
PERFORMANCE ANALYSIS OF LOCALIZATION ALGORITHM
FOR MOBILE ROBOT.

NUR NABILA HUSNA BINTI MOHD SAHABUDDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PERFORMANCE ANALYSIS OF LOCALIZATION

ALGORITHM FOR MOBILE ROBOT.

NUR NABILA HUSNA BINTI MOHD SAHABUDDIN

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

2020

DECLARATION

I declare that this report entitled “The Performance Analysis Of Localization

Algorithm For Mobile Robot” is the result of my own work except for quotes as cited

in the references.

Signature : …………………………………

 Author : Nur Nabila Husna Binti Mohd Sahabuudin

 Date : 26 Jun 2020

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : Dr. Nor Hidayah Binti Mohamad Yatim

Date : 26 Jun 2020

DEDICATION

This thesis is dedicated to my parents who have enriched and motivated my spirit

through their eternal love, encouragement, and motivation to pursue and complete

this research. Thanks to you for encouraging me to succeed and instilling in me the

confidence that I am competent of doing anything.

i

ABSTRACT

The ability to navigate the mobile robots in the human environment is a need in

order to keep a safe and reliable way to overcome the loss of the mobile robot position.

To solve the localisation problem for a mobile robot, the Particle Filter algorithm is

used to achieve the required robustness and accuracy. Particle Filter is a technique

from estimation theory that used a set number of particles in order to detect the position

of the mobile robot. There are two types of results that have been analysed in this

paper. First is the Particle Filter localization algorithm will be simulated and the

performance of the mobile robot will be investigated based on the accuracy of the

robot’s state. C++ coding is used to run the simulation of the approaches of the

Particle Filters. The performance of the algorithm using a set number of particles as

the parameters in which will be varied in order to determine the accuracy of the

localisation method. It is important investigate the effect of the number of particles

used on accuracy of robot’s state.

ii

ABSTRAK

Keupayaan untuk menavigasi robot mudah alih di persekitaran manusia adalah

keperluan untuk memastikan cara yang selamat dan boleh dipercayai untuk mengatasi

kehilangan kedudukan robot mudah alih. Untuk menyelesaikan masalah penempatan

untuk robot bergerak, algoritma Penapis Partikel digunakan untuk mencapai

kekukuhan dan ketepatan yang diperlukan. Penapis Partikel adalah teknik dari teori

anggaran yang menggunakan bilangan zarah set untuk mengesan kedudukan robot

mudah alih. Terdapat dua jenis hasil yang telah dianalisis dalam karya ini. Pertama,

algoritma lokalisasi penapis zarah akan disimulasikan dan prestasi robot bergerak akan

disiasat berdasarkan ketepatan keadaan robot. Pengekodan C ++ digunakan untuk

menjalankan simulasi pendekatan penapis zarah. Prestasi algoritma menggunakan

bilangan set zarah sebagai parameter yang akan diubah untuk menentukan ketepatan

kaedah penyetempatan. Hal ini penting untuk menyiasat kesan bilangan zarah yang

digunakan pada ketepatan keadaan robot.

iii

ACKNOWLEDGEMENTS

Firstly, I am very grateful to Allah for the good health and wellbeing while

completing the project. I have taken efforts in this project. However, it would not have

been possible without the kind support and help of many individuals. I would like to

extend my sincere thanks to all of them. Millions of thanks are given Dr. Nor Hidayah

Binti Mohamad Yatim, a dedicated lecturer who patiently guide me to complete this

project. Her time, guidance, and constant supervision as well as for providing

necessary information regarding the project, also for her support in completing this

subject in this semester and who never tired giving me guidance on ROS and Ubuntu

software, support and let me explore the app beyond my expectations is appreciated.

I am very grateful to have classmates that are helpful to each other without a judge

and blames. Their care and devotion to share their knowledge is something that I

appreciate and would surely treasure. I would like to thank my parents for

encouragement, support. My gratitude also goes to all lecturers in the Faculty of

Electronics and Computer Engineering (FKEKK) for sharing their pearls of wisdom

whilst completing this project. Finally, I would like to place my sense of gratitude to

all, who directly or indirectly, have lent their hand in completing the project. I hope

that the experiences gained for completing the project will be beneficial to everyone.

iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures viii

List of Tables x

List of Symbols and Abbreviations xi

List of Appendices xii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Project 1

1.2 Problem Statement 3

1.3 Objectives 4

1.4 Scope of Work 4

v

1.5 Thesis Outline 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Navigation and Localization 8

2.3 Problems in Mobile Robot Localization 8

2.3.1 Position Tracking 9

2.3.2 Global Localization 9

2.3.3 Kidnapped Robot 9

2.4 Types of Localization Algorithm 9

2.4.1 Kalman Filter Algorithm 10

2.4.2 Extended Kalman Filter (EKF) Algorithm 11

2.4.3 Particle Filter Algorithm 12

2.4.4 Comparison Between Kalman Filter, Extended Kalman Filter (EKF),

and Particle Filter Algorithms. 13

2.5 Development of Technology 15

2.6 Robot Operating Software (ROS) 18

2.6.1 Node 19

2.6.2 Package 19

2.6.3 Message 20

2.6.4 Topic 20

vi

CHAPTER 3 PROJECT METHODOLOGY 21

3.1 Introduction 21

3.2 Robot Operating Software (ROS) 24

3.3 TurtleBot3 Installation 25

3.4 Gazebo Simulator 27

3.4.1 TurtleBot3 Simulation Using Gazebo 28

3.4.2 Development of the Environment in Gazebo Simulation Using Gazebo

 29

3.5 Laser Distance Sensor (LDS) 30

3.6 Particle Filter Algorithm 31

3.6.1 Particle Filtering 33

CHAPTER 4 RESULTS AND DISCUSSION 35

4.1 Introduction 35

4.2 Map of the Test Environment 36

4.3 Navigation of The TurtleBot3 Burger 37

4.4 Particle Filter Localization on RViz Simulation 38

4.5 Localization Performance of Particle Filter Algorithm 41

4.6 Results of Particle Filter Localization Simulation 45

vii

4.7 Analysis of the Cumulative Error of the Final Pose of Turtlebot3 Burger

According to The Number of Particles Used 48

4.8 Project Significant 50

CHAPTER 5 CONCLUSION AND FUTURE WORKS 53

5.1 Conclusion 53

5.2 Future Works 55

REFERENCES 56

APPENDICES 60

viii

LIST OF FIGURES

Figure 2.1 : Two-step process in Kalman Filter algorithm. 10

Figure 2.2 : Extended Kalman Filter algorithm. 11

Figure 2.3 : The prediction and measurement updates in the particle filter. 12

Figure 2.4 : Robot Operating Software (ROS) logo. 18

Figure 3.1 : Flowchart process of the project. 23

Figure 3.2 : Command for the configuration of ROS environment. 24

Figure 3.3 : Command to create ROS catkin workspace. 24

Figure 3.4 : The simulation when running the roscore command. 25

Figure 3.5 : Command to simulate the TurtleBot. 26

Figure 3.6 : Command to move or control the TurtleBot. 26

Figure 3.7 : TurtleSim window. 26

Figure 3.8 : Gazebo logo. 27

Figure 3.9 : Command to launch Gazebo in ROS. 28

Figure 3.10 : TurtleBot3 Burger in Gazebo simulator. 28

Figure 3.11 : Test environment. 29

Figure 3.12 : Application of laser distance sensor. 30

Figure 3.13: Particle Filter algorithm. 31

Figure 3.14 : The flowchart of Particle Filter algorithm. 32

ix

Figure 4.1 : The (a) test environment in Gazebo simulator and the (b) map created in

RViZ simulation. 36

Figure 4.2 : Command to create the map of the test environment. 36

Figure 4.3 : Command to save the map of the test environment. 37

Figure 4.4 : Command to run the navigation of the mobile robot. 37

Figure 4.5: Navigation of the mobile robot in the map. 38

Figure 4.6 : Command to run the AMCL launch file. 38

Figure 4.7 : Command that necessary for the TurtleBot3 Burger robot localization. 39

Figure 4.8 : Coding for sub_amcl.cpp file. 41

Figure 4.9 : Command to obtain particle filter estimate pose. 42

Figure 4.10 : Command to obtain ground truth pose. 42

Figure 4.11 : Coding for sub_ground.cpp file. 43

Figure 4.12: The rqt graph of all the topics and nodes running in the system. 44

Figure 4.13 : The error obtained by using the different numbers of particles. 45

Figure 4.14 : Cumulative error by using the different number of particles. 46

Figure 4.15 : Cumulative error of the final pose versus the number of particles used.

 49

x

LIST OF TABLES

Table 1 : Comparison between three types of localization algorithm. 13

Table 2 : The comparison between the researches that using the particle filter. 15

Table 3 : Particle filter localization simulation at different state simulation on Rviz

and Gazebo simulator. 40

Table 4 : The Cumulative error of the final pose. 48

xi

LIST OF SYMBOLS AND ABBREVIATIONS

AMCL : Adaptive Monte Carlo Localization

AMRs : Autonomous Mobile Robots

EKF : Extended Kalman Filter

LDS : Laser Distance Sensor

ROS : Robot Operating Software

xii

LIST OF APPENDICES

Appendix A: Github Respiratory 60

Appendix B: Codes 61

CHAPTER 1

INTRODUCTION

1.1 Background of Project

Nowadays, the use of the mobile robot in the routine life has obtained momentum.

In the time ahead, the number of robots usage will be a demand and increased

outstandingly [1]. For example, most of the mobile robots are applied to do a variety

of works, especially in manufacturing industries. The application of mobile robots can

be found in various scenes, either in harmful places or safe places, such as in the store

and warehouse. The sizes are different depending on the implementation and the role

[2]. There are many types of the autonomous robot were created since they were used

widely nowadays especially in industrial and manufacturing fields.

2

For example, Automated Guided Vehicle (AGV) is one of the autonomous robots

that is widely used in manufacturing industries. In the robotic system, the autonomous

system can be divided into four types. There are:

i. Programmable Automatic Robot.

ii. Non-Programmable Automatic Robot.

iii. Adaptive Robot.

iv. Intelligence Robot.

Even though there are differences in types of robots, but the navigation system is a

very important component in every autonomous system such as a mobile robot.

Because of that, the ability to navigate the mobile robots in the human environment is

a need in order to keep a safe and reliable way. Besides, in order to be able to localize,

the mobile robot must have the ability to track the path and trajectories in the

environment.

Due to this reason, a project entitled The Performance Analysis of Localization

Algorithm for Mobile Robot was chosen as the Final Year Project (FYP) to analyze

the localization algorithm for a mobile robot. Localization is the detection of the

present coordinates of the robot. In the current mobile robot applications, there are

several problems arise. One of the problems is there was a limit in order to track the

location and discover the current position of the mobile robot in the absence of GPS

connection. To optimize the localization algorithm, particle filter method is used to

solve the problem. The particle filter uses particles as the representation of the robot’s

belief. By generating a ton of hypotheses, each particle is the hypothesis where the

robot might be.

3

To overcome the problems arise, Ubuntu and Robot Operating System (ROS)

software will be used in this project. The function of Ubuntu software is to support the

Robot Operating System (ROS) software while ROS software is a need to create

robotic simulation as it has the software libraries and tools to help to construct robot

applications. In this project, the simulation of the localization algorithm for mobile

robot helps to track the robot especially when the robot is lost of the track. At the end

of the project, the understanding of the localization algorithm of the mobile robot can

be developed. Besides, the performance of the localization algorithm based on the

robot's position can be evaluated.

1.2 Problem Statement

Several problems arise in this project. One of the problems is there is a limitation

in order to track the location of the mobile robot. Usually, a system that used to track

the location of the mobile robot must have a GPS connection. Because of that, if the

mobile robot located in the area with no GPS connection, they are unable to discover

the current location of the mobile robot. Thus, there is a limitation where the

connection of GPS is needed in order to track the location of the mobile robot in a

certain indoor area. Besides, it will be difficult to discover the coordinate of the current

position of the mobile robot. They will be facing difficulties to detect the current

location of the mobile robot if there suddenly a lost connection of GPS or the building

system having some connection problem. Thus, the current location of the mobile

robot cannot be detected due to the situation. Another problem is lost from the track

or the usual measurements of the route of the mobile robot. When the situation is

happening, it will be difficult to find the location of the mobile robot as we will

probably do not know where the mobile robot will go. To overcome these problems,

4

the student will develop the localization algorithm that does not depends on GPS but

by using the sensor measurements and map.

1.3 Objectives

There are two objectives listed for this project;

i. To simulate the particle filter localization algorithm and investigate the

performance based on the accuracy of the robot’s state.

ii. To investigate the effect of the number of particles used on the accuracy

of the robot’s state.

1.4 Scope of Work

This project focuses on the development of software that can track the location of

the robot. The software used in this project Ubuntu and Robot Operating System

(ROS) software. ROS is a framework for building a Robotics Application. Ubuntu is

a software where the coding is created and then will sync with the ROS to perform the

system. For this project, language programming used is C++.

Besides, this project also focuses on the indoor environment as it is easy to apply

the localization algorithm. The indoor environment was chosen because it has a fixed

area or environment compared to the outdoor environment. Other than that, this project

will be simulated or applied in a static environment since it has less noise in the

environment. In the ROS software, among the various types of robots, TurtleBot3 will

be used as the mobile robot for this project. This is because TurtleBot3 is suitable as

the project only focuses on the indoor environment. The robot itself not suitable for

an outdoor environment.

5

There are several types of robotic systems which are a single robot and multi-robot.

Therefore, the project only emphasizes on single robotic rather than multi-robotic. It

is because of the characteristics of single-robot that can localize independently and a

self-adaptive sample is used in the localization algorithm to overcome the position

tracking, global localization, and kidnapped robot problem. Different from the multi-

robot, it is cooperative localization which enables robots to exchange and share

information through communication.

Besides, the sensor is one of the requirements as the tools in order to perform the

activities of tracking or detection for the mobile robot in this project. Therefore, a laser

range sensor is used as it is suitable to detect and track the location in the indoor

environment compared to other sensors such as vision sensors that only used to

monitor path planning and obstacle detection of the mobile robot while moving in the

unknown environment.

6

1.5 Thesis Outline

The body of the contents in this thesis is divided into five chapters which are the

introduction, background study, methodology, results and discussion, and conclusion

and future works. References, list of publications and papers presented, and

appendices were listed at the end of the report sequentially.

The first chapter briefly describes the background of the research work. Besides,

this chapter also shows the problem statement, objectives and scope of this project.

The second chapter covers an important literature review related to this project.

This chapter starts with the studies about the mobile robot, localization, and

navigation, types of localization algorithm, the comparison between the algorithm

used and Robotic Operating Software (ROS).

The third chapter is about the methodology of the project. In this chapter, each

method used like Robotic Operating Software and other process flow are shown.

The fourth chapter is the results and discussions. This chapter will be analyzing the

data based on the given scope and discussion about the result that observed. Every

simulation data and result achieved were listed in this part.

The last chapter of this thesis is about the future work recommendation and

conclusion about the overall achievement of this project.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Nowadays, the application of the mobile robot is widely implemented in a variety

of fields, especially in industry and manufacturing fields. Thus, localization and

navigation also play an important task to assure the movement of the mobile robot

under control. Hence, several types of localization problems of the mobile robot will

be explained in this chapter.

Besides, the types of localization algorithms that can be used to overcome the

localization problems will be listed and explained in this chapter. Previous researches

that have used the different types of method to overcome or improve the localization

8

of the mobile robot will be compared to the overview of the benefits and limitations

faced in the projects.

Lastly, the main tools that will be used in this project which is Robot Operating

Software (ROS) will be described in the last part of this chapter. The explanation of

the function and the requirement of the ROS application also will be listed.

2.2 Navigation and Localization

As the use of the mobile robot is increasing rapidly nowadays, the

implementation of navigation and localization system in the mobile robot also play an

important task [1]. It is a necessary task in the navigation of the field of mobile robotics

that will make the mobile robot able to drive in an unsure environment. The accuracy

of localization has a direct effect on the accuracy of navigation. With the high accuracy

of localization, a mobile robot is able to perform the assigned task faster [2].

The navigation can be classified into two types; global navigation and local

navigation. The previous knowledge of the environment should be available for global

navigation. On the other hand, for the local navigation, by using provided sensors, the

robot can decide or control the movement freely. Various types of algorithms can be

used to overcome the local navigation problem [3].

2.3 Problems in Mobile Robot Localization

Despite the benefits gained from mobile robots, there are several problems arise in

different flavors. One of the problems is the mobile robot localization problem. The

mobile robot localization problem can be listed in three types. There are position

tracking, global localization and kidnapped robot problem [4].

9

2.3.1 Position Tracking

The position tracking problem is the simplest localization problem that needs to

correct the incremental errors in a robot’s odometry as the initial position of the mobile

robot is recognized. It is updated dependent on the information on its past position

which is detecting or tracking. The robot introductory area is required in this case.

When if the uncertainly of a robot present is excessively enormous, then there is more

failure to localize the robot. [4]

2.3.2 Global Localization

Different from the position tracking problem, the global localization has no

information about the initial location of the mobile robot but it has to find if from

scratch [5]. This implies that without the information or knowledge, the robot can

move to anywhere and can localize globally within it [4].

2.3.3 Kidnapped Robot

Next, the localization problem is the kidnapped robot problem. This problem is

more challenging than others because the well-localized robot is teleported to another

place without being informed [7]. The kidnapped robot problem is similar to global

localization but the worst thing is the robot itself does not know where it has been

moved and it believes it knows where it is but in fact does not. [6]

2.4 Types of Localization Algorithm

Based on the problems of mobile robots that were listed before, there is a reason to

find the solution to overcome it. Because of that, there are several localization

algorithms that can be used to solve the problems. In order to overcome the problem

of localization for mobile robots, there are several types of localization algorithms that

10

can be applied. There are Kalman Filter algorithm, Extended Kalman Filter algorithm

(EKF) and Particle Filter algorithm.

2.4.1 Kalman Filter Algorithm

The function of the Kalman filter is to keep track of the approximated state of the

system and the unsureness of the approximation. The application of Kalman filter is

generally applied for guidance, navigation, and control of vehicles, particularly

aircraft, spacecraft and dynamically positioned ships. Besides, the Kalman filter also

used for modeling the control of the central nervous system of movement. Kalman

filter helps a realistic model for forming an approximation of the current state of the

motor system and problem updated commands. Figure 2.3 below shows the two-step

process involved in Kalman Filter Algorithm.

Figure 2.1 : Two-step process in Kalman Filter algorithm.

By referring in Figure 2.3 above, it shows that there is a two-step procedure used

in this type of algorithm. As shown above, estimates of the initial state of variables are

constructed by the Kalman filter. The estimation gained by the observation of the

outcome will be updated using the mean of the weight. Kalman filter algorithm is

11

recursive that can run in real-time by using only the present input measurements and

past calculated state and its unsureness or covariance matrix.

2.4.2 Extended Kalman Filter (EKF) Algorithm

The Extended Kalman Filter algorithm can be described as the estimator algorithm

that can be used when the system is evaluated by a nonlinear function. One of the

applications of EKF is to combine the approximate data from the odometer and

landmark to enable the mobile robot to localize itself accurately. Besides, it is used to

evaluate the state and apply the data of the system and sensor dynamics, the system

and measurement noises, and any obtainable data for the initial values of the state.

Basically, the EKF is used to keep the estimated position from drifting [6].

Figure 2.2 : Extended Kalman Filter algorithm.

Based on Figure 2.2 above, it shows that prediction and update algorithm is

required for EKF. For the prediction algorithm, it will estimate the state vector and

simulates the corresponding covariance matrix from the initial period to the next one

using the state transition matrix presenting the process described. Then, the equation

12

of the update algorithm will correct the state vector that was assumed. Besides, the

corresponding covariance matrix also will be corrected by using the measurement

model as shown in Figure 2.2 above [12].

2.4.3 Particle Filter Algorithm

The particle filter approach depends on the Monte Carlo algorithm. In this

algorithm, particle filtering is implemented to track the state factors of a system with

non-Gaussian. Besides, it can be multi-modal probability distribution functions [7].

In the Monte Carlo algorithm, it shows the distribution of a variant through a large

number of samples. Particle filters can be categorized as Monte Carlo algorithms that

are used to evaluate the states in partially observable Markov chains. Monte Carlo

algorithms represent the distribution of a random variable through a large number of

samples such as a set of random particles [8]. Figure 2.3 below shows the prediction

and measurement updates in Particle Filter.

Figure 2.3 : The prediction and measurement updates in the particle filter.

The condition of the framework through a dataset made out of random samples

which called the particle is represented in the particle filter. Three alternating steps

can be applied in the particle filter. First is the prediction step where a new particle of

13

each particle will be drawn based on the movement model given the action. The

correction step is another step where an integration for a new observation will be

created by allocating new weights to each particle based on the sensor model. The

third step is the resampling step where a new generation of the particle will be

constructed [10].

2.4.4 Comparison Between Kalman Filter, Extended Kalman Filter (EKF),

and Particle Filter Algorithms.

Every type of localization algorithms such as Particle Filter, EKF, and Kalman

Filter algorithms, they have their benefits and the drawbacks. Therefore, in Table 1

shows below, all the advantages and disadvantages were listed according to each

algorithm.

Table 1 : Comparison between three types of localization algorithm.

Method Advantages Disadvantages

Kalman Filters • Enable them to keep

track of multiple

hypotheses [9].

• Poorly robust if the

initial hypothesis is

bad or noise

assumptions fail [9].

Extended

Kalman Filter

(EKF)

• It solves the nonlinear

equations while

providing optimal

denoising [10].

• Its fast recursive

algorithm needs a small

memory and is thus low-

cost [10].

• It practically does not

demonstrate divergence

under the normal

conditions of

triangulation [10].

• Biased estimates,

because noise is

nonadditive in the

robot dynamics

formulation [10].

• Divergence under the

conditions of large

nonlinearities and large

noise [10].

• High sensitivity to

noise statistics [10].

• Large errors under the

industrial uncertainties

[10].

14

Table 1 (continued).

Particle Filter

• Able to solve

applications in the

robotics domain for

more than one reason

[8].

• A fixed computational

time is not necessary but

the increase of

computational resources

can improve accuracy

[8].

• Statistical robustness

[9].

• Able to control the

random noise

distribution and non-

linearities in the system

and observation model

[9].

• Bad implementation in

higher dimension

spaces [11].

As the details listed in Table 1, it shows the Particle Filter has more benefits and

the advantages compare to EKF and Kalman Filter. Therefore, in this project, the

Particle Filter algorithm is chosen as the localization algorithm for the mobile robots

because it does not require a fixed computational time rather their accuracy increases

with an increase in computational resources. Besides, it can manage the noise

distributions and non-linearities in the system. Compare to another algorithm, Particle

Filter can work for the high dimensional system. This is because it is independent of

the size of the system [9],[13].

15

2.5 Development of Technology

In the robotics field, other researches have done much research or project to

improve the system in localization, especially for mobile robots. Earlier research used

particle filter algorithm [11], [12], [13] for their research. Table 2 below shows the

comparison between the researches using the particle filter.

Table 2 : The comparison between the researches that using the particle

filter.

Author /

Date

Focus Descriptions Limitations / Gaps /

Future Works

N. N. Bhat

(2012)

To improvise the

particle filter

algorithm using

the SIFT pattern

recognition

technique and

image database

processing for

effective position

tracking.

• [11] implemented a

particle filter using a

visual database that

is more relevant in

real-time

environments.

• The particular

database images

must be stored

and chose for

SIFT recognition

and Particle Filter

analysis.

• Have a high

computation

time.

V. Raudonis,

R. Simutis,

and A.

Paulauskaite-

Taraseviĉiene

(2009)

To track the non-

rigid objects using

dynamic particle

filter.

• [12] used the

dynamic particle

filter.

• This method changes

dynamically the

number of particles.

• Includes the

topological

information,

detection of

unexpected

appearing objects

and multiple

related object

tracking.

C. C. Hsu, S.

S. Yeh, and P.

Lo Hsu

(2016)

To improve the

accuracy of

(RSSI)-based

localization

algorithms for

localizing mobile

robots that moving

by using particle

filter design.

• [13] used sensor

fusion to improve the

localization

accuracy.

• Used the trilateration

localization method

with the particle

filter design and the

RSSI measurements

from the wireless

communication.

• The accuracy of

localization is

limited in

practical.

16

Based on Table 2 above, according to N. N. Bhat (2012), the research was focused

on improvising the particle filter algorithm using the SIFT pattern recognition

technique and image database processing for effective position tracking. In the

research, the particle filter using a visual database that is more relevant in real-time

environments was implemented [11]. But, in this research, in order to perform

recognition tasks in a given map, particular database images must be stored and chose

for SIFT recognition and Particle Filter analysis. Thus, the computation time is

necessary to match enormous database images.

Next, tracking the non-rigid objects using dynamic particle filter is the main focus

in the research by V. Raudonis, R. Simutis, and A. Paulauskaite-Taraseviĉiene (2009).

In their research, the dynamic particle filter that enables the tracking of the non-rigid

object in the complex background was used. The formalizes algorithm enables us to

define the dynamics logically and mathematically. This method changes dynamically

the number of particles. If fewer particles are used then the real position of the

observable object can be found with a certain error. However, the limitation of this

project is the integration with the extension of the algorithm can be performed for

automatic selection of the template histogram that includes the topological

information, detection of unexpected appearing objects and multiple related object

tracking.

According to C. C. Hsu, S. S. Yeh, and P. Lo Hsu (2016), the research was focused

on improving the accuracy of (RSSI)-based localization algorithms for localizing

mobile robots that moving by using particle filter design. Besides, it develops a

particle filter design with the fusion of the current states of the mobile robot to improve

localization accuracy. [13] used sensor fusion to improve the localization accuracy by

employing particle filter design. through sensor fusion. The trilateration localization

17

method with the particle filter design and the RSSI measurements from wireless

communication indicates that the proposed approach for the localization of mobile

robots is feasible and provides satisfactory results. But still, the accuracy of

localization is limited in practical applications as there was interference and reflection

of transmission signals during wireless signal transmission.

Based on the limitations and gaps that occurred during the previous researches, this

project was chosen to overcome the limitations and gaps. This project will be used

only the laser range sensor measurement in order to detect the location of the mobile

robot rather than the particular database images that must be stored in the system [11].

Hence, the computation time can be reduced compared to previous research. Besides,

to avoid the use of the integration with the extension of the algorithm, this project will

be focused on the static and indoor environment. This is to overcome the noise that

appeared due to the detection of unexpected appearing objects and multiple related

object tracking [12]. Moreover, this project will not use the wireless signal

transmission but only by the laser range sensor measurement in order to do the

localization of the mobile robot. This helps to overcome the limitation of the accuracy

of localization in practical applications as there were interference and reflection of

transmission signals during wireless signal transmission [13].

18

2.6 Robot Operating Software (ROS)

The Robot Operating Software (ROS) is an open-source framework for robotic that

have been practically applied and used around the world. There is a variety of types

of research that have been presented involved in the robotic by using ROS. It provides

the service user that would predict from an operating system. Besides, tools and

libraries for gaining, designing, and running code across manifold platforms also

provided in the ROS. ROS also gives an incorporated foundation to robot simulation.

The robot model alongside the joined sensors can be effectively coordinated with the

gazebo test system in ROS to create a correspondence string between the user and test

system comparable to the one between a real robot and user [14].

Several controller sensors, tools for the navigation system, mapping for the

environment, path planning, and a 3D visualization system are included in the

packages of the ROS. Several sensor controllers, routing software, environmental

modeling, route preparation, interprocess collaboration simulation tools, and a 3D

visualization system tool are included in the ROS kits. The ROS enables productive

creation of a modern robotic device and a high-performance robotic control program

is reduced considerably when used in combination with a simulation middleware such

as Gazebo [15].

Figure 2.4 : Robot Operating Software (ROS) logo.

19

Besides, ROS is the role of a distributed framework of nodes or processes. It can

practicable to be individually designed and flexible at runtime. Furthermore, in ROS,

several main components will be used to operate the robotic simulation in ROS

software. The several main components are node, package, message, and topic.

2.6.1 Node

The smallest processor unit running in ROS is a node. Note this as a software

executable. For each purpose, ROS recommends the creation of one single node and

is recommended for easy reusability. The robot operating system, for example, is

divided into special functions for mobile robots. For each function, a special node such

as sensor drive, data sensor, obstacle recognition, motor drive, input encoder and

navigation is employed. A node registers information such as name, message type,

URI and node port number when it is launched that can act as publisher, subscriber,

service server or service client, and nodes can exchange information through subjects

and services.

2.6.2 Package

The simple ROS system is the package The package-based ROS software includes

either a setup directory for launching other programs or nodes. It also contains all the

package files, including ROS dependency libraries, which allow different processes,

data sets and configuration files to be performed. In fact, there are approximately 4,600

users packages established and released nowadays.

20

2.6.3 Message

A node transfers or collects information through a message between nodes.

Messages are parameters like integer, boolean, and floating points. The messages can

use a nested message layout including individual messages or a set of messages. The

messaging protocol TCPROS and UDPROS is used for transmission of messages. The

topic is used in unidirectionally delivering messages while the service is used to

deliver two-way messages involving request and response.

2.6.4 Topic

The topic is basically like a topic in a dialogue. The node of the publisher first

registers its subject with the master, then begins to submit a message on a topic.

Subscriber nodes wishing to receive the publisher's node topic request information

corresponding to the topic name registered in master. The subscriber node connects

directly to the publisher node on the basis of this information to exchange messages

as a topic.

CHAPTER 3

PROJECT METHODOLOGY

3.1 Introduction

To ascertain the project runs successfully as the plan, the methodology part is very

critical. All the steps and procedures must be done by sequence full of discipline. The

methods that were implemented in this project are very significant to tackle the project

comprehensively and systematically and hence, produce expected results.

In the first part of this project, the study and findings of previous researches about

the localization algorithm will be implemented. Followed by the installation of the

Ubuntu and Robot Operating System (ROS) software that will be done and the test

environment in ROS will be developed. The generating of the environment in ROS

22

will be done by configuring the ROS software and creating the workspace. Besides,

the installation of packages for Turtlebot also will be done.

Next, the parameters in the particle filter algorithm will be studied. Then, the

simulation of the localization algorithm will be done and the performance of the

system will be evaluated. The accuracy of the robot’s position will be determined

either it is acceptable or not during the process of simulation. If the accuracy is not

acceptable, then the relevant parameters of the algorithm will be modified until the

accuracy is accepted. After that, the project will be continued with the analysis of the

simulation of the localization algorithm. Figure 3.1 shows the flowchart process for

this project.

In this chapter, all methods and procedures used in this project have been described

and arranged accordingly from the installation and development of Robot Operating

Software (ROS) to the simulation of the localization algorithm of the mobile robot. In

order to achieve the best result for this project, the methodology must be pursued

systematically.

23

Figure 3.1 : Flowchart process of the project.

START

Study & find previous researches

Simulation of the localization

algorithm

Study the parameters in particle filter

algorithm

Develop test environment in ROS

Install Ubuntu & ROS software

Evaluate the performance

Accuracy

acceptable?

Analysis

END

Yes

No

Modify relevant

parameters

24

3.2 Robot Operating Software (ROS)

In this project, the software setup is implemented. The process of installing and

configuring the operating system and ROS framework are required to develop the

environment of the software. The installation of ROS must be done first by installing

it on top of Ubuntu software. For Ubuntu software, there are several version of the

software. Hence, for this project, Ubuntu 16.0 version is chosen to support ROS

software available. Besides, ROS Kinetic is installed and used on the Ubuntu 18.4

version. After installing ROS, the configuration of the ROS environment must be

done. The environment of the ROS software can be built with the command in Figure

3.2.

Figure 3.2 : Command for the configuration of ROS environment.

Then, the ROS workspace can be created by building the catkin workspace in the

ROS. The catkin workspace is set up with the goal that ROS packages can be worked

at this individual workspace and is simpler to oversee. The following command in

Figure 3.3 must be run in the terminal provided in the ROS to create catkin workspace:

Figure 3.3 : Command to create ROS catkin workspace.

To start up the ROS master, ROS parameter server and a rosout log node, the

roscore command is needed. The roscore command is the mandatory support to

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/

$ catkin_make

25

run for ROS to work. Besides, roscore oversees correspondence between nodes that

each of it register with the roscore during start-up. Figure 3.4 shows the simulation

when running the roscore in the terminal of ROS.

Figure 3.4 : The simulation when running the roscore command.

3.3 TurtleBot3 Installation

TurtleBot is a ROS standard stage robot. In addition, the turtlesim node, which

initially appears in the basic tutorial of ROS, is a program that copies the command

system of the Logo turtle program. From that point, forward TurtleBot has become the

standard foundation of ROS, which is the most famous stage among designers and

understudies. There are several series of TurtleBot version. But for this project,

TurtleBot3 was chosen. This is because it is a small, affordable, programmable, ROS-

based portable robot for use in training, research, leisure activity, and item

prototyping.

26

The TurtleBot3 can be redone into different ways relying upon the method for

remaking the mechanical parts and utilize discretionary parts, for example, the

computer and sensor. In addition, TurtleBot3 is advanced with financially savvy and

small-sized SBC that is appropriate for robust embedded systems, 360-degree distance

sensors, and 3D printing technology. Besides, TurtleBot3 is reasonable for this project

as its one of the core technology navigation.

In the ROS software, after the configuration of the ROS is done, the Turtlebot3

package can be installed. To simulate the Turtlebot in the software, the following

command must be run in the terminal in Figure 3.5:

Figure 3.5 : Command to simulate the TurtleBot.

Then a window will show up as shown in Figure 3.7 to show the turtle icon where

it can move or control by using the following command in Figure 3.6 :

Figure 3.6 : Command to move or control the TurtleBot.

Figure 3.7 : TurtleSim window.

$ rosrun turtlesim turtlesim_node

$ rosrun turtlesim turtle_teleop key

27

3.4 Gazebo Simulator

The Gazebo is a 3D simulator that delivers robots, sensors, and environmental

models needed in the 3D simulation of a robot for its development. It is a well-known

robotic simulation, even when it is an open-source due to its high performance. In

addition, Open Robotics which is responsible for ROS and its community developed

and distributed Gazebo. Therefore, Gazebo is highly compatible with ROS. The ROS

and Gazebo-based simulation framework thus benefit from various state-of-the-art

robotics algorithms and helpful ROS debugging tools. In terms of code reuse and

project co-creation, it may also benefit or support active software communities like

ROS and Gazebo [16].

In the Gazebo, libraries for physics simulation, rendering, user interface,

communication, and sensor generation are provided in the application. The Gazebo

simulator offers the practical sensing input and theoretically possible interaction

between the object by counting the exact simulation of the rigid-body physic of the

object. Besides, the user can make the Gazebo perform as a node to simulate the robot

movement and communicate with other nodes to exchange the data [17].

Figure 3.8 : Gazebo logo.

28

3.4.1 TurtleBot3 Simulation Using Gazebo

After the installation of ROS and Gazebo have been made, the Gazebo can be

launched. By opening the new terminal at the Ubuntu windows, the following

command as shown in Figure 3.9 is inserted to launch the Gazebo :

Figure 3.9 : Command to launch Gazebo in ROS.

After running the coding above, the Gazebo window will appear. For the project,

there are several types of the mobile robot can be chosen in the Gazebo. For example,

in this project, TurtleBo3 Burger was chosen for the simulation as shown in Figure

3.10 below.

Figure 3.10 : TurtleBot3 Burger in Gazebo simulator.

$ roslaunch gazebo_ros empty_world.launch

29

3.4.2 Development of the Environment in Gazebo Simulation Using Gazebo

In the Gazebo simulator, it provides three-dimensional model importing and an

environment editor for the user. Despite of this, there is no mesh editing provided and

third-party software is required if any imported 3D model needs to be optimized [18].

As the Gazebo provides the 3D model importing and the scene editor, the user can

develop and construct a test environment. For example, the user can build a house or

a maze for the simulation of the mobile robot. The size of the test environment can be

adjusted and edited by the user. For this project, a test environment as shown in Figure

3.11 was created.

After the test environment was successfully created, the mobile robot used such as

TurtleBot3 Burger can be added into the environment. The test environment cannot

be edited once the simulation of the project in the Gazebo is started.

Figure 3.11 : Test environment.

30

3.5 Laser Distance Sensor (LDS)

To detect or to track the position of a mobile robot, there is a requirement of the

use of the sensor. In this project, the sensor used to track the location of the mobile

robot is the laser distance sensor (LDS). This is because the sensor itself acceptable

and compatible with the indoor environment and it can give a range measurement for

the analysis. Besides, the laser distance sensor can be utilized to quantify the geometry

of objects in order to acquire the data of the environment and space around. It works

by sweeping a laser over a scene and at each point estimating the range and the

returned power. Furthermore, the laser distance sensor allows the robot to distinguish

the various types and sizes of the obstacle in the surrounding [19].

Figure 3.12 : Application of laser distance sensor.

Figure 3.12, shows that a laser distance sensor can detect the object placed around

the environment. The accuracy of the laser distance sensor depends on the distance

between the sensor and the object. The further the laser distance sensor is, the accuracy

of the detection of the object will be decreased.

31

3.6 Particle Filter Algorithm

In the particle filter algorithm, an estimate variable of interest is obtained by the

weighted sum of all the particles. A particle defined as an individual state estimate. It

also can be characterized by the state values that decide its area in the arrangement

space, for example [x y θ] and a likelihood that demonstrates its probability. The

particle filters utilize numerous particles for representing the belief state. Figure 3.13

below shows the algorithm used for the particle filter :

Figure 3.13: Particle Filter algorithm.

Based on the coding listed as above, it shows that component of �̅�𝒕 and 𝑿𝒕 represent

the state of the robot at time 𝒕. The number of particles used is represented as M

component. Besides, the prediction step of the particle filter algorithm is described as

𝒑 (𝒙𝒕|𝒖𝒕, 𝒙𝒕−𝟏
[𝒎]

) where component of 𝒙𝒕 represent as the current state of the robot and

𝒖𝒕, 𝒙𝒕−𝟏
[𝒎]

 represent as the robot state due to the robot command. For update step, it is

1 ∶ �̅�𝑡 = 𝑋𝑡 = 0

2 ∶ 𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜

3 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑥𝑡
[𝑚]

𝑝 (𝑥𝑡|𝑢𝑡, 𝑥𝑡−1
[𝑚]

)

4 ∶ 𝑤𝑡
[𝑚]

= 𝑝 (𝑧𝑡|𝑥𝑡
[𝑚]

)

5 ∶ �̅�𝑡 = �̅�𝑡 < 𝑥𝑡
[𝑚]

, 𝑤𝑡
[𝑚]

6 ∶ 𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜

7 ∶ 𝑑𝑟𝑎𝑤 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≈ 𝑤𝑡
[𝑚]

8 ∶ 𝑎𝑑𝑑 𝑥𝑡
[𝑖]

 𝑡𝑜 𝑋𝑡

9 ∶ 𝑟𝑒𝑡𝑢𝑟𝑛 𝑋𝑡

32

mentioned in the coding as 𝒑 (𝒛𝒕|𝒙𝒕
[𝒎]

). After the particles are weighted, the highest

weighted sample or weighted sum of particles can be used as the best-guess state or to

get the mean equivalent. Then, the sensor measurement, 𝒛𝒕 will be used to detect the

robot’s state. The flowchart of the particle filter algorithm is shown in Figure 3.14

below. Based on Figure 3.14, it shows that after the weight was assigned to the

particles, the number of effective particles will be determined. The resampling process

can be processed when the number of effective particles is less than the threshold

value[20].

Figure 3.14 : The flowchart of Particle Filter algorithm.

Sample particles

Assign weight to each

particles

neff <
𝟏

𝟐
× 𝑵

Resample

Yes

No

33

3.6.1 Particle Filtering

The particle filter is repetition in nature and works in two steps. The two steps

involve are prediction and update stage. After each activity, inclusive of the addition

of random noise in order to simulate the effect of noise on the variable interest, every

particle is altered by the existing model during the prediction step. At that point, every

particle's weight is reexamined dependent on the most recent sensory data accessible

during the update step.

Besides, at times, the particles with small weights are eliminated. The process

involves in the elimination of the particles is called a resampling step [21]. The

formula used for each step of the particle filter is mentioned as below :

i. Prediction step that uses the state update model by using the formula:

𝒑(𝒙𝒌|𝒛𝟏:𝒌−𝟏) = ∫ 𝒑(𝒙𝒌|𝒙𝒌−𝟏)𝒑(𝒙𝒌|𝒛𝟏:𝒌−𝟏)𝒅𝒙𝒌−𝟏 (3.1)

ii. Update step that updates the prior using Bayes’ Rule with

measurement by using the formula :

𝑝(𝑥𝑘|𝑧1:𝑘) =
𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
 (3.2)

iii. Resampling step that implemented when the particle weights

degenerate over time by using the formula :

�̂�𝑒𝑓𝑓 = 1 ∑ (𝑤𝑘
𝑖)

2𝑛

𝑖=1
⁄ (3.3)

 1 ≤ �̂�𝑒𝑓𝑓 ≤ 𝑛

 The particle will be resampled whenever �̂�𝑒𝑓𝑓 ≤ 𝑛𝑡ℎ𝑟 .

34

3.7 Performance Analysis : Absolute Trajectory Error

The absolute trajectory error (ATE) straightforwardly gauges the distinction

between points of the true and the evaluated direction. The ATE also able to evaluate

the translational errors and able to detect consequently the rotational errors that usually

show in wrong translations [22]. As a pre-processing step, the estimated poses are

combined with ground truth presents evaluating the timestamps. In view of this

affiliation, the true and the estimated direction utilizing particular value decomposition

will be adjusted.

By contrasting the absolute distances between the estimated and the ground truth

trajectory, the global consistency of the estimated trajectory can be evaluated. The

error between the estimated and the ground truth trajectory is calculated by using an

equation in Equation (3.4). From the errors obtained, the cumulative error was

calculated as shown in Equation (3.5). Both Equation (3.4) and (3.5) were shown as

below:

i. The error between estimated and the ground truth trajectory

calculated by using the formula:

 𝐸𝑟𝑟𝑜𝑟 = √((𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (3.4)

ii. The cumulative error calculated by using the formula:

 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝛴 𝐸𝑟𝑟𝑜𝑟 (3.5)

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter highlights the result of the simulation of the particle filter localization

algorithm. The project aimed to detect the position and coordinate of the mobile robot.

Thus, all the simulated results will be shown in this chapter. The main objective of the

simulation is to investigate the performance based on the accuracy of the robot’s state

and the effect of the number of particles used on the accuracy of the robot’s state.

4.2 Map of the Test Environment

The map is the first significant element for navigation. An accurate map is provided

from the beginning on the navigation system and the modified map can be periodically

downloaded so that the map can be matched to the environment. A robot needs a map

in the navigation system. Thus, the map has to be created and given to the robot, or

the map can be created by the robot.

In robotics, SLAM is developed to allow the robot to create a map with or without

the help of a human being. The robot identifies the unknown space and detects its

environment and estimates its current location and creates a map. This is a method of

creating a map. Thus, a test environment has to be developed first before creating the

map as shown in Figure 4.1 (a). Next, a map of the test environment in Figure 4.1 (b)

can be created by using the following command in Figure 4.2 :

 (a) (b)

Figure 4.1 : The (a) test environment in Gazebo simulator and the (b) map

created in RViZ simulation.

Figure 4.2 : Command to create the map of the test environment.

$ export TURTLEBOT3_MODEL=burger

$ roslaunch turtlebot3_slam turtlebot3_slam.launch

slam_methods:=gmapping

37

Figure 4.1 (b) above shows the map that was created by the simulation. After the

map is finished, the map of the test environment can be saved by using the following

command in Figure 4.3 :

Figure 4.3 : Command to save the map of the test environment.

After the map was saved successfully, the saved map of the test environment can

be launch in the RViz simulation to start the particle filter localization simulation of

the TurtleBot3.

4.3 Navigation of The TurtleBot3 Burger

After the map is completely created, the navigation of the mobile robot can be

simulated. Navigation is to move the robot in a given environment from a starting

point to a destination. A map containing information on the geometry of the furniture,

items, and walls of the given environment will be needed for this purpose. The map

was created using the distance data obtained from the sensor and the robot itself, as

described in this last section of the SLAM. For this project, the navigation can be run

by using the following command in Figure 4.4 :

Figure 4.4 : Command to run the navigation of the mobile robot.

$ rosrun map_server map_saver -f ~/map

$ export TURTLEBOT3_MODEL =Burger

$ roslaunch turtlebot3_navigation turtlebot3_

navigation.launch map_file:=$HOME/map.yaml

/

38

 Figure 4.5: Navigation of the mobile robot in the map.

Based on Figure 4.5 shown above, the mobile robot which is TurtleBot3 Burger

has moved around on the map. The blue region that was highlighted in the figure

shows the area that was scanned by the laser sensor of the mobile robot. Besides, the

object that in green color around the mobile robot represent the laser scan used in the

simulation.

4.4 Particle Filter Localization on RViz Simulation

At the beginning of the simulation, the TurtleBot3 burger does not know its current

location to start with. As a consequence, localization is needed to tells the robot where

it is in the environment. Odometry, laser data, and a map are required for the

localization [23]. Due to the problem, the Adaptive Monte Carlo Localization

(AMCL) node must be launched to enable the particle filter algorithm on the

simulation to track the pose of a robot against the saved map. The node uses the

particle filter based localization method described in [24]. To run the AMCL launch

file, the following command in Figure 4.6 is used :

Figure 4.6 : Command to run the AMCL launch file.

$ rosrun amcl amcl

39

Despite the AMCL launch file, there are other nodes that also necessary for the

localization. The turtlebot3_gazebo_rviz.launch is one of the launch files. The

turtlebot3_gazebo_rviz.launch file will visualize the position of the robot running in

the Gazebo and the distance sensor details. This simulation performance is the same

as the real robot in the Gazebo environment design.

Besides, provide_map.launch is another launch file that required for the

localization. In the simulation of RViz, the file is used to provide the saved map of the

test environment as shown in Figure 4.2 before. The command in Figure 4.7 is used to

launch these files:

Figure 4.7 : Command that necessary for the TurtleBot3 Burger robot

localization.

Table 3 shows the simulation after the commands Figure 4.6 and 4.7 were launched

in the terminal. Thus, the particle filter localization for the robot can be simulated.

According to Table 3, three different diagrams represent the condition in each state of

the particle filter. There are initial state, intermediate state, and final state of the

particle filter.

In Table 3 (a), the TurtleBot3 burger robot is globally uncertain. The particles are

also uniformly distributed in the test environment. The location of the robot along with

the uncertainty state is shown. Instead, the particles that do not match the sensor

measurements are thrown away until the actual position particles remain at the

$ roslaunch turtlebot3_gazebo

turtlebot3_gazebo_rviz.launch

$ roslaunch provide_map provide_map.launch

40

intermediate state of particle filter as shown in Table 3 (b). Now new particles will be

added near the surviving particles to find out a changing position when the robot

moves. As seen in Table 3 (c), the majority of the particles are now located nearly to

the right location and the robot has successfully localized itself eliminating ambiguity.

Table 3 : Particle filter localization simulation at different state simulation

on Rviz and Gazebo simulator.

Explanation Diagram

The initial state of the

particle filter.

(a)

The intermediate state

of the particle filter.

(b)

The final state of the

particle filter.

(c)

41

4.5 Localization Performance of Particle Filter Algorithm

To investigate the localization performance for each number of particles used, the

value of the particle filter estimate pose and the ground truth pose of the TurtleBot3

Burger robot were recorded. The particle filter estimate pose and the ground truth pose

of the robot will be used to calculate the error to investigate the accuracy of the robot’s

state.

To obtain the particle filter estimate pose of the robot, a coding was created as

shown in Figure 4.8. The file was named as sub_amcl.cpp file. It is used to record the

pose of the robot at the position of x, y, and the orientation in the RViz simulation.

Figure 4.8 : Coding for sub_amcl.cpp file.

42

Based on the coding in Figure 4.8, amcl_pose node subscribes the amcl_pose

topic to obtain the particle filter estimate pose of the robot. To run this file, the

command in Figure 4.9 shown below will be used to obtain the pose of the robot that

simulates in the RViz simulation. All the data of the particle filter estimate pose of the

robot is recorded in a file named amcl_pose.txt file. The data will be recorded once

the simulation is started.

Figure 4.9 : Command to obtain particle filter estimate pose.

At the same time, to obtain the ground truth pose of the robot, a coding in Figure

4.11 was created. The coding is saved in a file that was named as sub_ground.cpp file.

It is used to record the pose of the robot at the position of x, y, and the orientation in

the Gazebo simulator. According to the coding in Figure 4.11, grnd_truth node

subscribes to the ground_truth/state topic to obtain the ground truth pose of

the robot. All the data of the ground truth pose of the robot is recorded in a file named

ground_truth.txt file. To run the file, the command in Figure 4.10 shown below will

be used to obtain the pose of the robot that simulates in the Gazebo simulator.

Figure 4.10 : Command to obtain ground truth pose.

$ rosrun amcl sub_amcl

$ rosrun amcl sub_ground

43

Figure 4.11 : Coding for sub_ground.cpp file.

During the simulation of the localization for the robot, there are several topics and

nodes were listed. Thus, ROS provides the capabilities to receive any existing

information on the current system. The structure of the computation graph that shows

the nodes running in the system is one of the important information. In ROS,

rqt_graph is one of a common tool for runtime visualization of the computation

graph [25]. The graph can be visualized by running the rqt_graph command. Then,

the rqt graph as shown in Figure 4.12 will appear.

44

Figure 4.12: The rqt graph of all the topics and nodes running in the system.

The graphical view of the topics and nodes were shown in Figure 4.12 above.

Figure 4.12 shows the rqt graph of the topics after all the nodes used for the

localization of the robot are launched. The components in the rectangle shape

represent the topic used for the simulation. While the components in oval shape

represent the nodes launched in the ROS.

The /map_server node shown in Figure 4.12 is launched to provide the saved map

that was created in the RViz simulation as mentioned in Figure 4.1. For the

localization, the starting node is /gazebo that provides the test environment for the

robot simulation. The other node which is /turtlebot3_teleop_keyboard is launched to

move the TurtleBot3 Burger in the Gazebo simulator. The /grnd_truth node is

launched to get the ground truth pose of the robot. Besides, /amcl node subscribes the

/scan topic in order to track the position of the robot in the RViz simulation. Then, the

/amcl node publish messages to /amcl_pose topic. The /amcl_pose node is launched

to get the particle filter estimate pose of the robot in the RViz simulation.

45

4.6 Results of Particle Filter Localization Simulation

The simulation of particle filter localization for the mobile robot is tested by using

the different number of particles from 500 to 8000 particles. Figure 4.13 below shows

the graph of error obtained by using the different numbers of particles. The value of

the errors was obtained by using the value of particle filter estimate pose and the

ground truth pose of the TurtleBot3 Burger.

Figure 4.13 : The error obtained by using the different numbers of particles.

Based on Figure 4.13, it shows that the error for 500 particles is the highest value

obtained compared to the other. While the lowest value of the is recorded when 8000

particles are used for the simulation. Besides, by referring to the figure, it shows that

by using 8000 particles, the errors obtained is maintained within the bounds compared

to when using 500 number of particles for the simulation. At timestep of 100 seconds,

46

the error obtained by using 500 particles is 1.695 meters. While by using 800 particles,

the error obtained to localize the robot is 0.872 meters at the timestep of 100 seconds.

Therefore, the error obtained by using 8000 particles is 48% lesser than using 500

particles. This finding shows that by using 8000 particles, particle filter can localize

the robot with less error obtained compared to 500 particles. Therefore, it can be

concluded that the higher the number of particles used, the lesser the error obtained

for the particles to localize the mobile robot to its position.

Figure 4.14 : Cumulative error by using the different number of particles.

Besides, Figure 4.14 above shows the cumulative error obtained by using the

different number of particles. The simulation of particle filter localization by using

47

500 particles shows the highest cumulative error compared to the other number of

particles. While using 8000 particles, it shows that the cumulative error obtained is

lower compared to 500 particles. Figure 4.14 shows that the cumulative error obtained

can be reduced as when the number of particles used for the particle filter localization

increases.

To analyze the accuracy quantitatively, the error between the particle filter robot’s

state estimate and the ground truth robot’s pose is calculated by using an equation in

Equation (4.1). From the errors obtained, the cumulative error was calculated as shown

in Equation (4.2) for each number of particles used. The significance of using

cumulative error formula is to show clearly which of the number of particles used

results the highest or the lowest number of the cumulative error as the timestep

increases.

From that, the number of particles that have the lowest cumulative error is the best

number of particles that can be used for the localization as it reflects the highest

accuracy. Both Equation (4.1) and (4.2) were shown as below:

i. The error between particle filter pose and the ground truth calculated

by using the formula:

 𝐸𝑟𝑟𝑜𝑟 = √((𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (4.1)

ii. The cumulative error calculated by using the formula:

 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝛴 𝐸𝑟𝑟𝑜𝑟 (4.2)

48

From the graph in Figure 4.14, the cumulative errors of the final pose of TurtleBot3

for the different number of particles used were recorded in Table 4. Table 4 shows that

the value of the cumulative error of the final pose by using 500 particles is the highest

compared to the others with 18.902 meters. Compared to the value obtained by using

8000 particles, it shows that the cumulative error of the final pose is decreased to 9.906

meters which is 47% lesser than using 500 particles.

Table 4 : The Cumulative error of the final pose.

Number of Particles Used Cumulative Error of Final Pose (m)

500 18.902

1500 16.624

2500 14.512

3500 13.561

4500 14.511

5500 13.259

6500 11.579

7500 10.535

8000 9.906

4.7 Analysis of the Cumulative Error of the Final Pose of Turtlebot3 Burger

According to The Number of Particles Used

From the simulation, it shows that the cumulative error of the final pose of

TurtleBot3 Burger recorded in Table 4 decreased as the number of particles used

increased. Based on Table 4, the cumulative error of the final pose according to the

number of particles used is plotted in Figure 4.15. From the graph shown in Figure

4.15, the accuracy of the particle filter localization algorithm for the robot can be

maximized as the error obtained is decreased when the number of particles used

increases.

49

Figure 4.15 : Cumulative error of the final pose versus the number of

particles used.

Referring to Figure 4.15, it shows that by using 500 particles, the highest

cumulative error was obtained of the final pose and decreased by 2.278 meters when

using 1500 particles. It continuously decreases until 8000 particles that shows the

lowest cumulative error of the final pose is achieved compared to the others. From the

graph in Figure 4.15, it shows the higher the number of particles used to localize the

robot, the cumulative error of the final pose of the robot can be decreased. By using

the particle filter algorithm, the higher the number of particles used is the best

preference as it results the better to estimate the position of the robot. As the errors

obtained can be reduced as the number of particles used is increasing, the accuracy to

localize the robot can be maximized. Hence, it can be concluded that as the number

of particles used increases, then the cumulative error of the final pose decreases and

the accuracy of the estimation of the robot’s position can be maximized.

50

4.8 Project Significant

The environment and sustainability are represented as an ecosystem for the living

things and the ability to control the production at a certain point or a certain behavior

respectively. The combination of the environment and sustainable development mean

maintaining long-term environmental quality factors and practices. When

implementing a project, the environment and sustainability are significant to be

considered because this can affect our nature and society directly.

First, the impact of this project will focus primarily on the development of the

community. Robot Operating System (ROS) is an open-source software where it can

be used as the localization software. The standard development of the localization

software allows the use of many open source programs and the contribution to

community development more efficiently. This would make the development of the

software with more resources easier. Moreover, this project had shown the potential

in development in terms of the autonomous system which can fully utilize on

controlling by using the localization and detection of the mobile robot system. The

software proposed gives the competency features especially to the persons or workers

in manufacturing industries to detect and track the position of the mobile robot easily.

Besides, this software helps them to localize or detect the position of the mobile robot

even it was located in various scenes such as in the store and warehouse at any time

by using the software.

Next, the impact of this project on social. This project will be needed especially

for manufacturing industries. This is because manufacturing industries need a big help

from the robotic services. The reason is that the robot can performs repeatable works.

As a result of that, its benefits to the human where they can focus and work on more

51

creative tasks. For example, Autonomous Mobile Robots (AMRs) are one of the most

commonly used, especially in warehouses. In the AMRs, the sensor technology was

developed in order to deliver or move the items from one place to another place around

the warehouses. To understand and develop the environment such as warehouses, the

use of computers, sensors, and the maps are required in the AMRs. The efficiency and

accuracy were offered by the AMRs as it helps to minimize the repetitious works

during the sorting process and allows workers to perform more useful works. Hence,

the errors can be reduced by using the robot as it delivers a constant error compared

to humans.

Furthermore, in the economy sector, this project gives the cost-saving method in

reducing manufacturing costs. The manufacturing cost can be reduced as the factory

or the manufacturer company does not require compensation since no manpower

needed. In the starting, the cost needed to install the robots may seem daunting but it

will benefit for a long term return on their investment. This is because the robots can

work 24 hours per day without a break if needed compared to the humans that have

the limitation of time and energy to work. Unlike humans, robots can do specific

repeatable works or movements at the same time can reduce the time spent correcting

human errors.

Last but not least, in the environment sector, the robot can perform in various scenes

either in dangerous or harmful environments that humans cannot operate. This can

help to reduce the number of accidents occur in the workplace among the workers. At

the same time, as the robots are used especially in manufacturing industries for safety

in factories and manufacturing plants, working conditions can be improved. Besides,

this invention offers the energy and time saving to the users. Only with help on the

52

software, they could detect and track the mobile robot from far or even when they are

not around in a certain environment. Without this software, they have to monitor the

mobile robot manually to ensure it is on the track. They have to manage it one by one.

Thus, it requires more time and energy. Hence, with this localization of mobile robot

software, more time and energy could be saved.

For this project, the only limitation of this software is that it only can be

implemented in the indoor and static environment since less sensor noise involved

during the localization of the robot. Besides, the map of the test environment needs to

be updated if there is any changing of the environment as it affects the accuracy of the

localization of the mobile robot.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this report, the performance analysis of the localization algorithm for mobile

robots is studied by using the particle filter method. The particle filter uses particles

as the representation of the robot’s belief. In particle filter, each particle is the

hypothesis of where the robot might be.

The main idea was to track the location and discover the current position of the

mobile robot in the absence of GPS coverage. To optimize the localization algorithm,

particle filter method is used to solve the problem. The particle filter algorithm

provides solutions for mobile robot localization problems such as position tracking,

global localization, and kidnapped robot.

54

The first objective of this project is to simulate the particle filter localization

algorithm and investigate the performance based on the accuracy of the robot’s state.

The test environment used in this project for the simulation of the localization

algorithm of the mobile robot is studied and developed by using Robot Operating

Software (ROS). There are several main structures of ROS were studied such as topic,

subscriber and publisher of ROS software. By using the rqt graph, all the nodes

running in the current system used for the publish-subscribe mechanism were shown.

Gazebo and RViz simulator in ROS were used to create the test environment and

simulate the particle filter algorithm for the localization respectively. Furthermore,

different numbers of particles were used in the simulation by using the ROS software.

Even though it takes time to develop this project since it is a new development, the

particle filter localization algorithm for the mobile robot was successfully simulated.

Next, the second objective of the project is to investigate the effect of the number

of particles used on the accuracy of the robot’s state. For that, this project is simulated

by using a different number of particles. Based on the simulation results shown in

Chapter 4, the particle filter localization of TurtleBot3 Burger simulation is tested by

using 500, 1500, 2500, 3500, 4500, 5500, 6500, 7500, and 8000 particles. The

simulation shows that the cumulative error obtained by using 500 particles is the

highest value compared to the higher number of particles. From the results, it shows

that the accuracy of the mobile robot localization can be increased as the particles used

are increasing.

55

Based on the results and analysis, the Performance Analysis Of The Localization

Algorithm For Mobile Robots is a wise project made. However, there is a limitation

for this particle filter localization algorithm. The algorithm only can be tested in the

static environment. If the algorithm is tested in a dynamic environment, the

localization of the mobile robot may be interrupted by a higher noise level. There are

several improvements that can be made to create a better software system. In

conclusion, the performance analysis of the localization algorithm for mobile robots

is successfully developed. This project has provided an immersive experience through

advanced technology for the student.

5.2 Future Works

 For the current project of The Performance Analysis of The Localization

Algorithm For Mobile Robots, it only can be applied in the static environment since

there is less sensor noise involves during the localization. If the algorithm is tested in

a dynamic environment, the localization of the mobile robot may be interrupted by

other noise. In the next stage of this research, a proposed approach by applying the

particle filter algorithm in the dynamic environment which involves sensor noise

parameters that can be considered during the localization process.

Besides, according to localization, the mobile robot position is estimated based on

the environment map. Therefore, the map needs to be updated when the environment

is changing. The localization of the mobile robot may not precise or accurate if the

map is not updated. Therefore, another approach with the presence or absence of the

map information can be combined with this current technique of localization for

particle filter to localize the mobile robot in the future. Hence, some improvements

can be made to track or localize the mobile robot more efficiently.

56

REFERENCES

[1] P. Wozniak, H. Afrisal, R. G. Esparza, and B. Kwolek, “Scene recognition for

indoor localization of mobile robots using deep CNN,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2018.

[2] H. Zhang, C. Zhang, W. Yang, and C. Y. Chen, “Localization and navigation

using QR code for mobile robot in indoor environment,” 2015 IEEE Int. Conf.

Robot. Biomimetics, IEEE-ROBIO 2015, no. December 2015, pp. 2501–2506,

2015.

[3] A. Pandey, “Mobile Robot Navigation and Obstacle Avoidance Techniques: A

Review,” Int. Robot. Autom. J., vol. 2, no. 3, 2017.

[4] I. Ashokaraj, A. Tsourdos, P. Silson, and B. White, “Sensor based robot

localisation and navigation: Using interval analysis and nonlinear kalman

filters,” Trans. Can. Soc. Mech. Eng., 2005.

[5] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle Filters for Mobile

Robot Localization,” Seq. Monte Carlo Methods Pract., pp. 401–428, 2001.

57

[6] S. Nurmaini and S. Pangidoan, “Localization of Leader-Follower Robot Using

Extended Kalman Filter,” Comput. Eng. Appl. J., vol. 7, no. 2, pp. 95–108,

2018.

[7] F. G. Bravo, A. Vale, and M. I. Ribeiro, “Navigation strategies for cooperative

localization based on a particle-filter approach,” Integr. Comput. Aided. Eng.,

vol. 14, no. 3, pp. 263–279, 2007.

[8] S. L. Shue, N. S. Shetty, A. F. Browne, and J. M. Conrad, “Particle Filter

Approach to Utilization of Wireless Signal Strength for Mobile Robot

Localization in Indoor Environments,” Int. J. Wirel. Mob. Networks, vol. 10,

no. 4, pp. 21–38, 2018.

[9] M. Mirkhani, R. Forsati, A. M. Shahri, and A. Moayedikia, “A novel efficient

algorithm for mobile robot localization,” Rob. Auton. Syst., vol. 61, no. 9, pp.

920–931, 2013.

[10] J. Pomárico-Franquiz, S. H. Khan, and Y. S. Shmaliy, “Combined extended

FIR/Kalman filtering for indoor robot localization via triangulation,” Meas. J.

Int. Meas. Confed., vol. 50, no. 1, pp. 236–243, 2014.

[11] N. N. Bhat, “Robot Localization by Particle Filter using Visual Database .,” no.

1, pp. 22–27, 2012.

[12] V. Raudonis, R. Simutis, and A. Paulauskaite-Taraseviĉiene, “An efficient

object tracking algorithm based on dynamic particle filter,” Elektron. ir

Elektrotechnika, vol. 3, no. 3, pp. 93–98, 2009.

[13] C. C. Hsu, S. S. Yeh, and P. Lo Hsu, “Particle filter design for mobile robot

58

localization based on received signal strength indicator,” Trans. Inst. Meas.

Control, vol. 38, no. 11, pp. 1311–1319, 2016.

[14] A. Shukla, R. Singh, R. Agarwal, M. Suhail, S. K. Saha, and S. Chaudury,

“Development of a Low-Cost Education Platform: RoboMuse 4.0,” ACM Int.

Conf. Proceeding Ser., vol. Part F1320, pp. 0–5, 2017.

[15] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache, “Simulation

environment for mobile robots testing using ROS and Gazebo,” 2016 20th Int.

Conf. Syst. Theory, Control Comput. ICSTCC 2016 - Jt. Conf. SINTES 20,

SACCS 16, SIMSIS 20 - Proc., pp. 96–101, 2016.

[16] J. Xiao, D. Xiong, W. Yao, Q. Yu, H. Lu, and Z. Zheng, Building Software

System and Simulation Environment for RoboCup MSL Soccer Robots Based

on ROS and Gazebo. 2017.

[17] W. Qian et al., “Manipulation task simulation using ROS and Gazebo,” 2014

IEEE Int. Conf. Robot. Biomimetics, IEEE ROBIO 2014, pp. 2594–2598, 2014.

[18] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield, “Feature and

performance comparison of the V-REP, Gazebo and ARGoS robot simulators,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 10965 LNAI, pp. 357–368, 2018.

[19] J. H. Gao and L. S. Peh, “A smartphone-based laser distance sensor for outdoor

environments,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2016-June, pp.

2922–2929, 2016.

[20] M. F. Measurements, X. Wang, S. Member, C. Zhang, F. Liu, and Y. Dong,

59

“Exponentially Weighted Particle Filter for Simultaneous Localization and

Mapping Based on,” pp. 1–10.

[21] I. Rekleitis, “A particle filter tutorial for mobile robot localization,” Cent. Intell.

Mach. McGill Univ. Tech. …, 2004.

[22] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark

for the evaluation of RGB-D SLAM systems,” in IEEE International

Conference on Intelligent Robots and Systems, 2012.

[23] S. Zaman, W. Slany, and G. Steinbauer, “ROS-based mapping, localization and

autonomous navigation using a Pioneer 3-DX robot and their relevant issues,”

Saudi Int. Electron. Commun. Photonics Conf. 2011, SIECPC 2011, no. May

2014, 2011.

[24] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo

localization for mobile robots,” Artif. Intell., vol. 128, no. 1–2, pp. 99–141,

2001.

[25] A. Santos, A. Cunha, and N. Macedo, “Static-Time Extraction and Analysis of

the ROS Computation Graph,” Proc. - 3rd IEEE Int. Conf. Robot. Comput. IRC

2019, pp. 62–69, 2019.

60

 APPENDICES

APPENDIX A : GITHUB RESPIRATORY

Nur Nabila Husna, 2020, Github Respiratory, https://github.com/hus-

nabila/The-Performance-Analysis-of-Localization-

Algorithm-For-Mobile-Robot

https://github.com/hus-nabila/The-Performance-Analysis-of-Localization-Algorithm-For-Mobile-Robot
https://github.com/hus-nabila/The-Performance-Analysis-of-Localization-Algorithm-For-Mobile-Robot
https://github.com/hus-nabila/The-Performance-Analysis-of-Localization-Algorithm-For-Mobile-Robot

61

APPENDIX B : THE CODINGS

i. Coding for sub_amcl.cpp file.

62

ii. Coding for sub_ground.cpp file.

