drowsiness detection in their project, there were six related projects. This part would

make a comparison of the algorithm and platform they were using, which is known as

the drowsiness detection algorithm and FPGA platform in their research.

2.6.1 System-on-Chip Based Driver Drowsiness Detection and Warning

System

In the research of this article, the project aims to develop a driver drowsiness

detection system that combines high accuracy and low response time, using a cost-

effective method suitable for implementation on a single processor system [26]. The

initial implementation of the project used PERCLOS and CNN methods, achieving

over 98% accuracy using the MobileNetV2 network. However, this setup was too slow,

taking over 2 seconds to detect drowsiness on a single processor. The final system

uses a combination of facial landmarks, haar cascade classifiers, and eye aspect ratio

(EAR) methods to achieve a balance between speed and accuracy.

23

The optimized system detects driver drowsiness with 92% accuracy and 0.8

seconds of latency. The system consumes as little as 2W of power and can run all day

using a power bank of over 10,000 mAh [26]. The main drawback is the performance

degradation at night, which can be mitigated by using a night vision camera. The audio

module of the PYNQ-Z2 board is used to implement the sound warning system. The

system outperformed methods using SVM, random forest, and naive Bayes, with an

accuracy only 2% lower than the neural network-based application. In conclusion, the

developed driver fatigue detection system has high accuracy and efficiency, making it

a viable option for practical applications. The integration of different detection

methods ensures strong performance even on low-cost hardware, although nighttime

performance still needs to be improved.

2.6.2 Heterogeneous FPGA-based System for Real-Time Drowsiness Detection

The project proposes an efficient hardware architecture to achieve real-time

drowsiness detection by monitoring the driver’s blinking behavior using the

PERCLOS (Percentage of Eye Closure) metric [27]. The key features of the project

include real-time detection, processing 250 VGA frames per second at low power

consumption (1.6W) on a Xilinx Zynq XC7Z020 FPGA SoC. In terms of efficiency

and performance, the proposed system is 33.3 times faster and occupies 2.6 times less

area than the state-of-the-art system, enabling efficient integration into modern

vehicles. In terms of hardware-software co-design, the project adopts a hybrid

hardware-software approach to balance the computational load. Time-consuming

tasks such as face detection and eye state monitoring are offloaded to dedicated

hardware accelerators designed using high-level synthesis (HLS). In terms of pre-

processing to improve accuracy, the system includes pre-processing steps such as

24

RGB to grayscale conversion and histogram equalization to improve detection

accuracy under different lighting conditions.

As for face and eye detection, the architecture uses the Viola-Jones face detection

algorithm and a novel eye state analysis method based on the standard deviation of the

saturation channel in the HSV colour space [27]. The system calculates PERCLOS

parameters by analyzing the eye closure rate over time to help determine the driver’s

drowsiness. In terms of robustness and adaptability, the design can adapt to different

environmental conditions, such as lighting changes, by setting appropriate eye state

detection thresholds during the calibration phase. Overall, this project demonstrates

significant progress in the field of Advanced Driver Assistance Systems (ADAS) by

providing a robust, efficient, and real-time solution to detect driver drowsiness,

thereby improving road safety.

2.6.3 Design of ADAS Fatigue Control System using Pynq z1 and Jetson Xavier

NX

This project aims to develop an Advanced Driver Assistance System (ADAS) that

uses computer vision techniques to detect driver fatigue and drowsiness [28]. It utilizes

two main platforms, Pynq Z1 and Jetson Xavier NX, using their capabilities for

efficient processing and detection. The system consists of several steps, namely

training a classifier for facial feature detection using Haar techniques, acquiring and

processing images, detecting faces and using facial landmark algorithms, and finally

analyzing the state of the driver’s eyes to determine fatigue. Eye aspect ratio (EAR) is

used to detect whether the eyes are open or closed, providing a basis for determining

the driver’s alertness. Various video resolutions were tested to evaluate the

performance of the system on different platforms. Jetson Xavier NX showed superior

25

performance and faster processing time compared to Pynq Z1 and CPU-based

implementations [28]. For example, for a video resolution of 1024x768 pixels, Jetson

Xavier NX is 18.75 times faster than Pynq Z1 and 2.62 times faster than the CPU

implementation. This project successfully designed and implemented a robust and

low-cost driver fatigue detection system on the Jetson Xavier NX and Pynq Z1

platforms. The system was proven to be effective in real-time detection with

significant speed advantages and design flexibility.

2.6.4 Instruction Set Extension of a RiscV Based SoC for Driver Drowsiness

Detection

This paper presents a driver drowsiness detection (DDD) system implemented

using a modified RiscV processor on an FPGA [29]. The system uses a trained

convolutional neural network (CNN) to classify four driver expressions, which are

distracted, natural, sleeping, and yawning, achieving 81.07% accuracy on validation

data. The RiscV processor is enhanced with three custom instructions (custom store,

conv2d(2×2), and MAC) to increase computation speed. The latency of the modified

processor is improved by 1.7 times compared to the base processor. Automotive

companies have invested heavily in systems that detect drowsiness and alert drivers to

prevent accidents. Neural networks, especially CNNs, are known for their high

accuracy in classification tasks, making them well-suited for drowsiness detection.

Implementing these networks on FPGAs offers a viable solution due to the adaptability

and efficiency of this hardware.

Due to limited memory on low-cost FPGAs, the CNN model is designed with a

small number of weights and biases [29]. Dynamic memory allocation is employed to

efficiently manage intermediate variables, and custom instructions are used to improve

26

performance. These optimizations ensure that the system can run on resource-

constrained hardware without significantly reducing accuracy. This paper shows that

extending the instruction set of the RiscV processor with custom instructions can

significantly improve the performance of a CNN-based driver drowsiness detection

system implemented on an FPGA. The approach operates within the memory

constraints of low-cost FPGAs while balancing the need for accuracy and

computational efficiency.

2.6.5 Real-Time Drowsiness Alert System from EEG Signal Based on FPGA

The project presents a comprehensive approach to detecting driver drowsiness

using EEG signals processed in real-time on an FPGA platform [30]. The system uses

EEG signals to monitor brain activity, capturing data indicating the driver’s alertness

level. FPGAs, selected for their high-speed processing capabilities and flexibility,

process these signals using complex algorithms designed to accurately detect

drowsiness. The primary goal is to alert the driver in a timely manner, thereby

preventing accidents caused by drowsiness. The implementation involves capturing

EEG signals through electrodes placed on the driver’s scalp, which are then amplified

and digitized for processing by the FPGA. The algorithm developed for this purpose

classifies the EEG data into various states of alertness. This classification is achieved

using machine learning techniques that are trained to recognize patterns in the EEG

data that correspond to different levels of drowsiness.

The real-time nature of the system ensures that any signs of drowsiness are detected

immediately, and an alert is issued to the driver. The project results demonstrate that

the FPGA-based system is capable of high-precision real-time processing, making it a

viable solution for integration into vehicles to improve safety [30]. Using FPGAs

27

allows for a balance of speed and power efficiency, which is critical for in-vehicle

applications. The study concluded that the system not only meets the performance

requirements for real-time drowsiness detection but also provides a scalable and cost-

effective solution for automotive safety systems.

2.6.6 A Fast FPGA Hardware Accelerator for Remote Heart Rate Detection

Based on RGB Vision

This project focuses on developing a hardware accelerator to estimate heart rate

from video recorded by an RGB camera using a FPGA [31]. The technology used is

remote photoplethysmography (rPPG), which detects physiological signals by

analyzing subtle colour changes on the skin surface. This FPGA-based

implementation aims to significantly increase computational speed compared to

traditional software methods, making it suitable for real-time applications such as

heart failure early warning for athletes and driver drowsiness detection. The core of

the system involves capturing images using an RGB camera, processing the data to

extract the blood volume pulse, and then determining the heart rate. The process

begins by selecting a region of interest (ROI) on the subject’s face where the

underlying physiological signals are strongest. The data is then preprocessed to

remove noise, center, and whiten to facilitate independent component analysis (ICA).

ICA helps separate the blood volume pulse from other signals by maximizing their

statistical independence.

The transformed signal is then analyzed in the frequency domain to identify peaks

corresponding to the heart rate. The FPGA implementation of the algorithm offers

several advantages, including reduced computation time and improved accuracy [31].

The study showed that the system can achieve heart rate detection accuracy of -0.76 ±

28

5.09 bpm and -0.70 ± 8.71 bpm in short recording times of 16 seconds and 8 seconds,

respectively. This performance exceeds previous methods and effectively combines

speed and accuracy. The ability of FPGAs to process data makes it an excellent choice

for applications that require immediate physiological monitoring and response.

2.6.7 Comparison of Related Literature Review

Table 2.1 compares 6 related studies, understands the differences with previous

research results, and compares FPGA-based drowsiness detection.

Table 2.1: Literature Comparison

Board Latency Power Method Pros and Cons

FPGA (Xilinx

PYNQ-Z2)

[26], 2022

0.8ms in

640x480
2W

- Haar Cascade

- EAR

Advantages

Outperformed methods

using SVM, random forest,

and naive Bayes

Disadvantages

Performance degradation at

night

FPGA (Xilinx

ZYNQ XC7Z020)

[27], 2022

250 fps in

640x480
1.6W

- Haar Cascade

- PERCLOS

Advantages

Low latency

Disadvantages

No Mouth Activity

FPGA (Xilinx

PYNQ-Z1)

[28], 2022

12s in

720x576

-
- Haar Cascade

- EAR

Disadvantages

High latency

Jetson Xavier NX

[28], 2022

0.2s in

320x240

Advantages

Low latency

Disadvantages

Eye Activity Only

FPGA (Xilinx

Nexys 4 DDR)

[29], 2022

231ms in

320x240
- - CNN

Advantages

1.7 frame rate improvement

Disadvantages

High memory usage

FPGA (Xilinx)

[30], 2021
- 1.116W - EEG Signal

Advantages

Low Power Consumption

Disadvantages

Intrusive method

FPGA (Intel

Altera DE-10

Standard)

[31], 2024

16s in

640x480
- - Heart Rate Detect

Advantages

RGB Vision

Disadvantages

High latency

29

2.6.8 Research Gap

The review “A High Performance and Robust FPGA Implementation of a Driver

State Monitoring Application” by Christakos, P. et al. points out areas we can focus

on to push the state of the art in drowsiness detection [32]. As mentioned in the paper,

optimizing the drowsiness detection computation process is critical. This involves

further extending and optimizing the rules to improve the robustness, and dynamically

choosing the appropriate shape alignment ratio. In addition, access optimization

requires more research on other data access methods and further improvements in

hardware acceleration techniques. Proper management of scheduling and allocation

issues, as detailed in the paper, can significantly improve the performance of FPGA

implementations. Given the current research gaps in this area, it is worth further

exploration.

2.7 Summary

The literature review comprehensively analyzes the existing research on

drowsiness detection using FPGAs. It explores the basic concepts in depth, surveys

related research, and identifies gaps in current research. This background study places

the research in the broader field of hardware acceleration, highlighting the rationale

for choosing FPGAs. This chapter lays the foundation for the objectives of the paper,

which include FPGA-based drowsiness detection design, optimization exploration,

and comprehensive performance analysis.

Among the reviewed techniques, behavior-based measurements stand out as the

most effective method due to their user-friendliness and cost-effectiveness. Driver

drowsiness is mainly indicated by eye, mouth, and head behaviors. Advanced

30

drowsiness signs such as nodding and turning your head indicate that the driver may

be extremely drowsy or has entered a sleep mode. Therefore, eye and mouth behaviors

are selected as early and obvious signs of drowsiness in this project.

Eye feature indicators include blinking, eye closure time (ECD), and percentage of

eyelid closure (PERCLOS). Yawning is an indicator of mouth features. According to

previous studies, these four indicators are most suitable for detecting sleepiness. A

convolutional neural network feature-based method is adopted to analyze these

indicators and use the parallel computing power of FPGA to accelerate the algorithm.

CHAPTER 3

METHODOLOGY

3.1 Introduction

To achieve the research objectives, the methodology used in this study includes the

comprehensive development and implementation of a convolutional neural network

based on drowsiness detection. The methodology emphasizes the fusion of machine

learning and hardware acceleration and aims to optimize the deployment of trained

models on FPGAs and leverage the capabilities of the PYNQ-Z1 board for drowsiness

detection. The subsequent chapters will step through the processes involved in data

preparation, model training, high-level synthesis (HLS), FPGA implementation,

fatigue detection, verification, and performance evaluation. The methodology will

describe the implementation of the project. The first step is to select the appropriate

dataset. The next step is to train two convolutional neural network models with

different weight quantization. Next, after validating the two models, they are exported

32

into model types that can be recognized by HLS. After that, HLS is used to convert

the two models into HDL in preparation for the implementation of the models on the

FPGA. After generating the bitstream of the models, the bit files of the two models

are transferred to the FPGA, and the drowsiness detection algorithm is added for test

execution verification. A thorough analysis will be performed to gain a deep

understanding of the FPGA.

3.2 Project Planning

The flowchart of this project is shown in Figure 3.1. The process starts with

conducting background research and a comprehensive literature review. After this, a

dataset is selected. Two models with different weights are trained on Google Colab

using the WIDER FACE dataset. These models are then tested using the same dataset.

The model configuration is adjusted until the mean average precision (mAP) for both

training and testing exceeds 0.3. This threshold is chosen because the Yolov3-Tiny

model also achieves a mAP of about 0.3 when quantized to 416×416 8-bit integers.

Specifically, for the Yolov3-Tiny model in Xilinx Vitis, the mAP drops from 0.362 to

0.296 after quantization [33]. After achieving the desired mAP, the model is exported

to the ONNX format to be compatible with the FINN library. The FINN library runs

in a Docker container, which is installed on an Ubuntu system on the host. The

advantage of using a Docker container is that it provides a self-contained package

capable of running all necessary applications. The software can be easily installed on

the host by running script commands.

After that, both the models are HLS converted using the FINN library. The HLS

conversion and configuration steps optimize the hardware implementation of the

models. Next, simulation and synthesis are performed to test the functionality of the

33

models before the actual deployment. After the synthesis process runs without any

critical errors, bitstream generation is performed. The models are then deployed on the

PYNQ-Z1 board by transferring the bit file, hardware configuration files, and drivers

to the board and verifying them. After that, the drowsiness detection algorithm is

added and verified using the yawning detection dataset, and the process continues if

the latency remains at or below 200 milliseconds. If not, adjustments are made in the

previous steps and retested. All the processes are logged and analyzed to get a report

on the implementation and accuracy. These steps provide an in-depth understanding

of the drowsiness detection implementation on the PYNQ-Z1 FPGA board.

Figure 3.1: Flow Chart

34

3.2.1 Dataset Selection

The WIDER FACE dataset is a good dataset for performing image recognition and

classification tasks using convolutional neural networks [34]. The reason why the

WIDER FACE dataset is suitable for the task is that it contains 60 event categories

covering a wide range of real-world scenarios, which makes this dataset relevant for

real-world applications, such as face detection of car drivers. The data quality of the

WIDER FACE dataset is the key to its strength as it exhibits a high degree of

variability in scale, pose, occlusion, expression, makeup, and lighting. The data quality

that is closest to the real-world environment ensures that the model can adapt to images

captured in real time. WIDER FACE is a large-scale face detection dataset that is often

used as a benchmark. If a model is successfully implemented on WIDER FACE, it

shows the capabilities of the model. Figure 3.2 shows the data in the WIDER FACE

dataset and its labels.

This project requires testing several scenarios to investigate the accuracy and speed

of drowsiness detection implemented in FPGA. Six different video files from YawDD

are used to investigate the accuracy and performance of drowsiness detection in FPGA.

YawDD is a video dataset recorded by an onboard camera of drivers in real cars with

various facial features, such as male and female, with and without glasses or

sunglasses, different ethnicities, and in situations of talking, singing, silence, and

yawning [35]. It is primarily used to develop and test algorithms and models for yawn

Figure 3.2: WIDER DACE Dataset [34]

35

detection but can also be used to recognize and track faces and mouths. The videos are

captured under natural and varying lighting conditions as shown in Figure 3.3. The

camera is mounted on the driver’s dashboard. The set of videos provides different

scenarios, each containing silent driving, driving while talking, and driving while

yawning.

3.2.2 FINN

FINN is a Python package for FPGA machine learning inference [36]. The library

uses a high-level synthesis language (HLS) to create firmware implementations of

machine learning algorithms. It can be used to convert traditional open-source

machine learning package models to HLS and can be configured for desired situations

based on user needs. Figure 3.4 shows the hardware generation of the FINN compiler.

Figure 3.3: Yawning Detection Dataset (YawDD) [35]

Figure 3.4: FINN Compiler [36]

36

With the help of open-source tools such as PyTorch and Brevitas, machine learning

models can be quickly and efficiently converted to high-level synthesis (HLS) code,

which can then be translated and executed on FPGAs. Subsequently, HLS projects can

be used to generate IP that can be integrated into complex designs or used to develop

cores for co-processing CPUs. Users are free to define many parameters of the

algorithm to best meet their needs. The FINN package can quickly prototype machine

learning algorithms in FPGAs, greatly reducing the time required to obtain results [36].

It also provides users with guidance on how to design the best machine learning

algorithm for their application while balancing latency, resource consumption, and

performance requirements. FPGAs can be specifically programmed to perform a

certain task, in this case, evaluating a neural network given a set of inputs, and can

therefore be highly optimized for that task through tricks such as pipelining and

parallel evaluation. However, this means that dynamic remapping at runtime is

effectively impossible.

FPGAs also typically have a relatively low power cost compared to CPUs and

GPUs. This enables FINN to build HLS code from compressed neural networks,

achieving latency predictions in the microsecond range. The FINN tool saves the time

investment required to convert neural networks into hardware design languages or

even HLS code, allowing for rapid prototyping. In summary, FINN is a bridge between

advanced machine learning model development and efficient FPGA implementation.

By automating the translation process and handling FPGA-specific optimizations,

FINN simplifies the deployment of machine learning models on hardware, providing

a valuable tool for developers seeking to take advantage of FPGA acceleration.

37

3.2.3 PYNQ-Z1 Board Implementation

With the new open-source framework PYNQ, embedded programmers can harness

the power of the Xilinx PYNQ-Z1 development board to create programmable logic

circuits. Python is used to program the PYNQ-Z1 and is used to test and develop the

code. The process of importing and programming programmable logic circuits is very

similar to that of software libraries, which are imported as hardware libraries and

programmed through their respective APIs. The PYNQ development board uses the

Zynq system-on-chip, which combines multiple functions in a single chip but still can

use multiple chips on the board to perform the same desired function.

 An ARM processor is also included in the Zynq SoC. This makes it possible to

implement hardware acceleration of CPU, DSP, and other components on the same

chip or board. The flexibility of the PYNQ board is also an advantage since it can

reprogram the SoC as needed. In summary, the PYNQ-Z1 FPGA board was chosen

because of its flexibility, reprogramming ability, and lower challenges compared to

other FPGAs. The PYNQ image and its built-in Python interface with Jupyter

Notebook in the Zynq SoC provide a huge advantage for implementing the drowsiness

detection for this project on board. The physical board is shown in Figure 3.5.

3.3 Model Preparation

Model preparation for our project involves four key steps to ensure efficient,

accurate detection optimized for FPGA deployment. In terms of model selection, we

Figure 3.5: PYNQ-Z1 FPGA [25]

38

chose YOLOv3-tiny for face detection because of its smaller architecture, fewer

convolutional layers, and parameters. This choice strikes a balance between

computational efficiency and accuracy, making it suitable for limited computing

resources.

For model quantization, the model was quantized using the Brevitas library to apply

2-bit and 6-bit weights to each convolutional layer. This step reduces the size and

computational requirements of the model, further improving efficiency. Both versions

of the quantized model are trained to learn the features required for accurate face

detection. Finally, the models are validated to ensure that they achieve the required

mean average precision (mAP). After validation, the models are exported to ONNX

format, enabling the FINN library to convert them to high-level synthesis (HLS) to

generate FPGA bitstreams.

3.3.1 Model Selection

Yolov3-Tiny is a simplified version of the Yolov3 object detection CNN model

designed for real-time applications with limited computational resources as shown in

Table 3.1. It uses a smaller architecture with fewer convolutional layers and

parameters, making it faster and more efficient while still maintaining reasonable

accuracy. Yolov3-Tiny is particularly well suited for applications such as face

detection that require fast and accurate responses.

The max pooling layer, or max pooling, is a down sampling operation that reduces

the dimensionality of each feature map while retaining the most important information.

It does this by sliding a window over the input feature map and selecting the maximum

value within the window. This process reduces the spatial size of the feature map,

which reduces the number of parameters and computations in the network and helps

39

control overfitting. The ReLU (Rectified Linear Unit) layer introduces nonlinearity to

the CNN. It applies the ReLU activation function to each element in the feature map,

setting all negative values to zero and leaving positive values unchanged. This

activation function helps the network learn complex patterns and relationships by

introducing nonlinearity to the model. ReLU is computationally efficient and helps

alleviate the vanishing gradient problem during training.

Table 3.1: Yolov3-Tiny Architecture

Layer Type Filters Size Input Output Activation

Conv 16 3 x 3 / 1 416 x 416 x 3 416 x 416 x 16 ReLU

MaxPool 2 x 2 / 2 416 x 416 x 16 208 x 208 x 16 -

Conv 32 3 x 3 / 1 208 x 208 x 16 208 x 208 x 32 ReLU

MaxPool 2 x 2 / 2 208 x 208 x 32 104 x 104 x 32 -

Conv 64 3 x 3 / 1 104 x 104 x 32 104 x 104 x 64 ReLU

MaxPool 2 x 2 / 2 104 x 104 x 64 52 x 52 x 64 -

Conv 128 3 x 3 / 1 52 x 52 x 64 52 x 52 x 128 ReLU

MaxPool 2 x 2 / 2 52 x 52 x 128 26 x 26 x 128 -

Conv 256 3 x 3 / 1 26 x 26 x 128 26 x 26 x 256 ReLU

MaxPool 2 x 2 / 2 26 x 26 x 256 13 x 13 x 256 -

Conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512 ReLU

MaxPool 2 x 2 / 2 13 x 13 x 512 13 x 13 x 512 -

Conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x 1024 ReLU

Conv 256 1 x 1 / 1 13 x 13 x 1024 13 x 13 x 256 ReLU

Conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512 ReLU

SimpleConv 255 3 x 3 / 1 13 x 13 x 512 13 x 13 x 255 Sigmoid

40

3.3.2 Model Quantization

During the model quantization step, the Convolutional Neural Network (CNN)

model was modified several times to optimize its efficient execution on FPGA

hardware. The key changes include reducing the number of cores and using integer

quantized forms of convolutional layers and activation functions. The number of filters

in each convolutional layer was reduced by five times. This significant reduction helps

reduce the complexity and computational load of the model, making it more suitable

for resource-constrained environments such as FPGAs. The model uses QuantConv

and QuantReLU layers, which are integer quantized versions of traditional

convolutional and activation functions as shown in Table 3.2. These quantized layers

replace floating-point operations with integer operations, which are more efficient and

faster to compute on FPGA hardware.

The CNN model accepts an input image of size 416x416x3 and outputs a 13x13x18

result. This output represents a 13x13 grid of the image, where each grid cell contains

the center x and y coordinates, width and height, category information, and the

confidence score of the detected object. These six outputs are calculated for three

different anchor boxes, enabling the model to detect objects with different aspect ratios.

After the results are calculated, the resulting matrix is used to visualize the bounding

boxes on the image. Non-maximum suppression (NMS) is then applied to eliminate

overlapping bounding boxes, retaining only the most confident ones to provide clear

and accurate detection output.

To strike a balance between efficiency and accuracy, the first and last convolutional

layers are preferably used with 8-bit integer values. This adjustment helps maintain

better accuracy where precision is most critical. The Brevitas library in PyTorch is

41

used to implement these quantized layers and activation functions, providing the

necessary tools to convert floating point operations into efficient integer operations

suitable for FPGA deployment. This quantization process ensures that the model

remains fast and efficient without significantly reducing accuracy.

Table 3.2: Quantized Yolov3-Tiny Architecture

Layer

Type
Weights Filters Size Input Output Activation

QuantConv 8 bits 8 3 x 3 / 1 416 x 416 x 3 416 x 416 x 8 QuantReLU

MaxPool 2 x 2 / 2 416 x 416 x 8 208 x 208 x 8 -

QuantConv 2/6 bits 8 3 x 3 / 1 208 x 208 x 8 208 x 208 x 8 QuantReLU

MaxPool 2 x 2 / 2 208 x 208 x 8 104 x 104 x 8 -

QuantConv 2/6 bits 16 3 x 3 / 1 104 x 104 x 8 104 x 104 x 16 QuantReLU

MaxPool 2 x 2 / 2 104 x 104 x 16 52 x 52 x 16 -

QuantConv 2/6 bits 32 3 x 3 / 1 52 x 52 x 16 52 x 52 x 32 QuantReLU

MaxPool 2 x 2 / 2 52 x 52 x 32 26 x 26 x 32 -

QuantConv 2/6 bits 56 3 x 3 / 1 26 x 26 x 32 26 x 26 x 56 QuantReLU

MaxPool 2 x 2 / 2 26 x 26 x 56 13 x 13 x 56 -

QuantConv 2/6 bits 104 3 x 3 / 1 13 x 13 x 56 13 x 13 x 104 QuantReLU

MaxPool 2 x 2 / 2 13 x 13 x 104 13 x 13 x 104 -

QuantConv 2/6 bits 208 3 x 3 / 1 13 x 13 x 104 13 x 13 x 208 QuantReLU

QuantConv 2/6 bits 56 3 x 3 / 1 13 x 13 x 208 13 x 13 x 56 QuantReLU

QuantConv 2/6 bits 104 3 x 3 / 1 13 x 13 x 56 13 x 13 x 104 QuantReLU

QuantSimp

leConv
8 bits 18 3 x 3 / 1 13 x 13 x 104 13 x 13 x 18

QuantHard

Tanh

42

3.3.3 Model Training

The model training process is a critical step in preparing the CNN model for

accurate face detection. The training uses a dataset of 3.6k images from the

WIDERFACE dataset, which is well-known for collecting images of faces in various

scenarios. The dataset is split into 90% for training and 10% for validation. The model

is trained for 120 epochs. Each epoch represents a complete pass over the entire

training dataset. The batch size used is 128, which means 128 images are processed

before updating the model parameters. This batch size helps balance computational

efficiency and training stability.

During training, the model learns to detect faces by adjusting its parameters to

minimize the difference between the predicted output and the actual face locations and

classes in the training images. The training process involves forward propagation

(computing the model’s predictions) and backward propagation (updating the model’s

parameters based on the prediction errors). After each epoch, the model’s performance

is evaluated on the validation set. This helps monitor the model’s generalization ability

and prevents overfitting by ensuring that the model performs well on unseen data.

The model is trained using quantized values. Quantization involves representing

the weights and activations with lower bit widths, which significantly reduces the

computational and memory requirements. This step is crucial for ensuring that the

model runs efficiently on FPGA hardware without sacrificing too much accuracy.

Once training is complete, the model is saved as a .pt file (PyTorch model file). This

file contains the learned parameters of the model and can be used later for inference.

This training process ensures that the model is fully prepared to accurately detect faces

in a variety of images using the robust features learned from the WIDERFACE dataset.

43

3.3.4 Model Validation

The model validation process is critical to ensure that the trained model performs

well on unseen data and is optimized for deployment. Once the validation is completed,

the trained model is exported in the ONNX (Open Neural Network Exchange) format.

ONNX is an open-source format designed for representing machine learning models,

providing an intermediate representation that facilitates interoperability between

different frameworks. Exporting the model to ONNX is a key step as it allows the

model to be further processed and optimized by the FINN framework. FINN is a

framework developed by Xilinx for accelerating quantized neural networks on FPGAs.

During training, the Sigmoid function is used as the activation function for the last

layer. The Sigmoid function is beneficial for learning because it smoothly maps the

input values to a range between 0 and 1, which is ideal for probability predictions in

classification tasks. For deployment, particularly for lowering latency and improving

compatibility with the FINN framework, the Sigmoid function is replaced with a

rescaled HardTanh function. HardTanh is a piecewise linear approximation of the

Tanh function, which is computationally less expensive and thus reduces latency. The

relationship between Tanh and Sigmoid function can be defined as equation 3.1.

𝜎(𝑥) =
1+tanh (

𝑥

2
)

2
 (3.1)

3.4 Board Implementation

Each step of the board level implementation of this project is attached in this section.

First, the quantized model is converted to HLS using the FINN framework. Next, the

bitstream is generated to port the detection accelerator on the FPGA. At this stage, the

output folder will contain two subfolders called the bit file folder and the driver folder

44

for porting the bitstream accelerator on the FPGA. The output folder will also contain

the reports generated by FINN and Vivado. The bit file is deployed on the FPGA and

compiled with the drowsiness detection algorithm. Blinks and yawns are calculated

using the eye aspect ratio and mouth aspect ratio.

3.4.1 High-Level Synthesis Conversion

The FINN library is utilized to convert and compile a quantized convolutional

neural network model into a hardware description language (HDL) representation

suitable for FPGA (Field-Programmable Gate Array) deployment. The process of

High-Level Synthesis (HLS) conversion for the quantized model involves several key

steps to transform the trained neural network model into an FPGA-compatible format

using the FINN framework. Initially, the model undergoes a series of transformations

to prepare it for synthesis. These transformations include inferring shapes and data

types, folding constants, and assigning unique and readable names to tensors and

nodes in the computational graph. Specifically, the model is transformed using

functions such as `InferShapes`, `FoldConstants`, `GiveUniqueNodeNames`,

`GiveReadableTensorNames`, `InferDataTypes`, and `RemoveStaticGraphInputs`.

Next, preprocessing steps are integrated into the model. Using the `ToTensor`

function from the `finn.util.pytorch` module, the preprocessing step is designed to

normalize input images by dividing uint8 inputs by 255. This preprocessing model is

exported in ONNX format and merged with the core quantized model using the

`MergeONNXModels` transformation. Additionally, an input quantization annotation

is added, specifying that the input data type should be UINT8 for compatibility with

the models. The prepared model is saved and re-validated through repeated

transformations to ensure all shapes, constants, and data types are correctly inferred

45

and optimized. Finally, the model is saved in the ONNX format suitable for further

processing.

3.4.2 Simulation, Synthesis and Bitstream Generation

Simulation and synthesis are performed using the command build from the FINN

library. Estimated resource utilization reports are generated for analysis. The

configuration of FINN is slightly different from the synthesis part, which uses the

Vivado accelerator as the backend, while the synthesis process uses Vivado as the

backend.

The next phase involves setting up the configuration for dataflow build using the

FINN framework. The `DataflowBuildConfig` is defined with various parameters,

including the output directory, the folding configuration file specific to the Pynq-Z1

board, and synthesis clock period settings. The build configuration specifies the target

FPGA board and the desired output types, such as estimation reports, bit files, PYNQ

drivers, and a deployment package.

The ̀build_dataflow_cfg` function is called with the model file and the

configuration, initiating the conversion process. This step compiles the neural network

into a hardware-friendly representation, generating the necessary files and reports for

deploying the model on FPGA hardware, thus enabling efficient and high-speed

detection using the model on the PYNQ-Z1 board.

3.4.3 Deployment and Validation

Download the image of the board and load it into the SD card so that the PYNQ-

Z1 board can work. After that, the driver can be used for drowsiness detection

46

inference for analysis. The accuracy of yawning and blinking on the board is being

compared with that of the host computer.

3.4.4 Eye State Determination

For the blink detection method, Eye Aspect Ratio (EAR) algorithm will be used.

EAR is defined as the ratio of the height and width of the eye [37]. First, extraction of

the eye region from a set of facial landmarks. Based on Figure 3.6, there are six

coordinates for each eye. These six coordinates will be used for calculation of EAR

value. The calculation is done for both left and right eye.

The equation 3.2 for EAR can be derived as the following:

𝐸𝐴𝑅 =
‖𝑃2−𝑃6‖+‖𝑃3−𝑃5‖

2×‖𝑃1−𝑃4‖
 (3.2)

Where P1, P2, P3, P4, P5 and P6 are the facial landmark coordinates that have been

obtained. Next, the system calculates the average of two EAR together with

assumption that a person blinks both eyes at the same time. EAR value will be

compared with the threshold value taken as 0.2. If the EAR value is below the

threshold, the eye will be considered closed [37]. When an eye is closed, the two types,

which are eye closure and eye blink will be differentiated. When the duration of eye

closed is more than 0.2 seconds, it will be considered as eye closure or else as eye

blink.

Figure 3.6: Eye Aspect Ratio (EAR) [37]

47

3.4.5 Mouth State Determination

For the yawn detection method, Mouth Aspect Ratio (MAR) algorithm will be used.

MAR is defined as the ratio of the height and width of the mouth. First, extraction of

the mouth region from a set of facial landmarks. To calculate the MAR, only those

coordinates will be used at which are at the outer mouth [38]. There are 12 coordinates

as shown in Figure 3.7.

The equation 3.3 for MAR can be derived as the following:

𝑀𝐴𝑅 =
‖𝑃2−𝑃10‖+‖𝑃4−𝑃8‖+‖𝑃0−𝑃6‖

3
 (3.3)

Where P1 to P12 are the facial landmark coordinates that this study obtained before.

MAR value will be compared with the threshold value taken as 20. The value of

threshold value was established by trial and error, with several values of threshold

value being tested to ensure that the algorithm accurately classifies an instance of

yawning and closed mouth. It shows that if the MAR value is bigger than threshold

value, the mouth will be considered as yawning [38].

3.5 Performance Analysis

Performance analysis of a drowsiness detection system on an FPGA focuses on

several key metrics to assess its efficiency and effectiveness. Measuring inference time

provides insight into the speed of the system, specifically its latency in milliseconds

Figure 3.7: Mouth Aspect Ratio (MAR) [38]

48

per frame. Analyzing the resource utilization of the FPGA helps determine how

efficiently the hardware resources, including logic elements, memory, and DSP blocks,

are being used. Evaluating power consumption is critical to understanding the energy

efficiency of the FPGA implementation. Evaluating the accuracy of detecting blinks

and yawns ensures the reliability of the drowsiness detection system. This metric is

critical to verifying the usefulness of the system in real-world scenarios. By examining

these metrics, the performance analysis aims to gain a detailed understanding of the

capabilities and advantages of the FPGA-based drowsiness detection system over

traditional computing platforms.

3.5.1 Inference Time

Measure and discuss the inference time of the deployed model. In the context of

FPGA deployment, the inference time is a critical metric reflecting the speed at which

the model processes input data and produces classification results. The FPGA’s

parallel processing capabilities are harnessed to optimize inference time, and

measurements are taken to quantify the reduction achieved compared to a purely

software-based implementation. This metric is critical to understanding the real-time

capabilities of an FPGA-based system

3.5.2 Resource Utilization

Assess the FPGA resource utilization for the implemented system. Resource

Utilization is the number of resources used by an FPGA for the design, in my project,

it is the HLS quantized convolutional model. The aspects that are often considered are

Lookup table, Digital Signal Processing (DSP), Flip Flops (FF), Block RAM and I/O

block. They are affected by the architecture of the model and the designation of the

49

model and the HLS conversion technique. This evaluation is critical to optimizing the

system and ensuring that it fits within the constraints of the target FPGA device.

3.5.3 Power Consumption

Analyze the power consumption of the deployed system. Power Consumption is

the power needed for the FPGA to run the model. It is usually affected by the function

and the frequency of the FPGA running. The design complexity and operating

condition can also change the power consumption of FPGA.

3.5.4 Blink and Yawn Count

Analyze the system’s performance in detecting signs of drowsiness and assess the

system’s effectiveness in monitoring eye and mouth activity. Accurate detection of

blinks and yawns are important indicators of an individual’s drowsiness. By tracking

the frequency and duration of blinks and yawns, a drowsiness detection system can

measure alertness or fatigue levels in real time. Blink frequency and duration are

important indicators because prolonged blinks or increased intervals between blinks

are often associated with drowsiness. Similarly, yawn detection can provide valuable

insights into an individual’s physiological state, with frequent or prolonged yawning

indicating a higher likelihood of drowsiness. Accurate counting and analysis of blinks

and yawns helps improve the overall effectiveness and reliability of the drowsiness

detection system, enabling timely intervention to prevent potential incidents or errors

caused by reduced alertness.

3.5.5 Comparison with Traditional Platform

Compare the performance with traditional platforms such as CPU. To visualize the

advantages and limitations of FPGA comparing to the CPU, the comparison between

them needs to be made and analyzed for gaining insight on both platforms

50

implementing the same model performing the same classification task. Comparing the

performance of an FPGA-based system to traditional platforms such as CPUs can

highlight advantages and potential trade-offs. This comparison provides a

comprehensive view of the advantages in terms of speed, power efficiency, and

resource utilization.

3.5.6 Trade-offs and Optimization Strategies

Discussing trade-offs and optimization strategies provides insight into the design

choices made to balance performance, accuracy, and resource constraints. This

analysis helps identify potential improvements and best practices for future

implementations.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter will record and measure all the results and output data of this project

as data analysis. This section will discuss the latency, power consumption, and

resource utilization of drowsiness detection. The performance of the two models in

PYNQ-Z1 FPGA will also be presented in the form of results.

4.2 Two-bit Quantization Model

This section studies the performance of the 2-bit quantized model implemented on

the FPGA platform shown in Figure 4.1. The analysis focuses on resource utilization,

power consumption, and adherence to clock constraints and frequency. Through a

comprehensive evaluation, we aim to gain insight into the feasibility and effectiveness

52

of deploying low-precision models on FPGA platforms, thereby facilitating the

development of efficient and scalable machine learning solutions.

4.2.1 Resource Utilization

This section presents the implementation report of the resource utilization of the

Vivado implementation of the 2-bit quantized YOLOv3-Tiny model on the PYNQ-Z1

FPGA board. The resource utilization is shown in Figures 4.2, 4.3, and 4.4. Of the

53,200 available Slice LUTs, 38,833 are used, which is 72.99% utilization as shown

in Figure 4.2.

These LUTs are used to implement combinatorial logic, of which 65.27% are

configured for general logic use and 23.61% are allocated for memory use. Some Slice

LUTs are dedicated to specific functions, such as distributed RAM and shift registers,

of which 3,702 LUTs are used as distributed RAM and 406 LUTs are configured as

shift registers. The utilization of the slice registers used to store intermediate values

and results is 48.53%. All 51,632 registers are used, all configured as flip-flops,

Figure 4.1: 2-bit Quantized Model

Figure 4.2: 2-bit Model Slice Logic

53

indicating that they are mainly used for sequential logic. The F7 and F8 multiplexers,

which are critical for signal routing within the FPGA, are utilized at 7.26% and 5.71%

respectively, with 1,930 of the 26,600 F7 multiplexers being used and 760 of the

13,300 F8 multiplexers being used.

Figure 4.3 details the memory utilization, where the Block RAM Tile is used as the

basic memory component, with 65 of the 140 instances being used, for a utilization of

46.43%. Specific memory instances such as RAMB36/FIFO and RAMB36E1 each

have 37 instances used, with both types having a utilization of 26.43%. These are

critical for applications that require specialized memory structures such as FIFO

implementations. The RAMB18 and RAMB18E1 blocks, known for their capacity

and versatility, are each used at 56 of the 280 instances available, for a utilization of

20.00%.

The DSP resource utilization shown in Figure 4.4 shows that 29 instances are in

use out of the available 220, a utilization of 13.18%. DSP blocks are critical for

accelerating complex mathematical computations and signal processing tasks in

FPGA designs. A comprehensive analysis of Slice Logic, DSP, and memory

utilization demonstrates a holistic approach to resource management. A considerable

portion of the DSP resources utilization indicates effective coordination of

computational tasks with specialized hardware functions.

Figure 4.3: 2-bit Model Memory

54

The balance between Slice Logic and memory utilization indicates that resource

allocation for computational and data storage requirements is coordinated. A

comprehensive analysis of resource utilization highlights the efficiency and

effectiveness of the 2-bit quantized YOLOv3-Tiny model implementation on the

PYNQ-Z1 board.

4.2.2 Power

Figure 4.5 shows the power report, which details the total power consumption of

the chip in watts. The total on-chip power is approximately 2.014W, indicating the

overall power consumption of the chip. The dynamic power consumption (indicating

the power used when the chip is active or running) is approximately 1.856W. The

device’s static power (indicating the power consumed when the chip is idle) is

approximately 0.158W.

Figure 4.4: 2-bit Model DSP

Figure 4.5: 2-bit Model Power

55

In addition, the report also includes the effective TJA (C/W), which stands for the

junction-to-ambient thermal resistance. This metric measures how effectively the chip

transfers heat from the junction (the hottest part of the chip) to the surrounding

environment. Lower TJA values indicate better cooling efficiency. The maximum

ambient temperature represents the maximum ambient temperature (in degrees Celsius)

at which the chip can operate effectively. The junction temperature refers to the

temperature of the chip junction, which is usually the hottest point. This detailed

power report provides a comprehensive overview of the power consumption and

thermal management of the chip, which is critical to evaluating the efficiency and

reliability of the 2-bit quantized model implementation on the PYNQ-Z1 board.

4.2.3 Clock Constraint and Frequency

As shown in Figures 4.6 and 4.7, a clock frequency of 100 MHz is used and no

clock setup, hold, or pulse width requirements are violated, highlighting the robust

design characteristics. In Vivado, the “worst slack” in the clock report refers to the

timing margin of the critical path with the smallest margin to meet the specified timing

constraints. These constraints define the desired performance goals of the model

design, including maximum clock frequency, setup time, and hold time requirements.

Timing margin represents the amount of time a signal can be delayed without

violating the specified timing constraints. Positive margin values indicate that the

design meets timing requirements, while negative margin values indicate timing

violations. The “worst slack” is the smallest (most negative) margin value among all

Figure 4.6: 2-bit Model Clock Summary

56

critical paths in the design. A negative worst margin means that the design fails to

meet timing on the critical path. This failure can be caused by various factors, such as

routing congestion, inefficient logic element placement, or insufficient clock-to-q

delays for sequential elements on the critical path.

This clock summary and timing analysis highlights the efficiency and reliability of

the 2-bit quantized model implementation on the PYNQ-Z1 board, ensuring that the

design meets the required performance criteria without violating timing.

4.3 Six-bit Quantization Model

In this section, we study the 6-bit quantized models as shown in Figure 4.8. Our

analysis focuses on resource utilization, power consumption, and adherence to clock

constraints and frequency. Through a comprehensive evaluation, we aim to gain

insights into the feasibility and effectiveness of deploying low-precision models on

FPGA platforms. This detailed investigation will highlight the potential benefits and

challenges of implementing 6-bit quantized models, helping to advance the

optimization of machine learning deployments on FPGA hardware.

Figure 4.7: 2-bit Model Timing Details

Figure 4.8: 6-bit Quantized Model

57

4.3.1 Resource Utilization

Figures 4.9, 4.10, and 4.11 show the resource utilization report, detailing the

performance of the 6-bit quantized model on the FPGA platform. The slice lookup

tables (LUTs) that implement arbitrary Boolean logic functions have a utilization of

74.14%, indicating that a large portion of the design logic relies on these LUTs.

Specifically, 66.41% of the LUTs are used for general logic purposes, while 406 LUTs

are used as small memories or shift registers, accounting for 23.61% of the total

utilization.

The utilization of slice registers, which are used to store data or state information

in sequential logic, is 48.94%, and all used registers are configured as flip-flops,

matching the utilization of slice registers. This indicates that the design primarily uses

flip-flops as memory elements. The higher utilization percentage compared to the 2-

bit quantized model indicates that the 6-bit quantized model requires more resources.

Block RAMs, which implement larger memory arrays that are necessary to store

large amounts of data or coefficients, have a utilization of 84.29%, indicating that

almost all available block RAM blocks are used. This marks a significant

improvement in memory utilization compared to the 2-bit quantized model.

Quantization reduces the precision of the neural network weights, such as converting

Figure 4.9: 6-bit Model Slice Logic

58

32-bit floating point numbers to 6-bit integers, thereby reducing the memory and

compute requirements of the model. The report shows that this low memory utilization

is attributed to the effective use of quantization techniques, which shrinks the model’s

memory footprint, allowing it to fit on the FPGA with sufficient resources available.

This is particularly beneficial for embedded systems with limited memory and

computer resources.

The digital signal processor (DSP), which is critical for performing arithmetic

functions such as multiply-accumulate operations in convolutional layers, has a

utilization of 13.18%, indicating that a considerable portion of the DSP is used in the

design.

Overall, the detailed resource utilization highlights the efficiency and increased

requirements of the 6-bit quantized model, proving its feasibility and effectiveness in

deployment on FPGA platforms while maintaining efficient resource management.

Figure 4.11: 6-bit Model DSP

Figure 4.10: 6-bit Model Memory

59

4.3.2 Power

Figure 4.12 details the power report, illustrating the power consumption metrics for

a 6-bit quantized model implemented on an FPGA platform. The total on-chip power

is approximately 2.133 Watts, representing the overall power consumption of the chip.

Dynamic power represents the power consumed when the chip is active, which is

approximately 1.964 Watts. Device static power represents the power consumed when

the chip is idle, which is approximately 0.168 Watts.

Effective TJA (C/W) or junction-to-ambient thermal resistance measures how

effectively the chip transfers heat from the junction (the hottest part of the chip) to the

surrounding environment. Lower TJA values indicate better cooling efficiency.

Maximum ambient temperature represents the maximum ambient temperature (in

degrees Celsius) at which the chip can operate effectively. Junction temperature refers

to the temperature of the chip junction, which is typically the hottest point.

The total on-chip power consumption of the 6-bit quantized model is higher

compared to the 2-bit quantized model, indicating that the increased accuracy of the

6-bit model results in increased power consumption. This comprehensive power

analysis highlights the trade-off between model accuracy and power efficiency, which

is critical for optimizing FPGA deployments for machine learning tasks.

Figure 4.12: 6-bit Model Power

60

4.3.3 Clock Constraint and Frequency

As stated in the Clock Summary report for the 6-bit quantized model, the clock

frequency used is 100 MHz as shown in Figure 4.13.

Figure 4.14 shows that no clock violations were found after the implementation

process. This indicates that the design meets all setup, hold, and pulse width

requirements, ensuring reliable performance. The absence of clock violations

highlights the robustness of the 6-bit quantized model implementation, maintaining

adherence to critical timing constraints and enabling efficient operation on FPGA

platforms.

4.4 PYNQ-Z1 board

The final deployed model is validated on FPGA and its performance is summarized.

The performance metrics obtained by FPGA implementation of 2-bit and 6-bit

quantized models are compared. This step aims to analyze the performance of

quantized model on FPGA. This ensures that the drowsiness detection based on FPGA

implementation is meaningful.

Figure 4.13: 6-bit Model Clock Summary

Figure 4.14: 6-bit Model Timing Details

61

4.4.1 Validation

The validation process is done which is shown in Figure 4.15 and to make sure the

practical implementation of the drowsiness detection with 2-bit quantized model and

the 6-bit quantized model works on the PYNQ-Z1 FPGA board. The inference process

is done using the driver which is the communication protocol, the bit file and

configuration file.

4.4.2 Performance

The performance of the drowsiness detection with blink and yawn accuracy with

latency is tested in PYNQ-Z1 FPGA as shown in Table 4.1.

Table 4.1: Performance on PYNQ-Z1

Model
Blink

Accuracy

Yawn

Accuracy

Total

Accuracy
Latency

Haar Cascade - - - 910.25ms/frame

Yolov3 Tiny - - - 3530.14ms/frame

2-bit Quantized

Yolov3 Tiny
72% 76% 74% 191.72ms/frame

6-bit Quantized

Yolov3 Tiny
77% 90% 83.5 224.35ms/frame

Figure 4.15: PYNQ-Z1 Implementation

62

4.5 Central Processing Unit

The yawning and blinking counts in drowsiness detection are also inferred on PC

using CPU workspace for comparative analysis.

4.5.1 Performance

The performance of the blink and yawn accuracy with latency is tested in CPU as

shown in Table 4.2.

Table 4.2: Performance on CPU

Model
Blink

Accuracy

Yawn

Accuracy

Total

Accuracy
Latency

Haar

Cascade
78% 85% 81.5% 22.25ms/frame

Yolov3 Tiny 85% 92% 88.5% 49.10ms/frame

4.5.2 Resource Utilization

The resource utilization graph of the personal computer can be seen in Figure 4.16.

The CPU usage of the drowsiness detection fluctuated from 0 to 49%, the memory

usage for the models is at 40% average.

4.6 Comparison Table

Table 4.3 shows not only the comparison of drowsiness detection on different

platforms with different models in terms of latency, power, and resource utilization,

Figure 4.16: Resource Utilization

63

but also the comparison with other research results. All the data that had been

measured and recorded had been compared.

 Table 4.3: Result Comparison

4.7 Discussion

The PYNQ-Z1 FPGA achieved a significant 45.24% reduction in memory usage

after converting from a 6-bit model to a 2-bit model. In addition, the quantized model

on the PYNQ-Z1 reduced power consumption by 95.52% compared to CPU and

improved latency by 46.12 times after converting from a pure PS (processing system)

to a PS+PL (programmable logic) combined approach. As mentioned in [29], the

FPGA uses a 320x240 (QVGA) resolution with low FPGA resource utilization, using

only 9.57% of the look-up tables (LUTs), 1.77% of the registers, and 4.17% of the

digital signal processing (DSP) blocks. This lower utilization allows for more

flexibility in adding additional functionality or logic. However, this work also results

Device Model Power

Resource

Utilization
Latency

Proposed

in this

project

CPU

(Ryzen 5600H)

Haar

Cascade
65W - 22.25ms/frame

CPU

(Ryzen 5600H)
Yolov3 Tiny 65W - 49.10ms/frame

PYNQ-Z1 (PS)
Haar

Cascade
2.4W - 791.62ms/frame

PYNQ-Z1 (PS) Yolov3 Tiny 2.4W - 8344.53ms/frame

PYNQ-Z1

(PS + PL)

2-bit

Quantized

Yolov3 Tiny

2.014W

72.99% LUT

48.53% Registers

13.18% DSP

46.43% Memory

180.92ms/frame

PYNQ-Z1

(PS + PL)

6-bit

Quantized

Yolov3 Tiny

2.133W

74.14% LUT

48.94% Registers

13.18% DSP

84.29% Memory

199.12ms/frame

S. K.

Mousaviki

a et al.

[29], 2022

Xilinx Nexys 4

DDR
CNN -

9.57% LUT

1.77% Registers

4.17% DSP

99.26% Memory

231ms/frame

64

in a memory utilization of almost 99.26% and a longer processing time of 231

milliseconds per frame, which may not be suitable for real-time applications. The

proposed work, while requiring more FPGA resources, provides faster processing time

and more available memory, which is beneficial for real-time applications.

The PYNQ-Z1 FPGA uses advanced parallel techniques such as pipelining to

improve computational efficiency and performance. This hardware design strategy

divides computation into multiple stages, allowing each stage to run simultaneously.

By overlapping the execution of different stages, pipelining enhances concurrency and

enables efficient parallel processing of multiple data elements in each stage, thereby

optimizing overall computational performance. These parallelization techniques are

automatically implemented by the FINN library, significantly improving the

performance of the FPGA in terms of resource utilization, power consumption, and

thermal management. However, due to the limitations of onboard RAM resources, the

training process cannot be performed on the board itself. Figure 4.17 shows the degree

of parallelism is determined by the number of processing elements (PEs) and single

instruction multiple data (SIMD) units used per layer, which can be adjusted by setting

the folding parameters. Increasing the number of PEs and SIMDs can increase

parallelism and speed, but this also consumes more logic resources, so a balance needs

to be struck between performance and resource utilization.

Figure 4.17: Parallelism

65

4.8 Environmental and Sustainability

Sustainable development is essential to ensure a balance between environmental

protection and social progress, highlighting the importance of engineering solutions

that minimize ecological impact while benefiting communities.

4.8.1 Needs and Importance for Sustainable Development

In today’s rapidly evolving technology landscape, especially in the field of

automation, developing advanced computing for AI applications is essential. To meet

the growing demand for AI applications, advanced computing solutions such as Field

Programmable Gate Arrays (FPGAs) have become essential. FPGAs play a key role

in promoting innovation and building resilient infrastructure aligning with SDG 9 as

shown in Figure 4.18 [39]. Their scalability and flexibility are particularly beneficial

for developing a neural network-based drowsiness detection system. By leveraging

the adaptability of FPGAs, the project ensures that the technology can evolve with the

rapid development of neural networks. This adaptability not only supports continued

innovation, but also strengthens the infrastructure required for complex AI

applications. Improving energy efficiency is a key aspect of the project, contributing

to more sustainable consumption and production patterns.

FPGAs are known for their high energy efficiency, making them an ideal solution

for reducing the environmental impact of technology. By optimizing resource

Figure 4.18: Sustainable Development Goals [39]

66

utilization and improving energy efficiency, the project promotes sustainability in

technological development. This not only meets the goals of SDG 12, but also helps

improve human lifestyles by minimizing the ecological footprint of advanced

computing. By promoting innovation, strengthening infrastructure and improving

energy efficiency, the project contributes to the achievement of SDG 9 and SDG 12,

ensuring that technological progress is both sustainable and impactful.

4.8.2 Impact of the Engineering Solution on Society

Applying drowsiness detection on FPGA can promote the development of driver

fatigue detection crisis to improve vigilance. Autonomous driving systems are

becoming a trend. This project provides insights into real-time image recognition

systems to improve the safety of advanced driver assistance systems (ADAS). When

using reconfigurable FPGA-based convolutional neural networks for drowsiness

detection, resource waste can be avoided.

4.9 Summary

Through comparative analysis of latency, power consumption, and resource

consumption, the results of my project “Implementation and Performance Analysis of

Drowsiness Detection using Hardware Acceleration on PYNQ-Z1 FPGA” show that

high-level computing has both advantages and disadvantages for drowsiness

detection. The advantage is the optimization of latency, power consumption and

resource utilization. The disadvantage is that the training process cannot be completed

on the PYNQ-Z1 board due to resource limitations. The results highlight the potential

of FPGAs in meeting high-performance computing needs and provide a path for the

development of drowsiness detection.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Introduction

This chapter will summarize the project results in terms of the project goals and

future work that can improve the system. This chapter will present the conclusions of

the project in Section 5.2 and future work on the project in Section 5.3.

5.2 Conclusion

This thesis focuses on the development of an optimized quantized convolutional

neural network-based model for drowsiness detection on the PYNQ-Z1 FPGA. All

goals of the project were achieved, successfully implementing drowsiness detection

on the FPGA, using optimization techniques on the model, and analyzing the

drowsiness detection performance of the quantized model in FPGA.

68

The first goal was to design and implement drowsiness detection on the FPGA.

This goal was achieved by completing on-board validation and documenting the

results. The second goal was to explore drowsiness detection optimization techniques

in the model, which was also achieved by quantizing the model. Parallelization

techniques were also used when converting the model to an HLS model, where

pipelining, inlining, and partitioning arrays were performed to exploit the

parallelization capabilities of the FPGA. The third goal was to perform a drowsiness

detection performance analysis on the results to gain insight into how traditional

computing platforms compare to FPGAs. This goal was achieved when we were able

to infer the advantages and disadvantages of FPGAs compared to traditional

computing platforms based on the power consumption, latency, and implementation

reports generated.

In summary, the successful achievement of these goals highlights the importance

of FPGAs for drowsiness detection applications. The research results presented in this

paper not only advance the current understanding of hardware-accelerated neural

networks but also lay a solid foundation for future research and development in the

pursuit of optimized, high-performance computing solutions in the field of artificial

intelligence.

5.3 Future works

To further improve the limitations found in this project, several advanced

techniques and methods can be considered. By quantizing the activation layers in the

convolutional neural network model, we can potentially improve performance and

efficiency. Integrating and optimizing more complex drowsiness detection methods

(such as head pose analysis) can push the limits of FPGA capabilities. It is critical to

69

investigate further optimization techniques for specific FPGA architectures, as

different FPGAs have unique capabilities and constraints that can be exploited to

improve performance and resource utilization.

In addition, fine-tuning the configuration of each layer in the convolutional neural

network may help improve latency, power consumption, and resource utilization.

Investigating other optimization techniques is also a promising direction to improve

the performance of FPGA-based neural networks. In addition to CNNs, exploring

other neural network models or drowsiness detection methods can fully understand

the potential of FPGAs in various applications. Real-time inference using cameras on

FPGAs presents significant challenges, but also provides opportunities to explore the

ability of FPGAs to exploit real-time data. Ensuring cross-platform compatibility is

critical to adapt to various FPGA architectures and expand the scope of

implementation.

Evaluating power consumption and efficiency through power-aware design

techniques and dynamic reconfiguration can produce more energy-efficient models.

Integrating the FPGA implementation with an edge computing platform and

thoroughly benchmarking it against alternative FPGA-based solutions will provide

valuable insights into the strengths and weaknesses of the proposed approach

compared to existing solutions. In summary, these future research directions aim to

push the boundaries of FPGA-accelerated drowsiness detection and advance the field

of hardware-accelerated deep learning and edge computing.

70

REFERENCES

[1] W. Ameer et al., “Identifying Factors Associated with Sleep Quality among

Manufacturing Workers Riding to Work in Klang Valley,” 2021.

[2] K. S. Gill, V. Anand, R. Chauhan, S. Thapliyal, and R. Gupta, “A Convolutional

Neural Network-Based Method for Real- Time Eye State Identification in

Driver Drowsiness Detection,” in 2023 3rd International Conference on Smart

Generation Computing, Communication and Networking (SMART GENCON),

IEEE, Dec. 2023, pp. 1–5. doi:

10.1109/SMARTGENCON60755.2023.10442238.

[3] J. Ye and W. Zhang, “A Scalable ARM+FPGA-Based CNN Accelerator with

Limited Hardware Resources,” in 2023 42nd Chinese Control Conference

(CCC), IEEE, Jul. 2023, pp. 2498–2503. doi:

10.23919/CCC58697.2023.10241078.

[4] V. Kartsch, S. Benatti, M. Guermandi, F. Montagna, and L. Benini, “Ultra Low-

Power Drowsiness Detection System with BioWolf,” in 2019 9th International

IEEE/EMBS Conference on Neural Engineering (NER), IEEE, Mar. 2019, pp.

1187–1190. doi: 10.1109/NER.2019.8717070.

71

[5] V. Kalisetti, V. S. C. Vasarla, S. B. Kolli, R. Varaparla, V. Enireddy, and M.

Mohammed, “Analysis of Driver Drowsiness Detection Methods,” in 2023

Second International Conference on Electronics and Renewable Systems

(ICEARS), IEEE, Mar. 2023, pp. 1481–1485. doi:

10.1109/ICEARS56392.2023.10084986.

[6] S. Yaacob, N. A. Izzati Affandi, P. Krishnan, A. Rasyadan, M. Yaakop, and F.

Mohamed, “Drowsiness detection using EEG and ECG signals,” in 2020 IEEE

2nd International Conference on Artificial Intelligence in Engineering and

Technology (IICAIET), IEEE, Sep. 2020, pp. 1–5. doi:

10.1109/IICAIET49801.2020.9257867.

[7] Y. Ma et al., “Driving Drowsiness Detection with EEG Using a Modified

Hierarchical Extreme Learning Machine Algorithm with Particle Swarm

Optimization: A Pilot Study,” Electronics (Basel), vol. 9, no. 5, p. 775, May

2020, doi: 10.3390/electronics9050775.

[8] “Lane Departure Warning Overview Benefits.” [Online]. Available:

www.intelli-vision.com

[9] H. Oishi, H. Kawanaka, and K. Oguri, “Effectiveness of Data Screening for

Driver Drowsiness Estimation Using Drive Recorder,” in 2021 IEEE 10th

Global Conference on Consumer Electronics (GCCE), IEEE, Oct. 2021, pp.

766–769. doi: 10.1109/GCCE53005.2021.9622071.

[10] Z. Li, L. Chen, L. Nie, and S. X. Yang, “A Novel Learning Model of Driver

Fatigue Features Representation for Steering Wheel Angle,” IEEE Trans Veh

72

Technol, vol. 71, no. 1, pp. 269–281, Jan. 2022, doi:

10.1109/TVT.2021.3130152.

[11] E. N. Pratama and W. F. Al Maki, “Drowsiness Detection System for Masked

Face Based on Deep Neural Network and Haar Cascade,” in 2022 1st

International Conference on Software Engineering and Information

Technology (ICoSEIT), IEEE, Nov. 2022, pp. 233–237. doi:

10.1109/ICoSEIT55604.2022.10029948.

[12] Sumanto, B. Wijonarko, M. Qommarudin, A. Sudibyo, P. Widodo, and A. M.

Lukman, “Viola-Jones Algorithm for Face Detection using Wider Face

Dataset,” in 2022 10th International Conference on Cyber and IT Service

Management (CITSM), IEEE, Sep. 2022, pp. 1–4. doi:

10.1109/CITSM56380.2022.9935830.

[13] I. Arrieta-Arellano, F. López-Orozco, J. I. Hernández-Hernández, and J.-G.

Ruiz-Ruiz, “HCI based on eye movements for unlocking mobile devices,”

Avances en Interacción Humano-Computadora, vol. 6, no. 1, pp. 6–10, Nov.

2021, doi: 10.47756/aihc.y6i1.78.

[14] C. Zhang, G. Liu, X. Zhu, and H. Cai, “Face Detection Algorithm Based on

Improved AdaBoost and New Haar Features,” in 2019 12th International

Congress on Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI), IEEE, Oct. 2019, pp. 1–5. doi: 10.1109/CISP-

BMEI48845.2019.8965841.

[15] R. Xie, Q. Zhang, E. Yang, and Q. Zhu, “A Method of Small Face Detection

Based on CNN,” in 2019 4th International Conference on Computational

73

Intelligence and Applications (ICCIA), IEEE, Jun. 2019, pp. 78–82. doi:

10.1109/ICCIA.2019.00022.

[16] J. Boone, C. Goodin, L. Dabbiru, C. Hudson, L. Cagle, and D. Carruth,

“Training Artificial Intelligence Algorithms with Automatically Labelled UAV

Data from Physics-Based Simulation Software,” Applied Sciences, vol. 13, no.

1, p. 131, Dec. 2022, doi: 10.3390/app13010131.

[17] Md. A. A. Akash, M. A. H. Akhand, and N. Siddique, “Robust Face Detection

Using Hybrid Skin Color Matching under Different Illuminations,” in 2019

International Conference on Electrical, Computer and Communication

Engineering (ECCE), IEEE, Feb. 2019, pp. 1–6. doi:

10.1109/ECACE.2019.8679481.

[18] M. Diba, A. R. Sokhango, M. Sabouri, A. Haji Poor, and M. S. Student, “Iranian

Conference on Fuzzy Systems ‘Human face detection by fuzzy filter and

Pattern matching in HSI and YCbCr color space’ Human face detection by

fuzzy filter and Pattern matching in HSI and YCbCr color space”, doi:

10.13140/2.1.4688.2883.

[19] T. T. Phuong, L. T. Hien, D. N. Toan, and N. D. Vinh, “An Eye Blink detection

technique in video surveillance based on Eye Aspect Ratio,” in 2022 24th

International Conference on Advanced Communication Technology (ICACT),

IEEE, Feb. 2022, pp. 534–538. doi: 10.23919/ICACT53585.2022.9728891.

[20] Daniel Georgiev, “What is the difference between the Iris and the pupil in the

eye?,” IrisTech. Accessed: Apr. 19, 2024. [Online]. Available:

74

https://iristech.co/what-is-the-difference-between-the-iris-and-the-pupil-in-

the-eye/

[21] W. Tipprasert, T. Charoenpong, C. Chianrabutra, and C. Sukjamsri, “A Method

of Driver’s Eyes Closure and Yawning Detection for Drowsiness Analysis by

Infrared Camera,” in 2019 First International Symposium on Instrumentation,

Control, Artificial Intelligence, and Robotics (ICA-SYMP), IEEE, Jan. 2019,

pp. 61–64. doi: 10.1109/ICA-SYMP.2019.8646001.

[22] M. A. Zulkarnanie, K. S. Shanmugam, N. Badruddin, and M. N. M. Saad,

“Enhancements to PERCLOS Algorithm for Determining Eye Closures,” in

2022 International Conference on Future Trends in Smart Communities

(ICFTSC), IEEE, Dec. 2022, pp. 76–81. doi:

10.1109/ICFTSC57269.2022.10039811.

[23] A. Pondit, A. Dey, and A. Das, “Real-time Driver Monitoring System Based on

Visual Cues,” in 2020 6th International Conference on Interactive Digital

Media (ICIDM), IEEE, Dec. 2020, pp. 1–6. doi:

10.1109/ICIDM51048.2020.9339604.

[24] Advanced Micro Devices Inc., “Field Programmable Gate Array (FPGA): What

is an FPGA?” Accessed: Feb. 24, 2024. [Online]. Available:

https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html

[25] Advanced Micro Devices Inc., “What is PYNQ?” Accessed: Mar. 11, 2024.

[Online]. Available: https://www.pynq.io/#

75

[26] B. Yazici, A. Ozdemir, and T. Ayhan, “System-on-Chip Based Driver

Drowsiness Detection and Warning System,” in 2022 Innovations in Intelligent

Systems and Applications Conference (ASYU), IEEE, Sep. 2022, pp. 1–5. doi:

10.1109/ASYU56188.2022.9925481.

[27] A. Migali, F. Spagnolo, and P. Corsonello, “Heterogeneous FPGA-based

System for Real-Time Drowsiness Detection,” in 2022 17th Conference on

Ph.D Research in Microelectronics and Electronics (PRIME), IEEE, Jun. 2022,

pp. 169–172. doi: 10.1109/PRIME55000.2022.9816816.

[28] Y. Kortli, S. Gabsi, L. F. C. Lew Yan Voon, and M. Jridi, “Design of ADAS

Fatigue Control System using Pynq z1 and Jetson Xavier NX,” in 2022 IEEE

9th International Conference on Sciences of Electronics, Technologies of

Information and Telecommunications (SETIT), IEEE, May 2022, pp. 65–68.

doi: 10.1109/SETIT54465.2022.9875823.

[29] S. K. Mousavikia, E. Gholizadehazari, M. Mousazadeh, and S. B. O. Yalcin,

“Instruction Set Extension of a RiscV Based SoC for Driver Drowsiness

Detection,” IEEE Access, vol. 10, pp. 58151–58162, 2022, doi:

10.1109/ACCESS.2022.3177743.

[30] N. Tabassum and N. Tabassum, “Real-Time Drowsiness Alert System from

EEG Signal Based on FPGA,” in 2021 3rd International Conference on

Electrical & Electronic Engineering (ICEEE), IEEE, Dec. 2021, pp. 129–132.

doi: 10.1109/ICEEE54059.2021.9718788.

[31] J.-Y. Hsu, T.-Y. Jiang, and P. C.-P. Chao, “A Fast FPGA Hardware Accelerator

for Remote Heart Rate Detection Based on RGB Vision,” IEEE Trans Biomed

76

Circuits Syst, vol. 18, no. 3, pp. 592–607, Jun. 2024, doi:

10.1109/TBCAS.2024.3354505.

[32] P. Christakos, N. Petrellis, P. Mousouliotis, G. Keramidas, C. P. Antonopoulos,

and N. Voros, “A High Performance and Robust FPGA Implementation of a

Driver State Monitoring Application,” Sensors, vol. 23, no. 14, p. 6344, Jul.

2023, doi: 10.3390/s23146344.

[33] P. Dipl and I. M. Wess, “FPGA optimized dynamic post-training Quantization

of Tiny-YoloV3,” 2021.

[34] S. Yang, P. Luo, C. C. Loy, and X. Tang, “WIDER FACE: A Face Detection

Benchmark.” Accessed: Feb. 12, 2024. [Online]. Available:

http://shuoyang1213.me/WIDERFACE/

[35] Shabnam Abtahi, Mona Omidyeganeh, Shervin Shirmohammadi, and

Behnoosh Hariri, “YawDD: Yawning Detection Dataset.” Accessed: Feb. 17,

2024. [Online]. Available: https://dx.doi.org/10.21227/e1qm-hb90

[36] AMD Xilinx, “Getting Started - FINN documentation.” Accessed: Apr. 12,

2024. [Online]. Available:

https://finn.readthedocs.io/en/latest/getting_started.html

[37] A. Kuwahara, K. Nishikawa, R. Hirakawa, H. Kawano, and Y. Nakatoh, “Eye

fatigue estimation using blink detection based on Eye Aspect Ratio

Mapping(EARM),” Cognitive Robotics, vol. 2, pp. 50–59, 2022, doi:

10.1016/j.cogr.2022.01.003.

77

[38] P. Awasekar, M. Ravi, S. Doke, and Z. Shaikh, “Driver Fatigue Detection and

Alert System using Non-Intrusive Eye and Yawn Detection,” Int J Comput

Appl, vol. 180, no. 44, pp. 1–5, May 2018, doi: 10.5120/ijca2018917140.

[39] Gradesens, “Sustainable Development Goals.” Accessed: May 24, 2024.

[Online]. Available: https://gradesens.com/sdg/

